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ABSTRACT: This study evaluates the increases in classification accuracy possible from satellite and airborne image texture 
processing and integration with ancillary topographic data for a moderate relief, boreal environment in Gros Morne 
National Park, eastern Canada. The texture measures angular second moment, entropy, and inverse difference moment 
were computed from spatial co-occurrence matrices in different orientations from SPOT multispectral linear array (MLA) 
and synthetic aperture radar (SAR) imagery. The general system of geomorphometry (elevation, slope, aspect, curvature, 
relief) was extracted from a co-registered digital elevation model (DEM). Stepwise and linear discriminant analyses were 
used to rank the relative information content of all variables and to ascertain classification accuracies for different 
combinations of variables. The analysis was applied to random samples of image data stratified by nine vegetation/ 
land-cover classes determined from field work and aerial photointerpretation. The three variables containing the greatest 
relative discriminatory power were MLA band 2, SAR angular second moment, and elevation. Overall classification 
accuracies were as follows: SAR image alone: 36 percent; SAR with texture: 47 percent; DEM: 59 percent; geomorphometry: 
69 percent; MLA image alone: 73 percent; MLA image and texture: 88 percent; MLA and geomorphometry: 94 percent; 
and MLA with texture and geomorphometry: 98 percent. The spatial co-occurrence matrices contain important textural 
information that improved the discrimination of classes with internal heterogeneity and structural/geomorphometric 
patterns. Greater improvements were obtained through data integration, and the highest accuracy achieved used a 
combined texture processinglintegration approach with MLA and geomorphometric data. Optimization procedures 
which use n priori rank analysis and selective data processing in a two-stage classification are proposed to alleviate 
potential classifier problems associated with the increased number of variables being considered. 

INTRODUCTION 

I MAGE TEXTURE PROCESSING and ancillary data integration are 
two common approaches used to increase the accuracy of 

remote sensing classifications. Texture is an important discrim- 
inating characteristic of an image region (Curran, 1985, p. 204), 
and its use in digital image classification is based on the need 
to include pattern variability in the analysis (Weszka et al., 1976). 
Common texture processing algorithms include spatial co-oc- 
currence, second-order gray level statistics, autocorrelation 
functions, image transformations, and edge filter operators 
(Haralick, 1979). Texture analysis of spectral response has been 
used in many applications, including terrain analysis (Shih and 
Schowengerdt, 1983), forest mapping (Skidmore, 1989; Gordon 
and Philipson, 1986), environmental monitoring (Cross et al., 
1988), and in ecological studies (Saxon, 1984), while applications 
of radar texture can be found in forestry (Leckie, 1984; Lowry 
et al., 1986), land use (Ulaby et al., 1986), agriculture (Pultz and 
Brown, 1987), and sea ice differentiation (Gersen and Rosen- 
feld, 1975; Peddle, 1989). 

Digital techniques to accomplish ancillary data integration are 
generally either deterministic or probabilistic (Hutchinson, 1982; 
Franklin, 1989). Examples which used remotely sensed spectral 
response and digital elevation models have been applied to for- 
estry studies (Fleming and Hoffer, 1979; Cook ef al., 1989), ter- 
rain analysis (Franklin, 1987; Jones et al., 1988; Frank, 1988) and 
wildlife management (Kenk and Yee, 1988). Studies that used 
radar and elevation data in forestry studies in mountainous 
areas include Lowry et al. (1986) and Teillet et al. (1985), among 
others. 

This paper addresses the use of both techniques. Results are 
presented from a program of research in image texture process- 
ing and integration of ancillary topographic data in Gros Morne 
National Park, eastern Canada (see Figure 1). Earlier work in 
this boreal environment showed significant increases in classi- 
fication accuracy using (1) a Landsat MSS image with ancillary 
elevation data (Franklin et al., 1989); (2) Landsat MSS texture 
and geomorphometry (Franklin and Peddle, 1989); and (3) tex- 

ture analysis of high resolution SPOT satellite imagery (Franklin 
and Peddle, 1990). In this study, additional work using airborne 
radar data and stepwise and linear discriminant procedures is 
described to reveal the relative information content of the spec- 
tral, radar, and topographic variables, and to determine optimal - - 
mapping combpations and processing strategies in a p;obabi- 
listic classification of complex surface patterns in an area of 
diverse land cover and teriain. 

Two main hypotheses are tested: (1) classification accuracy 
increases significantly when new variables processed from high 
resolution data are introduced, and (2) the integration of ancil- 
lary data sources provides new information that will improve 
the description and discrimination of ground classes. 

With these hypotheses in mind, the following experiment 
was designed: (1) nine vegetation-communityfland-cover classes 
were identified from field work and aerial photointerpretation; 
(2) co-registered data sets were prepared consisting of MLA and 
SAR imagery and a DEM; (3) image texture processing and geo- 
morphometric algorithms were applied; (4) a random sample of 
pixels was generated for all variables within field-checked train- 
ing sites; (5) all variables were ranked statistically according to 
their relative discriminatory power and non-redundant infor- 
mation content; and (6) linear discriminant analysis was used 
to determine individual and overall class accuracies for various 
data set combinations. In each case, the assessment is based on 
direct comparisons to known and established ground condi- 
tions observed in the field. 

STUDY AREA 

The study area is located on the west coast of the island of 
Newfoundland within the boundary of Gros Morne National 
Park (see Figure 1). The Park covers over 1800 square kilometres 
and includes at least six land regions: Coastal Plain, Piedmont 
Moraines, Long Range Mountain Frontal Slopes, Long Range 
Uplands, Southern Hills, and a Klippe Complex. The Long Range 
Mountains are the dominant topographic feature and are part 
of the Appalachian chain of mountains in eastern North Amer- 
ica. The study area selected for analysis encompasses a diversity 
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FIG. 2. Aerial synthetic aperture radar ( ~ A R )  image in plan perspective. 

FIG. 1. Location of the study area, Gros Morne National 
Park, Newfoundland, Canada. measures can be computed (see Haralick et al. (1973) and Weszka 

et RZ. (1976)). 
Figure 3 illustrates the construction of the four directional 

of vegetation communities and land forms and includes the full 
range of relief in the Park from sea level to the summit of Gros 
Morne Mountain (806 m above sea level). A complete descrip- 
tion of the land regions and land systems of this area is pro- 
vided in the Park Biophysical Resources Inventory (AAACL, 
1975). 

DATA ACQUISITION 

A SPOT-1 multispectral linear array (MLA) high resolution vis- 
ible (HRV) image was acquired on 17 August 1988 with an off- 
nadir viewing angle of 20.24 degrees west, solar elevation of 
52.9 degrees, and solar azimuth of 164.7 degrees. This scene is 
cloud-free and without visible radiometric degradation. Air- 
borne synthetic aperture radar (SAR) C-band imagery was ac- 
quired on 7 September 1988 in HH polarization, narrow swath 
mode at a spatial resolution of 6 m by The Canada Centre for 
Remote Sensing Convair 580 aircraft flying at an altitude of 6100 
m. The digital elevation model (DEM) of Gros Morne National 
Park was created by digitizing contours from a mylar copy of 
the 1:100,000-scale topographic map of the area using a preci- 
sion coordinate digitizer. A dense-grid 20-m DEM was produced 
after interpolation by an average distance-weighted vector to 
raster transformation routine (Davis, 1987) of the Surface I1 
computer mapping system. All of the data sets were registered 
to the Universal Transverse Mercator (UTM) projection using 
standard geometric correction procedures with less than 0.5 pixel 
error. 

A color composite of the SPOT MLA imagery is shown in Plate 
1 as a three-dimensional perpective image visualization gener- 
ated by draping a three-band enhancement over the DEM (see 
Hussey et al., 1986). The SAR image is shown in plan view as a 
gray level image in Figure 2. 

IMAGE PROCESSING 

Texture processing of the MLA and SAR imagery was accom- 
plished using the spatial co-occurrence algorithm proposed by 
Haralick et nl. (1973) and implemented by Franklin and Peddle 
(1987). In that algorithm, relationships of adjacent gray tones 
are captured in spatial co-occurrence matrices for a specified 
orientation and window size from which a series of texture 

spatial co-occurrence matrices for a 3 by 3 window from an 
example image normalized to four gray levels (0 to 3). Pairs of 
adjacent pixels are considered in orientation, and the normal- 
ized value of those pixels forms the index for incrementing an 
entry of the co-occurrence matrix. The final matrix for a given 
point location in the image contains the number of times each 
possible pair of pixel values occurred in the selected orientation 
within the specified neighbourhood surrounding that point. 

In this study, three texture measures were used: angular sec- 
ond moment (ASM) - a measure of homogeneity; entropy - a 
measure of randomness; and inverse difference moment (IDM) 
- a measure of lack of variability. The formulae used to com- 
pute each measure from the spatial co-occurrence matrix at each 
point are as follows: 

angular second moment = 2 
i j 

inverse difference moment = 2 2 
i , 1 + (i - ]I2 

where P is the spatial co-occurrence matrix and R is the fre- 
quency normalization constant for the selected orientation. 

Many texture features could be generated from each band 
using different texture measures, window sizes, orientations, 
and gray level ranges (see Haralick et al., 1973). However, tex- 
ture processing was curtailed in this study to one feature per 
band in order to minimize dimensionality problems associated 
with entering additional variables into a cIassifier. The texture 
processing options were selected with reference to an earlier 
study of MLA texture elsewhere in the Park (Franklin and Ped- 
dle, 1990). The following texture features were computed from 
the MLA image using an 11 by 11 window (220 m by 220 m on 
the ground): ASM of band 1 in the horizontal orientation, en- 
tropy of band 2 in the right diagonal orientation, and IDM of 
band 3 in the left diagonal orientation. The three MLA texture 
features are shown in color composite in Plate 2. From the single 
band SAR image, ASM, entropy, and IDM were computed at full 
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FIG. 3. (a) 3 by 3 window with gray tone range 0 to 3; (b) general form 
of any spatial co-occurrence matrix for window with gray tone range 0 
to 3. #(i,j) represents number of times gray tones i and j were neighbors. 
(c) to (9 spatial co-occurrence matrices derived for four angular orien- 
tations. 

image resolution in the horizontal, right diagonal, and left di- 
agonal orientations, respectively, using a 37 by 37 window size 
(222 m by 222 m on the ground). The co-occurrence orientation 
in each case was based on an earlier study (Franklin and Peddle, 
1989) where it was found that individual texture orientations P L A ~ ~  1. SPOT MW band 3, 2, 1 color composite draped over the DEM in 
resulted in higher class accuracies than averaged texture mea- perspective view. Viewing geometry 45 degrees off the horizon, looking 
sures. The selection of window size (approximately 200 m by northeast, with no vertical exaggeration. 
200 m on the ground) was based on observations in the field, 
aerial reconnaissance, photointerpretation, and earlier tests and 
successful uses of texture to improve the classification of MLA 
imagery (Franklin and Peddle, 1990). 

The general system of geomorphometry (Evans, 1972) was 
extracted from the DEM using the GEDEMON software package 
(Peddle and Franklin, 1990) to obtain measures of elevation, 
slope, aspect transformed to incidence (see Townshend, 1981), 
down slope convexity, cross slope convexity, and relief. 

Both the texture analysis software, written in the C program- 
ming language (see Franklin and Peddle, 1987) and the FOR- 
TRAN GEDEMON software package (Peddle and Franklin, 1990) 
run on a VAX-llP50 computer under the VMS operating system. 
Those interested in obtaining a copy of either program are wel- 
come to contact the authors. i 

FIELD CLASSIFICATION AND SAMPLING DESIGN 

Field work and interpretation of the black-and-white aerial 
photography (see Figure 4) were used to find areas represent- 
ative of nine vegetation-communityfland-cover classes that are 
described in Table 1 and mapped in Figure 5. These classes are 
the basis for the vegetation maps analyzed by National Parks 
personnel in their biophysical inventory of the Park's resources. 
The stars in Figure 5 show the location of sites verified by field 
observations as representative of each class. These sites were 
located in the registered data sets on the image analysis system. 
A disproportional stratified random sample (Townshend, 1981) 
was generated consisting of 900 training and 900 test pixels (100 
pixels per sample for each of the nine classes). The general rule 
of thumb is to have lOOn pixels in a sample, where n is the 
number of variables (Swain and Davis, 1978). This rule is ad- 
hered to for all but five of the discriminant functions tested (i.e., 
those which use not more than nine variables - see Table 3) 
because it was not possible to visit enough representative sites 
in the field. In addition to this, several of our field sites were 
invalidated since they were located in radar shadow (see Figure 
2). Therefore, the functions which test ten or more variables 
must be interpreted with caution. 

DISCRIMINANT ANALYSIS RESULTS 

Stepwise and linear discriminant analysis procedures (Cooley 
and Lohnes, 1971; Klecka, 1980) were used in the Statistical 
Analysis System (SAS Institute, 1985) to investigate the relative 

PLATE 2. Color composite of SPOT MLA texture features in plan view. ASM 
of band 1 shown in red, entropy of band 2 in green, and IDM of band 3 
in blue. 

discriminatory power of all variables and to determine classifi- 
cation accuracies for different variable combinations. 

Discriminant analysis was chosen as the method of imple- 
menting a classification because it has been shown to be less 
sensitive to the number of mapping variables and less affected 
by deviations from the normal (Gaussian) distribution com- 
pared to other classification techniques, such as maximum like- 
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1 

Label in 
Class Description Figure 5 

1 Heath, Scattered Black Spruce HBs 
2 Heath Barrens HB 
3 Water 
4 Nunatak-Exposed Serpentines N 
5 Spruce Shrubfluckamoor Plateau TP 
6 Black Spruce Forest Bs 
7 Balsam Fir Forest BF 
8 White Birch Forest BW 
9 Mixed Forest (BF,BW,Bs) M 

lihood (Tom and Miller, 1984). It is also important to note that 
classification accuracy is in part a function of the class structure 
used with respect to the spatial and radiometric precision of the 
data (Hutchinson, 1982). 

Stepwise discriminant analysis is a variable-selection technique 
whereby variables are entered into the model according to their 
magnitude of non-redundant discriminatory power. It does not 
necessarily provide a ranking of absolute information content; 
for example, a variable that is highly redundant with a previously 
selected variable will be ranked low because it possesses little 
new discriminating information that is not already available to 
the function. Table 2 shows the order of entry of the training 
sample variables into the stepwise model with respect to the 
nine vegetatiodand-cover classes. 

A variable from each of the three data sets comprises the first 

FIG. 4. Reproduction of aerial pho- 
tograph of the study area (original 
scale approximately 1 :30,000). 

FIG. 5. Field classification map. Stars show the location of sam- 
pled training areas. Class labels in Table 1. 

three rankings (MLA band 2, SAR ASM, DEM). This immediately 
confirms that there is discriminatory power available from the 
three different data sources. The high ranking of texture variables 
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(SAR ASM and MLA entropy) and geomorphometric variables 
(slope and incidence) also indicates that additional discriminatory 
power is provided by image processing. In the case of SAR, the 
ASM texture variable possessed more relative information than 
SAR tone. The expected high information content of MLA data 
with respect to vegetation communities and land-cover classes 
is confirmed by the first-place ranking of band 2 and the 
occupation of three of the first five positions by MLA tone and 
texture variables. 

The difference in information content between MLA band 2 
(visible) and band 3 (infrared) is shown by their high rankings 
(first and fifth, respectively). The twelfth-place ranking of MLA 
band 1 (visible) indicates sigruficant overlap in information content 
within the visible portion of the spectrum. 

The fundamental importance of elevation in explaining class 
distribution is substantiated by its third-place ranking, while 
the first-order vertical and horizontal derivatives are seeded near 
the top half of the available positions. It is interesting that the 
last three variables entered are all higher-order topographic 
derivatives. The convexity measures possess little discriminatory 
information, probably because those physical attributes of the 
surface have local significance only, but are measured over large 
areas, producing a variable that appears as random noise 
essentially. The high level of redundancy between relief and 
slope (bivariate correlation coefficient = 0.98, table not shown) 
accounts for the relief measure being ranked last. 

For each set of variables (see Table 3), a discriminant function 
was created using the training sample data, and was applied to 
the test sample to obtain individual and overall class accuracies. 
Each function variable is assigned a two-letter label; these labels 
are concatenated into function names in order to reference each 
combination of variables considered. 

Table 4 contains classification results for the functions used 
to test the first hypothesis, that new variables created by image 
texture processing will increase individual and overall class 
accuracies. The MLA image has an overall or average classification 
accuracy of 73.2 percent, which increases to 87.8 percent when 
MLA texture is introduced (function MIMT). The average accuracy 
of 68.7 percent for MLA texture features alone (function MT) 
suggests that patterns related to the vegetatiodand-cover classes 
are captured adequately in spatial co-occurrence matrices. 

Overall classification accuracy for the SAR image is 35.8 percent; 
this increases to 42.6 percent when SAR texture alone is 
considered, and to 47.2 percent using SAR tone and texture 

Step Variable Entered 

MLA Band 2 
SAR ASM 
Elevation 
MLA Entropy 
MLA Band 3 
SAR 
Slope 
MLA IDM 
Incidence 
SAR Entropy 
MLA ASM 
MLA Band 1 
SAR IDM 
Down Slope Convexity 
Cross Slope Convexity 
Relief 

together (functions ST and SIST, respectively). Although the best 
result using the SAR is less than 50 percent accurate, the net 
increase of 11 percent with texture and the fact that texture 
alone has a higher accuracy than tone illustrates the additional 
information that exists as textural patterns over the 6-m resolution 
SAR image. This also supports the notion that relative textural 
information content increases with finer spatial resolutions 
(Haralick el al., 1973). 

Function 
Variables 

Number of Function 
Variables Name 

MLA Image (Band 1,2,3) 
MLA Image Texture 
MLA Image and MLA Texture 
SAR Image 
SAR Image Texture 
SAR Image and SAR Texture 
Digital Elevation Model 
General System of Geomorphometry 
MLA Image and the DEM 
MLA Image and Geomorphometry 
MLA Image, MLA Texture and the DEM 
MLA Image, MLA Texture and Geomor- 

phometry 
SAR Image and the DEM 
SAR Image and Geomorphometry 
SAR Image, SAR Texture and Geomor- 

phometry 
MLA Image and the SAR Image 
MLA Image, MLA Texture, SAR Image, 

SAR Texture 
Top Three Variables from Stepwise 

Analysis 
Top Four Variables from Stepwise 

Analysis 
Top Five Variables from Stepwise Analy- 

sis 
All Available Variables 

MI 
MT 
MIMT 
SI 
ST 
SIST 
EL 
GE 
MIEL 
MIGE 
MIh4TEL 
MIMTGE 

SIEL 
SIGE 
SISTGE 

MISI 
MIMTSIST 

T3 

T4 

T5 

ALL 

Percent Classified into Class - 
Function 1 2 3 4 5 6 7 8 9 x 

MI 
MT 
MIMT 

SI 
ST 
SIST 
EL 
GE 

MIEL 
MIGE 
MIMTEL 
MIMTGE 
SIEL 
SIGE 
SISTGE 
MISI 
MIMTSIST 
T3 
T4 
T5 
ALL 
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Individual class accuracies vary within the MLA and SAR data 
sets according to the spatial arrangement and internal  
homogeneity of vegetation communities and land-cover classes 
(that is, some of the classes are dominated by tone, while others 
are textural in nature). In general, classes that are homogeneous 
on the ground are characterized best with tone, but those classes 
which contain unique variability related to land-cover patterns 
or structural features are discriminated significantly better using 
image texture. For example, classes 5 (spruce shrub plateau) 
and 9 (mixed forest) are increased in accuracy by 35 percent 
(MLA) and 94 percent (SAR) when image texture is used with 
tone (functions MlMT and SIST, respectively). Similarly, the balsam 
fir and white birch classes (7 and 8, respectively) increase in 
accuracy using MLA image texture. These improvements are a 
result of the unique vegetation patterns and structural (slope1 
aspect) orientations associated with each class. Conversely, classes 
2 (heath barrens) and 6 (black spruce forest) possess internal 
homogeneity on the ground and show little increase with MLA 
texture, and decreases in accuracy with SAR texture. This is 
consistent with ground observations that within-class patterns 
are either not present or are meaningless in these classes. 
Therefore, they are best classified using image tone only. 

Geomorphometric processing of the DEM results in an overall 
increase in accuracy from 59.1 percent (function EL) to 68.7 percent 
(function GE), and increases of 30 percent for class 3 (water), 23 
percent for class 7, and 22 percent for class 8. The increases for 
the balsam fir and white birch forest classes are expected. These 
classes are controlled topographically by the frontal slopes of 
Gros Morne Mountain and the steep fiord cliffs near Ten Mile 
Pond (see Plate 1 and Figures 4 and 5). The water class occurs 
a t  different elevations b u t  necessari ly has  unique 
geomorphometric derivatives that characterize a flat surface (i.e., 
zero slope and curvature, undefined aspect). 

Despite the marked increases in overall and individual class 
accuracies possible through image texture processing, it is 
important to note that the best results achieved are still relatively 
low in certain instances (e.g., classes 7 and 9 using MLA data; 
all but classes 3, 8, and 9 with SAR; and classes 2, 6, and 9 with 
the DEM). This indicates a need for additional information that 
is not contained in one data source only. As Jones et nl. (1988) 
discussed, the classification of vegetation communities may never 
be satisfactory using spectral data alone. The solution to this - 
the integration of ancillary data - is evaluated in the next section. 

Table 4 also contains the results of linear discriminant analyses 
when the MLA, SAR, and DEM data sets are integrated in various 
combinations to test the second hypothesis that ancillary 
information sources provide new information that will improve 
the discrimination of ground classes. When elevation is used 
with the three MLA bands (function MIEL), each class increases 
in accuracy with the greatest increases of between 30 percent 
and 50 percent found in classes 5, 7, 8, and 9. Each of these 
torest clisses occur on Long Range frontal slopes where a strong 
elevational control on vegetation communities has been observed. 
The overall improvement from 73.2 percent (function MI) to 92.3 
percent (function MIEL) is comparable to the 87.8 percent accuracy 
achieved with MLA texture (function MIMT). This supports the 
earlier interpretation that information related to topographic 
controls is extracted through image texture processing, and may 
also suggest that texture can be more important than tone for 
separating structurally unique classes. 

The highest accuracy using MLA and topographic data is 
achieved through both ancillary data integration and image 
processing. Overall accuracy is increased to 97.6 percent (function 
MIMTGE), which is exceeded only when all 16 available MLA, 
SAR, and DEM variables are used (function ALL: 98.4 percent). 

The most notable individual class improvement is found in class 
8 (white birch forest). The class accuracy is 44 percent using the 
MLA image alone; this increases to 83 percent with both MLA 
image texture, and MLA with elevation (functions MIMT and 
MIEL, respectively). When the image processing and ancillary 
data integration strategies are combined (function MIMTGE), the 
highest accuracy (98 percent) is achieved for this class. These 
deciduous stands are a good example of a class possessing 
complex surface patterns related to unique topographic form 
and spatial heterogeneity that are captured separately by both 
image texture and geomorphometry. All other classes experience 
similar (but less dramatic) increases using separate image 
processing and ancillary data integration strategies, with the 
highest accuracies obtained through a combination of both 
approaches. 

The same trends hold for the SAR data, although the best 
individual and overall class accuracies achieved are lower than 
those found when using integrated and processed MLA and DEM 
data (functions MIMT and MIMTGE). Overall classification accuracy 
increases from 35.8 percent (SAR alone) to 71.7 percent when 
the DEM is included (function SIEL). All but one class show 
moderate (10 percent to 30 percent) to large (in excess of 70 
percent) increases in accuracy. Evidence that ancillary elevation 
is a critical discriminatory information source is both obvious 
and strong. The only exception is the heath barrens class (2), 
which decreases in  accuracy w h e n  elevation a n d  geo- 
morphometry are introduced (functions S ~ E L  and SIGE). This may 
suggest that topography is not important for this class. It may 
also be caused in part by the sensitivity of the SAR sensor to 
the surface moisture content (Wang et al., 1989) present in the 
high water table, marshes, and open water of this class. The 
SAR information alone may be sufficient to discriminate this 
class. 

The highest accuracies with SAR data are achieved using both 
image processing and ancillary data integration. SAR tone with 
texture and geomorphometry (function SISTGE) yields an  overall 
classification accuracy of 83 percent, with significant class 
improvements ranging from 20 percent to 70 percent for classes 
1, 7, and 9. However, some classes remain below the minimum 
mapping accuracy level of 85 percent required for most resource 
management applications (Townshend, 1981). Although different 
or more sophisticated techniques may increase the accuracy of 
this classification, the radar image has less information content 
than the MLA image for the complex terrain and extreme 
environmental gradients present in the study area. Better results 
may have been possible had the SAR image been acquired with 
HV cross polarization (Leckie, 1984). 

It was also noted that classes 2 and 6 were classified more 
accurately with SAR and elevation tone compared to SAR with 
texture and geomorphometry (functions SIEL and SISTGE, 
respectively). If suitable knowledge of the spatial patterns and 
internal homogeneity for such classes exists prior to classification 
(e.g., from field work, aerial photointerpretation, etc.), it may 
be possible to devise a two-stage classification approach. In the 
first stage, classes expected to be characterized adequately (or 
better) by image tone only would be classified. The appropriate 
processing algorithms (e.g., texture, geomorphometry) would 
then be applied to the unclassified portion of the image. Training 
area statistics for the remaining classes would be generated and 
the second stage of the classification completed based on a fuIl 
set of variables. This approach would curtail the use of expensive 
algorithms (e.g., spatial co-occurrence) and could result in higher 
overall classification accuracies. For example, if classes 2,6, and 
8 were discriminated by tone (function SIEL) in the first stage, 
and the remaining pixels by tone, texture, and geomorphometry 
(function SISTGE) in the second stage, overall classification 
accuracy could rise to approximately 88 percent. This expectation 



IMAGE TEXTURE PROCESSING 

is based on individual class accuracies generated by the two 
functions independently - results may differ with a combined 
sample or by classification technique. 

Integration of the MLA and SAR imagery (function MISI) results 
in a higher overall classification accuracy (77.9 percent) than 
use of either image alone. The largest individual class 
improvement when the SAR is considered as ancillary data is 11 
percent for class 5 (spruce shrub plateau). However, the 
importance of image processing and integration is illustrated by 
the overall increase from 77.9 percent (function MIS) to 90.4 
percent (function MIMTSIST), and by significant individual class 
accuracy increases ranging from 10 percent to 50 percent. This 
confirms earlier observations (Franklin and Peddle, 1989; 1990) 
that additional information content is provided by image texture. 
However, the MLA and SAR accuracies (function MIMTSIST) are 
still generally less than those obtained with the full complement 
of MLA and topographic variables (function MIMTGE), indicating 
that the DEM is the superior ancillary data source. Recent research 
(Cooper et al., 1985; Swann et nl., 1988) has shown that a DEM 
can be derived from stereo SPOT MLA data; it may be that an 
additional spectral data processing step - the creation of the 
DEM - is needed in classification of mountainous areas. 

Finally, several of the highest ranking variables from the 
stepwise discriminant procedure were entered into the linear 
discriminant analysis (see Table 2). The top three variables (MLA 
band 2, SAR ASM, and elevation) had an overall classification 
accuracy of 85.7 percent (function T3); this increased to 92.8 
percent with MLA entropy (T4), and to 95.1 percent when MLA 
band 3 was added (T5). These represent high classification 
accuracies that are possible from a relatively small number of 
variables (compared to, for example, the 12 variables used to 
obtain 97.6 percent accuracy in function MIMTGE). As ancillary 
data integration becomes more common and the number of 
available data channels being considered increases, the a priori 
ranking of variables to determine the best subset of variables in 
terms of their relative discriminatory power before classification 
should be considered, especially if (1) training data are limited; 
(2) the classifier is not robust; (3) data compression techniques 
(e.g., principal components analysis, canonical correlation 
vectors) are not available; or (4) computer resources are 
inadequate or processing times become prohibitive. 

CONCLUSIONS 
Comparative results of data analyses and image classifications 

involving high resolution MLA and airborne SAR imagery 
processed for texture and integrated with ancillary DEM data 
processed for geomorphometry have been presented for a mod- 
erate relief, boreal environment in eastern Canada. Classifica- 
tion accuracies in excess of 90 percent were achieved through 
a combined image processing/i~tegration strategy for nine laLd- 
cover classes identified throuah field work and aerial vhotoin- 
terpretation and which are imkortant in Park manageAent. 

Stepwise discriminant analysis revealed that MLA band 2, SAR 
texture and the DEM possessed the highest relative information 
content. Linear discriminant functions generated for different 
variable combinations indicated a need to integrate ancillary 
DEM information processed for geomorphometry to achieve ac- 
ceptable class accuracies. For example, the overall accuracy using 
MLA imagery increased from 73.2 percent to 97.6 percent, and 
the SAR results increased from 35.8 percent to 83 percent. Such 
results may be optimized by a priori rank analysis and selective 
image processing to reduce the required number of variables 
and the processor time, and to avoid problems with classifier 
robustness. 

The next step in this research is to classify more complex 
ground phenomena, such as natural geomorphic hazard classes 
that result from processes such as degradation and melting of 
permafrost in Arctic environments. It is anticipated that such 

an objective will require even more sophisticated approaches to 
digital image analysis, including the implementation of a new 
algorithm to incorporate shape analysis. More powerful classi- 
fication approaches (e.g., evidential reasoning, context process- 
ing, artificial intelligence, and expert systems) will also be 
necessary in order to achieve a higher level of image under- 
standing. 
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43rd Photogrammetric Week 
Stuttgart, 9-14 September 1991 

This internationally-recognized "vacation course in photogrammetry" has been held at Stuttgart University since 1973. Because Professor Dr.- 
Ing. Friedrich Ackermann, one of those mponsible for the scientific program, is to retire soon, this 43rd Photogrammetric Week will be his 
farewell seminar. Essential lines of his work have been chosen as the main topics for the meeting: 

GPS for Photogrammetry Digital Photogrammetric Image Processing Photogrammetry and Geo-Information Systems 

Lectures and discussions will be held in the morning. Technical interpreters will be available for simultaneous translations into German or 
English. Demonstrations are scheduled for the afternoons. 

For further information and applications, contact: Universitat Stuttgart, lnstitut fur Photogrammetrie, Keplerstrasse 
11, D-7000 Stuttgart 1, FRG, telephone 071 11121-3386 or FAX 071 1/121-3500. 




