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Abstract should be augmented with texture measures (St-Onge and 
The analysis of forest structure and species composition with Cavayas, 1995). Texture can be used in the classification or, 
high spatial resolution (5 1 m) multispeckal digital imagery alternatively, the process of per-pixel classification can be sup- 
is described in an experiment using spatial co-occurrence plemented or replaced with another approach, such as texture 
texture and maximum-likelihood classification. The segmentation (Lobe, 1997). Much work remains to be done on 
objective was to determine if higher forest species composition how and where texture analysis can be effective in f o r e s ~  
classification accuracies would result in comparison to the remote sensing applications (Lark, 1996; ~ u l d e r  et al., 1996; 
use of spectral response patterns alone. Increased accuracy Bmiquel-Pinel and Gastellu-EtchegO~* lgg8). 
was obtained when using texture at all levels of a classifi'cation A large degree of variability can exist in the development 
hierarchy. At the stand level, accuracies were on the order of of a classification signature using high spatial resolution image 
75 percent in agreement with field surveys, an improvement data. In Figure 1, approximately 1-m pixels are shown of a for- 
of 21 percent over the accuracy obtained using spectral data est stand adjacent to a logging road Tintersection. Large Stan- 
alone; in stands grouped according to species dominancelco- dard deviations, relative to the mean spectral response, typi- 
dominance, the accuracy improved still firther to 80 percent. cally result in forested scenes in most spectral bands. The diffi- 
The overall classification accuracy in a highly generalized culties in using spectral signatures comprised of the mean and 
lifeform classification was 100 percent. This represented a 33 standard deviation are obvious, giving rise to the notion that 
percent increase in accuracy over that which could be some measure of spatial variability would be useful in signa- 
obtained, in a classic spectral "signature" classification ture generation (Figure 2). Texture analysis attempts to mea- 
approach, using spectral response patterns alone. sure this scene variance for use in the classification process. 

Traditionally, texture has been defined as the spatial variation 
Introduction in image tones or colors (Haralick et al., 1973). In images of for- 
The use of high spatial resolution remote sensing data to clas- eStcOver9 spatial variation may be causedb~ changesin species 
sify forest structure (St-Onge and Cavayas, 1997) and identify tYPel crown stem density. 
forest species composition (Franklin et al., 2000) within forest Different stem densities can create different texture pat- 
stands continues to interest forest scientists, managers, and terns* even have the same 
practitioners (Hudson, 1987; Sali and Wolfson, 1992; Baulies ( F i ~ e  3). In the first set (Figure 3; top row labeled as group 
and Pons, 1995; Leckie et al., 1995; Meyers et al., 1996; Pitt and lB), the first image contains data from a mature spruce 
et al., 1997). The objective of achieving accuracies that meet or stand with 500 stems per hectare. The 
exceed those currently achieved by aerial photointerpretation image (goup lB)  data a Vruce plantation* but 
techniques (Congalton and Mead, 1983; Gillis and Leckie, with approximately 3000 stems per hectare. In the second set 
1993) may soon be feasible given continued improvements in 3; midd1e row labeled as 2A and 2B) the difference 
computing, image and image analysis tech- between two hardwood stands with different crown closures is 
niques (Green, 2000). Image classification is one possible shown. Group 2A illustrates image data from a mature intoler- 
method for use in this application. One of the challenges in ant stand with a that was 
using high spatial resolution remotely sensed imagery in digi- closed. Group 2B was acquired over a stand which had a much 
t d  classification is that the interclass spectral variability of SU- more open canopy* with a measured crown closure of 30 to 50 
face features can increase with increasing spatial resolution. Percent. The open canopy created a larger shadow component 
The result is a reduction in class statistical separability (Hay thanthat re~resentedb~ the first in different 
et al., 1996). With traditional classifiers, which rely on the con- Figure mixed-w00d 

cept of a signature," this often translates into a poor stands (bottom row* labeled as groups 3A and 3B). First* group 
classification accuracy for individual tree species (Hughes 3A is a 70 percent hardwood and 30 percent softwood mixed- 
et al., 1986) and aggregated estimates of species composition stand. This stand can be to goup  3B9 a mixed- 
(Franklin, 1994). In general, it is thought that, rather than rely- stand with 60 percent and 40 percent hard- 
ing on multispectral image spectral signatures done, digital wood. Each of these stands had similar structure (i.e., shadow 
classification of species composition and forest structure 
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Figure 1. A high spatial resolution classification spectral 
signature. Adapted with permission from Franklin (2001). 
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Figure 2. Simplified example of texture windows with same spec- 
tral signatures. Adapted with permission from Franklin (2001). 

component is similar). However, these image textures appear 
different because of different combinations of species, resulting 
in different variations in tone. 

It is these variations that are of interest in the application to 
derive structural estimates and species composition classifica- 
tions from high spatial detail image texture measures (Franklin 

e Both spruce stands. lA has a stems per 
hectare count of 500,lB has 3000 stems 
per hectare. 

1A 1B 

0 Both hardwood stands. 2A has a crown 
closure of 70-90%, 2B has a much more 
open crown at 30-50% closure. 

2A 

Both are mixed-wood stands. 3A is 
70% hardwood, and 30% softwood. 3B is 
60% softwood, and 40% hardwood. 

3A 3B 

Figure 3. Examples of image texture variability in different 
forest stands. 

et al., 2000). The initial questions relate to the issue of how tex- 
ture can be extracted from the image, and how the extracted tex- 
ture relates to variations within stands that are measured on 
the ground. We reasoned that further work with texture would 
be warranted if simple texture procedures produced signifi- 
cantly higher classification accuracies for species composition 
and structure; others, notably Hay et al. (1996), have adopted a 
different logic, arguing that texture should be optimized for the 
phenomena under investigation, and then applied. Such work 
has not yet been translated into usable texture procedures in 
practical forestry applications; instead, simpler measures ap- 
pear able to provide reasonable results in similar applications 
(He and Wang, 1992; Wilson, 1996; Martin et al., 1998). In a 
species composition analysis of airborne imagery, we wanted to 
use a texture procedure and texture measures that would at 
least have some chance of being used in operational settings- 
because they are readily available. Therefore, the central objec- 
tive of this research was to assess whether the inclusion of 
textural information derived £rom readily available spatial co- 
occurrence texture measures in a maximum-likelihood classi- 
fier would improve species composition classification accura- 
cies when compared to per-plot agreement with field surveys. 

Study Area and Data Collection 
The study area is situated in the Fundy Model Forest (FMF) in 
southeastern New Brunswick (Figure 4). The FMF is a 420,000- 
hectare working forest that contains towns and villages, industrial 
freehold land, Crown Land, Fundy National Park, and many small 
private woodlots. The FMF is part of a model forest network includ- 
ing Canadian and international efforts to de-velop model forests 
for the purposes of research (Natural Resources Canada, 1997). The 
study area is characterized by a wide variety of forest species and 
forest conditions. Hardwood species are predominantly red maple 
(Acer rubrum L.), white birch (Betula papyrifia Marsh.), and 
trembling aspen (Populus tremuloides Michx.), with yellow birch 
(Betula alleghaniensis Britton.), grey birch (Betula popufolia 
Marsh.), sugar maple (Acer s accham Marsh.), striped maple 
(Acerpensylvanicum L.), white ash (Fmxinzis americana L.), and 
beech (Fagus gmndifolia Ehrh.) also present in smaller quantities. 
The dominant softwood species are jack pine (Pinus banksiana 
Lamb.), balsam fir (Abies balsamea (L.) Mill.), white pine (Pinus 
strobus L.), and white spruce (Picea glauca (Moench) Voss), with 
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Figure 4. Location of the study area and flight lines in southeastern New Brunswick. 

some red sDruce [Picea rubens Saw.) and red ~ i n e  [Pinus resinosa 
Ait.). ~ u e  io glaciation, the area is Gderlain Gith a-thick overbur- 
den of unconsolidated diarnicton (till), resulting in a hummocky 
topography and erratic drainage patterns. 

Alrborne Data 
The Fundy Model Forest Compact Airborne Spectrographic 
Imager (~ASI) data set was acquired on 31 July 1995 under favor- 
able atmospheric conditions. The data were geometrically cor- 
rected (to inertial navigation system accuracy with known 
Global Positioning System (GPS) points observed in the imagery), 
and were atmospherically adjusted using spectroradiometric 
observations of pseudo-invariant features located throughout the 

study area. The image data set is composed of two flight lines of 
approximately 8 km each in length, an average width of 500 m, 
with a spatial resolution of 1 m2, and five bands centered at 565.0, 
645.4,665.1, 711.0, and 750.6 nm. The two flight lines are re- 
ferred to as Dubee and Hayward Brook (see Figure 4). The Dubee 
flight line had a wide range of forest-cover types, including plan- 
tations, naturally regenerating stands, reclaimed farm land, and 
second and third generation mature stands. In contrast, the Hay- 
ward Brook flight line was covered entirely by mature stands 
with the exception of one jack pine plantation. On both flight 
lines, active harvesting was in progress and a substantial per- 
centage of the area in the imagery had been cutover. The flight 
lines were recorded at different azimuths. 
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Field Data Collection the spatial component (i.e., the interpixel distance and angle 
A modified systematic sampling method (utilizing a grid or during co-occurrence computation). 

transect) was employed (Muller et al., 1998) to identify areas to 
be sampled on the ground. All transects were identified on the Assuming that multiple texture measures from the co- 

georeferenced imagery and then later verified on the ground to Occurrence matrix me using different 'pectral than- 
ensure sample areas had not been altered by harvesting or other nels, multiple window sizes to capture "scale" differences 

disturbances. Two plots of each forest inventory stand type (Ahearn, 1988), more than one quantization level, and at least 

represented in the image were selected from a random list of four possible directions (spatial component), the result would 

coordinates on each transect, One plot was used for training be many thousands of different possible cornbirrations that 

the classifier and the other plot was used for assessing the clas- C O U ' ~  be used '0 generate texture channels for a single a ~ ~ l i c a -  

sification accuracy. A total of 48 plots was in 24 differ- tion. This output would overwhelm even the most sophisticated 

ent types. Sampling occurred on a transect with a spacing classifer. Because in this initial research we were interested pri- 

of meters, and all samples were taken at a minimum dis- marily in whether an increase in the usefulness of the relation- 

tance of 50 meters from any disturbance. To minimize the ship between species composition classification and imagery 

effects of sensor lookgeometry, no points were sampled within could be established based on texture, recommendations from 

100 meters of the edge of the image. previous research with this imagery were used to select a tex- 

Bitterlich Horizontal Point Sampling (plotless cruising) ture measure (Wulder et al., 1998; Franklin et al., 2000). A test 

(Avery and Burkhart, 1994) was used to collect measurements the 'ptimal window size was conducted using a subsample 

of diameter at breast height (dbh), crown diameter, tree height, the plots; larger window sizes (I9 19) were 

height to live crown, crown closure, and tree age in July 1998. found to provide more stable texture measures and, therefore, 
A basal area prism factor of 2 was used. All cruising was con- were adopted in this study. 
ducted in accordance with procedures recommended by the Maximum-likelihood classification was selected as the 
New Brunswick Department of Natural Resources and Energy method of the performance of the image data with 

(1996). From the crown diameter and tree height measure- the field assessment in the 48 plots studied. First, the image 
merits, bivariate regression analysis was performed to deter- data were classified based on the signatures derived in the 
mine the relationship between dbh and height, and dbh and training areas and the classifications were compared to the 
crown diameter for each species. Most relationships were results in the test areas. Second, this process was repeated, but 
either linear or logarithmic with the exception of the Black using only the texture data in the classification. Third, the effect 
Spruce height prediction which was best described by an expo- of adding a texture measure on the classification accuracy was 
nential relationship. The dbh versus height relationship determined by repeating this classification process with the 
yielded an average r~ value of 0.68 while dbh versus crown addition of texture to the signature for each class. These steps 
diameter provided an average r2 of 0.77. Once these relation- were executed at three levels of a classification hierarchy; first, 
&ips were established, tree height and crown diameter were considering all of the stands surveyed (Table 1) as an instance 
predicted for all trees measured. of a separate, unique class; second, by merging stands with sim- 

Using crown diameter, the percentage of crown area per ilar species composition and structure to create stands labeled 
species for each plot was determined, from which the species by dominancelco-dominance (black spruce, white and red 
composition of each plot was labeled based on its percentage of Spruce, jack pine? white pine, tolerant hardwoods, intolerant 
crown composition (Martin et a]., 1998). The result is a plot mixedwoods); and merging 
label which is a better estimate of species composition than stands with similar species composition and structure labeled 
using a simple linear relationship between number of stems by dominancelco-dominance into lifeform classes (softwood, 
and species composition (e.g., eight jack pine stems and two hardwood, mixedwood). 
white birch stems equals jack pine 80 percent and white birch 
20 percent), because the crown area technique describes the Results 
percentage of the forest canopy that each species is contribut- The trend of higher accuracy when using texture in the classifi- 
ing to the spectral response. This procedure is similar to the cation accuracy results was expected and found in this study 
aerial photointerpretation of species composition which is (Table 2): classification accuracy increased when using the 
also based on crown composition rather than stem composi- combined spectral and texture data (75 percent) compared to 
tion. The stand types and field data for each of the plots mea- classification using only the spectral data alone (54 percent) or 
sured in the Hayward Brook and Dubee flight lines are the texture data alone (70 percent). The increase in accuracy 
compiled in Table 1. attributable to the addition of texture was 2 1  percent. As well, 

the expected trend of increasing accuracy with fewer classes 
Methods was found. At Level 2 (based on species dominancelco-domi- 
The most common algorithm available for estimation of texture nance classes), the classification accuracy improved from 61 
is based on the gray-level spatial co-occurrence matrix (Hara- percent (spectral data alone) to 80 percent (using combined 
lick etal., 1973; Haralick, 1979; Haralick, 1986; Jensen, 1996). spectral and texture data). At Level 3 (based on lifeform 
This is one of many possible texture analysis methods avail- classes), the improvement resulting from the texture analysis 
able, but choosing an optimal texture algorithm is not straight- was 33 percent. The classification accuracy, using spectral and 
forward (Connors and Harlow, 19801. In one recent study, Carr texture data in lifeform classes, was 100 percent correct in the 
and Pelon de Miranda (1998) found that semivariance textures 24 available test plots. However, even though this accuracy is 
produced higher classification accuracies when classifying impressive, the amount of detail in the classification is such 
microwave images, and spatial co-occurrence texture measures that little practical use would result. Foresters are much more 
produced higher classification accuracies when classifying interested in remote sensing image classifications that preserve 
optical imagery. Spatial co-occurrence texture analysis requires spatial detail rather than remove it-smoothly varying forest 
the user to identify five different control variables (Franklin stand depictions are all too common as a product of aerial pho- 
and peddle, 1987; Marceau et al., 1990; Franklin et al., 1996): tointerpretation in which polygonal data are created as homo- 

window size, geneous generalizations at the expense of spatial detail (Lowell 
the texture measure(s), eta]., 1996). 
input channel (i.e., spectral channel to measure the texture of) In the original stand classifications, several of the classes 
quantization level of output channel (8-bit, 16-bit, or 32-bit), and were thought to be "texturally" distinct. For example, two 
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TABLE 1. FOREST STAND TYPES AND FIELD MEASUREMENTS OF STRUCTURE 
a1 Hayward Brook image stands, classes, and field measurements of structure 

Stand Class Crown Closure Stemslha Understory Midstory 
1 Plo 4 5500 - - 
2 TH6 IH2 SW2 2 650 hw hw 
3 WP3 SP2 TH2 IH2 4 800 mw mw 
4 SP7 WP1 HW2 3 1350 mw - 
5 WP5 SP3 HW2 4 900 mw - 
6 JP5 SP3 HW2 2 830 mw - 
7 TH3 IH3 SW4 3 650 mw - 
8 M7 SW3 3 800 mw mw 
9 M6 TH3 SW1 3 950 sw - 

10 TH5 M4 SW1 3 900 mw - 
11 M6 TH4 4 2100 mw - 
1 2  IH7 TH3 4 2200 mw - 
13 PI5 SP3 HW2 3 870 mw - 
14 IH7 TH3 4 2100 mw - 
15 SW8 HW2 3 1000 mw - 
16 HW6 SW3 3 725 mw - 
17 HW9 SW1 3 925 mw - 

bl Dubee image image stands, classes, and field measurements of structure 

Stand Class Crown Closure Stemslha Understory Midstory 

18 BS8 BF2 2 550 - - 
19 BS8 BF2 4 1700 - - 
20 SPlO 5 800 - - 
21 SPlO 5 5700 - - 
22 P l o  4 1300 - - 
23 TH4 M4 SP2 1 700 sw - 
24 TH5 IH4 bF1 4 300 hw - 
25 M5 TH5 4 500 hw - 
26 M5 TH5 regenerating stand, approx. 5 years - 
27 IH5 TH4 SP1 3 2200 mw - 
28 M9 TH1 3 900 mw - 
29 M9 THl regenerating stand, approx. 3 years - 
30 TH4 IH4 4 400 hw - 

TABLE 2. OVERALL CLASSIFICATION ACCURACY USING-SPECTRAL DATA ALONE, In another case, stand 1 (jplo), the only plantation class on the 
TEXTURAL DATA ALONE, AND COMBINED SPECTRAL AND TEXTURAL DATA IN Hayward Brook Image, was anticipated to be reasonably dis- 

THREE HIERARCHICAL LEVELS tinct using image data from the spectral channels alone. 
Accuracy [%I Instead, the jack pine stand was confused with the white pine 

stands. The texture data allowed this stand to be separated from 
the other pine stands; the interpretation was that a lack of tex- 

Classification 1 2 3 ture in the pine plantation provided useful information to the 
classifier. The largest improvement by texture was found in the 

Spectral data alone 54 61 67 classification and separation of the mixedwood stands. Such 
Texture data alone 70 76 
Combined spectral and texture data 75 80 

70 classes have long been problematic in digital classifications of 
loo forest cover, and are quite often grouped into one class (Frank- 

*Note the levels correspond to classes in a hierarchy as follows; lin et al., 2000), despite the obvious unsuitability of this group- 
Level 1 = each stand in Table 1 considered a unique class (30 classes1 ing for the purposes of the user. This study suggests that more 
Level 2 = merging of stands into classes organized according to detailed rnixedwood classes are possible if texture is incorpo- 
dominantlco-dominant species; classes consisted of black spruce, white rated into the classification. 
(and red] spruce, jack pine, white pine, tolerant hardwoods, intolerant The classification accuracies obtained in this study hardwoods (10 classes) 
Level 3 = lifeform classes (softwood, hardwood, mixedwood dominated (a~~mximately 75 percent average at the lower class detail end 
by hardwoods or softwoods, 6 classes) of the hierarchies), and the amount of increase due to the use of 

texture (between 19 and 33 percent), are comparable to results 
obtained in similar applications of airborne multispectral 

hardwood stands with the same species composition repre- image texture in forest inventory classifications (Franklin et 
sented by stands 25 and 26 had quite different structures. The a]., 2000). A 17 pel?Cellt irlcrease in the classification tlcclll'acies 
large crowns of stand 25 were anticipated to cast much larger of seven volume classes in fourteen Alberta conifer stands by 
shadows, resulting in a more coarse texture that would not be including texture measures in the classification procedure was 
confused with the fine texture produced by the smaller, more earlier obtained by Franklin and McDermid (1993). A maxi- 
close-growing crowns in a regenerating stand (e.g., stand 26). mum classification accuracy of 75 percent was reported. St- 
Spectrally, the two stands were confused, but the differences in Onge and Cavayas (1997) incorporated texture in a more 
structure and the resulting texture were sufficient for the clas- advanced image segmentation method, similar to that used by 
sifier to distinguish between them. The texture classification Lobo (1997), and found 80 percent classification accuracies in 
also separated two black spruce stands with differing density. several forest-cover and density classes with high spatial reso- 
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lution imagery. Those results were obtained on a much smaller 
sample of sites with less variability and suggested the more 
detailed stand-by-stand analysis presented in  this paper. These 
studies suggest that further work is required to fully document 
the value of airborne multispectral image texture analysis in  
forest inventory classification work. 

Conclusion 
The objective of this study was to determine whether spatial co- 
occurrence texture measures-readily available and easily 
understood-could be used to generate higher forest species 
composition classification accuracies in  New Brunswick for- 
est stands than the use of spectral response patterns alone. 
Increased accuracy was obtained when using texture at all 
levels of a classification hierarchy. At the stand level, accura- 
cies were on the order of 75 percent in  agreement with field 
surveys, an improvement of 2 1  percent over the accuracy 
obtained using spectral data alone; in  stands grouped 
according to species dominancelco-dominance, the accuracy 
improved still further to 80 percent. The overall classification 
accuracy in a highly generalized lifeform classification was 100 
percent. These results are consistent with those reported for 
similar high spatial detail image texture studies in  New Bruns- 
wick and elsewhere, and are also thought to be reasonable 
when compared to the accuracy of forest species composition 
analysis using aerial photointerpretation of similar stands. The 
ability to accurately classify forest structure and species com- 
position using high spatial resolution (5 lm)  multispectral 
digital imagery may contribute to the development of new 
methods to produce forest stand inventories. 
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CALL FOR PAPERS 
Speclal Issue: 

Characterizing and Modeling Landscape Dynamics 

The September, 2002 issue of Photogrammetric Engineering 8. Remote Sensing (PEgRS) will focus on Characterizing 

and Modeling Landscape Dynamics. The co-editors of the issue are Professor Ling Bian, Department of Geography, 

University of New York at Buffalo and Professor Stephen j. Walsh, Department of Geography, University of North 
Carolina at Chapel Hill. 

This issue will focus on the characterization, analysis, and modeling of landscape dynamics within the framework of 

geographic information science, with particular emphasis on remote sensing, geographic information systems, and 
spatial analysis. Landscape dynamics involve scale, pattern, and process that extend across social, biophysical, and 

geographical domains through their spatial and temporal interactions. Often these interactions are represented 
through land use and land cover dynamics. These changes, continuous or discrete, are neither random nor indepen- 
dent. The effective characterization and modeling of spatio-temporal dynamics of landscape can help improve our 

understanding of the principal drivers of landscape dynamics and the possible feedback and thresholds involving 
patterns and processes of scale-dependent natural and social systems. 

New concepts, data, and methods, emergent in geographic information science in recent years, have presented 
scientists with new opportunities to gain Flesh insights into the study of landscape dynamics. This Call for Papers 

particularly encourages submission of manuscripts that give special attention to seminal approaches in using remote 

sensing, GIs, 

and spatial analysis for the characterization, analysis, and modeling of landscape dynamics. 

The deadline for manuscript submisslon is December 15, 2001. All manuscripts should be prepared according 

to the "Instructions to Authors" published in each issue of PE8.R.S and at the ASPRS web site http://www.asprs.org/ 
pub1ications.html. Papers will be peer-reviewed in accordance with established ASPRS policy. 

Please send manuscripts to: 
Professor Ling Bian Stephen J. Walsh 

Department of Geography 
University of North Carolina 
Chapel Hill, NC 27599-3220 

Lblan@geog.buffalo.edu 6 swalsh@emall.unc.edu 
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