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Equilibrium Bid-Price Dispersion

Abstract

If bidding in a common-value auction is costly and if bidders do not know
how many others are also bidding, all equilibria are in mixed strategies.
Participation is probabilistic and bid prices are dispersed. The symmetric
equilibrium is unique and yields simple analytic expressions. We use them to,
for example, show that bid prices exhibit negative skewness. The expressions
are further used to estimate the model based on bidding on an S&P500
security. We find that the number of bidders declined over time, making
liquidity supply fragile.

Please find online appendix here: https://bit.ly/2BlV3Lf.
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1 Introduction

There has been widespread concern about market liquidity in the aftermath
of the 2007–2009 financial crisis. New regulation such as BIS III and Dodd-
Frank aim to reduce risk in the banking sector. The Volcker Rule, part
of Dodd-Frank, specifically affects market liquidity that severely constrains
market-making by banks. Only if there is a demonstrable interest of their
clients can banks participate as middlemen in the market.1 BIS (2014) report
a decline in dealer risk-taking capacity and/or willingness and diminished
proprietary trading by banks (which could be considered market making by
third parties (Duffie, 2012)).

Empirical studies show that the nature of market liquidity in the years
since the crisis seems to have changed. The bid-ask spread remained relatively
flat, yet large orders seem to have become more costly to execute and markets
are more prone to “flash crashes.” Standard costly-inventory (or adverse-
selection) models might explain the increased cost, but they do not permit
flash crashes (e.g., Grossman and Miller, 1988).2

We propose a costly bidding model that could generate these two empirical
findings through endogenous middleman participation. In the model, homoge-
neous players decide simultaneously on bidding in a first-price auction. If they
incur an (opportunity) cost to place a bid, then there is no equilibrium in
pure strategies. There is, however, a unique symmetric equilibrium in mixed
strategies. In this equilibrium, each middleman tosses a biased coin to decide
whether or not to bid. If he bids, then he pays the cost and draws a price
from a particular distribution. We would like to emphasize that simultaneous

1Duffie (2012) provides an economic perspective on how the Volcker Rule affects market
making. Federal Register (2014) provides the details of the final rule and a summary of
feedback by market participants.

2Adrian et al. (2017) survey the literature on bond-market liquidity after the financial
crisis. Most studies find that the bid-ask spread mostly recovered soon after the crisis (e.g.,
Trebbi and Xiao, 2019; Anderson and Stulz, 2017; Bessembinder et al., 2018). Anderson
and Stulz (2017) however, note that for large (>$100,000) orders transaction cost remain
elevated. Dick-Nielsen (2019) and Bao, O’Hara, and Zhou (2018) find the same for stressed
sells. Choi and Huh (2017) and Bessembinder et al. (2018) report that dealers participate
less as principal. Finally, aside from concern about the liquidity level, there is concern
about liquidity risk in the sense of increased intensity of illiquidiy spikes (see, e.g., Adrian
et al. (2015) for evidence and Kennedy et al. (2015) for a review of the public debate).
A recent article argues that even key futures markets show signs of fragility: “Thinning
Liquidity in Key Futures Market Worries Traders,” Financial Times, March 25.
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bidding implies that bidders do not observe potential bids of others.
The equilibrium yields surprisingly simple analytic expressions. Both

the probability of bidding and the bid-price distribution are obtained as a
function of the three model parameters: the value of winning the auction (v),
the cost of bidding (c), and the reservation value of the seller (u).

The equilibrium bid-price distribution is like an iceberg, the tip is always
there but what is underneath the water remains uncertain. Let us clarify
by example. Suppose that the bid-price support (i.e., v − c− u) shrinks but
the bidding cost (i.e., c) remains unchanged, then the equilibrium bid-price
distribution changes as follows. The best bid, the tip of the iceberg, will not
change much as all its quantiles remain unchanged except for the very lowest
ones (see Figure 1, which plots the equilibrium best bid distribution when
the bid-price support shrinks as u increases from u2 to u1). Yet, on average,
fewer middlemen participate resulting in fewer bids and therefore less depth,
less ice underneath the water. And, importantly, the fragility of liquidity
supply increases in the sense of an increased probability of no bids at all. The
change in this example is more or less what we find in the data. Indeed, the
level of the best bid is rather stable, yet the supply of bids has become more
erratic over time thus consistent with the empirical evidence on post-crisis
liquidity (see summary in footnote 2).

Another unequivocal prediction of the model is a negative skewness in
bid prices. More precisely, the equilibrium bid-price density is increasing
and convex and therefore exhibits negative skewness. The intuition is as
follows. When a player (who decided to bid) considers what price to bid at,
he understands that a lower price will yield a higher profit when winning
but, at the same time, it is less likely to win as it becomes more likely that
others entered with a higher bid. The probability of winning, however, drops
disproportionately for ever lower prices, thus inducing stronger price shading
further out in the left tail (to keep the player indifferent between candidate
bid prices).

The model is taken to the data to test one of its main predictions, convexity
in the bid-price density, and to estimate its parameters. The sample consists
of bid-price snapshots for SPY from 2007 through 2018. SPY is an exchange-
traded fund (ETF) that tracks the S&P500 and is one of the most actively
traded securities.

The model is estimated by matching three empirical moments that uniquely
determine the three parameters. These moments are:
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1. Bid aggressiveness. Bid aggressiveness is measured as the ratio of bid-
price densities at the top and at the bottom of a pre-specified price
interval. In the model this ratio is larger than one because the bid-price
density is upward sloping.

2. Variation in the number of bids. Time variation in the number of bids
is measured by the coefficient of variation (CV) which is defined as
the standard deviation divided by the mean. The use of this standard
statistic is novel in the empirical literature on liquidity supply. We
believe it is an important one to include when considering fragility.

3. Bid-ask spread. The relative bid-ask spread is the distance between the
best bid and the best ask price, scaled by the midquote (i.e., the middle
of the best bid and the best ask).

These three moments identify the model parameters (v, c, u) in the following
way. The first moment, bid aggressiveness, uniquely determines the value
of winning v via the shape of the distribution function. The second and
third moment jointly identify the two remaining parameters: c and u. The
second moment, the variation in the number of bids, is inversely related to the
expected number of middlemen showing up to post a bid. This relationship
is intuitive as high variation through time coincides with fewer middlemen
showing up on average. In the model this average is a function of all three
parameters and, therefore, one more moment is needed to identify the two
remaining parameters c and u separately.

The third moment, the bid-ask spread, delivers full identification. The
intuition is that the spread is tightly related to c because its lower bound is 2c
(assuming symmetry across the bid and ask side of the book). The reason is
that middlemen must earn at least c to make up for the cost of bidding. The
identification of u then mostly comes from the second moment because, given
a level of c, a lower u implies a larger bid-price support [u, v− c] and therefore
more opportunity for middlemen to participate, which, in equilibrium, results
in more participation (i.e., a higher second moment). In summary, the three
moments together identify the three parameters uniquely.

And, for any given level of c, a lower u implies a larger bid-price support
[u, v − c] and therefore more ground for middlemen to participate leading to
higher expected participation in equilibrium. Therefore c and u are identified
based on the spread (i.e., third moment) along with the average number of
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middlemen (i.e., second moment). In summary, the three moments together
identify the three parameters uniquely.

Results. The empirical analysis yields the following insights. First, the
predicted convexity of bid-price densities is a robust feature of bid-price
dispersions in the data.

Second, the three moments used to estimate the model parameters show
the following trends. Bid aggressiveness, the first moment, steadily increased
with peaks around 2013-2014 (the period during which Dodd-Frank regulation
was put in force which made market-making more costly for banks). Viewed
through the lens of the model, such a trend implies that the value of winning
v decreased over time with the lowest values attained in these two years.

The second moment, variation in the supply of bids, steadily increased
over time growing 15.5% annually. The model can generate such trend by a
decline in the expected participation of middlemen. The estimates suggest
that around 40 middlemen participated at the start of the sample with less
than half of this number towards the end of it. Note that this is a statement
about average participation. It could mean the same number of market
makers, ex-ante, who all participate at a lower intensity. This therefore is
consistent with the decline in market-making observed in BIS (2014), and in
various subsequent studies that are cited in footnote 2.3

The third moment, the bid-ask spread, declined by 6.6% per year in the
course of the sample. This time series along with the ones for the first and
second moment let us estimate the two remaining model parameters: c and
u. We find that the cost of bidding c is relatively stable at around 0.02 basis
points (growth is only 1.2% per year), and the seller’s reservation value u rises
over time although this trend is not statistically significant. One possible
explanation is that over time end-users developed their own optimal-execution
algorithms that, instead of submitting market orders that take price quotes
from the book, often post price quotes themselves to “earn the spread.”4

3There are several alternative explanations for the decline in the number of middlemen:
the gradual decline in volatility, the decline in volume, or the gradual change in market
structure where typically electronic trading has become an option for a larger set of traders.
These explanations have merit, although none of them could explain more variability in
liquidity supply over time. Note how the last point, the increased availability of electronic
trading, might well explain why our estimate of u, the outside option of the seller, increased
over time (as we argue in the next paragraph).

4See, for example, “Algorithmic trading: trends and existing regulation,” European
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Overall, the most salient feature of the estimation is a 7.8% annual
decline in the participation of middlemen. This trend is consistent with the
general unease about market liquidity worsening in the recent decade. Further
empirical analysis beyond model estimation shows that SPY volume declined
by 4.0% per year and, more alarmingly, order-book depth decreased steeply:
19.2% annually for depth at the best quote and 27.2% annually for depth
within 50 basis points of the midquote.

Related literature on liquidity supply. Our findings contribute to the
literature on liquidity supply in securities markets.5 Various empirical asset-
pricing studies show that agents demand higher returns for securities with
either lower liquidity supply level or higher liquidity risk (e.g., Acharya and
Pedersen, 2005; Pastor and Stambaugh, 2003). Theoretical studies offer
various explanations for the average level of liquidity (e.g., order-processing
cost, adverse-selection, or inventory risk)6, but not for liquidity risk. Our
model generates such risk endogenously through mixed strategies. Baruch
and Glosten (2019), also generates liquidity risk through mixed strategies
by modeling undercutting risk (as opposed to bidding cost which is the core
friction in our model).

Our model further generates left skewness in bids, a feature that has been
documented in several limit-order book studies. Biais, Hillion, and Spatt
(1995, Figure 1), Goldstein and Kavajecz (2004, Figure 1), Hollifield et al.
(2006, Table 3), Naes and Skjeltorp (2006, Table 2), and Degryse, de Jong, and
van Kervel (2015, Table 2) document left skewness in the bid-price distribution
for French, U.S., Swedish, Norwegian, and Dutch stocks, respectively.

We are not the first to study strategic bidding both theoretically and
empirically. Cassola, Hortaçsu, and Kastl (2013) do the same for bidding in
European Central Bank auctions for short-term funds. They find evidence
consistent with strategic bidding by banks.

Related literature on bidding. We modified the endogenous bidder par-
ticipation model of Levin and Smith (1994) by assuming that bidders do

Central Bank, February 13, 2019.
5Examples of comprehensive survey studies are O’Hara (1995), Madhavan (2000),

Amihud, Mendelson, and Pedersen (2005), Vives (2010), and Foucault, Pagano, and Röell
(2013).

6See survey studies cited in footnote 5.
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not know how many others decide to bid. This removes the asymmetric
equilibria in pure strategies and leaves only one symmetric equilibrium in
mixed strategies.

The common value of bidders and the dispersion of equilibrium bids
further places our model in the general class of models of price dispersion
for a homogeneous good. Baye, Morgan, and Scholten (2006) survey these
models in depth. Our equilibrium is a special case of Hausch and Li (1993)
and has a close counterpart in the all-pay auction results in Baye, Kovenock,
and de Vries (1996). In our model, however, participating bidders do not all
pay their bid, but they do all pay their participation cost.

Another class of models is that on ask prices where the number of customers
or their trading opportunities are uncertain. Prescott (1975) studies a multi-
unit auction with an uncertain number of units which results in a distribution
of prices that is right skewed (to the right because they are asks, not bids).
Burdett and Judd (1983) similarly have an uncertain number of informed
customers and also get right skewness in the distribution of ask prices.

Shilony (1977), Rosenthal (1980), and Varian (1980) feature settings in
which firms have some captive customers, perhaps because of their geographi-
cal proximity or because of their lack of information about prices elsewhere.
In the online appendix we convert our model to one for ask prices and compare
it to Varian’s model in some detail. The key difference is that in Varian’s
model a firm targets both uninformed (local) buyers and informed buyers
who compare prices across firms and buy at the cheapest firm. This double-
barreled objective makes the price distribution U-shaped (low prices target
informed buyers, high prices target uninformed buyers). Our setting does not
have “uninformed buyers.”

Our contribution. In sum, we contribute to the literature in the following
ways. First, we prove uniqueness of the symmetric equilibrium in mixed
strategies. Second, we show that the density of all bids and of the best bid
strictly increases, is convex, and bid prices therefore are negatively skewed.
Third, we establish a “purification” result that establishes an isomorphism
between our equilibrium in mixed strategies and the limit of equilibria in
pure strategies for a model that adds dispersed private signals/values. The
limit is obtained by driving private-value dispersion to zero. This should
appeal to those who have reservations regarding whether equilibria in mixed
strategies could speak to real-world settings because they find it hard to
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believe that agents would use randomization in their strategies. Fourth, we
offer an empirical strategy to estimate the model parameters. As equilibrium
expressions are relatively simple, they are straightforward to estimate with
meaningful empirical moments. We implement the strategy on a decade
of order-book snapshots and, through the lens of the model, provide an
understanding of various trends in liquidity supply.

2 Model

In this section we first present the model and its unique symmetric equilibrium
in mixed strategies. We then show that the equilibrium is robust in the sense
that it can be obtained as a limit from a slightly altered model with equilibria
in pure strategies. Finally, we discuss one application of the model that is
taken to the data in the remainder of the paper.

2.1 Primitives

Consider a first-price common-value auction for an indivisible object. Its
value to bidders is v and to the seller it is u. Let there be many bidders who
incur an (opportunity) cost c < v − u to bid. The parameters (v, c, u) are
common knowledge.

Actions. A (potential) bidder chooses two actions: first whether or not to
bid and then, if he decides to bid, what price to bid at. A bidder does not
observe the actions of others. In particular, he does not know how many
others have chosen to participate in the bidding.

Payoffs. If bidder i does not bid then he collects his reservation value which
is zero. If he does bid and posts bid price pi, then his payoff is v − pi − c if
the bid wins and −c otherwise. The payoff to the seller is max(u,max

i
pi).

2.2 Equilibrium

We first solve the model for finitely many bidders N and then let N tend
to infinity. The resulting equilibrium turns out to be attractive as it yields
simple expressions in the model parameters. Moreover, the convergence
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appears to be fast as the equilibrium price distribution for N = 10 is almost
indistinguishable from N =∞ (see Figure 7 in Appendix A).

Proposition 1 (Unique symmetric equilibrium.) There is a unique
symmetric equilibrium to the bidding game. The number of bidders who decide
to bid is Poisson distributed with mean:

m = ln
v − u
c

. (1)

The ones participating bid by drawing their bid price from the following
cumulative distribution function (CDF):

F (p) = 1− 1

m
ln
v − p
c

(2)

on the support [u, v − c]. The corresponding density is

f (p) =
1

m

1

v − p
. (3)

The probability that no middleman shows up is:

P [No middleman shows up] = e−m =
c

v − u
. (4)

The proof is in Appendix A, along with the proofs of all other propositions,
lemmas, and corollaries. The proof combines elements of auction models with
endogenous bidder participation going back to Harstad (1990), Hausch and
Li (1993) and Baye, Kovenock, and de Vries (1996).

An important result of Proposition 1 is that the dispersion of bids is left
skewed. This follows immediately from the bid-price density in (3) which
strictly increases in p. This along with an even stronger property is worth
stating formally as a corollary:

Corollary 1 (Bid-price density convex and increasing.) The density
of bids f (p) strictly increases in p, it is convex, and prices therefore are left
skewed.

The intuition for the convex and increasing density (and therefore left skew-
ness) is that to keep the bidder indifferent in the price support, price shading
needs to get stronger for ever lower prices as the likelihood of winning declines
disproportionately.

8
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1

v − c pu1u2

G2

G1

e−m1

e−m2

Figure 1: Best-bid distribution (by u). This figure illustrates how the distribution of
the best bid G changes with the seller’s reservation value u.

Corollary 2 (Best-bid distribution.) The distribution of the best bid p
is:

G(p) =

{
0 for p = u.
c

v−p for p ∈ (u, v − c] .
(5)

The corresponding density of the best bid strictly increases and is convex.

Figure 1 illustrates the result of Corollary 2. It plots the best-bid distributions
G1 and G2 for model parameters that are equal except for u1 > u2. Surpris-
ingly, they only differ in terms of their support. In other words, their values
coincide for the intersection of the two supports. Changing u therefore only
changes the length of the support and the size of the mass point at its lower
bound. This mass point captures the probability that no middleman shows
up (see (4)). The otherwise unchanged distribution, however, is surprising
because the distribution of individual bids does depend on u (see (2)).

This surprising result follows from two economic forces that appear to
exactly offset. Proposition 1 shows that when the seller is more eager to sell
(lower u) then more middlemen show up on average (higher m) but each one
bids less aggressively in terms of first-order stochastic dominance. The net
effect is that except for the support, the best-bid distribution is invariant to
the seller’s reservation value.

9

Electronic copy available at: https://ssrn.com/abstract=2463066



Economically, the distribution invariance is reminiscent of Bertrand com-
petition where a cost c is paid ex post (i.e., after winning the auction). Each
bidder then bids v−c or stays out and the seller’s reservation value is therefore
irrelevant for the best bid. What our model shows is that this result holds up
when a cost is paid ex ante instead of ex post.

An important difference between the two cases, however, is that an
ex-ante cost creates “crash risk.” Relative to the Bertrand case, the best bid
becomes stochastic with v − c as an upper bound. It follows immediately
from Corollary 2 that its quantiles zα are:

zα =

{
u for α ∈

[
0, c

v−u

)
.

v − 1
α
c for α ∈

[
c

v−u , 1
]
.

(6)

Note that the deterministic part of price shading is the same in our model
to what it is in Bertrand (i.e., z1 = c). Our model, however, adds additional
stochastic shading that one could say is at least as large in magnitude as the
deterministic part. Its median is 1

1/2
c− c = c. The most biting part is the

heavy left tail which for example implies that the 0.1 quantile is 10c and the
0.01 quantile is 100c (assuming c < 0.01 (v − u)). This is the sense in which
an ex-ante cost creates sizeable crash risk.

Figure 2 illustrates the crash risk implied by the model. It contains
boxplots for the best-bid distribution where v = 1 and u = 0. The variation
is in the cost of bidding: c ∈ {10−6, 10−5, 10−4}. The low end of this range is
inspired by our bidding-cost estimates which range from 0.01 to 0.10 basis
points (see Section 4.2). We add the 1 basis point case to capture extreme
conditions. The plots contain a box that corresponds to the interquartile
range and whiskers that reach out to the 0.01 and 0.99 quantiles.

The most salient feature of the plots is the concentration of probability
mass near one with a non-negligible mass far below one. More specifically, for
a bidding cost of one basis point, the interquartile range is within 10 basis
points of v, but the 0.01 quantile is -100 basis points. This plot in particular
shows that what seems like a low cost of bidding, one basis point, could lead
to a best bid that is 100 basis points below v (or, in financial terms, to a 1%
value at risk (VaR) of one cent on a dollar).

2.3 Robustness

The equilibrium of Proposition 1 is robust in the sense that it can be generated
after adding private signals and then taking the limit of equilibria in pure
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Figure 2: Best-bid distribution (by c). This graph plots the best-bid distribution
through boxplots for v = 1, u = 0, c ∈ {10−6, 10−5, 10−4}. The boxes depict the
interquartile range and the whiskers correspond to the 1 and 99 percentiles.
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strategies. Suppose that one changes the primitives in the following way.
Each of the ex-ante identical bidders has two sources of information:

1. All bidders observe a public signal that induces a uniform common prior
over v ∼ U [V − σ, V + σ].

2. If bidder i decides to bid and pays c, then before bidding, he observes a
private signal xi ∼ U [0, v].

The xi are conditionally independent. The following proposition states the
robustness result formally.

Proposition 2 (Purification of the Proposition 1 equilibrium.) For
σ ↓ 0 the equilibrium converges to the equilibrium in mixed strategies of
Proposition 1. The rate of the convergence is given by the following expression:

|Fσ (p)− F (p)| ≤ 3

c

1

m

(
1− e−m

)
σ +O

(
σ2
)
. (7)

The speed of convergence of F rises with the cost of participation and rises
with the expected number of bidders m because the term 1

m
(1− e−m) is

decreasing in m. The decision whether to bid remains random; it does not
depend on the private signal that is seen only if the decision to bid has been
made.

2.4 Application to middlemen in limit-order markets

We believe that our model naturally applies to bidding in limit-order markets.
Bidders in these markets compete for market sell orders by posting limit-order
bids. When market sell orders arrive, they execute against the highest priced
bids. In this sense, a limit-order market is a first-price auction.

The model parameters could be thought of as follows. The bidding cost c
is the opportunity cost that a single middleman experiences when he posts
a bid. He likely spends non-trivial resources to determine what price to bid
at (e.g., parse recent data feeds, assess reselling opportunities). The value
of winning v could be thought of as the value of reselling the position in the
future (see, e.g., Grossman and Miller, 1988). The seller’s reservation value
could be his outside option of posting an ask price himself. This, however, is
likely to be costly for him simply because he has to wait until a market buy
order arrives. And while waiting, he might be adversely selected when he is
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not quick enough to re-price his ask on incoming news (see, e.g., Jovanovic
and Menkveld, 2015).

Note that middlemen also experience an adverse-selection cost when
posting their bid, but these are likely to be much smaller. The mere fact
that they are middlemen allows them to amortize the technology to avoid
adverse-selection, hardware and software, over many trades (see, e.g., Budish,
Cramton, and Shim, 2015). A deeper understanding of how such friction
affects the trading process requires a dynamic model, which is beyond the
scope of our study.

3 Data

In this section we introduce the sample and present some early results on
realized bid-price dispersion.

3.1 Sample

To study the dispersion of bids in real-world markets we collect snapshots
of the Nasdaq limit-order book. We focus on one of the most actively
traded ETFs: SPY. The database used to build the sample is: LOBSTER
(lobsterdata.com). Its distinguishing feature is that it includes information on
the number of shares offered at price levels beyond the best bid or ask quote.
This therefore is an ideal dataset to study realized bid-price dispersions.

A drawback of picking such an active security is that the database is
enormous. Downloading just a single day from LOBSTER can take more
than a day. The sample spans the entire history available in LOBSTER: July
2007 through December 2018. To keep the study feasible, however, we only
include every Wednesday in the first full week of each quarter thus ending up
with 46 days.

We further reduce the size of these samples in two ways. First, we
take snapshots of the limit-order book that are 100,000 events apart where
any change to the limit-order book counts as an event (e.g., a limit-order
cancellation, modification, or deletion). This keeps sample size manageable
and also avoids serial dependence in snapshots. The sample we end up with
contains 19,376 snapshots (approximately 19,376/46=421 per day). Second,
the snapshots contain the number of shares offered at all price levels between

13

Electronic copy available at: https://ssrn.com/abstract=2463066

http://lobsterdata.com


the midquote and 50 basis points below the midquote.7

For completeness, let us review two important details. First, we focus only
on order-book activity during regular trading hours from 9:30 until 16:00 EST.
To avoid any idiosyncrasies associated with the opening or closing auction, we
remove the first and last five minutes of trading and therefore only consider
snapshots between 9:35 and 15:55.

Second, LOBSTER order-book snapshots only show visible orders as a
trader would see them on his screen. What is excluded are fully hidden orders
or the part of iceberg orders that is hidden. The fraction of bid volume that is
hidden, however, is relatively low as about 90% of trading volume is generated
by market orders executing against fully visible limit orders or the visible
part of partially hidden limit orders.8

3.2 Summary statistics

Figure 3 plots standard summary statistics for the sample. A few features
stand out. First, the price of SPY steadily declines from the middle of 2007
through early 2009. From then on it increases until the end of the sample
in 2018. This pattern mirrors the S&P500 index since SPY is an ETF that
tracks this index. It reflects the onset of the financial crisis, coined the Great
Recession, and the recovery from it.

Second, liquidity supply shows relatively modest changes in terms of the
bid-ask spread, but a strong decline in terms of depth.9 In the course of the

7The raw data allow for going deeper into the book but only to a limited extent (about
200 basis points for SPY). After downloading the larger files for some random dates, we
find that most of the drop in the number of bids is within the first 50 basis points and
therefore decided to keep the samples manageable and pick 50 basis points as our cutoff
level. We further believe that bids further out might be there for reasons other than what
the model aims to capture (e.g., stub quotes to benefit from fat-finger errors).

8As hidden orders are not part of the model, their presence in the data, however small it
may be, is likely to bias our results. If all bids were partially hidden, then there would be
no bias in the estimates of the moments and therefore no bias in the parameter estimates.
If, however, pure randomness makes some bids completely hidden then the bid-ask spread
will be overestimated, but the estimates of the other two moments, aggressiveness and
variability, will remain unbiased (because the former is based a minimum/maximum statistic
whereas the other two are based on an average statistic). (13) shows that overestimation
of the spread will lead to overestimation of c and therefore, by (1), underestimation of u
(i.e., the bid-price support [u, v − c] is shifted to the left due to the bias).

9Our evidence is consistent with what has been documented for the bond market. See
footnote 2 for a summary.
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Figure 3: Summary statistics. These statistics summarize how trading in SPY evolved
from 2007 through 2018. It is based on Nasdaq order-book data snapshots sampled on all
Wednesdays in the first full week of each quarter.
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sample, the bid-ask spread increases from slightly less than a basis point to
1.5 basis points and then steadily declines to 0.5 basis points. These changes
are relatively modest as the minimum and maximum spread are only a basis
point apart.

Depth, on the other hand, declines substantially, both in terms of the
number of shares available at the best bid, and within 50 basis points of it.
The magnitudes of these changes are striking. For 50-basis-points depth, for
example, we find that at the start of the sample, it is about 2.5 million shares
(at a price of around $150) dropping to about 0.5 million in the middle of the
crisis and recovering to 1.0 million at the end of 2010. From that point on, it
declines to less than 0.1 million at the end of 2018. The average decline from
the start of 2011 until the end of the sample is 28.2% per year! The drop in
best-bid depth in this period is comparable: 24.7% per year.

We believe that the depth pattern effectively implies an economically large
drop in liquidity supply for large institutions starting in 2011. The reason is
that such institutions often have large orders that cannot be transacted in
full at the best bid price and therefore depend on depth beyond the best bid.

We conjecture that the structural break in liquidity supply is related
to regulatory events in response to the crisis. On July 21, 2010, President
Obama signed into law the Dodd-Frank Act which aimed to address the root
causes of the financial crisis. Part of it was what came to be known as the
Volcker Rule which the Board of Governors of the Federal Reserve System
summarizes as follows:10

Section 619 of the Dodd-Frank Wall Street Reform and Consumer
Protection Act, commonly referred to as the Volcker Rule, gener-
ally prohibits insured depository institutions and any company
affiliated with an insured depository institution from engaging
in proprietary trading and from acquiring or retaining ownership
interests in, sponsoring, or having certain relationships with a
hedge fund or private equity fund. These prohibitions are subject
to a number of statutory exemptions, restrictions, and definitions.

Restricting banks from proprietary trading essentially removes them as deep-
pocket market makers. As is common for such far-reaching regulations,
the implementation is not immediate but requires a time period for public
comments, and then for potential amending the proposed regulation based

10See https://www.federalreserve.gov/supervisionreg/volcker-rule.htm.
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on this feedback. On November 5, 2010, the request for comments closed and
it is likely that by then market participants had a solid understanding of the
type of regulation that would ultimately transpire. This could explain the
structural break in liquidity supply for SPY by the end of 2010.

The amended Rule would become effective by April 1, 2014 with full
compliance required by July 21, 2015.11 Interestingly, the period marked by
these two dates shows an accelerated drop in 50-basis-points depth. Overall,
we therefore conjecture that the Volcker Rule caused a large part of the
decline in depth. We will revisit the Volcker rule when discussing our result
of a decline in the average number of middlemen (see Figure 6).

The third and final observation worth mentioning when parsing Figure 3
is the volume pattern. Volume shows a strong positive trend at the beginning
of the sample starting at 5 billion shares per day in the middle of 2007 and
peaking at around 30 billion shares per day in the fall of 2008. From then on
it drops, first steeply to about 10 billion at the start of 2009, and then slowly
to about 3 billion at the end of 2018.

3.3 Bid-price distributions

We close the section by examining bid-price distributions throughout the
sample. Figure 4 plots the empirical densities of bid prices for each day in
the sample. More specifically, it plots the conditional density by creating five
price bins and computing how much of the total number of shares offered in
these bins appears in a particular bin. The price bins are defined relative to
the midquote and include: (-50, 40], . . . , (-10, 0] where all numbers are in
basis points.12

The densities plotted in Figure 4 seem to support Corollary 1: Densities
appear to be upward-sloping and convex. For all days in the sample, most
bids land in the top bin. Through time, however, this top bin takes relatively
more of all bids. It has approximately 50% of them at the start of the sample
and 75% at the end of it. We will return to this observation after presenting
the model estimates in Section 4.2 as this “slope” identifies the value of
winning for middlemen.

11See https://www.investopedia.com/terms/v/volcker-rule.asp.
12The estimate of the relative mass in the right-most bin accounts for the fact that this

bin is a bit shorter than the others. It runs from 10 basis points below the midquote to
the best bid, not all the way through to the midquote.
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Figure 4: Bid price distribution. This figure plots the empirical densities for bids
based on price bins expressed relative to the midquote: (-50 bps, -40 bps], . . . , (-10 bps,
0 bps] where “bps” is basis points. It is based on Nasdaq order-book data snapshots
sampled on all Wednesdays in the first full week of each quarter.
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Table 1: Testing for convexity in empirical bid-price densities. The five price
bins used to estimate the bid price density allow us to compute three empirical second
derivatives: Ci,t = (ĥPi − 2 ∗ ĥPi−1

+ ĥPi−2
)/(0.0012), with i ∈ {−3,−2,−1} where t runs

across 46 days, Pi with i ∈ {−5,−1} denote price bins relative to the midquote of width

0.001, and ĥ denotes the empirical density estimate. The first line in the table shows
how many of these statistics are significantly positive thus indicating convexity. The test
statistic for the full interval simply takes the average of the statistics across i. The second
line in the table shows the mean of C across days divided by its standard error, which
is a t statistic based on all days in the sample. ∗/∗∗/∗∗∗ correspond to a 10/5/1 percent
significance level.

Price region relative to midquote

Left Middle Right Full
C−3,t C−2,t C−1,t C̄t

(#C > 0)/Total 29/46 41/46 43/46 45/46
C̄i (in 1000) 20.1

(0.6)

∗∗∗ 63.3
(0.8)

∗∗∗ 535.1
(1.3)

∗∗∗ 206.2
(0.3)

∗∗∗

Although the empirical densities seem to largely agree with Corollary 1,
we prefer to formally test for convexity. Bidders necessarily start shading
more aggressively the further out they are from the top (possible) bid. To
test this prediction, in essence, we need to verify whether the second-order
derivative of the density is positive. We therefore analyze the following test
statistic:

Ci,t =
1

∆Pi

(
∆ĥt (Pi)

∆Pi
− ∆ĥt (Pi−1)

∆Pi−1

)
=
ĥt (Pi)− 2ĥt (Pi−1) + ĥt (Pi−2)

0.0012
> 0,

(8)
where t, runs across days in the sample and Pi, i ∈ {−5, . . . ,−1} runs across
price intervals used to estimate the empirical density, with -5 denoting the
price interval from 50 to 40 basis points below the midquote.

Table 1 presents the test results by price interval and across all intervals.
The results largely support the hypothesized convexity. The results are
strongest for the right-most price region, (-30, 0] basis points, with 43 out of
46 days rejecting the null of the second derivative being equal to zero in favor
of it being positive.13 The results for the regions (-40, 10] and (-50, 20] are 41

13In all tests we cluster by snapshot and thus explicitly account for non-zero correlation
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out of 46 and 29 out of 46 rejections of zero in favor of a positive number,
respectively. Taking all these intervals together, we find for all days except
for one that the null of zero is rejected in favor of a positive number.

The table further reports tests for the full sample by assuming indepen-
dence across days. It reports a sample average test statistic for each bin
and for all bins combined. These statistics are all significantly positive thus
providing empirical support for convexity in bid-price densities.

4 Model estimation

In this section we estimate the model based on the generalized method of
moments (GMM). We express all empirical moments relative to the midquote
which implies that the parameter estimates should all be interpreted relative
to the midquote.14 In the first subsection we list all moments that are matched
and discuss what part of the model they identify. In the next subsection we
discuss various implementation details. In the final subsection we present the
estimates.

4.1 Parameter identification

Identifying the value of winning for middlemen: v. One way to
identify v is by the ratio of densities at two points in the support, say p1 < p2.
The model-implied ratio is:

M1 =
f (p2)

f (p1)
=
v − p1

v − p2

. (9)

This value identifies v uniquely because M1 strictly decreases in v. What
remains is to decide what prices p1 and p2 > p1 to pick as any pair identifies
v. We choose to let them correspond to the left- and right-most price bins
of the empirical bid density. The benefit of choosing them as wide apart as
possible is that v is most sensitive to the implied bid ratio this way. The
reason is that the following partial derivative is maximized for the widest

across price bins when doing statistical inference.
14Note that the midquote in the model is endogenous and random because of randomness

in the highest bid and the lowest ask. We assume that such randomness is small for an
actively traded security like SPY and therefore ignore it in the estimation.
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possible range (i.e., highest possible p2 and lowest possible p1):∣∣∣∣∂M1

∂v

∣∣∣∣ =
p2 − p1

(v − p2)2 . (10)

This highest possible sensitivity implies the lowest possible standard errors
for the parameter estimate (as is evident from (20) that will be discussed in
the estimation subsection).

Identifying the mean number of bids: m. The number of middlemen
participating in the game and therefore the number of bids is Poisson dis-
tributed with mean m. For Poisson this implies that the variance is also equal
to m. To compute these statistics in the data, one needs to know the size
of each bid. Unfortunately, this is typically not observed because standard
datasets only show the total number of shares offered at various price levels,
not the individual orders that lead to this total.15 To circumvent this issue
we compute a moment that is invariant to bid size: the coefficient of variation
(CV), which is defined as the standard deviation of the total number of shares
offered, divided by its mean.16 An additional benefit of using CV is that it is
invariant to observing bids only in part of the support, which almost always
is the case in limit-order data.17 The second moment to match therefore is:

M2 =
σx
µx

=
1√
m
. (11)

The expression is quite intuitive as one would expect more variation when
fewer middlemen participate on average.

15Sometimes a dataset does contain flow and stock data. Flow data in this case are
part of the audit trail of electronic messages (e.g., limit-order submissions, cancellations,
market-order submissions). Stock data are the snapshots of the order book that could,
in theory, be created off of the flow data. Oftentimes, however, there are hiccups in the
recording of flow data (“packet loss” in computer language) which are very costly as a
single missed message will create permanent bias in subsequent order-book snapshots (see,
e.g., Aquilina, Budish, and O’Neill, 2020, for an elucidating discussion). We therefore
prefer not to rely on message data but base our analysis directly on the stock data that
are reported by the Nasdaq itself.

16If the number of shares were converted to a number of middlemen by dividing by
bid-order size, then this factor would appear both in the numerator and in the denominator
of CV and therefore would cancel.

17If the probability of observing a bid in price range [p1, p2] is α then the argument in
footnote 16 applies with the factor being α.
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Identifying the remaining parameters: c and u. The mean number
of bids depends on the model parameters as follows (see (1)):

m = ln
v − u
c

. (12)

Given that M2 identifies m and M1 identifies v, what remains is to find
one more moment to separate out the two remaining parameters: c and u.
A natural candidate is the bid-ask spread. It is intuitive that such spread
must relate to the value of c as the minimum spread is 2c. The reason is
that middlemen need to recover at least their cost of bidding c to participate
voluntarily. It is twice c because the bid-ask spread pertains to bidding at
the bid and ask side of the book (the latter is not explicitly modeled here but
assumed to be symmetric, see Appendix A). The expected spread needs to
exceed this lower bound because a middleman might lose the bidding contest
and thus not recover c. It is therefore no surprise that the model-implied
spread turns out to be increasing in m (see Appendix A):

M3 = 2cm

(
1

1− e−m

)
. (13)

The (partial) derivative ofM3 with respect to c turns out to be strictly positive
(see (82)). The bid-ask spread therefore, for any candidate u, identifies a
unique c. This ensures that the three moments jointly identify the model
parameters.18

4.2 Estimation

The model parameters are estimated by matching the three empirical moments

M =
(
M1 M2 M3

)′
(14)

to their population counterparts denoted by Mθ ∈ R3 where θ contains the
model parameters:

θ =
(
v c u

)′
. (15)

18Equations (13) and (1) reveal how the model is not necessarily at odds with the stylized
fact that the participation of more market makers reduces the spread (e.g., Kennedy et al.,
2015, Table F.3). More middlemen and a lower spread could both be driven by a lower
unobserved c.
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We use the generalized method of moments (GMM) to estimate the parameters
and to establish their standard errors. The model is exactly identified because
the three parameters jointly determine the three moments uniquely (see
discussion in the previous subsection). Straightforward algebra yields the
following expressions for the estimators in terms of the empirical moments:

v̂ =
M1p2 − p1

M1 − 1
, (16)

ĉ =
1

2

M3

(
1− e−M−2

2

)
M−2

2

, (17)

û = v̂ − ĉeM
−2
2 , (18)

where hats denote estimators. To establish standard errors one needs the
Jacobian of Mθ with respect to θ:

J =
∂ (M1,M2,M3)

∂ (v, c, u)
. (19)

The covariance matrix of the estimator θ̂ then equals:

Σθ̂ =
(
J ′ (Cov (M))−1 J

)−1
, (20)

where Cov (M) is the covariance matrix of M .

4.3 Results

This section presents the estimation results. It plots them for the all days in
the sample, discusses them, and closes with an observation on the likelihood
of a flash crash in the sample period.

Figure 5 plots how the three empirical moments evolve in the full sample.
The solid vertical lines illustrate 95% confidence intervals. They reveal that the
empirical moments exhibit statistically significant trends which are therefore
worthy of discussion.

First, the top plot shows that the slope in bid-price densities is positive.
This is not surprising given the density plots of Figure 4. More interesting
is that there is substantial time variation with peaks in the middle of the
sample when bidding is particularly aggressive. The general trend seems to
be one of more aggressive bidding over time as densities are steeper at the
end of the sample than they are at the beginning of it.
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Figure 5: Empirical moments. This figure illustrates the three empirical moments
that were used to estimate model parameters. It is based on Nasdaq order-book data
snapshots sampled on all Wednesdays in the first full week of each quarter. Vertical solid
lines denote 95% confidence intervals.
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Second, the middle plot shows that the coefficient of variation hovers
between 0.1 and 0.2 in the early years of the sample but gradually increases
to 0.2 at the end. The overall trend therefore is more risky liquidity supply
at the end of the sample.

Third, the bottom graph plots the bid-ask spread which increases in the
period leading up to the financial crisis, and drops subsequently. This we
already observed when discussing summary statistics.19

Figure 6 plots the parameter estimates implied by these empirical moments.
The graphs lead to several insights. First, the top graph plots the value of
winning for middleman (v). It mostly hovers between 0 and -5 basis points
relative to the midquote. Winning is most valuable at the start of the sample,
then drops to its lowest level in the middle of the sample and rises again
towards the end of the sample. This could be due to the Volcker Rule because
in the period when it came into force, 2013-2014, liquidity supply became
constrained which might have meant that the value of winning became low.
One reason outside of the model could be that reselling opportunities were
few given that some middlemen might have been forced out of trading. If
these middlemen found loopholes in the regulation or others took their place
then this could explain why the value of winning increases towards the end of
the sample.20

Second, the mean number of middlemen showing up to bid (m) exhibits a
downward trend. It starts off at approximately 50 middlemen but steadily
declines to approximately 20. The lion’s share of this level shift seems to occur
in the period when the Volcker Rule was (scheduled to be) implemented: 2013-
2014. This is consistent with the Rule prohibiting some market participants
from engaging in proprietary trading which includes market making. There
is a slight increase in the years that follow but then a drop again towards the
end of the sample.

Our finding is consistent with the predictions and the evidence on how the
Volcker Rule would affect market making.21 Prior to implementation, Duffie

19We note that the bid-ask spread often binds at one penny which is the tick size in this
market. This is consistent with the model for a low enough c.

20Note that v is often below the best bid as the bid-ask spread is at most 1.5 basis points
(see Figure 3). This could be explained by the model being an abstraction for large sell
orders and middlemen with deep pockets. Large here means larger than the number of
shares available at the best bid.

21The Volcker Rule was not a marginal rule as Deutsche Bank experienced in April
2017 when it was fined USD 157 million for violating it, along with foreign exchange rules
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Figure 6: Parameter estimates. This figure plots parameter estimates for each day in
the sample. It is based on Nasdaq order-book data snapshots sampled on all Wednesdays
in the first full week of each quarter. Vertical solid lines denote 95% confidence intervals.
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(2012, p. 4) writes:

In particular, a bank that continues to offer substantial market
making capacity to its clients would face a risk of regulatory
sanction (and the attendant stigma) due to significant and un-
predictable time variation in the proposed metrics for risk and
for profit associated with changes in market prices. Likewise,
the norms that are likely to arise from the proposed regulatory
metrics would discourage discretion by individual market making
traders in the face of career concerns. A trader’s incentives and
discretion would also be dampened by the proposed approach to
compensation. Consequently, some banks may wish to exit the
market making business.

He further observes that, in the long term, non-U.S. banks could step in
to replace U.S. banks (and worries about unintended consequences of such
migration outside of the regulated banking sector).

Empirical evidence on the issue is, to the best of our knowledge, only
available for the bond market for which disaggregated trade is publicly
available (i.e., Trade Reporting and Compliance Engine, TRACE). The most
direct evidence on how the Volcker Rule affected bond liquidity is Bao, O’Hara,
and Zhou (2018) who find (p. 96):

Our second major result is that liquidity deterioration in post-
Volcker stress periods featured less liquidity provision by Volcker-
affected dealers, with only weak evidence of increased liquidity
provision by non-Volcker-affected dealers.

This evidence is consistent with the experience of bond-market participants
in the Americas. Two-thirds of them report a decrease in the number of
market makers (CFA Institute, 2016). Finally, the head of the U.S. Commerce
Department also mentions fewer dealers in the bond market and less market-
making activity in his letter to House Committee on Financial Services
(Quaadman, 2017). It confirms the predictions from a 2012 report published
by his department (Thakor, 2012).

Third, the cost of bidding (c) is more or less constant in the sample period.
It is approximately 0.01 basis point on average with occasional peaks of up
to 0.06 basis points.

(“Deutsche fined in first Volcker rule market-making case, and for forex lapses,” Reuters,
April 26, 2017).
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Fourth, the reservation value of the seller (u) increases in the course of
the sample although the increase is not statistically significant; u is estimated
to be extremely low (far below zero), so much so that that we decided to plot
it on a log scale. Technically, this cannot be done for negative values and we
therefore decide to plot one minus u instead (i.e., the standardized midquote
minus u), which is guaranteed to be positive. The bottom graph suggests that
u increases over time (as one minus u decreases). Note, however, that the
confidence intervals constitute a warning not to rely strongly on the level of
these estimates. In most cases the interval contains zero and the hypothesis
of u being zero can thus not be rejected. Mathematically, this result seems
to be due to the second moment showing up exponentially in the estimator
of u (see (18)). The model therefore needs really precise estimates of this
second moment to produce precise estimates of u. The results show that our
estimates of this moment apparently are not precise enough.

The model allows for books to be empty. The probability of such event
for a Poisson distribution equals e−m, where m is the Poisson mean. The
average of this probability for the sample is 0.00018. If each day in the sample
period were a single independent draw, then a simple calculation based on
the binomial distribution suggests that the probability of not finding “empty
books” in this period is 0.59. The probability, however, of finding a single
empty book is 0.31. Could this have been the Flash Crash on May 6, 2010?22

5 Conclusion

What are the ramifications of making bidding costly for players in a first-
price auction? We show that there no longer is an equilibrium in pure
strategies. There is a unique symmetric equilibrium in mixed strategies. This
equilibrium is easy to parse as its expressions are analytic and simple. This
makes identifying the economic forces at work relatively straightforward. It
further helps model estimation as standard GMM is simple to implement and
parameter identification is relatively transparent. All this helps us explain
the shape of bid-price dispersions in the data, why crashes happen, and why
they are rare.

22On that day the bid-side of the book indeed ended up being virtually empty with, for
some stocks, the best bid literally being a penny (SEC, 2010).

28

Electronic copy available at: https://ssrn.com/abstract=2463066



Appendices

A Proofs and derivations

Proof of Proposition 1.

The proof of Proposition 1 is done in two steps. We first prove a proposition on the
equilibrium for the case of ex-ante finitely many middlemen. We then let this number of
middlemen tend to infinity. We start by proving the following proposition.

Proposition 3 (Finitely many ex-ante bidders equilibrium.) There are no equilib-
ria in pure strategies. A unique symmetric Nash equilibrium exists in mixed strategies
(excluding the set of correlated equilibria).23 A player bids with probability

λ = 1−
(

c

v − u

) 1
N−1

(21)

and draws a bid from the CDF

H (p) =
1

λ

(
c

v − p

) 1
N−1

− 1− λ
λ

, (22)

where H has support [u, v − c]. The corresponding PDF is

h (p) =
1

λ (N − 1)
c

1
N−1 (v − p)

−N
N−1 . (23)

The proposition is close to Hausch and Li (1993) as (21) and (22) arise in their model when
their parameter α is zero and when, instead of being zero as they assume, the reservation
value for the seller is u. Next, we prove each part of Proposition 3 below.

No pure-strategy equilibria. Suppose, on the contrary, that the equilibrium
number of players that enter the bidding is k. Then k = 0 is not an equilibrium for then a
sole entrant would bid p = u, obtain the object, and earn v − c > 0. Also, k ≥ 2 is not an
equilibrium for then, after the entry cost is sunk, firms would Bertrand compete on bids
and all set p = v and earn zero rents ex post, and would therefore be unable to recover the
entry cost c. Finally, k = 1 is not an equilibrium, for then the sole bidder would bid p = u
and would collect a positive profit. But this would invite a second entrant who could bid
u+ ε < v − c and, with ε small enough, would win the object and make a positive profit.

23If one allows for correlated equilibria then there is a trivial set of correlated equilibria
whenever N > 2. Suppose one adds an ex-ante stage where M bidders with 2 ≤M < N
are randomly selected from the set of N bidders. If then only these M bidders play the
equilibrium identified in this proposition with N = M , then it is straightforward to show
that such (correlated) equilibria are also equilibria, but they are asymmetric.
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Proof of bid probability: (21). All bids must have an expected payoff of zero.
Consider the lowest bid at p = u. It wins only if no other player enters, and this happens
with probability (1− λ)

N-1
. The expected payoff from such a bid is (1− λ)

N-1
(v − u) = c,

which implies (21).

Proof of bid distribution: (22). The support of H cannot be larger than
(u, v − c) because a bid of p < u is always rejected and a bid p > v − c yields a negative
expected profit.

H cannot have any holes (p1, p2) ⊂ (u, v − c) for then the bidder at p2 could bid less
without reducing the acceptance probability and make a positive expected profit. H cannot
have mass points either (i.e., no jumps) because at any p < v− c a mass point would create
an incentive to shade the bid upward and a earn positive expected profit. A mass point at
p = v − c would imply negative profits.

All p ∈ (u, v − c) must yield a zero expected profit net of c. This condition combined
with the observation that the probability that bid p wins against k opponents with
k ∼ B (N − 1, λ) and with every entering bidder using H, implies:

c

v − p
=

N−1∑
k=0

Hk (p)

(
N − 1

k

)
λk (1− λ)

N−1−k
= (λH (p) + 1− λ)

N−1
. (24)

The second equality in (24) then follows from the binomial formula. Rearranging (24) gives
(22).

Convergence to Poisson for infinitely many middlemen (N → ∞).
Which equilibrium does one converge on when the ex-ante number of middlemen is taken
to infinity (N → ∞)? Let us first compute limit of the expected number of bids (using
(21)):

m = lim
N→∞

Nλ (25)

= lim
N→∞

N

(
1−

(
c

v − u

) 1
N−1

)
(26)

= lim
N→∞

N

N − 1︸ ︷︷ ︸
→1

(
1−

(
c

v − u

) 1
N−1

)
/

(
1

N − 1

)
︸ ︷︷ ︸

→ln( v−uc )

(27)

= ln

(
v − u
c

)
(28)
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Inserting λ = m/N into the binomial distribution function for the number of middlemen
showing up (i.e., k) yields:

lim
N→∞

(
N

k

)(m
N

)k (
1− m

N

)N−k
(29)

=
mk

k!

N !

(N − k)!

1

Nk

(
1− m

N

)N−k
(30)

=
mk

k!

(
N

N

)
· · ·
(
N − k + 1

N

)
︸ ︷︷ ︸

→1

(
1− m

N

)−k
︸ ︷︷ ︸

→1

(
1− m

N

)N
︸ ︷︷ ︸
→e−m

(31)

=
mk

k!
e−m, (32)

which is the distribution function of Poisson with mean m.
The limit of the bid-price density in (3):

f (p) = lim
N→∞

h (p) =
1(

1−
(

c
v−u

) 1
N−1

)
/ 1
N−1︸ ︷︷ ︸

→ 1

− ln( c
v−u )

c
1

N−1︸ ︷︷ ︸
→1

(v − p)−
N
N−1︸ ︷︷ ︸

1
v−p

(33)

=
1

m

1

v − p
(34)

and

F (p) =

∫ p

u

f (p) = 1− 1

m
ln

(
v − p
c

)
. (35)

Figure 7 illustrates how quickly the bid-price density for finite N ((23)) converges to the
one for infinitely many N ((3)). The parameters used for the plot are close to the estimates
for the full sample (see Section 4.3). The plot shows that for N = 10, the difference
between the two densities becomes almost indistinguishable. This finding suggests that the
smoother and more compact expressions of Proposition 1) are a reasonable approximation
for bidding by ten or more middlemen as characterized by Proposition 3.

Proof of Corollary 1.

The bid-price density f (p) is increasing because

f ′ (p) =
1

m

1

(v − p)2
> 0 (36)

and convex because

f ′′ (p) =
1

m

2

(v − p)3
> 0. (37)
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Figure 7: Speed of convergence bid-price densities. This figure illustrates how
quickly bid-price densities fN (p) for the finitely many middlemen case converge to the one
for infinitely many middlemen. Model parameters are: v = 1, c = 10−6, and u = 0.

Proof of Corollary 2.

The best-bid distribution is derived by computing the conditional best-bid distribution
given that k middlemen arrived, and then computing the weighted sum of these where the
weights are the marginal probabilities of k:

G (p) =

∞∑
k=0

F k (p)P [k] (38)

=

∞∑
k=0

(
1− 1

m
ln

(
v − p
c

))k
mk

k!
e−m (39)

= e−mem−ln( v−pc )
∞∑
k=0

(
m− ln

(
v−p
c

))k
k!

e−(m−ln( v−pc ))

︸ ︷︷ ︸
=1

(40)

=
c

v − p
. (41)

The corresponding best-bid density is g (p) = c/ (v − p)2, which strictly increases because

g′ (p) =
2c

(v − p)3
> 0 (42)

and it is convex because

g′′ (p) =
6c

(v − p)4
> 0. (43)
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Proof of Proposition 2

The proof of Proposition 2 is done in three steps. We first establish the zero-profit condition
and the ex-post payoff to bid under the private signal. We then prove a lemma on the rate
of convergence of the equilibrium when there are finitely many middlemen. Lastly, we let
the number of middlemen go to infinity and σ go to 0.

Define the zero profit condition and payoff function. Denote the prior
density by

µσ (v) =
1

2σ
for v ∈ [V − σ, V + σ] (44)

and the CDF and PDF of the conditionally-independent signals by, respectively,

Ψ (x | v) =
x

v
and ψ (x | v) =

1

v
for x ∈ [0, v] . (45)

Let βσ (x) be the symmetric-equilibrium bidding strategy defined for x ∈ [0, V + σ]. We
will drop subscript i in most of the remainder. Let the number of other bidders be
k ∼ B (λσ, N − 1) where λσ solves for λ in the zero-profit condition:

c =

∫ V+σ

V−σ

∫ v

0

πσ (x, λ) dΨ (x | v)µσ (v) dv, (46)

where πσ(x, λ) is the payoff to bidding conditional on the signal x with

πσ(x, λ) = max
p

(∫ β−1
σ (p)

0

(vσ(x, y)− p)gσ(y | x)dy

)
, (47)

where y = maxj 6=i (xj) is the highest signal among the k other bidders, gσ(y | x) its density
conditional on x, and vσ (x, y) = E (v | x, y) the conditional expectation of v given x and y.
The latter two are derived below. The FOC is (vσ(x, x)− p)gσ(x | x)dx/dp−Gσ(x | x) = 0
which implies

dp

dx
=

(vσ(x, x)− p)gσ(x | x)

Gσ(x | x)
. (48)

Conditional density of y: gσ(y | x). Since v ≥ V − σ, (45) implies that for
any x < v, σ becomes small enough so that x < V − σ, and the support of the posterior
b (v | x) is [V − σ, V + σ].24 Conditional on (v, k), the CDF of y is Ψk (y | v) = (y/v)

k
.

Conditional on (x, k), the CDF of y is

Gk,σ(y | x) =

∫ V+σ

V−σ
Ψk (y | v) bσ (v | x) dv for k = 1, 2, . . . , N − 1, (49)

24This result hinges on the bounded support of v which makes all derivations mathemat-
ically convenient. Importantly, it does not come at a cost of generality.
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where the posterior for v is

bσ (v | x) =
ψ (x | v)µσ (v)∫ V+σ

V−σ ψ (x | v′)µσ (v′) dv′
=

1/v∫ V+σ

V−σ 1/v′dv′
. (50)

Taking the expectation of Gk,σ(y | x) over k ∼ B (λσ, N − 1) and using the binomial

formula, E
(
Ψk (y | v)

)
= (1− λ+ λΨ (y | v))

N−1
with Ψ0 (y | v) defined as having unit

mass at p = 0, we obtain player x’s predictive CDF of y as:

Gσ(y | x) =

∫ V+σ

V−σ

(
1− λ+ λ

y

v

)N−1
bσ (v | x) dv. (51)

Its density g(y | x) = d
dyG(y | x) is used in (47).

Conditional expectation of v: vσ (x, y). When calculating the expectation
of v given (x, y) (i.e., vσ (x, y) in (47)), the bidder takes into account the winner’s curse:

vσ (x, y) =

∫ V+σ

V−σ
vbσ (v | x, y) dv, (52)

where the posterior density for v given (x, y) is

bσ (v | x, y) =
L (y | v) bσ (v | x)∫ V+σ

V−σ L (y | v′) bσ (v′ | x) dv′
. (53)

In (53), b (v | x) is given by (50), and the likelihood of y is

L (y | v) =
d

dy
(1− λ+ λΨ (y | v))

N−1
(54)

= (N − 1)λψ (y | v) (1− λ+ λΨ (y | v))
n−2

. (55)

This completes the definition of the payoff functions ex ante in (46) and ex post in (47).

The distribution of bids. Since βσ (x) is increasing in x, a property proved in
(122), the distribution of bids is

Hσ (p) ≡ Ψ
(
β−1σ (p) | v

)
=
β−1σ (p)

v
. (56)

Lemma 1 (Rate of convergence.) If V > σ, the rate of convergence, for any (fixed)
λ ∈ (0, 1), is

|Hσ (p)−H (p)| ≤ σ 3v − σ
(v − σ)2

1− λ
λ (N − 1)

v

v − u

[
exp

(
λ(N − 1)

1− λ

)
− 1

]
(57)

for p ∈ [u, V − c], with ∣∣β−1σ (p)− β−10 (p)
∣∣ = v |Hσ (p)−H (p)| . (58)

The proof of Lemma 1 is voluminous and does not contain any further economic
insights. We therefore moved it to the online appendix.
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Proof of Proposition 2. We first show if σ ↓ 0, then λσ → λ, with λ given by (21).

By definition, λσ solves (46). Now fix λ at an arbitrary value λ̂ ∈ (0, 1). Since β−1σ (p)
converges uniformly to β−10 (p) when σ ↓ 0 (see Lemma 1), and since v (x, y) does not

depend on βσ, the function πσ

(
x, λ̂

)
defined in (47) converges to π0

(
x, λ̂

)
uniformly in x.

Now π0

(
x, λ̂

)
is independent of x, and therefore for all x ∈ [V − σ, V + σ],

π0

(
x, λ̂

)
= π0

(
0, λ̂
)

= (v − u)
(

1− λ̂
)N−1

. (59)

On the RHS of (59) we evaluated π0 at the lowest signal and, hence, the lowest-x bid
β0 (0) = u, which wins only if no one else bids. Then∫ V+σ

V−σ

∫ v

0

πσ

(
x, λ̂

)
dH(x | v)µσ (v) dv

σ↓0→ π0

(
0, λ̂
)
. (60)

The implicit function theorem guarantees existence of the function λσ in the neighborhood
of σ = 0 because, using (59),

∂

∂λ
π0

(
0, λ̂
)∣∣∣
λ=λ0

= − (N − 1) (v − u)
(

1− λ̂
)N−2

< 0, (61)

where v = V .
From (46) this means that the RHS of (59) must equal c and therefore

c = (v − u)
(

1− λ̂
)N−1

. (62)

This implies that λσ → λ0, which is the solution to (21).

At λN = 1−
(

c
v−u

)1/(N−1)
, lemma 1 states that

|Hσ (p)−H (p)| ≤ σ 3v − σ
(v − σ)2

1− λN
λN (N − 1)

v

v − u

[
exp

(
λN (N − 1)

1− λN

)
− 1

]
(63)

First, we take the limit as N →∞.

lim
N→∞

λN (N − 1)

1− λN
= lim
N→∞

1−
(

c
v−u

)1/(N−1)
(

c
v−u

)1/(N−1) (N − 1) (64)

= lim
n→∞

(
c

v−u

)−1/(N−1)
− 1

(N − 1)
−1 (65)

Both numerator and denominator converge to zero and so we apply L’Hôpital’s rule. Then

lim
N→∞

λN (N − 1)

1− λN
= lim
N→∞

−
(

c
v−u

)−1/(N−1)
ln
(

c
v−u

)
(N − 1)

−2

(N − 1)
−2

= − ln

(
c

v − u

)
= ln

(
v − u
c

)
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Thus

|Fσ (p)− F (p)| = lim
N→∞

|Hσ (p)−H (p)|

=≤ σ 3v − σ
(v − σ)2

ln

(
c

v − u

)
v

v − u

[
exp

(
ln

(
v − u
c

))
− 1

]
= σ

3v − σ
(v − σ)2

ln

(
c

v − u

)(
v

c
− v

v − u

)
Expanding the RHS around σ = 0, we get

|Fσ (p)− F (p)| ≤ 3σ

v
ln

(
c

v − u

)(
v

c
− v

v − u

)
+O

(
σ2
)

=
3

c
ln

(
c

v − u

)(
1− c

v − u

)
σ +O

(
σ2
)

=
3

c

1

m

(
1− e−m

)
σ +O

(
σ2
)

This concludes the proof of Proposition 2.

Derivation of the model-implied bid-ask spread (M3).

To calculate the mean bid-ask spread and derive (13), we first calculate the expected best
bid, then by assuming a symmetric game on the ask side of the book we calculate the
expected best ask. The expected bid-ask spread then simply is the difference between the
two.

Using the distribution of the best bid G (p) in (5) and applying integration by parts
we find that the expected best bid is:

E (p) =
1

1−G (u+)

∫ v−c

u+

pdG (p) (66)

=
1

1−G (u+)

(
−p (1−G (p)) |v−cu+ +

∫ v−c

u+

(1−G (p)) dp

)
(67)

=
1

1−G (u+)

(
−uG

(
u+
)

+ v − c−
∫ v−c

u+

G (p) dp

)
(68)

=
v − c− u

1−G (u+)
+ u− 1

1−G (u+)

∫ v−c

u+

G (p) dp, (69)

with
1−G

(
u+
)

= 1− lim
p↓u

c

v − p
= 1− c

v − u
= 1− e−m (70)

and ∫ v−c

u+

G (p) dp = c

∫ v−c

u+

1

v − p
dp = −c ln

(
v − (v − c)
v − u

)
= cm (71)

and yields

E (p) = v − cm

1− e−m
. (72)
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If one assumes the value of winning is the same on the ask side of the book, then expected
best ask is:

E (pa) = v +
cm

1− e−m
. (73)

The bid-ask spread is the best ask minus the best bid and therefore equals:

E (BidAskSpread ) (74)

= E (pa − p) = v +
cm

1− e−m
−
(
v − cm

1− e−m

)
=

2cm

1− e−m
. (75)

The spread is increasing in c as the partial derivative is positive (see dM3/dc in (82)).

B Implementation details of the GMM esti-

mation

In this appendix we clarify how we dealt with the following two issues:

1. The covariance matrix of the empirical moments collected in M is non-trivially
collected from the data. We use the Delta method (i.e., first-order Taylor expansion)
to express M as a non-linear function of a larger set of moments for which the
covariance matrix is trivially collected from the data.

2. The population moments are expressed in terms of θ =
(
v c u

)′
along with m

which is itself a non-linear function of θ. We compute the Jacobian J taking this
relationship into account.

Covariance matrix of M . Let Xt consist of the following variables defined based
on a snapshot of the order book at time t.

Xt =


ĥt (0.9975×Midquotet)

ĥt (0.9825×Midquotet)

BidDepth202
t

BidDepth20t
BidAskSpreadt

 , (76)

where

• Midquotet is the average of the weighted bid and ask price where for, for example,
for the bid the price is equal to depth-weighted bid prices within 20 basis points of
the best bid (depth is in number of shares).

• ĥt (0.99825×Midquotet) is the number of shares available between 20 and 15 basis
points from the midquote divided by the total number of shares available within 20
basis points of the midquote.

• ĥt (0.99975×Midquotet) is similarly defined but for the range 5 basis points below
to the midquote to the midquote.
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• BidDepth20t is the total number of shares available within 20 basis points of the
midquote.

• BidAskSpreadt is bid-ask spread expressed in basis points (i.e., 10,000 times 2(Ask-
Bid)/(Ask+Bid)).

The mean of Xt is estimated as

µ =
1

T
Xt. (77)

and its covariance matrix as covariance matrix of Xt for the subsample under consideration
is computed as:

Cov (Xt) =
1

T
XtX

′
t − µµ′. (78)

The empirical moments M used for estimating the parameters can be expressed in terms
of µ as follows:

M1 =
µ2

µ1
, M2 =

µ3

µ2
4

− 1, and M3 = µ5, (79)

where µi is the ith element of µ. The covariance matrix of M is then obtained using the
Delta method:

Cov (M) = JCov (Xt) J
′, (80)

where the Jacobian J = ∂(M1,M2,M3)
∂(µ1,...,µ5)

is

J =

−
µ2

µ2
1

1
µ1

0 0 0

0 0 1
µ2
4
− 2µ3

µ3
4

0

0 0 0 0 1

 . (81)

Jacobian of M w.r.t. θ. In the infinitely many middlemen model the Jacobian of
M with respect to θ becomes:

∂ (M1,M2,M3)

∂ (v, c, u)
=


p1−p2
(v−p2)2

0 0

− 1
2m
√
m(v−u)

1
2m
√
mc

1
2m
√
m(v−u)

2
(
A−A2m

)
2
(
B2m−B

)
2
(
A2m−A

)
 , (82)

with

A =
e−m

1− e−m
, B =

1

1− e−m
. (83)

Other results. Another object of interest is the expected number of middlemen that
show up ex-post and post a bid which we define simply as:

m̂ = ln

(
v̂ − û
ĉ

)
. (84)

We use the delta method to compute its variance:

var (m̂) = JΣθ̂J
′ (85)
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where

J =
∂m̂

∂ (v̂, ĉ, û)
=
(

1
v̂−û − 1

ĉ − 1
v̂−û

)
. (86)
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