Christmas Ornament Display Structure

Dolores Gallardo

Ryan Palmer

Miles Roux

Retrieved from mystarofbethlehem.com/home

Northern Arizona University Department of Mechanical Engineering

Overview

- Client Background
- Problem Statement
- Design Constraints
- Final Design
- Exploded Views
- Assembly
- Engineering & Static Analysis
- Design Modifications
- Manufacturing
- Cost Analysis
- General Public Survey
- Conclusion
- References

Client Background

- My Star of Bethlehem LLC
- Online business
- Operates out of Sedona, AZ
- Import and sell decorative stars manufactured in Germany
- Market in Northern Arizona

Client Background Continued

Problem Statement

Need: The client did not have an aesthetically pleasing way to display their products when promoting at multiple venues.

Goal: Design and manufacture a display stand which will showcase the client's ornaments in a visually pleasing way to potential customers when marketing.

Design Constraints

- Highest ornament elevated a minimum of 6-8 ft from the stand base
- Can fit in a compact sedan when disassembled
- Ornament(s) must be hung or mounted
- Assembly time cannot exceed 30 minutes
- Stand must support 2 different sized ornaments
 - Medium Size: 2.29 ft diameter, 2.94 lb weight
 - Large Size: 4.27 ft diameter, 7.19 lb weight
- Freestanding
- Lightweight
 - Individual components can be carried by one adult
- Collapsible
- Budget must stay within the low thousands of dollars

Final Design

Public Display

Exploded Views

Base & Hinge Plate

Assembly Position

Force Analysis

- Wind Force ≈ 35 lb_f
- Wind Speed ≈ 50 mph [4]
- Combined weight of 3 largest ornaments ≈ 22 lb_f

The equation used to analyze the wind force is:

 $F_w = A \cdot P \cdot C_d$

- F_w = Wind Force
- A = Projected Area (507 in^2)
- P = Wind Pressure (psi) $(0.004 \times V^2)(1/12^2)$
 - (V = wind speed in mph)
- C_d = Drag Coefficient (1.0 for flat plates)

Engineering Analysis

Static Analysis

• Red dot represents the center of mass

Design Modifications - Assembly

Design Modifications - Manufacturing

Golden Ratio: (a+b)/a = a/b ~ 1.618

Manufacturing

All dimensions are in inches

Material: 6061-T6 Aluminum

Cost Analysis

Category	Total Cost	Sales Tax	Shipping	Final Cost	% of Final Cost
Raw Materials	\$652.20	\$60.65	\$65.00	\$777.85	57.8
Hardware	\$282.88	\$22.50	\$19.88	\$325.26	24.2
Adhesives	\$227.67	\$15.16	\$0.00	\$242.83	18.0
	-		Final Cost	\$1,345.94	

General Public Survey Questions

My Star of Bethlehem

Please circle one:

Visual appearance of the display

1 – Not appealing 2 – Somewhat appealing 3 – Neutral 4 – Appealing 5 – Very appealing

How well the display stand compliments the ornaments

1 – Not well 2 – Somewhat 3 – Neutral 4 – Well 5 – Very Well

Holiday decorative quality

1 – Not festive 2 – Somewhat 3 – Neutral 4 – Festive 5 – Very Festive

This display catches my attention

1 – Does not catch my attention 2 – Somewhat 3 – Neutral 4 – Catches my attention

5 – Demands my attention

Does this display create interest in the ornaments?

1 – No interest 2 – Some interest 3 – Neutral 4 – Moderate interest 5 – Very interested

Would you use the stand during the festive season only or all year around?

1 – Never 2 – Only during Christmas season 3 – On multiple holidays 4 – All year around

If you were to buy a stand, what is the threshold amount of money beyond which you would <u>not</u> consider buying it?

 $1 - $500 \quad 2 - $750 \quad 3 - $1000 \quad 4 - $1500 \quad 5 - 2000

General Public Survey Results

Sample size = 43 people

Category	Response of the Majority		
Appearance	Appealing		
Stand Complemented Ornaments	Very Well		
Decorative Quality	Festive		
Captures Attention	Catches my attention		
Ornament Interest	Created moderate interest		
Display Time	All year round		
Maximum Purchase Price	\$883.73 (average)		

Conclusion

- Client Background
 - My Star of Bethlehem LLC
 - Small online business
 - Based in Sedona, AZ
 - Need
- Design Constraints
 - Height, set up time, portable and lightweight
- Final Design
 - Height ≈12 ft, R ≈70 in
 - Von Mises stress (7,340 psi) < Y.S. (31,183 psi)
- Manufacturing
 - Prototyping challenges
- Cost Analysis
 - Final costs ≈ \$1,346.00
- Public Surveys
 - Positive feedback

References

[1] Dr. Dieter Otte

Associate Professor of Computer Science Department of Electrical Engineering/Computer Science CEFNS at Northern Arizona University

[2] McMaster-Carr. (n.d.). Quick-Release Pins. Retrieved from http://www.mcmaster.com/#stainless-steel-quick-release-hitch-pins/=mh9y3s

[3] Andress, K. (2002, March 03). *Wind loads.* Retrieved from http://k7nv.com/notebook/topics/windload.html

[4] Delinger, Dan. (2008, August 20). *Wind- maximum speed- (mph).* Retrieved from http://www.ncdc.noaa.gov/oa/climate/online/ccd/maxwind.html

[5] McMaster-Carr. (n.d.). Rope Cleats. Retrieved from http://www.mcmaster.com/#rope-cleats/=mh9yez

Questions

