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clients offer a good computing experience. As network
quality degrades, interactive performance suffers. 

It is latency—not bandwidth—that is the greater chal-
lenge. Tightly coupled tasks such as graphics editing suf-
fer more than loosely coupled tasks such as Web
browsing. The combination of worst anticipated net-
work quality and most tightly coupled tasks will deter-
mine whether a thin-client approach is satisfactory for
an organization.

Stateless thick clients, an alternative to thin-client
computing, preserve many of the benefits of thin-client
computing but eliminate its acute sensitivity to network
latency. This alternative approach achieves this improve-
ment by asynchronously transferring more runtime state
to a client and executing from that state on a local
processor.

TIME-SHARING REDUX
In his 1983 classic, “Hints for Computer System

Design,”2 Butler Lampson offered the following quote
from Jim Morris: “The nicest thing about the Alto is
that it doesn’t run faster at night.” This quote succinctly
captures the joy of a time-sharing user who has just dis-
covered the crisp, unvarying performance of a personal
computer on highly interactive tasks. Gone is the pain
of sluggish interactive response during periods of peak
load. By colocating a processor with each user, personal
computing offers a computing experience that is unaf-
fected by the actions of other users. 

The adequacy of thin-client computing is highly variable and depends on both the 

application and the available network quality. For intensely interactive applications,

a crisp user experience may be hard to guarantee. An alternative—stateless thick clients—

preserves many of the benefits of thin-client computing but eliminates its acute sensitivity 

to network latency.
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A fter a few false starts in the past decade, thin-
client computing is finally gaining serious
attention and acceptance among large and
medium-size companies. For example, recent
Wall Street Journal articles (17 Jan. 2005, 3

Feb. 2005) predicted that more than 3 million enterprise
desktops, amounting to 10 percent of the market, will
be thin clients by 2008. These articles also mention
Time-Warner, Wal-Mart, and the Pentagon as examples
of enterprises that are adopting thin clients in signifi-
cant numbers. Microsoft is also reported to be close 
to releasing a stripped-down version of Windows 
XP that transforms an old PC into a thin client (www.
brianmadden.com; 18 April 2005).

A thin client consists of a display, keyboard, and
mouse combined with sufficient processing power and
memory for graphical rendering and network commu-
nication with a compute server using a specialized pro-
tocol. All application and operating system code is
executed on the server. The client has no long-term user
state and needs no disk. A standard PC can be made to
function as a thin client through software such as Virtual
Network Computing (VNC).1

We describe an approach to quantifying the impact
of network latency on interactive response and show
that the adequacy of thin-client computing is highly vari-
able and depends on both the application and available
network quality. If near ideal network conditions (low
latency and high bandwidth) can be guaranteed, thin
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Low I/O latency and high display bandwidth make
possible the tight user-machine coupling of today’s GUIs
and interactive applications. Never having experienced
the frustration of poor interactive response, most users
today cannot relate firsthand to the Morris quote. It is
just a relic of an archaic world, long gone and never 
to return.

Alas, history has come full circle. Our collective time-
sharing experience is relevant to thin-client computing.
The similarity arises from the fact that even trivial user-
machine interactions incur queuing delay on a resource
that is outside a user’s control. 

In both cases, queuing delay is
acutely sensitive to the vagaries of
the external computing environ-
ment. In time-sharing, the shared
resource is the processor. In thin-
client computing, it is the network.
Thin clients can incur additional
queuing delay at a shared compute
server. For example, some proposed
designs use a small set of blade
servers for a large number of thin
clients. Server queuing delay can be
eliminated by dedicating a compute server per client,
but network queuing delay cannot be eliminated. It is
intrinsic to the thin-client model. 

WHY THIN CLIENTS ARE ATTRACTIVE
Two distinct factors motivate interest in thin clients.

The first is concentration of personal computing state.
In large organizations, the physical dispersion of per-
sonal computing hardware complicates system admin-
istration. Isolating an infected machine, forcing certain
security upgrades, or restarting a crashed machine are
examples of actions that typically require physical
access to the hardware. Concentrating all relevant state
in compute servers simplifies this physical access.
Rather than walking from machine to machine, access
is available at the system administrator’s fingertips in a
server room.

These considerations are especially relevant at enter-
prise scale, where the total cost of ownership of personal
computers is of growing concern. As hardware costs
plummet, an increasing fraction of the total lifetime cost
of owning a personal computer goes to its ongoing
maintenance rather than to its initial purchase. Thin
clients offer the possibility that concentration of state
will lead to reduced total cost of ownership.

The second reason for interest in thin clients is user
mobility. A user can authenticate at any thin client and
have immediate access to a unique computing environ-
ment. This thin-client anonymity harkens back to time-
sharing, where a user could log in at any dumb terminal.
It enhances collaboration and spontaneity and simpli-
fies the logistics of hardware deployment.

INTERACTIVE RESPONSE 
What performance goals should thin-client computing

strive for so that users will embrace it? The most critical
performance measure is the crispness of interactive
response. For example, when a user presses a mouse but-
ton, she expects the popup menu to appear with no per-
ceptible delay; in freehand drawing, she expects the
onscreen curve to track her mouse movements with no
lag; when enlarging or shrinking an object, she expects
the onscreen rubber-banding effect to smoothly and pre-
cisely track her mouse. This is the standard of interactive

performance today, and users are
loath to settle for less.

Notice that it is the trivial interac-
tions that are the most challenging for
thin clients. Such interactions involve
end-to-end communication—from
user to application code and back to
user—but negligible delay occurs
within the application itself. These
interactions suffer the full queuing
delay of the network, yet they must
meet the user’s highest expectation of
performance. This is in contrast, for

example, to a click on a Web link, in which case the user
is already anticipating a download delay.

Over a 40-year period, the HCI community has built
up a substantial body of knowledge about the impact
of interactive response times on user satisfaction and
task productivity.3-7 From these studies, a broad con-
sensus has emerged on acceptable response times for
trivial interactions:

• User productivity is not impacted by response times
below 150 milliseconds. This is therefore a good
quantitative definition of crisp response.

• In the range from 150 ms to one second, users
become increasingly aware of response time. They
strongly prefer response times well below one
second.

• Above one second, users become unhappy. When
forced, users can adapt to response times over one
second, but this is accompanied by frustration with
the system and a drop in productivity.

Good response time is the key to overall satisfaction
with an interactive session. User anxiety is positively
correlated with poor response time. Also relevant is
the finding from psychology and economics that neg-
ative experiences have much greater impact than pos-
itive experiences on judgment and risk taking.8 The
implication for thin clients is that poor response time
incidents will be overweighted in users’ memories.
Even a few sluggish interactions in an otherwise
acceptable interactive session may be sufficient to turn
off a user.
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Our approach is similar to slow-motion benchmark-
ing.10 Both systems gather operation response time by
extracting the intervals between causally related groups
of packets. While the data collection method differs, the
end results from the capture are similar. A slow-motion
study emphasizes a comparative analysis of different
thin-client systems at different bandwidths and looks at
noninteractive applications such as Web page loads and
video replay. Our study instead focuses on how appli-
cations with varying degrees of interactivity interact with
both bandwidth and latency.

Feeding decoded protocol messages into a network
simulator let us explore a wider set of network condi-
tions. Here, we present only the results of 10- and 100-
Mbps networks with a low round-trip latency of 1ms, a
moderate latency of 20 ms, and high latencies of 66 and
100 ms. These latencies represent the delays a user might
experience when using a compute server located on the
same network, the same geographic region, across the
country in the best case, and across the country in the
common case.

The simulator preserves quality. It does not drop
updates on slower networks because doing so could also
degrade the user experience, but it batches updates more
aggressively than the real VNC system might. This
batching ensures that the simulated performance meets
or exceeds that of the real system, making an aggressive
assumption in favor of thin clients.

The packet trace records the user action packets, the
client processing time due to the user’s action, and the
subsequent series of screen updates and requests for
updates from the client. As Figure 1 shows, these
requests each release additional screen updates from the
server. When simulating a slower network, an incoming
request for updates releases all screen updates that were
ready on the server.

We define an operation as beginning at the time the
client sends a user action and terminating with the last
screen update from the server before a subsequent user
action. Each operation captures a single user event such
as a keystroke or mouse click. The analysis only counts
the response time for user actions that generate a screen
update. Based upon our HCI research, we place response
times into one of several bins: 

• Crisp: < 150 ms; 
• Noticeable to annoying: 150 ms to one second; 
• Annoying: one to two seconds; 
• Unacceptable: two to five seconds; and 
• Unusable: > five seconds. 

Trace descriptions
To exhibit the impact of latency on different interac-

tivity requirements, we chose four different applications
for our study. The applications ranged from a highly
interactive image manipulation program to moderately

THIN-CLIENT PEFORMANCE
How well do thin clients perform under different net-

work conditions, and for what kinds of applications are
they best suited? To answer these questions, we apply
HCI guidelines to a set of three application traces under
a variety of network conditions to determine how often
each application’s response time is crisp, annoying, or
unacceptable.

Data collection
To model user activity, we used the Xnee record and

replay tool to capture three different user input traces.9

These traces capture the keyboard and mouse actions
of a user working with a photo-editing application, a
presentation creator, and a word processor.

We replayed these user input traces on a VNC thin
client1 connected to the VNC server on a 100-Mbps
switched Ethernet network with submillisecond round-
trip time. The server exported a 1600 × 1200 desktop
with a depth of 16 bits per pixel. VNC was set to use
hextile compression for screen updates. During replay,
an intermediary machine captured the packet traces for
all client-server interaction. All machines were 3.2 GHz
hyperthreaded Pentium 4s with 2 Gbytes of SDRAM
and ran the Fedora Core 2 2.6.10-1.770-SMP Linux
kernel. 

We analyzed the packet traces to identify the VNC
protocol packets containing client-user input and screen-
update requests and the replies from the server.

Simulation and analytical method
The packet traces drove a simulator—built using 

ns-2—that had a high-level understanding of the VNC
protocol. The simulator deterministically modeled the
impact of different network characteristics on user 
performance. 

Figure 1. Packet trace simulation.The simulation assumes that
screen updates following action 1 are causally related to
action 1 and are not causally related to the intervening request
for updates. During replay on a slower network, the last screen
update could be sent before the request for update, improving
the interactive performance of the simulated VNC system.

VNC client VNC server

User action 1

Screen updates

Request for updates

Screen updates

User action 2



interactive use of a word
processor. 

The GNU Image Manip-
ulation Program, similar to
Adobe Photoshop, is a pop-
ular application for photo
editing. The GIMP trace
captured an experienced
user separating headshots
from a group photograph,
removing red eyes from
another image, and sharp-
ening another blurry image.
The trace was about five
minutes long. 

Impress, similar to Micro-
soft PowerPoint, is part of
the OpenOffice suite. This
trace captured a user creat-
ing a new slide for a presen-
tation. Examples of user
actions captured included
importing external images,
creation of various shapes
on the slide and the addition
of text to them, addition of
animation, and previewing
and tweaking the anima-
tion. The trace was about
10 minutes long.

Writer, similar to Micro-
soft Word, is the word
processor in the Open-
Office suite. To distinguish
between different usage
scenarios, this trace was
divided into two parts.
One part consisted of a
user transcribing a page of
text into Writer. The other
part captured the actions
of tracking changes made
to a large document and
either accepting or reject-
ing these changes. The
combined duration of this
trace was approximately
nine minutes.

Results
The interactive performance of a thin-client setup

varies greatly with two parameters: the degree of inter-
activity of the application and the latency of the network.
Highly interactive applications such as GIMP perform
poorly with even moderate latency. High latency impairs
all but the simplest applications. 

Table 1 shows the number of operations at 100 Mbps
that fell into each time bin for the four applications. The
table should be read in two directions—within an appli-
cation as latency increases and, for a given latency,
between applications. 

Table 2 shows the same data for a 10-Mbps network.
The similarity of the two tables suggests that, above 10
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Table 1. Operation response time at 100 Mbps.

Crisp Noticeable Annoying Unacceptable  Unusable
Application RTT < 150 ms 150 ms - 1 sec 1 - 2 sec 2 - 5 sec > 5 sec  

GIMP 1 ms 3,278 40 0 0 0   
20 ms 3,214 82 4 18 0   
66 ms 2,710 572 12 3 21   

100 ms 2,296 973 20 6 23  
Impress 1 ms 5,879 15 1 0 0   

20 ms 5,855 37 2 1 0   
66 ms 5,621 269 2 1 2   

100 ms 5,520 363 9 1 2  
Writer: Tracking 
changes 1 ms 270 15 0 0 0   

20 ms 254 29 2 0 0   
66 ms 201 82 0 0 2   

100 ms 182 99 2 0 2  
Writer: Typing 1 ms 2,911 56 0 0 0   

20 ms 2,909 56 2 0 0  
66 ms 2,899 66 0 0 2   

100 ms 2,887 77 1 0 2  

Table 2. Operation response time at 10 Mbps.

Crisp Noticeable Annoying Unacceptable  Unusable
Application RTT < 150 ms 150 ms - 1 sec 1 - 2 sec 2 - 5 sec > 5 sec  

GIMP 1 ms 3,244 51 3 20 0   
20 ms 3,197 98 3 20 0   
66 ms 2,552 730 12 3 21   

100 ms 2,129 1140 20 6 23  
Impress 1 ms 5,869 23 1 2 0   

20 ms 5,848 44 1 2 0   
66 ms 5,614 276 2 1 2   

100 ms 5,514 368 10 1 2  
Writer: Tracking 
changes 1 ms 267 16 1 1 0   

20 ms 250 33 1 1 2   
66 ms 196 87 0 0 2   

100 ms 181 100 2 0 2  
Writer: Typing 1 ms 2,909 56 1 1 0   

20 ms 2,909 56 1 1 0  
66 ms 2,899 66 0 0 2   

100 ms 2,887 77 1 0 2  
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Mbps, bandwidth does not limit thin-client performance
for these applications.

The data in Table 1 shows that on a 100-Mbps net-
work with 1 ms latency, all of the traced applications
perform well. Few operations require more than 
one second to complete, and most complete before
the 150 ms threshold. This finding agrees with that
of previous work11 and with our subjective observa-
tion that VNC performed very well on a local net-
work.

Figure 2 shows, however, that as latency increases, the
mean response time remains low, but the number of
operations above the annoying and unacceptable thresh-
olds increases dramatically. 

GIMP was the most demanding application. When
run over a 100-Mbps network with 100 ms of round-
trip latency, 29 percent of the operations required more
than 150 ms to complete, and 1.5 percent required more
than 1 second, compared to 1.2 percent and zero per-
cent, respectively, with a 1-ms round-trip latency. These
figures also matched our experience running the appli-
cation over such a network: Response time was poor,
and at times, the lag was severe enough to make using
the program difficult.

The application mix also makes a significant differ-
ence in perceived performance: Certain applications
appear much better suited for thin-client computing than
others. The columns in Table 1 show how the perfor-
mance changes between applications. Typing in a text
editor, for instance, involves only small screen updates;
the performance barely changes between the 1 ms case
(56 operations >150 ms) and the 100 ms case (80 oper-
ations >150 ms). The presentation creation script occu-
pies a middle ground, while the GIMP and tracking-
changes traces update large sections of the screen. These
applications with tightly coupled interaction cycles per-
form measurably worse at high latencies.

Discussion
After an organization determines acceptable limits of

network latency and bandwidth for its unique mix of
interactive applications, it must ensure that network
quality never falls below those limits. Adding bandwidth
is relatively easy, but reducing latency is much harder.
Additionally, network jitter has the potential to further
worsen the problem. User studies have shown that jitter
leads to a further decrease in productivity and an
increase in user errors.12

In addition to physical-layer transmission delays and
end-to-end software path lengths, technologies such as
firewalls, virtual private networks and other overlay net-
works, and lossy wireless networks add latency and
other hurdles. While our simulation does not model
these factors, their inclusion would have further biased
our results against thin clients. Quantitative knowledge
of acceptable latency and bandwidth provides a clear
and unambiguous performance target for networks that
must support thin clients. It can also be useful in nego-
tiating service-level agreements with network providers.

STATELESS THICK CLIENTS
User growth, network evolution, and introduction of

new applications are common events in the IT infra-
structure of any large organization. An organization that
uses thin clients must pay careful attention to the net-
work latency and bandwidth impact of such events. This
implies greater attention to system management than is
apparent from a first glance at thin-client computing. It
is not yet known how this will impact the hoped-for
reduction in total cost of ownership associated with
using thin clients.

Is there a more robust solution? Is it possible to
achieve performance benefits without the brittleness of
a thin-client solution? Virtual machine technology
enables clean encapsulation of a user’s entire personal
computing state. A distributed file system can store VM
state and deliver it on demand to any thick client. This
approach trades off start-up delay for crisp interaction:
Once execution begins, all interaction is local.

Since VM state corresponds to a user’s entire personal
computer—including the OS, applications, and user
files—clients are stateless from the viewpoint of long-
term user state. Such clients offer the same benefits 
of state concentration and user mobility as thin 
clients. Work on Internet Suspend/Resume13 and by
Constantine Sapuntzakis and colleagues14 has confirmed
the feasibility of stateless thick clients. In contrast, the
SoulPad work15 uses portable storage rather than 
network storage to implement thick clients. 

ASYNCHRONOUS NETWORK DEPENDENCE
A thick-client approach assumes that clients have suf-

ficient resources (disk, CPU, and so forth) to run the
desired applications locally. The stateless thick-client

Figure 2. GIMP operations. As latency increases, the mean
response time remains low, but the number of operations
above the annoying and unacceptable thresholds increases
dramatically.
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approach further depends on high network bandwidth
for VM state transfer. This approach is predicated on
the assumption that shipping a lot of bits is simpler and
cheaper than sustaining the management attention and
system administration discipline needed to maintain
individual systems or to use more frugal but more com-
plex abstractions such as process migration. Logical
state transfer does not, however, always mean immedi-
ate or complete physical state transfer. Clever policies
can give the illusion of complete VM state transfer while
transferring much less data.

The issue of network availability is distinct from con-
cerns about the volume of data transferred. Once it fully
caches the state, a stateless thick client does not require
the network to be available. Disconnected operation
capability in the underlying storage system can provide
the illusion of connectivity. The client buffers the updates
and eventually reintegrates them when network con-
nectivity is restored. Such operation can be advanta-
geous, for example, for a laptop user who must spend
time in an area with poor or no connectivity.

The stateless thick client approach is thus asynchro-
nous in its network dependence. Its performance, even
under a pure demand-fetch policy, is insensitive to net-
work latency, although it is sensitive to network band-
width. The approach requires connectivity while
fetching state and during eventual reintegration. For
extended periods between these two events (possibly
lasting many hours), total disconnection is acceptable
and has absolutely no performance impact. With a state-
less thick client, a laptop user can remain mobile and
productive.

In contrast, thin clients have synchronous network
dependence. The network quality must be sufficient at
all times for crisp interactive response. Note that it is
the worst case—not the average case—that determines
whether a thin-client approach will be satisfactory. An
organization that adopts thin-client computing must
also invest in system management resources to ensure
adequate network quality at all times for its most
demanding interactive tasks. By definition, disconnected
operation is impossible with thin clients.

C risp computing response is taken for granted today.
The building blocks of modern-day GUIs such as
scrolling, highlighting, and popup menus are built

upon this key assumption. Over time, we have learned
how to use these building blocks to create applications
that are well-matched to human cognition. These appli-
cations, ranging from spreadsheets and word processors
to CAD tools and medical imaging aids, are the back-
bone of personal computing. Based on the assumption
of excellent interactive response, an entire infrastructure
of OSs, GUIs, applications, user expectations, and prac-
tices has evolved over two decades.

Thin clients pose an inadvertent threat to this world.
Born of frustration with high total cost of ownership,
interest in thin clients is very high. Unfortunately, depen-
dence on thin clients could hurt the hard-won goal 
of crisp response, particularly for highly interactive
applications.

An alternative approach is to continue using thick
clients but to encapsulate user state using VM technol-
ogy and deliver it on demand from servers. We are
exploring a hybrid that starts with using a thin client to
mask state transfer delay and then switches to VM exe-
cution for crisp response. 

Regardless of the best final solution, developers must
take care to ensure a good user experience for demand-
ing interactive applications under adverse network 
conditions. ■
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