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Abstract. We briefly survey some recent progress on list decoding al-
gorithms for binary codes. The results discussed include:

— Algorithms to list decode binary Reed-Muller codes of any order
up to the minimum distance, generalizing the classical Goldreich-
Levin algorithm for RM codes of order 1 (Hadamard codes). These
algorithms are “local” and run in time polynomial in the message
length.

— Construction of binary codes efficiently list-decodable up to the
Zyablov (and Blokh-Zyablov) radius. This gives a factor two im-
provement over the error-correction radius of traditional “unique
decoding” algorithms.

— The existence of binary linear concatenated codes that achieve list
decoding capacity, i.e., the optimal trade-off between rate and frac-
tion of worst-case errors one can hope to correct.

— Explicit binary codes mapping k bits to n < poly(k/e) bits that can
be list decoded from a fraction (1/2—¢) of errors (even for e = o(1))
in poly(k/e) time. A construction based on concatenating a variant
of the Reed-Solomon code with dual BCH codes achieves the best
known (cubic) dependence on 1/e, whereas the existential bound is
n = O(k/e?). (The above-mentioned result decoding up to Zyablov
radius achieves a rate of 2(£%) for the case of constant ¢.)

We will only sketch the high level ideas behind these developments, point-
ing to the original papers for technical details and precise theorem state-
ments.
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Pittsburgh, PA. Research supported by NSF grants CCF-0343672 and CCF-0835814,
and a Packard Fellowship.



1 Introduction

Shannon’s capacity theorem states that for the binary symmetric channel BSC,,
with crossover probability p,! there exist codes using which one can reliably com-
municate at any rate less than 1— H (p), and conversely, no larger rate is possible.
(Here H(+) is the binary entropy function.) But what if the errors are worst-case
and not random and independent? Specifically, if the channel is modeled as a
“jammer” than can corrupt up to a fraction p < 1/2 of symbols in an arbitrary
manner, what is the largest rate possible for error-free communication?

If we want a guarantee that the original message can be correctly and uniquely
recovered, then this is just the question of the largest rate of a binary code
every pair of whose codewords have different bits in at least a fraction 2p of the
positions. This remains one of the biggest open questions in combinatorial coding
theory. It is known, however, that in this case the rate has to be much smaller
than 1 — H(p). The best rate known to be possible (even by non-constructive
random coding methods) is the much smaller 1 — H(2p). (Note, in particular,
that the rate is 0 already for p > 1/4.)

The above limitation arises due to the fact that, for rates close to Shannon ca-
pacity, there will be two codewords that both differ from some string in less
than a fraction p of bits. However, the closest codeword is usually unique, and in
those cases, it makes sense to decode up to a radius p. A clean way to model this
algorithmic task is to relax the requirement on the error-correction algorithm
and allow it to output a small list of messages in the worst-case (should there be
multiple close-by codewords). This model is called list decoding. Perhaps surpris-
ingly (and fortunately), using list decoding, one achieve a rate approaching the
Shannon capacity 1—H (p), even if the errors are worst-case. Formally, there exist
binary codes C' C {0,1}" of rate 1— H (p) —% which are (p, L)-list-decodable, i.e.,
every Hamming ball of radius pn has at most L codewords of C [19, 1]. In fact,
such binary linear codes exist [6]. If a codeword from such a code is transmitted
and corrupted by at most a fraction p of errors, there will be at most L possible
codewords that could have resulted in the received word. Thus it can be used
for error recovery with an ambiguity of at most L. By allowing the worst-case
list size L to grow, one can approach the best possible rate of 1 — H(p), which
we call the list decoding capacity.

Thus, list decoding offers the potential of realizing the analog of Shannon’s result
for worst-case errors. However, the above is a non-constructive result. The codes
achieving this trade-off are shown to exist via a random coding argument and are
not explicitly specified. Further, for a code to be useful, the decoding algorithm
must be efficient, and for a random, unstructured code only brute-force decoders
running in exponential time are known.

! The BSC, is a communication channel that transmits bits, and flips each bit inde-
pendently with probability p.



Therefore, the grand challenge in the subject of list decoding binary codes is
to give an explicit (polynomial time) construction of binary codes approaching
list decoding capacity, together with an efficient list decoding algorithm. This
remains a challenging long term goal that seems out of the reach of currently
known techniques. For large alphabets, recent progress in algebraic list decoding
algorithms [16,8, 5] has led to the construction of explicit codes that achieve
list decoding capacity — namely, they admit efficient algorithms to correct close
to the optimal fraction 1 — R of errors with rate R. This in turn has spurred
some (admittedly modest) progress on list decoding of binary codes, using code
concatenation, soft decoding, and other techniques.

We give an informal discussion of some of this progress in this paper. The specific
problems we discuss are those mentioned in the abstract of the paper, and are
based on results in [3,8,10,7,9]. The second and third results (discussed in
Sections 3 and 4) have straightforward extensions to codes over the field F,
with g elements for any fixed prime power g. The exact list decodability of Reed
Muller codes over non-binary fields F, remains an intriguing open problem (some
progress is made in [3] but the bounds are presumably not tight). Our technical
discussion below assumes that the reader is familiar with the basic background
material and terminology of coding theory.

2 List decoding Reed-Muller codes

The first non-trivial algorithm for list decoding was the Goldreich-Levin algo-
rithm for Hadamard codes (or first order Reed-Muller codes) [2]. The messages
of the (binary) Reed-Muller code RM(m, ) of order r consist of m-variate multi-
linear polynomials of degree at most r over the binary field Fy. The encoding of
such a polynomial f consists of the evaluations f(x) at all x € F4*. The length
of the encoding is thus 2™. The minimum distance of RM(m,r) is 2™ ".

The order 1 RM code corresponds to evaluations of linear polynomials on F5* and
is often called the Hadamard code.? The Goldreich-Levin algorithm list decodes
the Hadamard code up to a fraction (1/2 — ¢) of errors in time poly(m/e),
outputting a list of size O(1/£2). Note that the decoding radius approaches the
relative distance, and further the runtime of the decoder is polynomial in the
message length and sub-linear (in fact just polylogarithmic) in the length of
the code (which is 2™). The decoder is a “local” algorithm that only randomly
probes a small portion of the received word in order to recover the messages
corresponding to the close-by codewords.

An extension of the Goldreich-Levin algorithm to higher order RM codes was
open for a long time. In recent work, Gopalan, Klivans, and Zuckerman [3]

2 To be accurate, the Hadamard code only encodes linear polynomials with no constant
term but this is a minor difference.



solved this problem, giving a local list decoding algorithm to correct a fraction
(27" —€) errors for RM(m, r), i.e., arbitrarily close to the relative distance 27".
The algorithm runs in time (m/e)°") and outputs a list of size at most (1/£)°).
This list size bound is also shown to be tight (up to constant factors in the
exponent O(r)). Reed-Muller codes of constant order have only polynomially
many codewords and thus have vanishing rate. Thus, this result is not directly
related to the program of constructing binary codes with good trade-off between
rate and list decoding radius. It is nevertheless an exciting development since
Reed-Muller codes are one of the classical and most well-studied binary code
constructions.

We now describe the approach behind the algorithm at a very informal level.
Suppose we are given oracle access to a received word R which we think of as
a function R : F}* — Fa. The goal is to find all degree r polynomials f which
differ from R on at most a fraction (27" — ¢) of points. The algorithm picks
a random subspace A of F5* of size a = 29(") /2. Then it guesses the correct
value of f|4, the target polynomial f restricted to A (we remark on the number
of such guesses shortly). Then given a point b € F5*, the algorithm determines
f(b) as follows: Consider the subspace B = AU (A+b). Run a unique decoding
algorithm for a Reed-Muller code of order r restricted to B (correcting up to a
fraction % -277 of errors), to find a degree 7 polynomial g|p, if one exists. Note
that if the error rate on A + b w.r.t f is less than 27", the error rate on B will
be less than 2-("+1) and thus g must be f|z. We will recover f(b) correctly in
this case from the corresponding value of g.

Since A is a random subspace of size a, by pairwise independence, with high
probability (at least 1 — -1y =1 — 2-9(1)), the error rate on A + b is within
¢ of the original error rate, and therefore less than 27". Therefore, with high
probability over the choice of the subspace A, when the algorithm guesses f|4
correctly, it will correctly compute f(b) for all but a 2=?(") fraction of points
b. The function computed by the algorithm is thus within fractional distance
at most 2~ ("1 from the encoding of f. Since the unique decoding radius of
RM(m,7) is 2-"+1 | running a local unique decoder on the function computed
by the algorithm then returns f.

The list size is governed by the number of guesses for fj4. When r = 1, since f
is a linear polynomial, it suffices to guess the value on a basis for the subspace A
which consists of loga = 2log(1/€) +O(1) points. This leads to the O(1/&?) list-
size bound for Hadamard codes. For r > 1, the total number of guesses becomes
quasi-polynomial in 1/e. Using additional ideas, it is possible to improve this
to (1/e)°(). The above description was meant to only give the flavor of the
algorithm, and hides many subtleties. The reader can find the formal details
and the arguments for the improved list size bound in [3]. List size bounds for
decoding binary Reed-Muller codes beyond the minimum distance are established
in [14].



3 List decoding concatenated codes up to Zyablov radius

As mentioned in the introduction, the problem of constructing explicit binary
codes achieving list decoding capacity, i.e., binary codes of rate R list-decodable
up to radius H~!(1 — R), remains wide open. In this section, we report on
recent constructions that achieve the best known trade-offs between rate and
list decoding radius.

Guruswami and Rudra [8] construct a variant of Reed-Solomon codes, called
folded Reed-Solomon codes, over an alphabet of size polynomial in the block
length, that can list decode a fraction (1 — Ry — €) of errors with rate Ry for
any desired 0 < Ry < 1 and any constant € > 0. This achieves the list decoding
capacity over large alphabets. A natural approach to construct binary codes is
to concatenate these codes with optimal binary list-decodable codes at the inner
level. Since the inner codes have only polynomially codewords, one can find by
a greedy “brute-force” search such codes close to list decoding capacity, i.e.,
with rate r which are list-decodable up to a fraction H=1(1 — r — &) of errors
(with list-size O(1/¢)). The search for the inner code is not based on the most
obvious brute-force algorithm (which would take quasi-polynomial time in the
block length of the outer code), but rather a greedy derandomization of the
probabilistic method; see [6] for details.

The resulting concatenated code has rate rRy, and an algorithm to list decode
the code up to a fraction (1 — Ry)H (1 —r) — € of errors is given in [8]. This
leads to binary codes of rate R list-decodable up to the so-called Zyablov radius
given by

Zyablov(R) = max (1— Ro)H *(1—7).

0<Rg,r<1
Ror=R

We note that the Zyablov radius is also the standard product bound on the rela-
tive distance of concatenated codes with an outer Maximum Distance Separable
code and an inner binary code meeting the Gilbert-Varshamov bound. The above
result is able to decode up to this radius. In comparison, traditional algorithms
based on Generalized Minimum Distance decoding are able to (unique) decode
up to half the Zyablov radius.

The idea behind the above algorithm is very natural. The various inner blocks are
first decoded using a brute-force search algorithm up to a radius of H~(1—r—¢).
By the assumed list decoding properties of the inner code, this step returns a set
of at most £ = O(1/¢) candidate symbols for each possible symbol of the folded
Reed-Solomon codeword. If the fraction of errors is at most (1 — Ro)H ~'(1 —
r) — O(g), then at most a (1 — Ry — ¢) fraction of the sets returned by the inner
decodings will fail to contain the correct outer symbol. Now comes the part
where a crucial, powerful feature of the Guruswami-Rudra list decoder comes
in handy — a fraction (1 — Ry — ) of errors can be list decoded even if the
input is not a received word but a collection of sets of possible symbols (of some
bounded size, such as £), one for each codeword position, and where a codeword



position is counted as an error if the correct codeword symbol does not belong
to the set of candidates corresponding to that position. This generalization of
list decoding is called list recovery in the literature. The details of list recovering
folded Reed-Solomon codes and formal details about the above algorithm can
be found in [8].

In [10], the authors use multilevel concatenated codes to improve the above
trade-off and construct codes list-decodable up to the Blokh-Zyablov radius. The
outer codes are folded Reed-Solomon codes, and the inner codes are picked (via
a careful brute-force search, guided by the derandomization of a probabilistic
argument) to satisfy a certain “nested” list-decodability property.

Folded codes based on cyclotomic function fields are constructed in [5] with list
decoding properties similar to folded Reed-Solomon codes but over an alphabet
of size polylogarithmic (instead of polynomial) in the block length. This is useful
to give a Justesen-style explicit binary concatenated code list-decodable up to
the Zyablov radius without a brute-force search for a good inner code, by using
all possible linear codes at the inner level.

4 Concatenated codes can achieve list decoding capacity

Despite achieving some good trade-offs, the above concatenated code construc-
tions fall well short of achieving the list-decoding capacity for binary codes. Given
the almost exclusive stronghold of concatenated codes on progress in explicit con-
structions of list-decodable codes over small alphabets, a natural question that
arises is the following: Do there exist binary concatenated codes that achieve
list-decoding capacity, or does the stringent structural restriction imposed on
the code by concatenation preclude such codes achieving list-decoding capacity?

In [7], the authors prove that there do exist binary linear concatenated codes
that achieve list-decoding capacity for any desired rate. In fact, it is shown that a
random concatenated code drawn from a certain ensemble achieves capacity with
overwhelming probability. This is somewhat encouraging news for the eventual
goal of achieving list-decoding capacity (or at least, going beyond the Blokh-
Zyablov radius) for binary codes with polynomial time decodable codes, since
code concatenation has been the preeminent method for constructing good codes
over small alphabets.

The outer codes in this construction are folded Reed-Solomon codes of rate Ry
over an extension field Fom with near-optimal list-recovering properties (these
were constructed in [8]). The inner codes for the various positions are random
binary linear codes of dimension m and rate r (which can even be chosen to
equal 1), with a completely independent random choice for each outer codeword
position. This gives independence across coordinates of the outer code, which is
crucially exploited in the analysis. To prove the desired list decoding property,



the goal is to show that a large number of codewords of the concatenated code
are unlikely to lie in some Hamming ball of fractional radius H=1(1 —rRy) — ¢.

Using the list recovering properties of folded Reed-Solomon codes, it is shown
that for every integer J, any large enough collection (compared to J) of outer

codewords has a “good” subset, say ci,...,cy, of size J with the property that
each ¢; has at least a fraction (1 — Ry — €) of symbols which are linearly in-
dependent (over ) of the corresponding symbols of ¢1,ca,...,¢;—1. Since the

inner encoding at each position is a random linear code, each such linearly inde-
pendent symbol of ¢; is mapped to a random binary string that is independent
of where the corresponding symbols of ¢y, co,...,c;—1 were mapped. This is to
used to upper bound the probability that ¢; also falls inside a fixed Hamming
ball, even conditioned on cq,...,c;_1 belonging to that ball.

Finally, a union ball over all centers for the Hamming ball and all choices of
“good” (in the above sense) J tuples of outer codewords is used to show that
with high probability (over the choice of the independent inner encodings) the
concatenated code will not have too many codewords in any Hamming ball of
fractional radius H (1 — rRg) — . We refer the reader to [7] for the formal
details and the precise probability calculations.

5 List decoding up to 1/2 — o(1) radius

In this section, we consider the problem of binary codes that can correct close to
the information-theoretically maximum possible fraction 1/2 of errors. Consider
the task of communicating & bits of information over a channel that can flip
an arbitrary subset of up to a fraction 1/2 — ¢ of the transmitted bits. Here we
think of ¢ — 0 as very small, and even allow ¢ = o(1) (as k grows). We are
interested in the following question: What is the fewest (asymptotic) number
n = n(k,e) of bits we need to communicate so that no matter which subset
of at most (1/2 — ¢)n bits are corrupted, we can recover the k message bits
efficiently (in time polynomial in k and 1/e)? This question arises in many
applications of list decoding in complexity theory and cryptography such as
the construction of hardcore predicates from one-way functions, constructions
of randomness extractors and pseudorandom generators, approximability of the
VC dimension, membership comparability of NP-complete sets, approximating
NP-witnesses, etc. We refer the reader to [18] and [4, Chap. 12] for a survey of
some of these applications of list decoding.

It can be shown by a random coding argument that there exist codes with
n = O(k/e?) such that every Hamming ball of radius (1/2 — ¢)n has at most
poly(k/e) codewords. Further, this bound is tight — for any code with n < k/e®
for a < 2, there must exist some error pattern for which a super-polynomial
number of codewords need to be output. The upper bound of n = O(k/e?)
above is non-constructive, and all known explicit constructions achieve weaker



bounds on n. In the sequel, we focus on codes that can be constructed in time
polynomial in k/e, as well as list decoded from a fraction (1/2 — €) of errors in
poly(k/e) time. (The above mentioned applications in complexity theory demand
such efficiency of the construction and the decoding algorithms.) In particular,
brute-force search that takes time exponential in 1/e is not permitted. The
construction of codes list-decodable up to the Zyablov radius due to [8] that
we discussed in Section 3 achieves an encoding length n = O(k/e®); however, it
has construction and decoding complexity exponential in 1/e. Prior to [§], an
encoding length of n = O(k/e*) was obtained in [6], but the construction time
was once again exponential in 1/e.

We should remark that in the complexity-theoretic applications, the exact depen-
dence of n on k often does not matter as long as the exponent of k is some con-
stant. In the “traditional” setting of coding theory, the most interesting regime
is when the exponent of k£ equals one as this corresponds to constant rate codes
(when ¢ is thought of as a constant). On the other hand, in some complexity
theory settings, one would like € to be as small a function of n as possible. This
makes the goal of approaching the optimal 1/£? dependence of the block length
n on € important.

The approach to construct such binary codes is again to concatenate an outer
algebraic code with good distance/list decoding properties with some special
low-rate inner code. By concatenating an outer Reed-Solomon code with an
inner Hadamard code, a bound of n = O(k?/e*) was achieved in [12]. This
quartic dependence on € was the best known bound, till a recent improvement
by Guruswami and Rudra [9] who constructed codes with encoding length n =

(@) (;f—i,) for any constant v > 0. Their construction was based on concatenation

of an outer folded Reed-Solomon code (or their precursor, the Parvaresh-Vardy
codes [16]), with a dual BCH code as inner code.

We remark that the Parvaresh-Vardy codes are a generalization of Reed-Solomon
codes and the dual BCH codes are generalizations of Hadamard codes. Thus, the
above result from [9] generalizes both the outer and inner codes in the Reed-
Solomon concatenated with Hadamard construction. This seems necessary for
reasons we will sketch shortly.

Consider a Reed-Solomon code of block length n = 2™ over an extension field
Fom concatenated with a binary Hadamard code of dimension m and block length
2™ . The block length of the concatenated code is thus N = 22™ = n2?. Let ¥/
denote the dimension of the Reed-Solomon code, and let & = k'm denote the
dimension of the binary concatenated code. If the total fraction of errors w.r.t a
codeword is at most (1/2 — €), at least €/2 of the inner Hadamard blocks have
at most a fraction (1/2 —e/2) of errors. List decoding the Hadamard code up to
radius (1/2 — ¢/2) will return a list of at most 1/2 candidate field elements for
each position of the Reed-Solomon code. At the outer level, it suffices to output
all polynomials which agree with one of these candidate symbols for at least



en/2 positions. This can be accomplished using Sudan’s list decoding algorithm
for Reed-Solomon codes [17] provided the rate k’/n of the Reed-Solomon code
is at most £*/16. For k' = 2(en), the block length of the concatenated code
satisfies N = n? < O(k"?/e8) < O(k?/e8).

To improve this to the O(k?/e?) bound attained in [12], one must pass more
sophisticated information from the Hadamard decoding stage to the outer Reed-
Solomon decoder, and use a soft list decoding algorithm for Reed-Solomon
codes [11, 15]. Informally, for each inner block ¢ the Hadamard decoder returns
every field symbol « as a candidate symbol along with a confidence estimate w; o
which is a (decreasing) linear function of the distance of that inner block to the
Hadamard encoding of a.. The second moment of these confidence estimates is at
most O(1) (this follows from the Parseval’s identity for Fourier coefficients, and
was the key to the result in [12]). When plugged into the soft decoding bound [11]
for Reed-Solomon codes, this implies that the outer decoding succeeds for the
larger rate k' /n = 2(g?), leading to a block length N < O(k?/e%).

The improvement in [9] is based on using the Parvaresh-Vardy codes, which have
better list-decoding guarantees, for the outer encoding. For this construction, the
Hadamard code is too wasteful to be used at the inner level to encode the PV
codeword symbols, since PV codes have a much larger alphabet size than Reed-
Solomon codes. Dual BCH codes are much more efficient in encoding length.
On the other hand, they necessarily provide weaker guarantees. In particular,
the second moment of a certain coset weight distribution is bounded in the case
of Hadamard codes, and this found use as appropriate confidence estimates to
pass to the Reed-Solomon soft decoder. For duals of BCH codes with distance
(2t + 1), an analogous bound holds only for the 2¢’th moment (this bound also
arose in the work of Kaufman and Litsyn [13] on property testing of dual BCH
codes). But quite remarkably, there is a soft decoding algorithm for PV codes
that works under the weaker guarantee of bounded higher order moments, and
this enables obtaining a near-cubic dependence on 1/¢ in [9]. We refer the reader
to [9] for further details and the precise calculations. We stress that the power
of the soft decoding algorithm for the newly discovered algebraic codes [16, §],
and the ability to exploit it via meaningful weights passed from the dual BCH
decoder, is crucial for this result.
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