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1. Necessary Number Theory

1.1. Notation. The typical notation for working modulo n is a tag such as,

y = ax+ b (mod n)

While this makes clear in what algebraic system does one interpret the arithmetic.
However, it is cumbersome and therefore I do not use this notation often. It just
needs to be kept in mind what is the algebraic system, and there are often many.

I will write (a, b) for gcd(a, b).

1.2. Bezout’s Theorem. A key theorem here is Bezout’s, which notes that the
greatest common divisor of two elements is the linear combination of the two ele-
ments. The euclidean algorithm that efficiently computes (a, b) can be extended to
give the numbers s and t as described in Bezout’s.

E(a, n)→ (s, t) s.t. s a+ t n = (a, n)

The group of units in Zn is defined as Z∗n = { a ∈ Zn | (n, a) = 1 }. The Bezout result
then gives a multiplicative inverse for any unit.
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1.3. Little Fermat Theorem. Given a ∈ Z∗n being invertible, the map a(x) 7→ a x
is a permutation on Zn. Hence,

Πx∈Z∗
n
x = Πa∈Z∗

n
a x

= aφ(n)Πx∈Z∗
n
x

since this is entirely in the group of units we can cancel the large product across
both sides, for all a ∈ Z∗n,

aφ(n) = 1

This is the Little Fermat Theorem (LFT).
For p a prime, φ(p) = p− 1.
For distinct primes, p, q and n = pq, in Zn, among the n− 1 non-zero elements that
are not relatively prime to n are kp and k′q, for k = 1, . . . , q−1 and k′ = 1, . . . , p−1.
Therefore,

φ(pq) = pq − 1− (q − 1)− (p− 1) = pq − q − p+ 1 = (p− 1)(q − 1)

1.4. Square Roots mod n = pq. In Z∗n, with n the product of two distint primes,
there are four solutions to x2 = 1.
Given the relation x p+ y q = 1, the square is also equal to one. Then,

(x p+ y q)2 = (x p− y q)2 = 1 (mod n)

so ζ = x p− y q is a square root of 1 mod pq, and is not 1 or -1. Note that,

ζ + 1 = x p− y q + 1 = x p− y q + x p+ y q = 2x p,

and
ζ − 1 = x p− y q − 1 = x p− y q − x p− y q = −2y q.

Sincd q 6 |x and p 6 | y, so, (ζ + 1, pq) = p and (ζ − 1, pq) = q.
This result can also be shown using x2 − 1 = (x+ 1)(x− 1) = 0 (mod n).

2. RSA cryptosystem

2.1. Description of RSA.

• Generation:
(1) Chose distinct primes p, q ∈ Z and let n = pq;
(2) Choose an e ∈ Z∗φ(n).
(3) Compute d = e−1 (mod φ(n)).
(4) The public key is (n, e).
(5) The secret key is (n, d).

• Encryption: For a message m ∈ Z∗n, the encryption is c = me (mod n).
• Decryption: The decryption of c ∈ Z∗n is m = cd (mod n).
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As e and d are inverses in Z∗φn, then (me)d = mkφ(n)+1 = (mφ(n))km = 1 (mod n).

2.2. The security of RSA. Given n and φ(n), then p + q = n + 1 − φ(n). The
factors p, q are then the roots of the quadraic (x − p)(x − q) = 0. This form is
expressable in n and φ(n).

(x− p)(x− q) = x2 − px− qx+ n = x2 − (n+ 1− φ(n))x+ n

Therefore, given n, φ(n) we easily compute the factors p, q using the quadratic for-
mula.

To keep d a secret, φ(n) must not be known. It is therefore necessary that the
factors of n not be known. We have seen above, that knowing φ(n) and n gives the
factors of n, so either we factor n or we know φ(n) by some other way.
However, perhaps d can be known without φ(n) being known. Write ed − 1 = 2st.
Suppose a decryption exponent d is found out, by any method, with the property
that for any x ∈ Z∗n,

xed−1 = (xt)2
s

= 1

There is a sequence leading to 1, that must pass through one fo the four square roots
of one,

xt, (xt)2, (xt)4, . . . , β, β2 = 1

If β = ±ζ, the non-trivial square root of one mod n, then we can factor n.
Therefore, we have a probabilistic factoring algorithm for n, if we have the exponent
d, showing that calculation of the exponent d is at least as hard as factoring.


