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Abstract

Zero-shot recognition (ZSR) deals with the problem of

predicting class labels for target domain instances based on

source domain side information (e.g. attributes) of unseen

classes. We formulate ZSR as a binary prediction problem.

Our resulting classifier is class-independent. It takes an ar-

bitrary pair of source and target domain instances as in-

put and predicts whether or not they come from the same

class, i.e. whether there is a match. We model the poste-

rior probability of a match since it is a sufficient statistic

and propose a latent probabilistic model in this context. We

develop a joint discriminative learning framework based

on dictionary learning to jointly learn the parameters of

our model for both domains, which ultimately leads to our

class-independent classifier. Many of the existing embed-

ding methods can be viewed as special cases of our proba-

bilistic model. On ZSR our method shows 4.90% improve-

ment over the state-of-the-art in accuracy averaged across

four benchmark datasets. We also adapt ZSR method for

zero-shot retrieval and show 22.45% improvement accord-

ingly in mean average precision (mAP).

1. Introduction

Zero-shot learning (ZSL) deals with the problem of

learning to classify previously unseen class instances. It is

particularly useful in large scale classification where labels

for many instances or entire categories can often be miss-

ing. One popular version of ZSL is based on the so-called

source and target domains. In this paper we consider the

source domain as a collection of class-level vectors, where

each vector describes side information of one single class

with, for instance, attributes [10, 19, 24, 27, 31], language

words/phrases [4, 11, 34], or even learned classifiers [39].

The target domain is described by a distribution of instances

(e.g. images, videos, etc.) [19, 38]. During training, we are

given source domain side information and target domain

data corresponding to only a subset of classes, which we

call seen classes. During test time for the source domain,

side information is then provided for unseen classes. A tar-

Figure 1. Illustration of our joint latent space model with images as tar-

get domain and text-documents as source domain. The bar graph next to

the (latent) topics indicate the mixture weights of the topics. The links be-

tween the topics indicate the co-occurrence (thicker lines depicting larger

likelihood values). Our method is based on learning a class-independent

similarity function using seen class training data, which measures the like-

lihood of a source domain class vector and a target domain data sample

being the same class, regardless of their true underlying classes.

get domain instance from an unknown unseen class is then

presented. The goal during test time is to predict the class

label for the unseen target domain instance.

Intuition: In contrast to previous methods (e.g. [2]) which

explicitly learn the relationships between source and tar-

get domain data, we posit that for both domains there exist

corresponding latent spaces, as illustrated in Fig. 1, where

there is a similarity function independent of class labels.

Our supposition implies that, regardless of the underly-

ing class labels, there is a statistical relationship between

latent co-occurrence patterns of corresponding source and

target instance pairs when the instance pairs describe the

same thing. For example, with our supposition the “zebra”

image in Fig. 1 on the left will share an underlying statisti-

cal relationship with the description of zebra in text on the

right, and that this relationship can be inferred by means of

a class-independent “universal” similarity function1.

To mathematically formalize this intuition we formulate

zero-shot recognition (ZSR) as a binary classification prob-

lem. In this framework, we train a score function that takes

an arbitrary source-target instance pair as input and outputs

a likelihood score that the paired source and target instances

1Intuitively this is a plausible mechanism. We as humans tend to draw

connections from different sources to improve our understanding of ob-

jects/concepts.
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come from the same class. We apply this score function on

a given target instance to identify a corresponding source

vector with the largest score. In this way our score function

generalizes to unseen classes since it does not explicitly de-

pend on the actual class label.

We train our binary predictor (i.e. score function) using

seen class source and target domain data. It is well-known

that for a binary classification problem the posterior proba-

bility of the binary output conditioned on data is a sufficient

statistic for optimal detection. This motivates us to propose

a latent parameterized probabilistic model for the posterior.

We decompose the posterior into source/target domain data

likelihood terms and a cross-domain latent similarity func-

tion. We develop a joint discriminative learning framework

based on dictionary learning to jointly learn the parameters

of the likelihood and latent similarity functions.

In test-time unseen source domain vectors are revealed.

We estimate their corresponding latent source embeddings.

Then, for an arbitrary target-instance, we estimate the la-

tent target embedding. Finally we score each pair of source

and target domain embeddings using our similarity func-

tion and classify based on these scores. Fig. 1 illustrates

a specific scenario where visual and word embedding func-

tions are learned using training data from seen classes and

are utilized to estimate embeddings for unseen data. We

test our method on four challenging benchmark datasets

(i.e. aP&Y, AwA, CUB, SUN-attribute). Our performance

on average shows 4.9% improvement in recognition accu-

racy. We also adapt ZSR method for zero-shot retrieval

and show 22.45% improvement in mean average precision

across these datasets.

Our proposed general probabilistic model is a systematic

framework for ZSR. Indeed, existing methods including [1,

2, 11, 14, 23, 25] can be precisely interpreted as special

cases of our method. We test our algorithm on several ZSL

benchmark datasets and achieve state-of-the-art results.

1.1. Related Work

(i) Attribute prediction: A significant fraction of zero-

shot methods are based on building attribute classifiers that

transfer target domain data into source domain attribute

space. For instance, [26] used semantic knowledge bases to

learn the attribute classifiers. [19, 22, 37, 39, 40] proposed

several (probabilistic or discriminative) attribute prediction

methods using the information from attributes, classes, and

objects. [23] proposed combining seen class classifiers lin-

early to build unseen class classifiers. [14] proposed first

linearly projecting both source and target domain data into a

common space and then training a max-margin multi-label

classifiers for prediction. [32] proposed a related regular-

ization based method for training classifiers. The main is-

sue in such methods is that they may suffer from noisy

source/target data, which often results in poor prediction. In

contrast, our joint latent space model is robust to the noise

issues on account of the nature of latent space learning.

(ii) Linear embedding: This type of methods are based

on embedding both source and target domain data into a

feature space characterized by the Kronecker product of

source domain attributes and target domain features. Lin-

ear classifiers are trained in the product space. For in-

stance, [1] created such spaces using label embedding, and

[2, 11, 25, 34] utilized deep learning for the same purpose.

Recently [20, 21] introduced semi-supervised max-margin

learning to learn the label embedding.

(iii) Nonlinear embedding: Similar to linear embedding,

here the Kronecker product feature space is constructed af-

ter a nonlinear mapping of the original features. This litera-

ture includes [3, 16, 44], where [16, 44] embed source and

target domain data nonlinearly into known semantic spaces

(i.e. seen classes) in an unsupervised or supervised way, and

[3] employed deep neural networks for associating the re-

sulting embeddings.

Different from these (linear or nonlinear) embedding

based zero-shot methods, our method learns a joint latent

space for both domains using structured learning. The

learned joint space is used not only to fit each instance well

(by dictionary learning) but also to enable recognition (by

bilinear classifiers) during test time.

(iv) Other methods: Less related to our method includes

approaches based on semantic transfer propagation [30],

transductive multi-view embedding [12], random forest ap-

proach [15], and semantic manifold distance [13].

2. Our Method

2.1. Problem Setting

Let us motivate our approach from a probabilistic mod-

eling perspective. This will in turn provide a basis for struc-

turing our discriminative learning method. We denote by

X (s) the space of source domain vectors, by X (t) the space

of target domain vectors, and by Y the collection of all

classes. Following convention, the random variables are

denoted by capital letters, namely, X(s), X(t), Y and in-

stances of them by lower-case letters x(s),x(t),y.

Zero-shot learning is a special case where the class cor-

responding to the source domain instance is revealed dur-

ing test time and thus there is no uncertainty regarding the

class label for any source domain vector. Thus the prob-

lem reduces to assigning target domain instances to source

domain vectors (and in turn to classes) during testing. For

exposition we denote by y(s) the label for the source domain

instance x(s) ∈ X (s) even though we know that y(s) is iden-

tical to the true class label y. With this in mind, we predict

a class label y(t) for target domain instance x(t) ∈ X (t).
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2.2. General Probabilistic Modeling

Abstractly, we can view ZSR as a problem of assigning a

binary label to a pair of source and target domain instances,

namely whether or not y(st)
∆
= [y(s) = y(t)] holds.

We view our goal in terms of evaluating how likely this

proposal is true, i.e. p(y(st) | x(s),x(t)). Indeed, Bayes Op-

timal Risk theory tells us that the optimal classifier (see Eq.

6 in [9]), f(x(s),x(t)), is obtained by suitably thresholding

the posterior of y(st) conditioned on data, namely,

f(x(s),x(t)) , log
[

p(y(st) | x(s),x(t))
]

Ident
>
<

Diff

θ (1)

where θ ∈ R is a threshold parameter. Here Ident is the

hypothesis that source/target data describe the same class.

Diff is the hypothesis that they are different.

Our latent embedding model supposes that the observed

and latent random variables form a Markov chain [6]:

X(s) ↔ Z(s) ↔ Y ↔ Z(t) ↔ X(t). (2)

This implies that the source domain data, X(s), and its

associated embedding, Z(s) is independent of the target

X(t), Z(t) conditioned on the underlying class Y (if they

belong to the same class) and unconditionally independent

if they belong to different classes.

It follows that the posterior can be factored

as p(y(st), z(s), z(t) | x(s),x(t)) = p(y(st) |
z(s), z(t))p(z(s), z(t) | x(s),x(t)). Next note that, in

the absence of class information, it is reasonable to as-

sume that an arbitrary pair of source and target domain

latent embeddings are essentially independent, namely,

p(z(s), z(t)) ≈ p(z(s))p(z(t)). Consequently, the posterior

probability can be expressed as follows:

p(y(st) | x(s),x(t)) (3)

=

∫ ∫

p(z(s)|x(s))p(z(t)|x(t))p(y(st)|z(s), z(t))dz(s)dz(t),

where, z(s) ∈ R
hs and z(t) ∈ R

ht denote the latent coeffi-

cient vectors in the corresponding hs-dim and ht-dim latent

spaces, respectively. Here (z(s), z(t)) defines the joint la-

tent embedding for data pair (x(s),x(t)). This factorization

provides us two important insights:

(i) Class-independent Embeddings: Note that the ex-

pression in Eq. 3 informs us that the probability kernels

p(z(s)|x(s)), p(z(t)|x(t)) characterizing the latent embed-

dings depend only on the corresponding data instances,

x(s), x(t) and independent of the underlying class labels.

(ii) Class-independent Similarity Kernel: The expression

in Eq. 3 reveals that the term p(y(st)|z(s), z(t)) is a class-

invariant function that takes arbitrary source and target do-

main embeddings as input and outputs a likelihood of sim-

ilarity regardless of underlying class labels (recall that pre-

dicting y(st)
∆
= [y(s) = y(t)] is binary). Consequently, at a

conceptual level, our framework provides a way to assign

similarities of class membership between arbitrary target

domain vectors and source domain vectors while circum-

venting the intermediate step of assigning class labels.

In our context the joint probability distributions and la-

tent conditionals are unknown and must be estimated from

data. Nevertheless, this perspective provides us with a struc-

tured way to estimate them from data. An important issue is

that Eq. 3 requires integration over the latent spaces, which

is computationally cumbersome during both training and

testing. To overcome this issue we lower bound Eq. 3 by

a straightforward application of Jensen’s inequality:

log p(y(st) | x(s),x(t)) (4)

≥ max
z
(s),z(t)

log p(z(s)|x(s))p(z(t)|x(t))p(y(st)|z(s), z(t)).

In training and testing below, we employ this lower bound

as a surrogate for the exact but cumbersome similarity func-

tion between source and target domains.

2.2.1 Training

During training we are given independent instances of

source and target domain instances, x
(s)
i ,x

(t)
j , and a binary

label y
(st)
ij indicating whether or not they belong to the same

class. We parameterize the probability kernels in Eq. 4

using pB(z
(s)|x(s)), pD(z(t)|x(t)), pW (y(st) | z(s), z(t))

in terms of data-independent parameters B, D, W respec-

tively, and estimate them discriminatively using training

data. To reduce the computational complexity using Eq. 4,

we instead propose the following training objective as the

lower bound of RHS in Eq. 4 over the source and target

domain data:

max
B,D,W

max
{z

(s)
i

},{z
(t)
j

}

C
∑

i=1

log pB(z
(s)
i |x

(s)
i ) (5)

+

N
∑

j=1

log pD(z
(t)
j |x

(t)
j ) +

C
∑

i=1

N
∑

j=1

log pW (y
(st)
ij | z

(s)
i , z

(t)
j ),

where C is the size of the source domain training data (num-

ber of observed class labels) and N is the size of the target

domain training data.

Salient Aspects of our Training Algorithm: Based on

Eq. 5 our objective is two-fold. We need to learn a low-

dimensional latent embedding that not only accurately rep-

resents the observed data in each domain but also is capable

of inferring cross-domain statistical relationships when one

exists. Note that the first two log-likelihoods in Eq. 5 are

data fitting terms, and the last one measures the joint latent

similarity between the two latent vectors.
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Algorithm 1 Jointly latent embedding learning algorithm

Input : training data {(x
(s)
i , y

(s)
i )} and {(x

(t)
j , y

(t)
j )}

Output : {z
(s)
i }, {z

(t)
j }, B,D,W

Initialize B,D;

∀i, z
(s)
i ← argmax

z
(s)
i

log pB(z
(s)
i |x

(s)
i );

∀j, z
(t)
j ← argmax

z
(t)
j

log pD(z
(t)
j |x

(t)
j );

W ← argmaxW
∑C

i=1

∑N
j=1 log pW (y

(st)
ij | z

(s)
i , z

(t)
j );

repeat

∀i, z
(s)
i ← argmax

z
(s)
i

log pB(z
(s)
i |x

(s)
i ) +

∑N
j=1 log pW (y

(st)
ij | z

(s)
i , z

(t)
j );

∀j, z
(t)
j ← argmax

z
(t)
j

log pD(z
(t)
j |x

(t)
j ) +

∑C
i=1 log pW (y

(st)
ij | z

(s)
i , z

(t)
j );

B ← argmax
∑C

i=1 log pB(z
(s)
i |x

(s)
i );

D ← argmax
∑N

j=1 log pD(z
(t)
j |x

(t)
j );

W ← argmaxW
∑C

i=1

∑N
j=1 log pW (y

(st)
ij | z

(s)
i , z

(t)
j );

until Converge to a local minimum;

return {z
(s)
i }, {z

(t)
j }, B,D,W

With this insight we propose a general alternating opti-

mization algorithm to jointly learn {z
(s)
i }, {z

(t)
j }, B,D,W

in Eq. 5 in Alg. 1. This follows from the exchangeability of

two max operators. In this way our learning algorithm guar-

antees convergence to a local optimum within finite num-

ber of iterations. Also since the update rules for ∀i, z
(s)
i

(or ∀j, z
(t)
j ) are independent given ∀j, z

(t)
j (or ∀i, z

(s)
i ) and

parameters B,D,W , we can potentially utilize parallel or

distributed computing to train our models. This has obvious

computational benefits.

Our approach diverts from some of the previous works

such as [14] where source domain vectors for unseen classes

are also known during training. This perspective lets one

exploit knowledge of unseen source domain classes dur-

ing training. In contrast we are not provided unseen data

for either the source or target domains. Thus, our data-

independent variables B,D,W do not contain any infor-

mation about unseen data.

2.2.2 Testing

In order to avoid confusion we index unseen class data

with i′, j′ corresponding to source and target domain re-

spectively. The seen class training data is indexed as be-

fore with i, j. During test-time the source domain data

{(x
(s)
i′ , y

(s)
i′ )} for all the unseen classes are revealed. We

are then presented with an instance of unseen target domain

data, {x
(t)
j′ }. Our objective is to identify an unseen source

domain vector that best matches the unseen instance. As in-

puts for our test-time algorithm we are also given seen class

latent embeddings {z
(s)
i } and {z

(t)
j } and the parameters

Algorithm 2 Test-time estimation of latent embeddings

Input : test data {(x
(s)
i′

, y
(s)
i′

)} and {x
(t)
j′
}; learned latent embed-

dings for seen classes (training data) {z
(s)
i } and {z

(t)
j };

learned parameters B,D,W during training

Output : {z
(s)
i′
}, {z

(t)
j′
}

∀i′, z
(s)
i′

← argmax
z
(s)

i′

log pB(z
(s)
i′
|x

(s)
i′

) +

∑N
j=1 log pW (−1|z

(s)
i′

, z
(t)
j );

∀j′, z
(t)
j′

← argmax
z
(t)

j′

log pD(z
(t)
j′
|x

(t)
j′

) +

∑C
i=1 log pW (−1|z

(s)
i , z

(t)
j′

);

return {z
(s)
i′
}, {z

(t)
j′
}

B,D,W that are all learned during training. Since we per-

form ZSR in the joint latent space, we have to estimate these

new latent vectors z
(s)
i′ , z

(t)
j′ for all the unseen-class data

from both source and target domains, respectively. This nat-

urally suggests the optimization algorithm in Alg. 2 at test

time. Note that while the second term during this estimation

process appears unusual we are merely exploiting the fact

that the unseen class has no intersection with seen classes.

Consequently, we can assume that y
(st)
i′j = −1, y

(st)
ij′ = −1.

Notice that the latent vector computation is again amenable

to fast parallel or distributed computing.

Decision function: We next compute the likelihood of be-

ing the same class label, i.e. p(y
(st)
i′j′ |x

(s)
i′ ,x

(t)
j′ ), for an arbi-

trary target domain data x
(t)
j′ using the source domain data

(x
(s)
i′ , y

(s)
i′ ). We denote y

(st)
i′j′ as x

(t)
j′ sharing the same source

domain class label with x
(s)
i′ . There are two options: The

first option is to directly employ latent estimates z
(s)
i′ , z

(t)
j′

for x
(s)
i′ ,x

(t)
j′ , respectively. Based on Eq. 5 this leads to the

following expression (which is evidently related to the one

employed in [44]):

y
(t)
j′ = y

(s)
i′
∗

, i′∗ = argmax
i′

{

log pW (y
(st)
i′j′ |z

(s)
i′ , z

(t)
j′ )

}

. (6)

A second option is based on the lower bound surrogate as

in Eq. 4. This option leads us to:

y
(t)
j′ = y

(s)
i′
∗

, (7)

i′∗ = argmax
i′

{

log pB(z
(s)
i′ |x

(s)
i′ ) + log pW (y

(st)
i′j′ |z

(s)
i′ , z

(t)
j′ )

}

.

Note that the decision function in Eq. 7 is different from

the one in Eq. 6, which is widely used in embedding meth-

ods (see Sec. 2.3.1), in that we also employ the source do-

main fit to identify the class label. Intuitively this option is

meaningful because the information we have is asymmet-

ric. We have a single source domain vector per class which

captures the strongest information about that class. Con-

sequently, our choice here reflects the fact that we can be
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confident about our prediction if the model can fit in the

source domain data meaningfully.

2.3. Parameterization

2.3.1 Generalization of Existing Works

Our probabilistic model can be considered as generalization

of many embedding methods for ZSL, including label em-

bedding methods [1], output embedding methods [2], and

semantic similarity embedding methods [44].

Linear embedding methods such as [1, 2] directly set

z(s)
∆
= x(s) for source domain and z(t)

∆
= x(t) for target

domain. These methods do not employ a latent space. Thus

log p(y(st) | x(s),x(t)) = log pW (y(st) | z(s), z(t)). We

can map these methods to a special case of our method by

parameterizing log pW (y(st) | z(s), z(t)) in terms of a regu-

larized hinge loss.

Our probabilistic model also provides an explanation for

nonlinear embedding methods such as those in [16, 44].

For instance, in [44] the source and target domain data is

encoded independently by sparse coding (for p(z(s)|x(s)))
and nonlinear similarity functions such as intersection (for

p(z(t)|x(t))), respectively, and the regularized hinge loss

(for log pW (y(st) | z(s), z(t))) is used for prediction.

In general we can also introduce arbitrary nonlinear map-

ping functions (e.g. deep neural networks [3]) to parameter-

ize our probabilistic model for generating the latent spaces

as long as they satisfy our probabilistic model, namely, the

posterior is modeled using data fit terms and the cross-

domain latent similarity term.

2.3.2 Supervised Dictionary Learning

In this section we develop a supervised dictionary learn-

ing formulation to parameterize Eq. 5. Specifically, we map

data instances into the latent space as the coefficients based

on a learned dictionary, and formulate an empirical risk

function as the similarity measure which attempts to min-

imize the regularized hinge loss with the joint latent em-

beddings.

For purpose of exposition we overload notation in

Sec. 2.2.1 and let B ∈ R
ds×hs ,D ∈ R

dt×ht ,W ∈ R
hs×ht

as the source domain dictionary, target domain dictionary,

and the cross-domain similarity matrix in the joint latent

space, respectively. Here ds and dt are original feature

dimensions, and hs and ht are the sizes of dictionaries.

Then given the seen class source domain data {(x
(s)
i , y

(s)
i )}

and target domain data {(x
(t)
j , y

(t)
j )}, we choose to pa-

rameterize the three log-likelihoods in Eq. 5, denoted by

log pB , log pD, log pW , respectively using dictionary learn-

ing and regularized hinge loss as follows. For source do-

main embedding, following [44], we enforce source domain

latent coefficients to lie on a simplex (see Eq. 8 below). For

Table 1. Statistics of different datasets, where “bin.” and “cont.” stand for

binary value and continuous value, respectively.

Dataset # instances # attributes # seen/unseen classes

aP&Y 15,339 64 (cont.) 20 / 12

AwA 30,475 85 (cont.) 40 / 10

CUB-200-2011 11,788 312 (bin.) 150 / 50

SUN Attribute 14,340 102 (bin.) 707 / 10

target domain embedding, we follow the convention. We al-

low the latent vectors to be arbitrary while constraining the

elements in the dictionary to be within the unit ball. Specif-

ically, ∀i, ∀j, we have,

− log pB ∝
λ
(s)
1

2
‖z

(s)
i ‖22 +

λ
(s)
2

2
‖x

(s)
i −Bz

(s)
i ‖22, (8)

s.t. z
(s)
i ≥ 0, eT z

(s)
i = 1,

− log pD ∝
λ
(t)
1

2
‖z

(t)
j ‖22 +

λ
(t)
2

2
‖x

(t)
j −Dz

(t)
j ‖22, (9)

s.t. ∀k, ‖Dk‖
2
2 ≤ 1,

− log pW ∝
λW

2
‖W‖2F +max

{

0, 1− 1
y
(st)
ij

[

z
(s)
i

]T

Wz
(t)
j

}

,

(10)

where ‖ · ‖F and ‖ · ‖2 are the Frobenius norm and ℓ2
norm operators, ≥ is an entry-wise operator, [·]T is the ma-

trix transpose operator, e is a vector of 1’s, and ∀k,Dk

denotes the k-th row in the matrix D. 1
y
(st)
ij

= 1 if

y
(s)
i = y

(t)
j and −1 otherwise. The regularization param-

eters λ
(s)
1 ≥ 0, λ

(s)
2 ≥ 0, λ

(t)
1 ≥ 0, λ

(t)
2 ≥ 0, λW ≥ 0 are

fixed during training. Cross validation is used to estimate

these parameters by holding out a portion of seen classes

(see Sec. 3.1).

Observe that our method leverages association between

the source domain and target domain vectors across all

seen classes and learns a single matrix for all classes. Our

objective function utilizes a hinge loss to penalize mis-

associations between source and target pairs in the joint la-

tent space.

Training & Cross-Validation: We hold-out data corre-

sponding to two randomly sampled seen classes and train

our method using Alg. 1 on the rest of the seen classes for

different combinations of regularization parameters. Train-

ing is performed by substituting Eq. 8, 9, and 10 into

Alg. 1. For efficient computation, we utilize proximal gra-

dient algorithms [28] with simplex projection [8] for updat-

ing z
(s)
i , ∀i and z

(t)
j , ∀j, respectively. We use linear SVMs

to learn W.

Testing: We substitute Eq. 8, 9, and 10 into Alg. 2 and run

it by fixing all the parameters learned during training. This

leads to estimation of the latent embeddings for unseen class

source and target domain data. Then we apply Eq. 6 or 7 to

predict the class label for target domain data.
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Table 2. Zero-shot recognition accuracy comparison (%) on the four datasets. Except for [2] where AlexNet [18] is utilized for extracting CNN features,

for all the other methods we use vgg-verydeep-19 [33] CNN features.

Method aP&Y AwA CUB-200-2011 SUN Attribute Ave.

Akata et al. [2] - 61.9 40.3 - -

Lampert et al. [19] 38.16 57.23 - 72.00 -

Romera-Paredes and Torr [32] 24.22±2.89 75.32±2.28 - 82.10±0.32 -

SSE-INT [44] 44.15±0.34 71.52±0.79 30.19±0.59 82.17±0.76 57.01

SSE-ReLU [44] 46.23±0.53 76.33±0.83 30.41±0.20 82.50±1.32 58.87

(i) init. ∀z
(s)
i , ∀z

(t)
j + init. ∀z

(s)
i′

, ∀z
(t)
j′

+ Eq. 6 38.10±2.64 76.96±1.40 39.03±0.87 81.17±2.02 58.81

(ii) init. ∀z
(s)
i , ∀z

(t)
j + init. ∀z

(s)
i′

, ∀z
(t)
j′

+ Eq. 7 38.20±2.75 80.11±1.13 41.07±0.81 81.33±1.76 60.20

(iii) init. ∀z
(s)
i , ∀z

(t)
j + Alg. 2 + Eq. 6 47.29±1.45 74.92±2.51 38.94±0.81 80.67±2.57 60.46

(iv) init. ∀z
(s)
i , ∀z

(t)
j + Alg. 2 + Eq. 7 47.79±1.83 77.37±0.39 40.91±0.86 80.83±2.25 61.73

(v) Alg. 1 + init. ∀z
(s)
i′

, ∀z
(t)
j′

+ Eq. 6 39.13±2.35 77.58±0.81 39.92±0.20 83.00±1.80 59.91

(vi) Alg. 1 + init. ∀z
(s)
i′

, ∀z
(t)
j′

+ Eq. 7 38.94±2.27 80.46±0.53 42.11±0.55 82.83±1.61 61.09

(vii) Alg. 1 + Alg. 2 + Eq. 6 50.21±2.90 76.43±0.75 39.72±0.19 83.67±0.29 62.51

(viii) Alg. 1 + Alg. 2 + Eq. 7 50.35±2.97 79.12±0.53 41.78±0.52 83.83±0.29 63.77

3. Experiments

We test our method on four benchmark image datasets

for zero-shot recognition and retrieval, i.e. aPascal & aYa-

hoo (aP&Y) [10], Animals with Attributes (AwA) [17],

Caltech-UCSD Birds-200-2011 (CUB-200-2011) [36], and

SUN Attribute [29]. Table 1 summarizes the statistics in

each dataset. In our experiments we utilized the same exper-

imental settings as [44]. For comparison purpose we report

our results averaged over 3 trials2.

3.1. Implementation

(i) Cross validation: Similar to [44], we utilize cross val-

idation to tune the parameters. Precisely, we randomly se-

lect two seen classes from training data for validation pur-

pose, train our method on the rest of the seen classes, and

record the performance using different parameter combina-

tions. We choose the parameters with the best average per-

formance on the held-out seen class data.

(ii) Dictionary initialization: For source domain, we ini-

tialize the dictionary B to be the collection of all the seen

class attribute vectors on aP&Y, AwA, and CUB-200-2011,

because of the paucity of the number of vectors. On SUN,

however, for computational reasons, we initialize B using

KMeans with 200 clusters on the attribute vectors.

For target domain, we utilize the top eigenvectors of

all training data samples to initialize the dictionary D. In

Fig. 2(a), we show the effect of varying the size of D on

our accuracy on AwA and SUN Attribute datasets. As we

see, within small ranges of dictionary size, our performance

changes marginally. We set the initial sizes to be 40, 200,

300, and 200, for the four datasets respectively, and then

tune them using cross validation.

(iii) Regularization parameters in Eq. 8, 9, and 10: We

do a grid search to tune these parameters. In order to show

2Our code and CNN features can be downloaded at https://

zimingzhang.wordpress.com/.

(a) (b)

Figure 2. Effect of (a) the size of target domain dictionary, and (b) source

domain parameter ratio λ
(s)
1 /λ

(s)
2 on accuracy.

how well our method adapts to different parameters, we dis-

play salient results in Fig. 2(b), for varying source domain

parameter ratios (λ
(s)
1 /λ

(s)
2 ) on AwA and SUN datasets.

3.2. Benchmark Comparison

On the four datasets, we perform two different tasks:

(1) zero-shot recognition and (2) zero-shot retrieval. While

both tasks are related, they measure different aspects of the

system. Task 1 is fundamentally about classification of each

target data instance. Task 2 measures which target domain

samples are matched to a given source domain vector, and

we adapt our recognition system for the purpose of retrieval.

Specifically, given a source domain unseen class attribute

vector we compute the similarities for all the unseen tar-

get domain data and sort the similarity scores. We can then

compute precision, recall, average precision (AP) etc. to

measure retrieval accuracy.

3.2.1 Zero-Shot Recognition

Recognition accuracy for each method is presented in Ta-

ble 2. We also perform an ablative study in order to under-

stand the contribution of different parts of our system. We

experiment with the three parts of our system: (1) dictio-

nary learning; (2) test-time latent variable estimation; (3)

incorporating source domain data fit term in prediction.
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(a) SSE: decaf (b) Ours: decaf (c) SSE: verydeep-19 (d) Ours: verydeep-19

Figure 3. t-SNE visualization comparison between (a, c) SSE [44] and (b, d) our method using decaf and verydeep-19 features on AwA testing data from

unseen classes, respectively. Clearly our method can better separate features from different classes.

(a) Attributes (b) SSE: decaf (c) Ours: decaf (d) SSE: verydeep-19 (e) Ours: verydeep-19

Figure 4. Comparison of cosine similarity matrices created using different features on AwA testing data using (a) source domain attribute vectors, (b, d)

SSE [44] with decaf and verydeep-19, and (c, e) our method with decaf and verydeep-19, respectively. Brighter colors depict larger values.

Note that the source and target domain dictionaries B

and D are initialized in the beginning of the dictionary

learning process (see Sec 3.1 (ii)). Consequently, we can

bypass dictionary learning (deleting repeat loop in Alg 1)

and understand its impact. Next we can ignore the similar-

ity function term for estimating the latent embeddings for

unseen data during test-time. Finally, we can choose one of

the two prediction rules (Eq. 6 or Eq. 7) to determine the

utility of using source domain data fit term for prediction.

We denote by “init. ∀z
(s)
i , ∀z

(t)
j ” when dictionary learning

is bypassed; We denote by “init. ∀z
(s)
i′ , ∀z

(t)
j′ ” when similar-

ity term is ignored during test-time. We list all the 8 choice

combinations for our system in Table 2 (i) to (viii).

The overall best result is obtained for the most complex

system using all parts of our system. For instance, as seen

from (i) and (vii) we can see 3.70% gain in average recogni-

tion accuracy. Our algorithm “(viii) Alg. 1 + Alg. 2 + Eq. 7”

achieves the best result among all the competitors, signifi-

cantly outperforming the state-of-the-art by 4.90%. In the

rest of the paper, we refer to (viii) as our method by default.

Table 2 also demonstrates that on average, (a) the decision

function in Eq. 7 performs better than that in Eq. 6, and

(b) test-time learning of unseen class latent embeddings us-

ing Alg. 2 is more important than dictionary learning. For

instance, by comparing (i) with (ii), using Eq. 7 the perfor-

mance gains are 1.39% improvement over Eq. 6. We see

modest gains (0.55%) from (iii) to (v). Still our ablative

study demonstrates that on individual datasets there is no

single system that dominates other system-level combina-

tions. Indeed, for aP&Y (vi) is worse than (v).

We visually depict (see Fig. 3) the learned test-time un-

seen class embeddings, using t-SNE [35] on AwA to facil-

itate better understanding of our results with respect to the

state-of-art [44]. Our method appears to learn more sepa-

rable embeddings regardless of the target domain features

(decaf [7] or verydeep-19). Indeed, as seen in Fig. 3 (b,d)

the embeddings appear to be more cluttered than those in

(a,c).

Next, in Fig. 4 we plot the cosine similarity matrices for

the learned embeddings as in [44] on the AwA dataset. Note

that [44] employs so called semantic similarity embedding

(SSE). The figures demonstrate that our method can gener-

ate a cosine similarity matrix which is much more similar

to the source domain attribute cosine similarity (a). Fig. 3

and Fig. 4 together demonstrate that our method is capable

of aligning the source and target domain data better than

the state-of-the-art method [44]. In addition it is capable

of learning qualitatively better (clustered) embedding rep-

resentations for different classes, leading to improvements

in recognition accuracy on the four benchmark datasets.

3.2.2 Zero-Shot Retrieval

We list comparative results for the mean average precision

(mAP) for the four datasets in Table 3. Since retrieval is

closely related to recognition and, SSE [44] is the state-of-

art, we focus on comparisons with it. As we can see our

method significantly and consistently outperforms SSE by

22.45% on average. Our superior performance in retrieval

is due to the better domain alignment and more clustered

embedding representations. This leads to better matching

of target domain data to source domain vectors. Our re-

trieval results are based on adapting the recognition models
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(a) SSE-INT (b) SSE-ReLU (c) Ours

Figure 5. Illustration of precision-recall curve comparison on AwA.

Table 3. Retrieval performance comparison (%) using mAP.

Method aP&Y AwA CUB SUN Ave.

SSE-INT [44] 15.43 46.25 4.69 58.94 31.33

SSE-ReLU [44] 14.09 42.60 3.70 44.55 26.24

Ours 38.30 67.66 29.15 80.01 53.78

Table 4. Retrieval performance comparison (%) using AP on AwA.

Chim. Panda Leop. Cat Pig Hipp. Whale Racc. Rat Seal mAP

76.05 19.67 50.12 20.33 32.83 74.88 78.31 50.52 21.85 37.96 46.25

94.20 24.81 19.24 69.08 14.73 57.51 97.56 24.11 7.59 17.20 42.60

91.75 94.06 91.09 76.95 33.00 84.85 95.13 47.05 34.58 28.18 67.66

Figure 6. Top-5 zero-shot retrieval results using our method for class

(from top to down) “Pig”, “Raccoon”, “Rat”, and “Seal”, respectively.

Images with red rectangles are false-positive returns.

for the retrieval task. It is possible that incorporating pair-

wise ranking constraints into the training (e.g. into Eq. 10

for our method) may improve performance, but it is outside

the scope of this paper.

We again attempt to further analyze our method on the

AwA dataset. We list class-wise AP as well as mAP com-

parison in Table 4, and illustrate the precision-recall curves

for different methods in Fig. 5. Our method achieves over

70% AP for 6 out of 10 classes, and performs the best in 6

out of 10 classes. Fig. 5 depicts illustrative examples for

different categories. Nevertheless, we note that for some

classes our method is unable to achieve satisfactory per-

formance (although other methods also suffer from perfor-

mance degradation). For instance, we only get 28.18% AP

for class “seal”. Note that in Fig. 4(e), we can see that the

last row (or column), which corresponds to “seal”, shows

some relatively high values in off-diagonal elements. This

is because the problem of differentiating data within this

class from data from other classes is difficult. Similar situ-

ations can be observed in SSE as well.

We also visualize our retrieval results in Fig. 6 with the

top-5 returns for “difficult” cases (classes with AP less than

50%) in Table 4. Interestingly for the most difficult class

“seal”, all five images are correct. This is probably because

the global patterns such as texture in the images are similar,

leading to highly similar yet discriminative CNN features.

4. Conclusion

In this paper we propose a novel general probabilistic

method for ZSL by learning joint latent similarity embed-

dings for both source and target domains. Based on the

equivalence of ZSR and binary prediction, and the condi-

tional independence between observed data and predicted

class, we propose factorizing the likelihood of binary pre-

diction using our probabilistic model to jointly learn the

latent spaces for each domain. In this way, we generate

a joint latent space for measuring the latent similarity be-

tween source and target data. Our similarity function is in-

variant across different classes, and hence intuitively it fits

well to ZSR with good generalization to unseen classes.

We further propose a new supervised dictionary learning

based ZSR algorithm as parameterization of our probabilis-

tic model. We conduct comprehensive experiments on four

benchmark datasets for ZSL with two different tasks, i.e.

zero-shot recognition and retrieval. We evaluate the impor-

tance of each key component in our algorithm, and show

significant improvement over the state-of-the-art. Possible

applications are person re-identification [41, 42, 43] and

zero-shot activity retrieval [5].
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