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ogen receptor α (ERα) upregulation causes abnormal cell proliferation in about two thirds of breast
s, yet understanding of the underlying mechanisms remains incomplete. Here, we show that high
sion of the microRNA miR-375 in ERα-positive breast cell lines is a key driver of their proliferation.
75 overexpression was caused by loss of epigenetic marks including H3K9me2 and local DNA hypo-
lation, dissociation of the transcriptional repressor CTCF from the miR-375 promoter, and interac-
of ERα with regulatory regions of miR-375. Inhibiting miR-375 in ERα-positive MCF-7 cells resulted
uced ERα activation and cell proliferation. A combination of expression profiling from tumor sam-
nd miRNA target prediction identified RASD1 as a potential miR-375 target. Mechanistic investiga-
revealed that miR-375 regulates RASD1 by targeting the 3′ untranslated region in RASD1 mRNA.
onally, we found that RASD1 negatively regulates ERα expression. Our findings define a forward
Additi

feedback pathway in control of ERα expression, highlighting new strategies to treat ERα-positive invasive
breast tumors. Cancer Res; 70(22); 9175–84. ©2010 AACR.
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st cancer is the leading cause of cancer death in women
wide (1). Although it is a heterogeneous disease, two
of breast cancers share the common feature of being de-
presence and interaction of estrogen with the
receptor α (ERα) protein (2, 3). Approximate-
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of invasive breast cancers express ERα in actively pro-
ing cells. It has become evident that ERα is upregulated
inal mammary epithelial cells during early stages of tu-
enesis and its overexpression is an important stimulatory
for the proliferation of mammary cells, leading to cell
n and eventually to tumor development. The obvious
f ERα signaling in orchestrating the expression of genes
ed in growth-related pathways has established ERα as an
tant therapeutic target in breast cancer treatment (4).
ver, our understanding of the molecular mechanisms un-
g deregulation of this signaling pathway is scarce.
roRNAs (miRNA) are endogenous small noncoding
of 20 to 23 nucleotides, which are involved in post-
riptional control of gene expression (5). Due to their
nce complementarities to the 3′ untranslated region
of many mRNAs, miRNAs are able to recognize tar-
anscripts and promote translation inhibition or
destabilization and degradation, both resulting in

ed expression of target genes (6). miRNAs are as-
to directly control the expression of a large portion
human genome and are thus involved in the regu-
of major cellular activities, such as metabolism, dif-
tiation, proliferation, and apoptosis (6, 7). The
ations that all these processes are altered in cancer
d that miRNA expression is deregulated in a variety
cer types (9) suggest that miRNA expression has a
nd influence on carcinogenesis.

hypothesized that miRNAs might play an important
n the upregulation of ERα in breast cancer. We
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fied an upregulated miRNA in ERα-positive breast
cells that was able to enhance ERα signaling activ-

rough the regulation of its target, RASD1. We also
that the level of miR-375 expression in breast cell
was dependent on epigenetic marks adjacent to its
region. Therefore, our study brings significant in-
into our knowledge of the mechanisms underlying Cel
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rials and Methods

ulture and transfection
BT474, ZR7530, T47D, MCF-10A, MCF-12A, and SK-
ll lines were obtained from the American Type Culture
tion, where they are regularly verified by genotypic and
typic tests. The HEK293T, MCF-7, MDA-MB-231, MDA-
5, and HDQ-P1 cell lines were provided by Prof. Lichter
an Cancer Research Center, Heidelberg, Germany) and
uthenticated by short tandem repeat profiling analysis.
ing resuscitation and every six months, cell lines were
for the presence of contamination using multiplex cell
ination test provided by the German Cancer Research

r (DKFZ) core facility (10). The expression status of
the cell lines was confirmed by immunoblotting be-
ey were used in the experiments. Cells were cultured
standard conditions. Before experimental use, MCF-7
ere grown for 96 hours in phenol red-free DMEM with
L D-glucose (Invitrogen) supplemented with 10%
n-coated charcoal-treated fetal bovine serum prepared
cribed previously (11). Transfection with siRNAs and
nd anti-miR was performed using siPORT NeoFX
ied Biosystems) following the supplier's protocol.
id transfection was performed with Effectene (Qiagen)
cified by the manufacturer.

-based miRNA profiling
was extracted using the miRNeasy kit (Qiagen). miR-

ofiles were generated by using the Geniom Biochip
and RT Analyzer (febit). The array contained seven

tes of each human miRNA as annotated in the Sanger
se 11.0. Briefly, 3 μg of total RNA containing small
were labeled using the FlashTag RNA kit (Genisphere).
hybridization and washing procedures were performed
RT Analyzer device as recommended by the supplier
ignal intensities were calculated using the Geniom
d Software (febit). All further statistical analyses were
out using R. Following background correction, the

replicate intensity values of each miRNA were sum-
d by their median value. To normalize the data of
nt arrays, the variance stabilizing normalization (12)
pplied by the R “vsn” package, such that the miRNA
s were homoscedastic. This normalization trans-
d the background subtracted raw data, ensuring that
riance was almost constant. Differentially expressed
s between cell line models were identified by using

test procedure within significance analysis of micro-
(13).

Tehra
Suppl

r Res; 70(22) November 15, 2010
noblots
ary antibodies against ERα (NCL-L-6F11, Novocastra),

(20-33, Sigma), and horseradish peroxidase–conjugated
dary antibodies were used as previously described (14).

roliferation and apoptosis assays
l proliferation and apoptosis were measured using
iterGlo Luminescent Cell Viability and Caspase-Glo
says (Promega), respectively, following the manufac-
instructions. RNA transfections were carried out in
ell plate (6 × 103 cells/well) in a final RNA concen-
of 100 nmol/L per well in five replicates. For cell

ing, 72 hours posttransfection of cells in 6-well plates
05 cells/well), the cells were trypsinized and living
ere counted by a cell viability analyzer (Beckman
r).

gen responsive element Firefly luciferase
ter gene assay
F-7 cells were reverse transfected in five replicates with
iRs and anti-miRs. After 24 hours, cells were cotrans-
with Firefly and Renilla luciferase reporters. Twenty-
ours later, reporter activities were assayed with the
Luciferase Reporter Assay System (Promega). Firefly
y was normalized to the Renilla signals.

ite sequencing
omic DNA was extracted using the AllPrep DNA/RNA
iagen). One microgram total genomic DNA was treated
odium bisulfite using the EpiTect Kit (Qiagen). CpG
s were amplified from the bisulfite-converted DNA by
mplicons were cloned and sequenced. The quality of
sulfite-converted sequences was analyzed with the
alyzer software (15).

atin immunoprecipitation assay
omatin immunoprecipitation (ChIP) assays were per-
d as previously described (16). Antibodies specific
3K9me2 (ab1220, Abcam) and H3K4me2 (07-030,
te), acetylated H3 (06-598, Upstate) and H4 (06-599,
te), ZEB1 (H-102, sc25388X, Santa Cruz), polymerase
8, ab5408, Abcam), CTCF (ab70303, Abcam), and ERα
0, sc543X, Santa Cruz) were purchased from the indi-
suppliers. Immunoprecipitates were eluted into 25 μL
buffer [10 mmol/L Tris-HCl (pH 8), 1 mmol/L EDTA].
icroliter of the DNA was used for a 10 μL PCR reac-
sing the Absolute QPCR SYBR Green Mix (Thermo
ific) and a Roche LightCycler 480. Enrichments were
ated as percentage of the input.

t samples
mal breast and tumor samples were obtained with the
ed consent of patients after approval of the Institu-
l Review Board at Tehran University of Medical
es, Shahid Beheshti University of Medical Sciences,
niversity of Welfare Sciences and Rehabilitation,

n, Iran. Clinical information of patients is provided in
ementary Table S2. For simplification purposes, the
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e diagnosed with fibrocystic changes (tumor 7) is
d to as a tumor in the main text and figures.

expression profiling
e expression profiling was performed using Human
x-6 v2 BeadChip arrays (Illumina). Microarray hybrid-
, scanning, and data analysis are described in the Sup-
ntary Data.

rase reporter assay for miRNA
identification
293T and MCF-7 cells were reverse transfected in five
ates with synthetic RNAs in a final concentration of
ol/L. After 24 hours, cells were cotransfected with
RASD1 Firefly luciferase and 10 ng Actin-RL Renilla
ase reporter constructs.12 Luciferase activities were
red 24 hours later using the Dual Luciferase Reporter
System (Promega). Firefly activity was normalized to
signal.

titative reverse transcriptase-PCR
avoid contamination by genomic DNA, 1 μg total RNA
ubjected to DNase I digestion (1 U/μL; amplification
DNase I, Invitrogen) for 10 minutes at 25°C, followed

d-change is log transformed (base 2).
at inactivation at 75°C for 5 minutes. First-strand
-synthesis and quantitative PCR were performed as

morig
and m
activit
regula
miRNA
upregckles and M. Boutros, unpublished.

acrjournals.org
usly described (17). ERα, RASD1, and GAPDH primers
rovided by QuantiTect Primer Assays (Qiagen).
ntitative reverse transcription-PCR (qRT-PCR) analysis
NAs was performed using TaqMan MicroRNA Reverse
cription Kit and TaqMan gene-specific MicroRNA
(Applied Biosystems) according to the manufacturer's

ctions. All measurements were performed in triplicate.
xpression of miR-375 was normalized to RNU6B and
6.

tical analyses
ess otherwise noted, data are presented as mean ± SE
sed for comparisons.

lts

rocal regulation between miR-375 and ERα
n initial attempt to identify miRNAs involved in the
tion of ERα pathway, we performed miRNA profiling
ht human mammary cell lines (Supplementary
S1). We compared the miRNA expression profile of
ositive to ERα-negative cell lines as well as to nontu-
enic immortalized cells (Table 1). As expected, miR-221
iR-222, both reported as negative modulators of ERα
y (18), were found among the most significantly down-
ted miRNAs. As we aimed at the identification of
1. Differentially expressed miRNAs in mam
s that
ulated
positively regulate ERα activity, we
miRNAs in ERα-positive cell lines.

Cancer Res; 70(22) Novembe
ERα+ compared with ERα- cancer cells ERα+ compared with noncancer cells

iRNA Fold-change* miRNA Fold-change*
5% mos

iR-203
 7.4
 iR-200a
 7.7

iR-375
 5.4
 iR-375
 6.9

iR-205
 4.6
 iR-200b
 5.4

iR-148a
 4.3
 iR-203
 4.9

iR-615-3p
 4.0
 iR-200b*
 4.3

iR-196a
 3.9
 iR-196a
 4.2

iR-200c
 2.9
 iR-615-3p
 3.5
hsa-m
iR-421 2.8 hsa-miR-429 3.5
5% most

iR-146b-5p
 3.0
 iR-34c-5p
 3.7

iR-29a
 3.3
 iR-29a
 3.9

iR-31*
 4.0
 iR-146b-5p
 4.5

iR-146a
 4.9
 iR-224
 5.3

iR-155
 6.4
 iR-31*
 6.5

iR-31
 6.7
 iR-221
 8.6
-m − hsa-m −

-miR-221 −8.2 hsa-miR-31 −9.3
-miR-222 −9.7 hsa-miR-222 −10.3
looked for
Strikingly,

r 15, 2010 9177
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75 was identified as the second most significantly up-
ted miRNA in ERα-positive cells when compared with
Rα-negative and nontumorigenic cell lines (Table 1).
ecific overexpression of miR-375 in ERα-positive breast
cells was further validated by real-time PCR analysis,
included additional ERα-positive cell lines (Fig. 1A).
assess a possible role of miR-375 in ERα signaling, we
the effect of its ectopic expression in MCF-7 cells tran-
transfectedwith an estrogen responsive element (ERE)-
lled Firefly luciferase vector. Overexpression of miR-375
d in a >2-fold induction of luciferase activity, whereas
ibition resulted in decreased ERα activity (Fig. 1B). Sim-
ERα protein levels decreased after diminishing the level
ogenous miR-375 with a synthetic anti-miR (Fig. 1C).
en the high endogenous level of miR-375 in MCF-7
we sought to evaluate the potential contribution of
75 to the proliferation of these cells. We therefore

d miR-375 activity with anti-miR-375 in MCF-7 breast (CpG

ation and apoptosis were measured in five replicates. G, effect of ERα knockdow
R. Values are presented as mean of three measurements ± SD.

r Res; 70(22) November 15, 2010
with anti-miR-control), cell proliferation decreased in
75–inhibited cells to almost 50%, 72 hours after trans-
(Fig. 1D and E). However, inhibition of miR-375 did

sult in an induction of caspase activation (Fig. 1F), sug-
g that the antiproliferative effect of miR-375 inhibition
due to the induction of apoptosis.
restingly, we found that miR-375 expression was also
dent on the expression of ERα, as transfection with
iRNA led to a 50% decrease in the expression level of
75 (Fig. 1G). Therefore, our data indicate a reciprocal
tory connection between miR-375 and ERα.

netic marks determine the transcriptional state
miR-375 locus
next looked for the mechanisms regulating miR-375
ssion. Analyzing the genomic region spanning the
75 gene, we identified two large CpG-rich regions

islands; Fig. 2A). The expression of genes (including
cells. Compared with the control experiments (trans- miRNA genes) possessing CpG islands in the vicinity of their

1. Reciprocal regulation between miR-375 and ERα and the effect of miR-375 on proliferation of MCF-7 cells. A, miR-375 expression in breast cell
easured by qRT-PCR. The results are presented as mean of three measurements ± SD. B and C, effect of miR-375 modulation on ERα transcriptional
(B) and protein expression in MCF-7 cells (C). D, proliferation of MCF-7 cells after inhibition of miR-375. Cell proliferation was measured using
erGlo Luminescent Cell Viability and using a cell viability analyzer (E). F, induction of apoptosis was assayed by Caspase-Glo 3/7 assay. Cell
n on the expression of miR-375 in MCF-7 cells measured by

Cancer Research
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ription start site tends to correlate with epigenetic
(such as DNA methylation patterns) at these islands

). Therefore, we investigated the epigenetic regulation
miR-375 locus. The more distal CpG island (CpG island 1;

contai
miR-3

acrjournals.org
) has a size of approximately 700 bp. A second CpG is-
CpG island 2; CGI 2) spans approximately 850 bp and
2. Epigenetic marks
ne the transcriptional state
iR-375 locus. A, comparison
iR-375 locus in human
use. CpG-rich regions
nd 2) are shown. Arrows,
ption start site (TSS) of
5. The locations of two
airs used for bisulfite
cing (bs-1 and bs-2) and the
mer pairs employed for the
alysis (ChIP-1, ChIP-2,
ChIP-4) are depicted.
fite sequencing of the CGIs
reast cell lines. Black and
rcles, methylated and
ylated CpGs, respectively.
ngle, region with specific
ethylation in MCF-7 and
ells. C, ChIP analysis of
-375 locus in cell lines.
inked chromatin of each cell
immunoprecipitated with

ies specific for acetylated
H3 (3ac), acetylated histone
), dimethylated lysine 4 of
H3 (3d4), and dimethylated
of histone H3 (3d9). Purified
as amplified with the four
imer pairs (see A). Results
wn as percentage of the
ormalized against input).
s show the results of three
ns at its most distal part a region homologous to the
75 promoter identified in mouse (ref. 21; Fig. 2A and

Cancer Res; 70(22) November 15, 2010 9179
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mentary Fig. S1). We analyzed the epigenetic modifi-
pattern of the miR-375 locus in MCF-7 and T47D cells
with high miR-375 expression), as well as in MCF-10A,
2A, and MDA-MB-231 cells (cells with low miR-375 ex-
on). Bisulfite sequencing results showed that CGI 1 is
lated in the cell lines showing high expression of miR-
hereas MCF-10A, MCF-12A, and MDA-MB-231 cells
d specific hypomethylation in the distal part of this
(Fig. 2B). In contrast, CGI 2 was mostly unmethylated
F-7, T47D, and MDA-MB-231 cells, whereas MCF-10A
CF-12A showed strong DNA methylation in the prox-
art of the region (Fig. 2B).
characterize the chromatin state of the miR-375 locus,
ployed four different antibodies recognizing distinct
nt histone modifications in a ChIP experiment. ChIP
is revealed a peak of histone H3 dimethylated at lysine
4me2), a marker of active transcription, in the CGI 1
cell lines analyzed (Fig. 2C). Repressive histone H3 ly-
dimethylation (H3K9me2) was found throughout the
in the three cell lines with low miR-375 expression,
as H3K9me2 levels were found to be low in both CGIs
F-7 and T47D. H3 and H4 acetylation, a marker of
transcription, was generally low and was only slightly
ed in CGI 1 in T47D cells (Fig. 2C).
ether, these findings led us to conclude that an active
75 epiallele is characterized by a fully methylated CGI
nmethylated CGI 2 spanning the gene body, H3K4me2
ment in the CGI 1, and low overall H3K9me2 levels.
pressed epiallele is characterized by local hypomethy-
around CpG 18 of the CGI 1 (see box in Fig. 2B and
mentary Fig. S1), a methylated gene body (with the ex-
n of the MDA-MB-231 cell line), H3K4me2 enrichment
CGI 1, and overall high levels of H3K9me2. These re-
uggest that H3K9 methylation is a major repressive
of the miR-375 locus.

criptional repressors bind to the miR-375 locus
bisulfite sequencing data indicated that one feature of
pressed epiallele of miR-375 is local hypomethylation
d CpG 18 of CGI 1, which in the case of MCF-12A
DA-MB-231 cells also became detectable throughout
I (Fig. 2B). Analysis of the miR-375 locus with MatIn-
r software (22) revealed the presence of consensus
g sites for the CCCTC-binding factor (CTCF) protein
s locus and especially in the hypomethylated region
lementary Fig. S1). CTCF is a highly conserved multi-
onal zinc finger protein involved in transcriptional
ssion and activation, insulation, imprinting, and
tivation that binds preferentially to unmethylated
23, 24). CTCF is a very widely expressed factor that
ndant in many breast cancer cell lines, including
MB-231 and MCF-7, but also in nontumorigenic breast
es like MCF-12A (25). Moreover, we identified several
E-boxes that are potential binding sites for ZEB1, a

riptional repressor that has been found to be involved
regulation of several cancer-associated genes (refs. 26,

pplementary Fig. S1). ZEB1 has been described to be
ssed in MCF-10A and MDA-MB-231 cells; however,

assays
HEK2

r Res; 70(22) November 15, 2010
t no expression was reported for the MCF-7 and
cell lines (26). We therefore performed ChIP with anti-
s against CTCF and ZEB1 in MCF-7, MCF-12A, and
MB-231 cells. ChIP was also performed with antibodies
t ERα and the largest subunit of RNA polymerase II to
information about ERα-binding and active or paused
ription events. We confirmed the binding of CTCF not
o the predicted binding site around CpG 18 (ChIP-1) in
2A cells but also to sites in the proximal region of CGI
P-2) and in CGI 2 (ChIP-3 and ChIP-4; Fig. 3). In MDA-
1 cells, a similar pattern was found, although peak
g was observed in all but the region amplified by the
primers. In contrast, MCF-7 cells showed a weak en-

ent for CTCF-immunoprecipitated DNA only in the
al region of CGI 1. These results suggest that CTCF
tes the miR-375 locus by interacting with several hypo-
lated binding sites, creating a higher-order chromatin
ure that prevents active transcription. RNA polymerase
LII) was detected in most regions with CTCF enrich-
presumably representing paused polymerase molecules
cting with CTCF (Fig. 3). Consistently, low levels of RNA
were detected in the miR-375 coding region (ChIP-4) in
2A and MDA-MB-231 cells. ZEB1 binding was restrict-
CGI 2 in the cell lines with low miR-375 levels, which
ates well with the presence of E-boxes in the ChIP-3 re-
Fig. 3 and Supplementary Fig. S1). We found no ZEB1
g in MCF-7 cells but very prominent peaks of ERα and
OLII in the miR-375 coding region (ChIP-4), adjacent to
tative miRNA promoter (Figs. 3 and 2A). Collectively,
findings support a role of CTCF and ZEB1 in the repres-
nd ERα in the activation of miR-375 expression. The
g of ERα to the putative miRNA promoter further sup-
our preceding findings on a key role of ERα in miR-375
pression in MCF-7 cells and indicates the existence of a
e feedback regulation between these molecules.

1 is a functional target of miR-375 and
ively regulates ERα
expanded our functional analyses by measuring the ex-
on of miR-375 in nine pairs of primary breast carcino-
nd adjacent normal tissues from breast cancer
ts using quantitative real-time PCR. Although not spe-
ERα-positive tumors (Supplementary Table S2), miR-
s upregulated (up to 150-fold) in seven of nine analyzed
s (Fig. 4A). To identify miR-375 targets, mRNA expres-
rofiles of tumor and normal breast tissue specimens of
atients showing differential miR-375 expression were
ed by microarrays. We identified 125 genes commonly
regulated in tumors overexpressing miR-375 (Supple-
ry Table S3). In parallel, 144 potential miR-375 targets
redicted using the TargetScan algorithm (28). Combin-
croarray profiling and target prediction data, we identi-
o genes, Ras dexamethasone-induced 1 (RASD1) and
B-cell factor 3 (EBF3), as potential miR-375 targets
B). We cloned segments of the 3′UTRs of both genes into
rase reporter vectors and performed luciferase

upon overexpression and inhibition of miR-375 in

93T cells (that do not express endogenous miR-375)

Cancer Research
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lation of miR-375 caused consistent expression changes
RASD1-luciferase construct in both cell lines strongly
ts that RASD1 is a functional target of miR-375. Because
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f miR-375 in MCF-7 cells resulted in >2.5-fold induction
D1 mRNA levels, as measured by qRT-PCR (Fig. 4D).
as been reported that RASD1 is able to suppress the
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Together, these observations provided evidence for a
ve regulation of ERα by the miR-375 target RASD1.
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r–associated miRNA in previous studies analyzing
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fact that miR-375 was not present on the microarrays
). In other reports, the experimental settings and the
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ntial expression of miR-375 between breast cancer cell
32, 33). Notably, our screening revealed that miR-375
verexpressed specifically in ERα-positive breast cancer
o date, only a limited number of miRNAs with a reg-
connection to the ERα pathway have been discov-
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