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Abstract

In ESTAR models it is usually difficult to determine parameter estimates, as it can be observed
in the literature. We show that the phenomena of getting strongly biased estimators is a
consequence of the so-called identification problem, the problem of properly distinguishing the
transition function in relation to extreme parameter combinations. This happens in particular
for either very small or very large values of the error term variance. Furthermore, we introduce
a new alternative model -the T-STAR model- which has similar properties as the ESTAR model
but reduces the effects of the identification problem. We also derive a linearity and a unit root
test for this model.

JEL-Numbers: C12, C22, C52

Keywords: Nonlinearities · Smooth transition · Linearity testing · Unit root testing · Real exchange
rates

1 Introduction

Nonlinear time series models have become more and more popular over the last decade. In particu-
lar, Exponential Smooth Transition Autoregressive (ESTAR) models have been used for modeling
real exchange rates. These models contain of two autoregressive regimes which are connected by
a smooth transition function of an exponential type. Under certain regularity conditions they are
globally stationary. This is even the case if one regime is assumed to be a random walk as it
happens for real exchange rates where we assume one regime to have a unit root whereas the other
regime is a stationary autoregressive process. Moreover, the U-shape of the transition function is
a desired property in the context of real exchange rates as there one wants to allow the exchange
rates to move freely like a random walk near an equilibrium and being pulled back to it once they
move too far away from it.
∗This research was partly funded by the DFG. The authors thank T. Teräsvirta for his useful comments.
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Contrary to linear models where parameter estimates are independent of the size of the error
variable, we face an identification problem in ESTAR models due to the influence of the error term
variance. Small or large error variances no longer allow to identify the ESTAR model in the sense
that they stay only in one of the two regimes and do not switch between the regimes any more. This
problem was first observed in Luukkonen et al. (1988) who mention it in a short remark. However,
to the best of our knowledge it has not been further considered in the literature since.

In the literature people encounter problems when determining parameter estimates. Various sub-
jective tricks have been proposed (see e.g. Haggan and Ozaki (1981), Lütkepohl and Krätzig (2004))
in order to circumvent these in order to guarantee a better performance of the estimators. We now
show that the identification problems causes some parameters to be unidentifiable. In other words,
no general estimation procedure will produce reasonable estimators, making some modification to
the optimization procedure necessary. This has of course its limits as there is no theory saying that
these methods work in general.

The identification problem is also visible in examining linearity tests. Linearity tests against ESTAR
have been developed by for example Teräsvirta (1984) and unit root tests against an ESTAR
alternative can be found in Kapetanios et al. (2003). Both of these tests have the nonintuitive
property of a low power when the error term variance is either very small or very large. For the
linearity test this was stated in Luukkonen et al. (1988) and for the unit root test see Kruse et al.
(2008). This effect is less surprising for a large error term variance as in this case the noise dominates
the signal. However, it is rather surprising in the opposite case of a small error variance as in this
case the signal dominates the noise. Therefore, an increase of the power would be expected. As
real exchange rates have extremely small error variances (see for example Taylor et al., 2001) this
problem is of a high practical relevance and can lead to false non-rejections of the null and therefore
rejecting a nonlinear adjustment process for real exchange rates.

We now introduce a natural alternative of the ESTAR model by using a different transition function,
leading to the T-STAR model. This transition function possess the same desired properties and can
therefore be applied to the same situations. The new transition function has however fatter tails
which turns out to reduce the identification problem. We can improve the estimation procedure for
extreme error term variances. In particular, standard optimization tools can be used. Moreover,
we develop a linearity and a unit root test for this new model and study their performances in
extensive simulations.

The rest of the paper is organized as follows. In the next section we define ESTAR models in
more detail and analyze the identification problem, in particular with respect to small error term
variances. The new T-STAR model is examined in Section 3. After describing the model (see
Section 3.1) we derive the linearity as well as the unit root test in Sections 3.2 and 3.3, respectively.
The simulation studies we performed are summarized in Section 3.4. A comparison of the ESTAR
and T-STAR model is presented in Section 4, discussing real exchange data. Section 5 concludes
whereas all proofs are collected in the Appendix, together with certain technical lemmas.

2 Exponential Smooth Transition Autoregressive Models

In this section we introduce the general Smooth Transition Autogressive (STAR) model. The
transition function for ESTAR models is specified and basic properties of the resulting model are
studied. Subsequently, the identification problem present in the ESTAR setting is described and
analyzed in Section 2.2.
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One speaks of a Smooth Transition Autoregressive (STAR) model, if two autoregressive regimes
are connected by a transition function satisfying certain smoothness conditions. Here, smoothness
is meant that the transition function changes smoothly from zero to one and therefore governs
the transition between the two regimes in a smooth way. Alternatively, a STAR model can also be
interpreted as a continuum of regimes which is passed through by the process. In general, univariate
STAR(p) models, p ≥ 1, are given by

yt = [Ψwt]× [1−G(yt−d, γ, c)] + [Θwt]×G(yt−d; γ, c) + εt (1)

= [Ψwt] + [Φwt]×G(yt−d; γ, c) + εt, t ≥ 1, (2)

with initial variable y0. The paramter vectors Ψ and Θ as well as wt are given by Ψ = (ψ0, ψ1, . . . , ψp),
Θ = (ϑ0, ϑ1, . . . , ϑp), and wt = (1, yt−1, . . . , yt−p)′. For the alternative parametrization (2) we have
Φ = (ϕ0, ϕ1, . . . , ϕp) = (ψ0 − ϑ0, ψ1 − ϑ1, . . . , ψp − ϑp). Different choices of the so-called transition
function G( · ; γ, c) : IR→ [ 0, 1 ] lead to different STAR models. For the rest of this text we assume
that the random error terms εt satisfy the following conditions:

Assumption 2.1.
The innovations εt are assumed to

(i) be iid random variables with mean zero and unknown variance σ2,

(ii) have a symmetric density around zero.

A recent overview of STAR models, estimation techniques and model building procedures can be
found in Franses and van Dijk (2000).

Common choices for the function G are the exponential function, leading to the Exponential STAR
(ESTAR) model, or the logistic function, depending on the nature of the studied transition. How-
ever, the parameter γ is always the transition parameter that governs the speed of the regime
changes. For the rest of this document we only consider situations where G is symmetrically
U-shaped around the location parameter c ∈ IR with

lim
γ→+∞

G(·; γ, c) ≡ 1− 1lc, lim
γ→0

G(·; γ, c) ≡ 0 and lim
z→±∞

G(z; γ, c) ≡ 1 (3)

where 1lc denotes the indicator function being one only at the value c. This particular shape
of G is motivated by the application of modeling real exchange rates. In addition to the given
interpretation in the Introduction of getting pulled back to one regime when the process drifts off
too much, we require symmetry as the exchange rate between for example US Dollars and Euros
should be modeled with the same setup as the exchange rate between Euros and US Dollars.

General STAR models have not yet been studied systematically, if possible at all. As one often
chooses p = 1 in practical applications, most of the results stated below are special cases with
respect to the choice of the parameters.

2.1 The ESTAR-Model

The Exponential STAR(1) model is defined by choosing

G(z; γ, c) = 1− exp(−γ(z − c)2), z ∈ IR, (4)
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which results according to (2) for d = p = 1, ψ0 = ϕ0 = 0, c = 0, ψ = ψ1 and ϕ = ϕ1 in

yt =
[
ψ + ϕ exp(−γy2

t−1)
]
yt−1 + εt, t ≥ 1, (5)

with initial variable y0.

Example 2.2.
Figures 1 and 2 show two realizations of the ESTAR process (5) of length T = 500, both generated
with ψ = 1 and ϕ = −0.45. The variances are chosen as σ2 = 4 and σ2 = 0.22, respectively.

Time

y t

0 100 200 300 400 500

−6
−4

−2
0

2
4

6

Figure 1: σ = 2, ψ = 1 and ϕ = −0.45.
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Figure 2: σ = 0.2, ψ = 1 and ϕ = −0.45.

As only very little is known about the theoretical properties of an ESTAR process we state a result
about the moments, which will also play an important role in the following section and is proven
in the Appendix.

Lemma 2.3 (Moments of yt).
Let yt be as in (5) where y0 and εt, t ≥ 1, have a density that is symmetric around 0. Then, for
n, k ∈ IN0 and all t ≥ 0,

IE
[
exp(−nγy2

t )y
2k+1
t

]
= 0, (6)

which means in particular that all odd moments of yt vanish for all t ≥ 0 by choosing n = 0.
Moreover, if we assume that yt is normally distributed togehter with |ψ|+ |ϕ| < 1 we have

lim
σ2→0

IE
[
exp(−nγy2

t )y
2k
t

]
= σ2k

(
1 + oP (σ2)

)
(7)

for all t ≥ 0 and k ∈ IN0. The above statement yields a rate for the even moments tending to zero
by setting again n = 0.

2.2 The Identification Problem

If transition functions G1 and G2, resulting from different parameter combinations, cannot be
distinguished, it is obviously nearly impossible to fit a ‘good’ model to given data. Whenever
changes of the parameters do not result in significant changes of the transition function, we speak
of the so-called identification problem. Due to (5) this happens in the ESTAR setting for extreme
values (i.e. large values or values close to zero) of γy2

t−1, caused either by γ or by y2
t−1. The latter

turns out to occur for very small or very large values of the error term variance σ2. This observation
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is clearly in contrast to linear models and was mentioned by Luukkonen et al. (1988). However, to
the best of our knowledge it has not been further considered systematically in the literature since.

Before giving more profound results, we want to describe the intuition behind the identification
problem. With respect to γ, it is obvious that for different large values (say roughly γ > 1), the
corresponding transition functions hardly change any more. As for y2

t , one can already see from
Figures 1 and 2, which show realizations of ESTAR processes with different values of σ2, that -while
only appearing implicitly in the definition (5)- the error term variance influences the behavior of
the process. Large values for σ2 allow the error term to dominate the process, resulting in large
values for yt and causing the identification problem, independent of the choice of γ. On the other
hand, very small values for σ2 result in small values of yt.

Consider parameters γ and σ2 for which the identification problem is present. As a consequence,
the transition function G in the ESTAR model is either close to zero or close to one. This means
that one of the two regimes is no longer present. The transition parameter γ as well as one of
the autoregressive parameters are therefore unidentified and can not be estimated consistently. To
illustrate this behavior, we estimate the parameter vector (ψ,ϕ, γ, σ2) by means of the conditional
Maximum Likelihood method. The resulting highly biased estimators for γ using different choices
of σ are summarized in Table 1.

HH
HHHHγ

σ
0.1 0.5 1.0

Mean SD Mean SD Mean SD

0.2

ψ̂ 0.755 0.008 0.781 0.084 0.774 0.099
ϕ̂ -0.432 0.040 -0.605 0.337 -0.581 0.224
γ̂ 0.334 0.149 0.698 1.425 0.274 0.303
σ̂ 0.100 0.000 0.499 0.013 0.997 0.025

0.7

ψ̂ 0.755 0.008 0.778 0.096 0.773 0.150
ϕ̂ -0.428 0.044 -0.604 0.237 -0.520 0.157
γ̂ 0.828 0.148 0.988 1.092 0.867 0.852
σ̂ 0.100 0.000 0.499 0.013 0.998 0.024

1.0

ψ̂ 0.755 0.008 0.774 0.106 0.783 0.168
ϕ̂ -0.429 0.043 -0.581 0.208 -0.516 0.166
γ̂ 1.136 0.149 1.279 1.245 5.642 186.820
σ̂ 0.100 0.000 0.499 0.012 0.998 0.025

1.3

ψ̂ 0.754 0.007 0.775 0.113 0.783 0.185
ϕ̂ -0.427 0.044 -0.560 0.185 -0.510 0.180
γ̂ 1.436 0.149 1.586 1.346 1.849 5.433
σ̂ 0.100 0.000 0.499 0.012 0.998 0.026

Table 1: Estimation results for ESTAR: yt = 0.75yt−1 − 0.45yt−1G( · ) + εt

It is definitely worth studying this phenomena as it is in particular counter intuitive that tiny error
term variances do not allow for good estimators as one would expect to observe (and estimate)
the process well. Moreover, although not called identification problem, people are aware of the
problems and a lot of subjective ‘tricks’ have been proposed and used to circumvent them, allowing
for a broader range for γ and σ without experiencing unidentified parameters. The common idea
is to exclude γ from the estimation process and use an alternative way to fit the model. Haggan
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and Ozaki (1981) propose, for instance, to define a grid for γ and estimate only the remaining
parameters, followed by a search for the best γ. By doing so, they do not estimate the transition
variable γ. In order to reduce the influence of σ, Lütkepohl and Krätzig (2004, p.229) standardize
the exponent present in G by writing

G(yt; γ, c) = 1− exp(−γy2
t ) = 1− exp

(
−γσ̂2 ·

(
y2
t

σ̂2

))
,

where σ̂ is the standard deviation, in oder to obtain a scale free γ. However, this is not the case as
the resulting Volterra series (see Priestley, 1988, p.25) is not bounded.

Although these modifications seem to help in certain situations they are not quite satisfying as it is
hard to reproduce the parameter estimates and as they have not been studied well mathematically.
However, it would indeed be desirable to have a mathematical unified approach for the estimation
problem, in particular for very small σ2, as one does find tiny estimated values σ̂ in practical
applications. See for example Gatti et al. (1998, p.56) or Öcal (2000, p.129), where small values
for σ2 together with huge estimates for γ are computed.

We close this section by proving that for small σ2 one indeed will never find a good estimator for
the unidentified γ. Tjøstheim (1986) derives in Theorem 3.2 asymptotic normality for a conditional
Maximum Likelihood estimator β̂ of β = (ψ,ϕ, γ) of a more general models than studied in this
text. Specifying that result for the ESTAR model stated in (5) we obtain the following theorem,
proved in the Appendix.

Theorem 2.4 (Asymptotic Variance of β̂).
Let yt be as in (5) where γ > 0 and where ψ and ϕ are chosen such that |ψ| + |ϕ| < 1. Let
β = (ψ,ϕ, γ) be the parameter vector estimated by the conditional ML estimator β̂ = (ψ̂, ϕ̂, γ̂).
Assume that y0 ∼ N(0, σ2) and that εt ∼ N(0, σ2) for all t ≥ 1 in addition to satisfying Assumption
2.1. Then

lim
σ↓0

Var(γ̂) → ∞. (8)

Remarks.

• We are aware that the limiting situation in (8) never occurs in practical applications. However,
the result should be read that the transition parameter γ can hardly be identified for very
small sizes of the error variance, which results in biased estimators if no other correction is
included in the optimization routine for deducing β̂.

• The condition |ψ| + |ϕ| < 1 is only included in order to apply Theorem 3.2 of Tjøstheim
(1986).

• We restrict the parameter vector in Theorem 2.4 to the three dimensional β not contain-
ing σ2 only for technical reasons. In Tjøstheim (1986, Theorem 5.2) one can also find a
general limiting result for β̃ = (ψ,ϕ, γ, σ). That however neither yields any new information
about the behavior of γ̂, nor any substantial information about the remaining parameters and
has therefore not been included in order to keep the proof of the above theorem somewhat
readable.

• Theorem 2.4 only covers the case σ → 0. As mentioned earlier, σ → ∞ causes the identi-
fication problem, too. This is not just intuitive but has also been supported by simulation
studies. Details are not included here as small values for σ2 are the more interesting case in
practical applications.
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3 The T-STAR Model

In the ESTAR model, unidentified parameters occur for values (γ, σ) in a certain region, say RE
γ,σ.

In particular estimating γ in the presence of a small σ ∈ RE
γ,σ becomes impossible while on the

other hand those values for σ2 are used in the literature.
We now propose to choose a different, new transition function within the STAR-framework, result-
ing in the so-called T-STAR model. The identification problem is also present in this new model.
However, RT

γ,σ, the region for which the identification of the parameters is not possible, seems to be
smaller than RE

γ,σ. Hence, a direct estimation of the parameters for more extreme values of (γ, σ)
is possible, making the T-STAR model superior to the ESTAR-model.
In Section 3.1 the T-STAR model is defined. A linearity and a unit root test are derived in Sec-
tions 3.2 and 3.3, respectively. Section 3.4 then gives an overview of the performed Monte Carlo
Simulations.

3.1 The Model and Estimators

Motivated by the relation of the transition function (4) to the normal density function, we now
define the T-STAR model, by proposing a transition function similar to the density of Student’s
t-distribution, i.e.

G(z; γ, c) =
[
1−

(
1 + (z − c)2

)−γ]
, z ∈ IR, (9)

with γ > 0, 1 ≤ d ≤ p and c ∈ IR. The parameters γ and c can be interpreted just as in the ESTAR
model as transition and location variable. Also, properties like boundedness, the limit behavior for
z → ±∞ and γ → ±∞ (see (3)) as well as the shape of G remain unchanged compared to (4). The
T-STAR model can therefore been seen as an alternative model to the ESTAR model, applicable
to the same situations.

The present identification problem causes less problems as different functions G are clearly distinct
for a larger range of values for γ than in the ESTAR model. This is also visible in Figure 3 which
illustrates for different values of γ the resulting transition functions in comparison to the ESTAR
setting shown in Figure 4 (note the different scale on the x-axis).
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Figure 3: T-STAR: Transition function for dif-
ferent γ.

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

γγ == 0.5
γγ == 0.8
γγ == 1
γγ == 2

Figure 4: ESTAR: Transition function for dif-
ferent γ.

As γ and y2
t no longer appear as a product in the transition function (9), the interplay between

these two parameters is reduced. For different values of γ the transition functions still differ even
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for small values of σ2. This however implies that better estimates for β = (ψ,ϕ, γ, σ2) are obtained
even for parameter combinations of γ and σ2 that cause problems in the ESTAR setting. For this
compare Table 1 and Table 2 , where the latter displays the performance of the estimator γ̂ in the
T-STAR model.

H
HHH

HHγ

σ
0.3 0.5 1.0

Mean SD Mean SD Mean SD

0.2

ψ̂ 0.300 0.001 0.300 0.002 0.152 0.374
ϕ̂ 0.400 0.001 0.400 0.001 0.746 0.119
γ̂ 0.200 0.007 0.200 0.016 0.640 1.031
σ̂ 0.300 0.009 0.500 0.006 0.998 0.023

0.8

ψ̂ 0.300 0.004 0.300 0.005 0.107 0.355
ϕ̂ 0.400 0.001 0.400 0.001 0.744 0.136
γ̂ 0.800 0.006 0.800 0.007 1.125 1.214
σ̂ 0.300 0.009 0.500 0.006 0.998 0.022

1.0

ψ̂ 0.300 0.004 0.300 0.005 0.119 0.340
ϕ̂ 0.400 0.001 0.400 0.001 0.620 0.152
γ̂ 1.000 0.007 1.000 0.006 1.303 1.359
σ̂ 0.300 0.10 0.500 0.006 0.998 0.022

1.3

ψ̂ 0.300 0.004 0.300 0.007 0.148 0.302
ϕ̂ 0.400 0.001 0.400 0.001 0.581 0.168
γ̂ 1.300 0.004 1.300 0.005 1.583 1.653
σ̂ 0.300 0.010 0.500 0.006 0.998 0.022

Table 2: Estimation results for T-STAR: yt = 0.3yt−1 + 0.4yt−1G(·) + εt

3.2 Linearity testing

The procedure we derive in this section for testing linearity against non-linear T-STAR dynamics
is related to the test against non-linearity proposed by Luukkonen et al. (1988). The transition
function G is first approximated by a suitable linear function; a common practice in non-linear time
series analysis (see also Teräsvirta, 1984). Afterwards, a simple F−test is performed.

For constructing the test it is convenient to use representation (2), i.e.

yt = [Ψwt] + [Φwt]×G(yt−d; γ, c) + εt. (10)

Under linearity the autoregressive parameters are then identical for both regimes. Thus, we do not
have to allow for switching between identical regimes and achieve a more parsimonious model by
using a linear AR(p) model.

The pair of hypothesis we are interested in can be expressed either as

H0 : Φ = 0(1×p) vs. H1 : at least one ϕi 6= 0; i = 1, . . . , p

or

H0 : γ = 0 vs. H1 : γ > 0 .

8



In both cases the T-STAR model (10) reduces to a linear autoregressive model of order p. However,
our test procedure employs the former pair of hypothesis.

Under H0 the alternative is not identified, given that the vector Φ and c can take on any value
without changing the value of the likelihood function when γ = 0 and vice versa. This can be
circumvented by replacing G with a linear approximation. Based on the Binomial series, i.e.

(1 + x)−m = 1 +
∞∑
n=1

(−1)n
m(m+ 1)(m+ 2) . . . (m+ n− 1)

n!
xn, m > 0, (11)

the transition function G in (10) can be approximated arbitrarily well by

Gk( · ) =
k∑

n=1

(−1)n
γ(γ + 1) . . . (γ + n− 1)(yt−d − c)2n

n!
(12)

choosing x = (yt−d − c)2 and m = γ in (11) as well as a suitable k. After expanding the terms
(yt−d− c)2n, n = 1, . . . , k, and some rearrangements, we obtain the auxiliary regression model for a
fixed d ≤ p and k

yt =
p∑
i=1

φiyt−i +
p∑
j=1

δ0j yt−j +
p∑
j=1

δ1j yt−jyt−d +
p∑
j=1

δ2j yt−jy
2
t−d + . . .+

p∑
j=1

δ2kj yt−jy
2k
t−d + ut. (13)

If the location parameter is a priori restricted to c = 0 then the model simplifies as only the odd
powers of yt−· remain. The error terms in the regression are now denoted by ut rather than εt as
they are the sum of the original error terms and the approximation error caused by replacing G

with Gk.
A test against non-linearity can then be carried out using a simple F -test for a subvector of param-
eters. Under the null the actual model is linear and hence the approximation error is zero leading
to ut = εt. Consequently the properties of the error term under the null and thus the asymptotic
distribution of the F -test remain unaffected.

Example 3.1.
As an example consider the simple T-STAR(1) model from above,

yt = ψ1yt−1 + ϕ1yt−1

[
1−

(
1 + (yt−d − c)2

)−γ]+ εt ,

with nonzero location parameter c. Approximating G by G3 first results in

yt = ψ1yt−1 + ϕ1yt−1

[
γ(yt−1 − c)2 −

1
2
γ(γ + 1)(yt−1 − c)4 +

1
6
γ(γ + 1)(γ + 2)(yt−1 − c)6

]
+ ut.

Using

(yt−1 − c)2 = y2
t−1 − 2yt−1c+ c2,

(yt−1 − c)4 = y4
t−1 − 4y3

t−1c+ 6y2
t−1c

2 − 4yt−1c
3 + c4,

(yt−1 − c)6 = y6
t−1 − 6y5

t−1c+ 15y4
t−1c

2 − 20y3
t−1c

3 + 15y2
t−1c

4 − 6yt−1c
5 + c6,

we then obtain the auxiliary regression model (see (13))

yt = φ1yt−1 + δ01yt−1 + δ11y
2
t−1 + δ21y

3
t−1 + δ31y

4
t−1 + δ41y

5
t−1 + δ51y

6
t−1 + δ61y

7
t−1 + ut

9



where

δ01 = ϕ1γc
2 +

1
6
ϕγ(γ + 1)(γ + 2)c6,

δ11 = −2cϕ1γ + 2ϕ1γ(γ + 1)− ϕ1γ(γ + 1)(γ + 2)c5,

δ21 = ϕ1γ − 3ϕ1γ(γ + 1)c2 +
5
2
ϕ1γ(γ + 1)(γ + 2)c4,

δ31 = 2ϕ1γ(γ + 1)c− 1
2
ϕ1γ(γ + 1)c4 − 10

3
ϕ1γ(γ + 1)(γ + 2)c3,

δ41 = −1
2
ϕ1γ(γ + 1) +

5
2
ϕ1γ(γ + 1)(γ + 2)c2,

δ51 = −ϕ1γ(γ + 1)(γ + 2)c,

δ61 =
1
6
ϕ1γ(γ + 1)(γ + 2) .

The hypothesis of linearity against T-STAR can be tested via an F -test for the null

H0 : δ01 = . . . = δ61 = 0 vs. H1 : at least one δi1 6= 0; i = 1, . . . , 6 .

Monte Carlo Simulations for this example can be found in Section 3.4.

3.3 Unit Root Testing

Kapetanios et al. (2003) develop a unit root test in the ESTAR framework and compute a Dickey-
Fuller type t-test in this set-up based on a first order Taylor expansion. Our test is of the same
type and thus we test the null of a linear unit root process against a globally stationary T-STAR
process containing a partial unit root in one regime.

Let the T-STAR(1) process again be parametrized by

yt = ψ1yt−1 + ϕ1yt−1

[
1−

(
1 + y2

t−1

)−γ]+ εt . (14)

Setting the location parameter c equal to zero is motivated by simulation results in Kruse (2009)
that show convincing power results even if the location parameter c is set to zero ex-ante. This
is also consistent with Kapetanios et al. (2003). Hence, for the sake of simplicity we constrain
ourselves to this case and further impose d = 1 which is in line with empirical applications of
non-linear time series models (see e.g. Taylor et al. (2001) or Rapach and Wohar (2006)).

The model in (14) can be written in first differences as

∆yt = βyt−1 + ϕ1yt−1

[
1−

(
1 + y2

t−1

)−γ]+ εt (15)

where β = ψ1 − 1. Setting β = 0 yields a unit root in the first regime and we have to distinguish
between two cases:

(i) β = 0 and γ > 0: In this case we have a globally stationary T-STAR process that contains a
partial unit root in the first regime, provided that −2 < ϕ1 < 0 as we will assume henceforth.

(ii) β = 0 and γ = 0: In this case the model reduces to a linear random walk.
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Thus we will test case (ii) against case (i) and formulate the pair of hypotheses as

H0 : γ = 0 vs. H1 : γ > 0 . (16)

We now proceed in the same way as in the previous section and approximate the nonlinearity with
a Binomial expansion as in (12) setting the number of summands to k = 3. This yields the auxiliary
regression (see also (13)):

∆yt = δ21y
3
t−1 + δ41y

5
t−1 + δ61y

7
t−1 + ut (17)

so that we want to test

H0 : δ21 = δ41 = δ61 = 0 vs. H1 : at least one δi1 6= 0; i = 2, 4, 6 .

As we are now dealing with three parameter restrictions we cannot use the conventional t-statistic.
Therefore, an F -statistic for the significance of the whole parameter vector β = (δ21 , δ

4
1 , δ

6
1)′ needs

to be computed. For that, it is convenient to write the null as

H0 : Rβ = r

with

R = I3 =

1 0 0
0 1 0
0 0 1

 and r = (0, 0, 0)′ .

Using r̂ = Rβ̂ we can write the F -statistic as

F ∗ =
1
3

(r̂ − r)′
[
σ̂2R(X ′X)−1R′

]−1 (r̂ − r) =
1
3

(Rβ̂)′
[
σ̂2R(X ′X)−1R′

]−1 (Rβ̂)

=
1
3
β̂′
[
σ̂2(X ′X)−1

]−1
β̂ (18)

where X is a (T × 3) design matrix with its t-th row given by xt = (y3
t−1, y

5
t−1, y

7
t−1) and

σ̂2 = 1
T−4

T∑
t=1

(
∆yt − δ̂21y3

t−1 − δ̂41y5
t−1 − δ̂61y7

t−1

)2
. The limit distribution of F ∗ under H0 is com-

puted in the next theorem. In the sequel we denote weak convergence by ⇒ and convergence in
probability by P→. And a standard Brownian Motion is denoted by B(r).

Theorem 3.2.
Consider the T-STAR model (14) and let εt satisfy Assumption 2.1. Then the test statistic F ∗ as
given in (18) behaves asymptotically for T →∞ under the null of a random walk as follows

F ∗ ⇒ 1
3σ2

v′Q−1v,

where the matrices Q and v are given by

Q =


σ6

1∫
0

B6(r)dr σ8
1∫
0

B8(r)dr σ10
1∫
0

B10(r)dr

σ8
1∫
0

B8(r)dr σ10
1∫
0

B10(r)dr σ12
1∫
0

B12(r)dr

σ10
1∫
0

B10(r)dr σ12
1∫
0

B12(r)dr σ14
1∫
0

B14(r)dr


11



and

v =
[
σ4

{
1
4

1∫
0

B(1)4 − 3
2

1∫
0

B(r)dr
}

σ6

{
1
6

1∫
0

B(1)6 − 5
2

1∫
0

B(r)dr
}

σ8

{
1
8

1∫
0

B(1)8 − 7
2

1∫
0

B(r)dr
}]

.

Under the alternative the test is consistent.

In order to deal with deterministic components such as non-zero intercept terms or linear trends one
can use a two-step approach and de-mean or de-trend the data prior to computing the test statistic
F ∗. In this case the true data generating process is given by yt = ω′zt + xt where xt = yt−1 + εt
and ω′ is a parameter vector of suitable dimensions and zt = 1 for all t for the de-meaned case
and zt = [ 1, t ] for the de-trended case. The test can then be based on the OLS residuals x̂t, where
the asymptotic distribution now depends on functionals of de-meaned and de-trended Brownian
motion, respectively. These are given by

B(r)−
1∫

0

B(r)dr

for the de-meaned Brownian motion and by

B(r) + (6r − 4)

1∫
0

B(r)dr + (12r − 6)

1∫
0

rB(r)dr

for the de-trended Brownian motion.

Considering the case of serially correlated errors and assuming that the dependence enters in a
linear fashion we can generalize our results by augmenting the auxiliary regression with lagged
differences as in Dickey and Fuller (1979) and Said and Dickey (1984). The test regression then
reads

∆yt = δ21y
3
t−1 + δ41y

5
t−1 + δ61y

7
t−1 +

p∑
i=1

ρi∆yt−i + ut . (19)

The pair of hypotheses as well as the test statistic in this more general set up do not change with
respect to the auxiliary regression in (17).

Theorem 3.3.
Consider the test statistic F ∗ as in Theorem 3.2 but computed from (19). Under the null of a unit
root the test statistic maintains the same asymptotic distribution as in Theorem 3.2. Under the
alternative the test statistic is consistent.

Theorem 3.3 holds also true for the case of including deterministic terms as in auxiliary regression
(19). The asymptotic distribution in this case is such as in Theorem 3.2 when deterministic terms
are included, i.e. replacing the standard Brownian motion with the de-meaned or de-trended
Brownian motion, respectively.

Setting the approximation of the infinite sum from the Binomial series expansion to k = 1 it is
readily seen that

√
F ∗ has the same asymptotic distribution as the unit root test against ESTAR

developed by Kapetanios et al. (2003) and thus the statistic F ∗ contains their test as a special
case. It is also noteworthy that the F -test version of the ESTAR unit root test of Kapetanios et al.
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(2003) that would result if the location parameter c is not set equal to zero a priori is also a special
case of our test. Setting the series expansion again to k = 1 and also letting the location parameter
c 6= 0 the resulting limiting distribution of the test statistic from the related auxiliary regression is
the same as for the respective ESTAR unit root test and thus we also contain this test version as
a special case.

Containing these tests as special cases we expect a satisfying performance also against ESTAR
processes but higher power against globally stationary alternatives than the Kapetanios et al.
(2003) test as indicated by a faster rate of convergence in Theorem 3.2.

3.4 Monte Carlo Simulations

In this section we study the finite sample performance of the two tests developed above for the
T-STAR(1) model. Starting with the linearity test (see Section 3.2) the empirical size and power
under two different data generating processes are investigated. In order to keep the experiment
simple we conduct the simulations under the null of linearity using a simple AR(1) model and
compute the auxiliary regression using the location parameter c = 0 for the first scenario and c = 1
for the second scenario. For all experiments reported here we perform M = 50000 replications
combined with different sample sizes. An exception is the simulation to obtain the asymptotic
critical values for the unit root test for which the sample size is set to T = 10000 and the number
of replications to M = 1000000. For all power simulations reported here we consider α = 0.05 to
save space.1

The empirical size results for the linearity test for scenario one and scenario two are stated in Tables
3 and 4, respectively. The test shows only minor deviations from its nominal level and it tends to
under-reject somewhat. However, the test -although conservative- seems to be properly sized for
reasonable sample sizes encountered in monthly or daily data.

ψ1 = 0.3 ψ1 = 0.5 ψ1 = 0.8
T α = 1% α = 5% α = 10% α = 1% α = 5% α = 10% α = 1% α = 5% α = 10%

100 0.826 4.258 8.752 0.738 4.152 8.440 0.856 4.194 8.606
200 0.872 4.442 9.038 0.786 4.200 8.664 0.820 4.206 8.504
500 0.910 4.546 9.404 0.876 4.470 8.986 0.744 4.248 8.680
1000 0.858 4.594 9.554 0.840 4.360 9.008 0.878 4.152 8.578
5000 0.886 4.766 9.906 0.856 4.536 9.354 0.888 4.498 8.986

Table 3: Size results for scenario one.

ψ1 = 0.3 ψ1 = 0.5 ψ1 = 0.8
T α = 1% α = 5% α = 10% α = 1% α = 5% α = 10% α = 1% α = 5% α = 10%

100 0.912 4.298 8.608 0.818 4.256 8.594 0.838 4.402 8.744
200 0.776 4.200 8.764 0.802 3.986 8.268 0.796 4.150 8.504
500 0.818 4.266 8.866 0.776 4.184 8.434 0.892 4.270 8.530
1000 0.882 4.626 9.276 0.868 4.318 8.708 0.848 4.218 8.528
5000 0.968 4.584 9.372 0.882 4.450 8.892 0.792 4.260 8.764

Table 4: Size results for scenario two.
1The results for the cases α = 0.01 and α = 0.1 as well as all other unreported results are available from the

authors upon request.
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Turning to the power experiments we use a T-STAR(1) model and several values for ψ1, ϕ1 and
γ. The results are shown in Table 5 for scenario one and in Table 6 for scenario two. The results
suggest that the linearity test is a useful device to detect non-linearity in the data. As expected
the rejection frequency becomes closer to 100% the more pronounced the difference between the
regimes is and/or the larger the sample size is. Overall we obtain very similar power results against
T-STAR compared to Luukkonen et al. (1988) for their linearity test against ESTAR. Unreported
experiments confirmed that the proposed linearity test has also similar high power against the
other non-linear alternatives ESTAR, LSTAR and Double LSTAR (see Jansen and Teräsvirta,
1996). Reasonable power results were also obtained against the Markov switching model proposed
by Hamilton (1989).

T = 200 T = 500 T = 1000
PPPPPPPPPψ1 ϕ1

γ
0.5 0.8 1.0 0.5 0.8 1.0 0.5 0.8 1.0

0.3 0.5 5.452 5.468 5.650 7.502 8.628 8.708 11.796 14.488 15.014
0.3 0.6 6.638 7.414 7.686 12.534 16.060 16.154 24.166 32.020 31.766
0.3 0.7 9.434 11.456 11.570 22.000 29.264 29.014 44.362 57.616 58.062
0.3 0.8 13.642 17.872 18.238 36.348 49.194 48.964 69.112 83.718 83.360
0.3 0.9 21.276 29.262 28.098 56.726 74.030 71.142 89.640 97.252 96.482

Table 5: Power results for scenario one.

T = 200 T = 500 T = 1000
PPPPPPPPPψ1 ϕ1

γ
0.5 0.8 1.0 0.5 0.8 1.0 0.5 0.8 1.0

0.3 0.5 5.964 6.970 7.070 10.302 13.826 14.790 19.392 27.412 30.088
0.3 0.6 9.228 11.804 12.514 21.240 31.126 34.288 45.714 63.610 68.202
0.3 0.7 14.444 20.502 22.364 40.652 58.280 62.524 77.352 91.816 94.004
0.3 0.8 24.126 34.482 36.886 66.438 84.038 86.562 95.732 99.448 99.634
0.3 0.9 38.434 53.024 53.978 87.566 97.006 96.840 99.692 99.998 99.986

Table 6: Power results for scenario two.

The simulation results for the unit root test are presented below. First we report the asymptotic
critical values for the unit root test in Table 7. Case 1 denotes raw data, i.e. no deterministic
components, Case 2 denotes the case of de-meaned data and Case 3 denotes the case of de-trended
data. The results from the size experiments are summarized in Table 8. For larger sample sizes
(T > 500) the test is correctly sized and as the sample size increases it reaches its nominal level.
For smaller sample sizes some minor size distortions are visible but the overall impression is that
the test maintains good size properties also for smaller sample sizes.

For the power experiment for the unit root test we exemplarily show our results for T = 200 and
t = 500 and various values for γ, ψ and ϕ (Tables 9 and 10). The results indicate a good overall
performance of the unit root test in all sample sizes considered. The ability to distinguish between a
unit root process and a globally stationary T-STAR model increases if either the difference between
the regimes becomes larger or even faster if the sample size increases.
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α Case 1 Case 2 Case 3
1% 4.730 5.477 6.595
2.5% 3.124 4.722 5.783
5% 3.458 4.137 5.136
7.5% 3.124 3.778 4.739
10% 2.884 3.515 4.450

Table 7: Asymptotic critical values for unit root testing.

Case 1 Case 2 Case 3
T α = 1% α = 5% α = 10% α = 1% α = 5% α = 10% α = 1% α = 5% α = 10%

100 0.826 3.898 7.628 0.786 3.484 6.916 0.954 3.830 7.484
200 0.882 4.106 8.246 0.748 3.648 7.436 0.758 3.594 7.218
500 0.912 4.504 9.168 0.864 4.174 8.602 0.828 3.998 8.146
1000 0.932 4.920 9.528 0.904 4.370 9.076 0.862 4.324 8.868
5000 0.952 4.958 10.060 0.916 4.734 9.692 1.048 4.952 9.766
10000 0.984 5.036 10.006 1.004 4.982 9.990 0.966 4.918 9.886
50000 0.974 4.968 10.054 1.000 4.978 10.062 0.998 5.012 9.882

Table 8: Size for unit root testing using asymptotic critical values [in %].

As empirical studies using smooth transition models such as ESTAR frequently find very small
variances of the innovation term we examine the behavior of the newly developed unit root test
against T-STAR in such a framework. Studying this behavior is critical since Kruse et al. (2008)
show via Monte Carlo simulation that under small error term variances the power of unit root tests
developed for non-linear models rapidly deteriorates. We report simulation results for small sample
sizes of T = 100 (Table 11) and T = 500 (Table 12) and consider error term standard deviations
of σε = 0.1. The results show satisfying power results even for such small sample sizes. Low power
results are only found for cases in which the difference between the regimes is only very small or the
transition is so slow that only little observations are in the stationary regime. In these cases it is
notoriously hard to distinguish between the two regimes and as a consequences the power decreases.
However, the power is still high enough to deliver reliable test results and is in particular higher
than found by Kruse et al. (2008) for extant test. In the case T = 500 no decline in power is visible
and the test works under small error variances just as well as under white noise disturbances.

The newly developed test in particular shows better power properties as the test developed by
Kapetanios et al. (2003) and therefore yields more reliable results in empirical applications as
indicated by Kruse at al. (2009).
With regards to the linearity test we find the power only slightly reduced under small error variances
compared to the white noise assumption. These results however are unreported to save space.
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T = 200 Case 1 Case 2 Case 3
PPPPPPPPPψ1 ϕ1

γ
0.5 0.8 1.0 0.5 0.8 1.0 0.5 0.8 1.0

1.0 0.3 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
1.0 0.4 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
1.0 0.5 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
1.0 0.6 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
1.0 0.7 99.95 99.97 99.97 99.95 10.00 100.00 99.97 10.00 100.00
1.0 0.8 95.52 98.86 99.36 96.58 99.30 99.59 97.65 99.46 99.71
1.0 0.9 45.95 58.63 62.44 55.04 67.01 70.45 65.79 75.30 77.97
1.0 0.95 14.90 18.44 19.47 23.68 27.84 28.76 36.00 39.77 41.77

Table 9: Power results for unit root testing using asymptotic critical values [in %]

T = 500 Case 1 Case 2 Case 3
PPPPPPPPPψ1 ϕ1

γ
0.5 0.8 1.0 0.5 0.8 1.0 0.5 0.8 1.0

1.0 0.3 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
1.0 0.4 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
1.0 0.5 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
1.0 0.6 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
1.0 0.7 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
1.0 0.8 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
1.0 0.9 99.84 99.98 99.99 99.88 99.974 99.99 99.93 99.99 99.99
1.0 0.95 74.48 83.15 85.12 80.29 87.380 88.96 85.95 91.19 92.59

Table 10: Power results for unit root testing using asymptotic critical values [in %]

4 Empirical Illustration

To illustrate the application of the newly introduced T-STAR model with empirical data we in-
vestigate one of the most highly debated theories in international finance: the purchasing power
parity (PPP). The initial finding of a unit root in real exchange rates by Meese and Rogoff (1988)
subsequently shifted the interest in modeling real exchange rates to non-linear models (see e.g.
Taylor et al., 2001).

Technically spoken the real exchange rate should be non-linear but globally stationary and not
behave like a unit root process to support PPP.

To ensure comparability we use the same data that has been analyzed by Taylor et al. (2001) and by
Rapach and Wohar (2006). Namely, we analyze monthly real exchange data for Germany against
the US from 1973:02 - 1996:12.2 The series is depicted in Figure 5.

2The data set is available from David Rapach’s website at: http://pages.slu.edu/faculty/rapachde/Nlfit.zip.
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T = 100 Case 1 Case 2 Case 3
PPPPPPPPPψ1 ϕ1

γ
0.5 0.8 1.0 0.5 0.8 1.0 0.5 0.8 1.0

1.0 0.3 77.108 95.104 98.174 79.610 95.388 98.378 84.538 96.526 98.716
1.0 0.4 66.452 88.956 95.106 69.914 90.042 95.444 77.190 92.464 96.662
1.0 0.5 52.768 77.878 87.560 58.408 80.730 88.988 67.572 85.324 91.724
1.0 0.6 38.304 60.896 72.470 44.878 66.622 76.096 56.658 73.874 81.682
1.0 0.7 24.404 40.558 49.668 33.204 48.180 57.018 45.100 59.096 65.972
1.0 0.8 13.952 21.662 26.456 22.466 30.732 35.064 34.442 42.484 47.878
1.0 0.9 6.714 8.604 9.888 13.770 16.748 17.924 24.864 28.176 29.830
1.0 0.95 4.608 5.062 5.298 10.360 11.518 12.048 21.382 21.926 22.620

Table 11: Power results for unit root testing [in %] with σε = 0.1

T = 500 Case 1 Case 2 Case 3
PPPPPPPPPψ1 ϕ1

γ
0.5 0.8 1.0 0.5 0.8 1.0 0.5 0.8 1.0

1.0 0.3 100.00 100.00 100.00 100.00 100.00 100.00 100.000 100.00 100.00
1.0 0.4 100.00 100.00 100.00 100.00 100.00 100.00 100.000 100.00 100.00
1.0 0.5 100.00 100.00 100.00 100.00 100.00 100.00 100.000 100.00 100.0
1.0 0.6 100.00 100.00 100.00 100.00 100.00 100.00 100.000 100.00 100.00
1.0 0.7 100.00 100.00 100.00 100.00 100.00 100.00 100.000 100.00 100.00
1.0 0.8 100.00 100.00 100.00 100.00 100.00 100.00 99.99 100.00 100.00
1.0 0.9 93.25 99.09 99.70 94.01 99.19 99.74 95.57 99.38 99.77
1.0 0.95 44.70 63.54 70.72 53.48 70.29 76.52 64.24 77.55 82.39

Table 12: Power results for unit root testing [in %] with σ = 0.1
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Figure 5: Monthly log real exchange rate for Germany

We choose the lag length to be used subsequently with the Bayesian information criterion (BIC)
which yields a lag length of p = 1. Applying the linearity test against T-STAR described in Section
3.2 we obtain a test statistic of 3.69 which is significant on the α = 5% level of significance and
thus we reject the null of linearity.

Validity of the PPP suggests that the real exchange rate should be a globally stationary process
albeit non-linear. Applying the ESTAR unit root test developed by Kapetanios et al. (2003) as well
as the unit root test against T-STAR developed in Section 3.3 yields support for the PPP. Both test
are able to reject the null of a random walk on the α = 5% level of significance. These test results
support the theory that transaction costs in financial markets lead to a non-linear convergence to
a long-run equilibrium and thus support the validity of the PPP as a long run concept.

Since the data has already been under study by Taylor et al. (2001) we adopt the parameter
estimates they found and which have also been confirmed by estimations undertaken by Rapach
and Wohar (2006).3 Table 13 shows the estimation results for the parameter γ for the model under
the null for the ESTAR and the T-STAR model respectively.

ESTAR T-STAR
γ̂ 0.264 275.284
σ̂ε 0.035 0.032

Table 13: Estimation of γ under the null.

At a first glance the estimation result for ESTAR looks reasonable. But if we plot the estimated
transition function against the transition variable yt−1 and against time (see Figure 6) we get to
the conclusion that the ESTAR model basically reduces to a random walk model as the transition
function is always close or equal to zero effectively switching off the stationary regime.

3It should be noted that Taylor et al. (2001) and Rapach and Wohar (2006) also estimated the location parameter

c. However, as their estimate is very close to zero, namely c = −0.007, we restrict c = 0 in our estimation to keep it

simple.
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Figure 6: Left panel: One minus transition function against transition variable. Right panel: One
minus transition function against time.

The figure supports the results that, albeit the parameter estimate for γ leads to a reasonable
looking transition function plotting it against time, γ̂ = 0.264 actually produces a random walk
model and by this contradicts PPP caused by a degenerated transition function. Producing the
same plots for T-STAR we obtain Figure 7.
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Figure 7: Left panel: One minus transition function against transition variable. Right panel: One
minus transition function against time.
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The estimation of a large γ̂ = 275.284 still produces a transition function that is by no means close
to the limit for γ →∞ (see the properties in Section 2 ). In addition we see from the left panel that
the estimated process is far more often in the stationary regime and becomes a random walk only on
few occasions. This supports the PPP as a long run concept with a non-linear convergence towards
an equilibrium. The estimation of the T-STAR model thus yields an advantage over ESTAR in
terms of parameter interpretation.

It is noteworthy that the plot in Figure 6 is not unique for this particular data set but a common
finding in empirically estimated ESTAR models. Kruse (2009) for example support these findings
for other real exchange rates (see their Figure 1).

The panels in Figure 6 and Figure 7 also support the theoretical results that the estimation of γ
heavily depends on the error term variance σε derived in Section 2. Looking at the estimated values
for γ in Table 13 and the left panels in Figures 6 and 7 we obtain a reasonable form of the transition
function from a mathematical point of view. However plotting the transition function against time
we see that the estimated function does not support the hypothesis that the data comes from the
assumed data generating process. This supports that the estimation of γ is heavily influenced by
the small error standard deviation. The estimated γ for the T-STAR model looks awkward at first.
However, looking at the plots in Figure 7 this yields a transition function that is not degenerated in
the sense that the actual range exploits its whole domain and it does not behave as in the limiting
case (see Section 2). This supports the assumed data generating process, i.e. a globally stationary
T-STAR model. The estimation of γ in the T-STAR case is by far not so heavily influenced from
the small error standard deviation and thus we can extend the range of possible γ values for which
we obtain a non-degenerated transition function. This also supports the conclusion that we can
largely reduce the influence of σε on γ by reformulating the transition function.

5 Conclusions

We have studied the ESTAR and T-STAR model, two competing models of the STAR family sharing
the same characteristic properties of their transition functions. Due to their nonlinear structure,
unidentified parameters occur for certain combinations of γ and σ2, the transition parameter and
the error term variance, respectively. This phenomena has not been studied systematically before
although it is of importance in applications.
In the ESTAR setting, very small values of σ2, among others, yield in particular an unidentified
γ, making a consistent estimation of γ nearly impossible. In Theorem 2.4 we verified this by
showing that the variance of the conditional Maximum Likelihood estimator γ̂ tends to infinity
as σ2 vanishes. Hence, in order to estimate γ, somewhat unpleasant modifications need to be
incorporate into the optimization routine.
In order to avoid this, we define the T-STAR model where γ becomes unidentified much later as
σ2 → 0 compared to the ESTAR model. As a consequence, γ can be included in the parameter
vector that is to be estimated. By deriving a linearity and a unit root test for the T-STAR model
we support our opinion that this new model is indeed a worthy alternative, applicable to the same
situations and should therefore be preferred to the ESTAR model.
This conclusion is illustrated by fitting both models to the same data set containing real exchange
rates. The estimators one obtains in the ESTAR setting do not allow for a meaningful interpretation
of the fitted model as one regime is basically switched off. One can clearly see that this is the result
of the identification problem caused by a small error term variance. Contrary to that, the fitted
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T-STAR models allows for switching between the two regimes, leading to a better fit, although the
estimators for γ and σ2 look not very promising without interpreting them in the right context.

As this text deals with a topic that is not well studied yet, there are many possible open questions
and possibilities how to go from here. The most interesting question at the moment is whether it
is possible to quantify and compare the regions for which (γ, σ) cause the identification problem in
both regimes. A more theoretical, in depth study of the T-STAR model would be needed for this.

A Appendix: Proofs and Technical Lemmas

Proof of Lemma 2.3.
In order to show that IE

[
exp(−nγy2

t )y
2k+1
t

]
= 0 for all t ≥ 0, k ∈ IN0 and n ∈ IN0 we verify that

y2k+1
t exp(−nγy2

t ) has a symmetric density for all t ≥ 0, k ∈ IN0 and n ∈ IN0 as long as the density
of εt is symmetric around zero for all t. This is done by first showing that yt has a symmetric
density for all t ≥ 0, followed by an application of Lemma A.1 with a = 0, b = 1 and c = nγ > 0.

An inductive argument is used to prove that the density of yt is symmetric around zero for all t.
The initial variable y0 = ε0 has a symmetric density by choice. Now, let t ≥ 1 and assume that
yt−1 has a symmetric density and recall from (5) that

yt =
[
ψ + ϕ exp(−γy2

t−1)
]
yt−1 + εt, t ≥ 1.

We know from Lemma A.1 that
[
ψ + ϕ exp(−γy2

t−1)
]
yt−1 has a symmetric density around zero.

As the same holds for εt by assumption, it follows from Lemma A.2 that also the denisty of yt is
symmetric around zero due to yt−1 and εt being independent.

In oder to show that the left hand side of (7) behaves asymptotically like σ2k as σ goes to infinity,
we use again an inductive argument. First note that∣∣∣IE(exp(−ny2

t )y
2k
t

)∣∣∣ ≤ IE
(
y2k
t

)
and recall that the moment generating function of a normally distributed random variable X is
given by MX(t) = exp(µt+ q/2 ∗ σ2t2) with

IE(Xn) = M
(n)
X (0). (20)

Let k ≥ 1 and t = 0. As y0 is normally distributed with mean zero (see (6)) we obtain from (20)

IE(y2k
0 ) = ckσ

2k

for a constant ck, as M2k
y0 (0) = ckσ

2.
Assume now that (7) holds for t− 1. Then

IE
(
y2k
t

)
= IE

((
ψ + ϕ exp(−γy2

t−1)
)2k

y2k
t−1

)
+ IE(ε2kt )

as the expected value of any product of yt−1 and εt vanished due to independence. As(
ψ + ϕ exp(−γy2

t−1

)2k ≤
(
|Ψ|+ |ϕ| exp(−γy2

t−1

)2k ≤ 1

we obtain

IE
(
y2k
t

)
≤ IE(

(
y2k
t−1

)
+ IE(ε2kt ) = ckσ

2k + ckσ
2k
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due to normality of εt, which shows that (7) holds.

Lemma A.1.
Let X be a real valued random variable with symmetric density around zero. Then the density of
[a+ b exp(−cX2)]X2k+1 for some k ∈ IN0 and a, b, c ∈ IR, ab 6= 0, c > 0, is symmetric around zero,
too.

Proof.
The result is obtained by applying theorems deriving the density of a transformed random variable
(see e.g. Theorems 22.2 and 22.3 in Behnen and Neuhaus (1995)).

First let a ∈ IR \ {0}, c > 0 and b = 0 and define gk : IR → IR, gk(x) = ax2k+1 for some k ∈ IN0

as well as Y = gk(X). Since g′k(x) = (2k + 1)ax2k, x ∈ IR, and g−1
k (x) = (x/a)1/(2k+1), x ∈ IR, we

obtain

fY (y) =


0 for y = 0,

fX(g−1
k (y))

|g′k(g−1
k )(y)| =

fX

(
y

1
2k+1 a

− 1
2k+1

)
(2k+1)

(
y

1
2k+1 a

− 1
2k+1

)2k for y 6= 0,

where fX and fY denote the densities of X and Y , respectively. Note that (−y/a)1/(2k+1) =
(−1)1/(2k+1)(y/a)1/(2k+1) = −(y/a)1/(2k+1) which implies, for y 6= 0,

fY (−y) =
fX

(
−y

1
2k+1a−

1
2k+1

)
(2k + 1)

(
−y

1
2k+1a−

1
2k+1

)2k
=

fX

(
y

1
2k+1a−

1
2k+1

)
(2k + 1)

(
y

1
2k+1a−

1
2k+1

)2k
= fY (y), (21)

where the second last equality is due to the symmetry of fX .

Now consider the case b 6= 0 which is incomparable more complex. Let a ∈ IR and c > 0 with
gk : IR → IR, gk(x) = (a + b exp(−cx2))x2k+1 for some k ∈ IN0 and Y = gk(X). Contrary to
the case b = 0, gk can now change its monotonic behavior and might therefore be only piecewise
invertible.
We know that, for all k ∈ IN0,

(i) gk is continuous on IR with gk(0) = 0,

(ii) gk is point symmetric around zero,

(iii) by the properties of the exponential function,

lim
x→∞

gk(x) = lim
x→∞

ax2k+1 + b
x2k+1

ecx2 = lim
x→∞

ax2k+1 =


−∞ for a < 0,

0 for a = 0,

∞ for a > 0.

(22)

(iv) the monotonic behavior can be summarized in the following table where ξk = 2
2k+1e

− 2k+3
2 :

22



b > 0 a > ξk b > 0 gk is strictly monotone increasing
b > 0 a < −b < 0 gk is strictly monotone decreasing
b > 0 a ∈ [−b, ξkb ]

= [−b, 0 ] gk changes its monotone behavior twice, starting
with being strictly decreasing

∪ (0, ξkb ] gk changes its monotone behavior four times, starting
with being strictly increasing

b < 0 a > −b > 0 gk is strictly monotone increasing
b < 0 a < ξk b < 0 gk is strictly monotone decreasing
b < 0 a ∈ [ ξkb,−b ]

= [ ξk b, 0) gk changes its monotone behavior four times, starting
with being strictly decreasing

∪ [ 0,−b ] gk changes its monotone behavior twice, starting
with being strictly increasing

If gk changes its monotonic behavior twice, it always happens at

w1,2 = ±

√√√√−W0

(
−a
b

2k+1
2 e

2k+1
2

)
+ 2k+1

2

c

no matter which parameter combination for a and b we consider. Here, W0 denotes the prin-
cipal branch of the Lambertsche W-function with domain [− exp(−1),∞), i.e. the function
that satisfies x = W0(x) exp(W0(x)). If gk changes its behavior four times, it additionally
happens at

w3,4 = ±

√√√√−W−1

(
−a
b

2k+1
2 e

2k+1
2

)
+ 2k+1

2

c

where W−1 is the second real branch of the W-function defined on [ exp(−1), 0).

Figures 8 and 9 illustrate the function g0 for different parameters a and b with c = 1. While we
choose b = 1 > 0, a = −1.2 < −b in Figure 8, the latter corresponds to b = 1 > 0, a = 0.2 ∈
(0,−ξ0b ] = (0, 0.4463 ].
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Figure 8: g0 with a = −1.2 and b = 1.
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Figure 9: g0 with a = 0.2 and b = 1.
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Properties (i)-(iii) are obvious. We verify property (iv) by writing, for x ∈ IR,

g′k(x) = (2k + 1)bx2k

[
a

b
+ exp(−cx2)

(
1− 2

2k + 1
cx2

)]
= (2k + 1)bx2k

[a
b
− hk(x)

]
,

with

hk : IR→ IR, hk(x) = −2k + 1
2

exp(−cx2)
(

2k + 1
2
− cx2

)
.

Let k ≥ 0 and assume b > 0.
Then (2k + 1) bx2k > 0 for x ∈ IR \ {0}. Hence, g′k(x) > 0, x ∈ IR \ {0}, (i.e. strictly monotone
increasing) if a/b > h(x) for all x ∈ IR \ {0}. As

max
x∈IR

h(x) = max

{
h(0), h

(
±
√

2k + 3
2c

)}
=

2
2k + 1

exp
(
−2k + 3

2

)
=: ξk,

we obtain a strictly increasing gk for a/b > ξk and by a similar argument a strictly decreasing gk
as long as a/b < −1 since

min
x∈IR

h(x) = h(0) = −1.

For a/b ∈ [−1, ξk ] the monotone behavior changes, driven by the sign of a (see (22)). Note that
g′k(x) = 0 whenever x = 0 (k ≥ 1) or

a

b
+
(

2k + 1
2
− cx2

)
2

2k + 1
exp(−cx2) = 0

which is equivalent to(
2k + 1

2
− cx2

)
exp

(
2k + 1

2
− cx2

)
= −a

b

2k + 1
2

exp
(

2k + 1
2

)
. (23)

For solving (23) we need to consider two different cases. Note that for a ∈ (0, ξkb ], the right
hand side of (23) is contained in [− exp(−1), 0), hence in the range where W has two real-values
branches, denoted by W0 and W−1. Therefore, from (23), for j = 0,−1,

2k+1
2 − cx2 = Wj

(
−a
b

2k+1
2 exp

(
2k+1

2

))
(24)

⇔ w1,2,3,4 = ±
√
−Wj(−a

b
2k+1

2
exp( 2k+1

2 ))+ 2k+1
2

c

which are well defined as

−W0

(
−a
b

2k + 1
2

exp
(

2k + 1
2

))
≥ −W0

(
2k + 1

2
exp

(
2k + 1

2

))
≥ −2k + 1

2

and

−W−1

(
−a
b

2k + 1
2

exp
(

2k + 1
2

))
≥ −W−1 (− exp(−1)) = 1.

For a ∈ [−1, 0 ] the argument of Wj in (24) is in the domain of only one real branch, namely W0,
so that (23) has only two solution leading to two monotone changes of gk.
An analogue argument shows the behavior of gk if b < 0.
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For those combinations of a and b where gk is strictly monotone, symmetry of fY can be derived in
the same way as in (21). Note that g′k is symmetric around zero and that g−1

k is point symmetric
around zero as it shares this property with g. Thus, for y ∈ IR,

fY (−y) =
fX
(
g−1
k (−y)

)∣∣g′k (g−1
k (−y)

)∣∣ =
fX
(
−g−1

k (−y)
)∣∣g′k (−g−1

k (−y)
)∣∣ =

fX
(
g−1
k (y)

)∣∣g′k (g−1
k (y)

)∣∣ = fY (y).

For the remaining parameters combinations of a and b we present as an example the argument for
b > 0 and a ∈ (0, ξkb ]. Define

G1 = (−∞,−z2) ∪ (z2,∞), G2 = (−z2,−z1) ∪ (z1, z2) and G3 = (−z1, z1)

where z1 = w1 and z2 = w3. On the open sets Gi, i = 1, . . . , 3, gk,i = gk1lGi , i = 1, . . . , 3 is strictly
monotone with derivatives and inverse functions g′k,i and g−1

k,i , respectively. Hence, from Theorem
22.3 of Behnen and Neuhaus (1995),

fY (y) =
3∑
i=1

f(g−1
k,i (y))∣∣∣g′k,i(g−1
k.,i(y))

∣∣∣1ly∈Hi , y ∈ IR,

for Hi = gk,i(Gi). As H1 ∪ H2 ∪ H3 = IR, as g′k,i, i = 1, . . . , 3 are symmetric around zero and as
g−1
k,i , i = 1, . . . , 3 are point symmetric around zero, we obtain fY (−y) = fY (y) for all y ∈ IR.

Lemma A.2.
Let X and Y be independent real valued random variables with densities fX and fY , respectively.
Symmetries of fX around c ∈ IR (fX(x + c) = fX(−x + c), x ∈ IR) and fY around d ∈ IR then
imply that the convolution density fZ of Z = X + Y is symmetric around c+ d.

Proof.
The density fZ of Z is given by

fZ(z) =
∫

IR
fX(z − x)fY (x) dx, z ∈ IR.

Hence, for all x ∈ IR,

fZ(−x+ c+ d) =
∫

IR
fX(−x+ c+ d− y)fY (y) dy =

∫
IR
fX(−(x− d+ y) + c)fy(y) dy

=
∫

IR
fX(x− d+ y + c)fy(y) dy =

∫
IR
fX(x+ c+ d+ y − 2d)fY (y) dy

=
∫

IR
fX(x+ c+ d− z)fY (−z + 2d) dz =

∫
IR
fX(x+ c+ d− z)fY (−(z − d) + d) dz

=
∫

IR
fX(x+ c+ d− z)fY (z − d+ d) dz = fZ(x+ c+ d).

Proof of Theorem 2.4.
Let β̂n be the conditional Maximum Likelihood estimator of β = (ψ,ϕ, γ). Then by Theorem 3.2
of Tjøstheim (1986)

n1/2(β̂n − β) d→ N(0, σ2U−1)
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and where the matrix U is given by

U =


IE[y2

t−1] IE[y2
t−1 exp(−γy2

t−1)] −2IE[y3
t−1 exp(−γy2

t−1)]

IE[y2
t−1 exp(−γy2

t−1)] IE[y2
t−1 exp(−2γy2

t−1)] −2IE[y3
t−1 exp(−2γy2

t−1)]

−2IE[y3
t−1 exp(−γy2

t−1)] −2IE[y3
t−1 exp(−2γy2

t−1)] 4IE[y4
t−1 exp(−γy2

t−1)]

 .

In order to obtain the limiting behavior of Var(γ̂) we therefore study

σ2
(
U−1

)
33

=
σ2

det(U)
det

(
u11 u12

u21 u22

)
. (25)

Because of Lemma A.1, which states that IE
[[
ψ + ϕ exp(−γy2

t−1)
]2k+1

y2k+1
t−1

]
= 0, the matrix U

boils down in our situation to

U =


IE[y2

t−1] IE[y2
t−1 exp(−γy2

t−1)] 0

IE[y2
t−1 exp(−γy2

t−1)] IE[y2
t−1 exp(−2γy2

t−1)] 0

0 0 4IE[y4
t−1 exp(−γy2

t−1)]


so that

det(U) = u33 det

(
u11 u12

u21 u22

)

and hence

σ2
(
U−1

)
33

= σ2u−1
33 =

σ2

4IE[y4
t−1 exp(−γy2

t−1)]
.

Applying (7) to the denominator we get

σ2
(
U−1

)
33
∼ cσ2

σ4
=

1
σ2
→ ∞, for σ ↓ 0,

which finishes the proof.

Proof of Theorem 3.2.
We consider the asymptotic behavior of the least squares estimator β̂ = (δ̂21 , δ̂

4
1 , δ̂

6
1). Since under

the null ∆yt = ut the OLS estimator β̂ can be written as

β̂ =

(
T∑
t=1

x′txt

)−1

︸ ︷︷ ︸
I

T∑
t=1

x′tut︸ ︷︷ ︸
II

.

The elements in this matrix equation read for part I

T∑
t=1

x′txt =



T∑
t=1

y6
t−1

T∑
t=1

y8
t−1

T∑
t=1

y10
t−1

T∑
t=1

y8
t−1

T∑
t=1

y10
t−1

T∑
t=1

y12
t−1

T∑
t=1

y10
t−1

T∑
t=1

y12
t−1

T∑
t=1

y14
t−1

 (26)
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and for part II

T∑
t=1

x′tut =
[
T∑
t=1

y3
t−1ut

T∑
t=1

y5
t−1ut

T∑
t=1

y7
t−1ut

]
. (27)

In order to determine the asymptotic behavior we have to scale the OLS estimator β̂ properly. We
thus multiply β̂ with the scaling matrix Γ = diag(T 2, T 3, T 4) and obtain[

Γ−1
T∑
t=1

x′txtΓ
−1

]−1 [
Γ−1

T∑
t=1

x′tut

]
= Γβ̂ .

Now the asymptotic behavior of the first part of Γβ̂ follows directly from Lemma A.3 and the
behavior of the second part follows from the convergence to stochastic integrals for products of I(1)
variables (Theorem 4.2 from Hansen (1992) the CMT and Itô’s Lemma). This yields the following
general result for i ∈ IN>0

1
T (i+1)/2

T∑
t=1

yit−1ut ⇒
1∫

0

Bi(r)dB(r) = σ(i+1)

 1
(i+ 1)

1∫
0

B(1)(i+1) − i

2

1∫
0

B(r)dr

 .

Given these results the OLS estimator converges as T →∞ as follows

Γβ̂ =

[
Γ−1

T∑
t=1

x′txtΓ
−1

]−1 [
Γ−1

T∑
t=1

x′tut

]
⇒ Q−1v

where

Q =


σ6

1∫
0

B6(r)dr σ8
1∫
0

B8(r)dr σ10
1∫
0

B10(r)dr

σ8
1∫
0

B8(r)dr σ10
1∫
0

B10(r)dr σ12
1∫
0

B12(r)dr

σ10
1∫
0

B10(r)dr σ12
1∫
0

B12(r)dr σ14
1∫
0

B14(r)dr


and

v =
[
σ4

{
1
4

1∫
0

B(1)4 − 3
2

1∫
0

B(r)dr
}

σ6

{
1
6

1∫
0

B(1)6 − 5
2

1∫
0

B(r)dr
}

σ8

{
1
8

1∫
0

B(1)8 − 7
2

1∫
0

B(r)dr
}]

.

The scaled F -statistic we are concerned with reads

F ∗ =
1
3

Γβ̂′
[
σ̂2Γ(X ′X)−1Γ

]−1 Γβ̂ .

By the law of large numbers it is easy to show that under the null as T →∞

σ̂2 =
1

T − 4

T∑
t=1

(
∆yt − δ̂0y3

t−1 − δ̂1y5
t−1 − δ̂2y7

t−1

)2 P→ σ2 .

The test statistic F ∗ has the limiting distribution

F ∗ ⇒ 1
3σ2

(Q−1v)′(Q−1)−1(Q−1v) =
1

3σ2
v′Q−1v

as stated in the theorem.

27



Under the alternative ∆yt and yit−1,∀i ∈ IN>0 are I(0) and thus it is readily seen that

1
T

T∑
t=1

∆yt = OP (1);
1
T

T∑
t=1

yit−1 = OP (1);

are bounded in probability. Furthermore the innovation process ut is by assumption I(0) and thus

1
T

T∑
t=1

ut = OP (1)

as well. Consider first the behavior of the OLS estimate

β̂ =


T∑
t=1

x′txt︸ ︷︷ ︸
I


−1

T∑
t=1

x′tut︸ ︷︷ ︸
II

.

The part I reads as in (26)

T
1
T

T∑
t=1

x′txt = TOP (1) = OP (T ) .

The part II can be written as

T∑
t=1

x′tut =
T∑
t=1

x′t

T∑
t=1

ut = T
1
T

(
T∑
t=1

x′t

T∑
t=1

ut

)
= T

1
T

T∑
t=1

x′t︸ ︷︷ ︸
OP (1)

T
1
T

T∑
t=1

ut︸ ︷︷ ︸
OP (1)

= T 2OP (1) = OP (T 2) .

For the OLS estimate β̂ follows that

(OP (T ))−1OP (T 2) = (TOP (1))−1 T 2OP (1) =
1
T
T 2OP (1) = TOP (1) = OP (T ) .

Analogously for the test statistic F ∗ it follows that

F ∗ =
1

3σ̂2
β̂′(X ′X)β̂ =

1
3σ̂2
OP (T )OP (T )OP (T ) =

1
3σ̂2
OP (T 3) .

Hence as T →∞ the test statistic F ∗ diverges to infinity.

Lemma A.3.
Let yt = yt−1 + εt be a random walk and let εt be as in Assumption 2.1 such that a functional
central limit theorem (FCLT) applies. Then, for all i ∈ IN>0,

1
T (i+2)/2

T∑
t=1

yit−1 ⇒ σi
1∫

0

Bi(r)dr .
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Proof.

Denote the partial sum process by XT (r) =
[Tr]∑
t=1

yt−1 with r ∈ [0, 1] and [ · ] being the integer part

of its argument. Moreover, let ST (r) =
√
TXT (r). The FCLT then implies

ST (r) ⇒ σ

1∫
0

B(r)dr , T →∞,

so that, for i ∈ IN>0,

SiT (r) ⇒ σi
1∫

0

Bi(r)dr

by the continuous mapping theorem. Write SiT (r) = T i/2Xi
T (r) with Xi

T (r) = T−i
[Tr]∑
t=1

yit−1.

Then SiT (r) reads

SiT (r) =



0 for 0 ≤ r < 1/T

T (i/2−i)yi1 for 1/T ≤ r < 2/T

T (i/2−i)yi2 for 2/T ≤ r < 3/T
...

T (i/2−i)yiT for r = 1 .

Therefore

1∫
0

SiT (r) = T−1

[
T (i/2−i)

T∑
t=1

yit−1

]
= T (−i/2−1)

T∑
t=1

yit−1 =
1

T (i+2)/2

T∑
t=1

yit−1 .

If T →∞ it follows by the FCLT and the CMT

1
T (i+2)/2

T∑
t=1

yit−1 ⇒ σi
1∫

0

Bi(r)dr .

Proof of Theorem 3.3.
We have to show that the inner product of the regressor matrix including the additional regressors
is asymptotically block diagonal (see e.g. Hamilton (1994) or Hatanaka (1996)). The inner product
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(X ′X) of the regressor matrix from (19) reads

T∑
t=1

y6
t−1

T∑
t=1

y8
t−1

T∑
t=1

y10
t−1

T∑
t=1

y3
t−1∆yt−1 . . .

T∑
t=1

y3
t−1∆yt−p

T∑
t=1

y8
t−1

T∑
t=1

y10
t−1

T∑
t=1

y12
t−1

T∑
t=1

y5
t−1∆yt−1 . . .

T∑
t=1

y5
t−1∆yt−p

T∑
t=1

y10
t−1

T∑
t=1

y12
t−1

T∑
t=1

y14
t−1

T∑
t=1

y7
t−1∆yt−1 . . .

T∑
t=1

y7
t−1∆yt−p

T∑
t=1

∆yt−1y
3
t−1

T∑
t=1

∆yt−1y
5
t−1

T∑
t=1

∆yt−1y
7
t−1

T∑
t=1

∆y2
t−1 . . .

T∑
t=1

∆yt−1∆yt−p
...

...
...

... . . .
...

T∑
t=1

∆yt−py3
t−1

T∑
t=1

∆yt−py5
t−1

T∑
t=1

∆yt−py7
t−1

T∑
t=1

∆yt−p∆yt−1 . . .
T∑
t=1

∆y2
t−p



.

Remember (see e.g Hamilton, 1994, p.517) that an AR(p) process

(1− φ1L− φ2L
2 − . . .− φpLp)yt = εt

can be written equivalently as

{(1− ρL)− (ζ1L+ ζ2L
2 + . . .+ ζp−1L

p−1)(1− L)}yt = εt

where ρ = φ1 + φ2 + · · ·+ φp and ζj = −[φj+1 + φj+2 + . . .+ φp] for j = 1, 2, . . . , p− 1. Under the
assumption of a unit root, i.e. ρ = 1, the process can be written as

(ζ1L− ζ2L2 − . . .− ζp−1L
p−1)∆yt = εt

or

∆yt = et

where et = (ζ1L− ζ2L2 − . . .− ζp−1L
p−1)−1. The behavior of the process yt is such that it fulfills

proposition 17.3 in Hamilton (1994, p.505).

First, letting et = yt − yt−1 we obtain

T∑
t=1

y6
t−1

T∑
t=1

y8
t−1

T∑
t=1

y10
t−1

T∑
t=1

y3
t−1et−1 . . .

T∑
t=1

y3
t−1et−p

T∑
t=1

y8
t−1

T∑
t=1

y10
t−1

T∑
t=1

y12
t−1

T∑
t=1

y5
t−1et−1 . . .

T∑
t=1

y5
t−1et−p

T∑
t=1

y10
t−1

T∑
t=1

y12
t−1

T∑
t=1

y14
t−1

T∑
t=1

y7
t−1et−1 . . .

T∑
t=1

y7
t−1et−p

T∑
t=1

et−1y
3
t−1

T∑
t=1

et−1y
5
t−1

T∑
t=1

et−1y
7
t−1

T∑
t=1

e2t−1 . . .
T∑
t=1

et−1et−p

...
...

...
... . . .

...
T∑
t=1

et−py
3
t−1

T∑
t=1

et−py
5
t−1

T∑
t=1

et−py
7
t−1

T∑
t=1

et−pet−1 . . .
T∑
t=1

e2t−p



.

Using the results (c) and (e) stated in proposition 17.3 in Hamilton (1994, p.505) combined with
the CMT and the results from theorem 3.2 we have

(X ′X)⇒

[
Q 0
0 W

]
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where

W =


γ0 γ1 . . . γp−2

γ1 γ0 . . . γp−3
...

... . . .
...

γp−2 γp−3 . . . γ0

 , γj = E[(∆yt)(∆yt−j)]

and where Q is as given in Theorem 3.2 but with σk replaced by its long-run counterpart given
by λ = σ/(1 − ζ1 − . . . − ζp−1). Thus the inner product of the regressor matrix is asymptotically
block diagonal and therefore the distribution of the coefficients δ21 , δ

4
1 and δ61 is independent of the

distribution of the additional regressors.

Using similar arguments as in Theorem 3.2 it is straightforward to show that the test is consistent
under (19).
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