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PREFACE 
California’s Climate Change Assessments provide a scientific foundation for understanding 
climate-related vulnerability at the local scale and informing resilience actions. These 
Assessments contribute to the advancement of science-based policies, plans, and programs to 
promote effective climate leadership in California. In 2006, California released its First Climate 
Change Assessment, which shed light on the impacts of climate change on specific sectors in 
California and was instrumental in supporting the passage of the landmark legislation 
Assembly Bill 32 (Núñez, Chapter 488, Statutes of 2006), California’s Global Warming Solutions 
Act. The Second Assessment concluded that adaptation is a crucial complement to reducing 
greenhouse gas emissions (2009), given that some changes to the climate are ongoing and 
inevitable, motivating and informing California’s first Climate Adaptation Strategy released the 
same year. In 2012, California’s Third Climate Change Assessment made substantial progress in 
projecting local impacts of climate change, investigating consequences to human and natural 
systems, and exploring barriers to adaptation.  

Under the leadership of Governor Edmund G. Brown, Jr., a trio of state agencies jointly 
managed and supported California’s Fourth Climate Change Assessment: California’s Natural 
Resources Agency (CNRA), the Governor’s Office of Planning and Research (OPR), and the 
California Energy Commission (Energy Commission). The Climate Action Team Research 
Working Group, through which more than 20 state agencies coordinate climate-related 
research, served as the steering committee, providing input for a multisector call for proposals, 
participating in selection of research teams, and offering technical guidance throughout the 
process. 

California’s Fourth Climate Change Assessment (Fourth Assessment) advances actionable 
science that serves the growing needs of state and local-level decision-makers from a variety of 
sectors. It includes research to develop rigorous, comprehensive climate change scenarios at a 
scale suitable for illuminating regional vulnerabilities and localized adaptation strategies in 
California; datasets and tools that improve integration of observed and projected knowledge 
about climate change into decision-making; and recommendations and information to directly 
inform vulnerability assessments and adaptation strategies for California’s energy sector, water 
resources and management, oceans and coasts, forests, wildfires, agriculture, biodiversity and 
habitat, and public health.  

The Fourth Assessment includes 44 technical reports to advance the scientific foundation for 
understanding climate-related risks and resilience options, nine regional reports plus an oceans 
and coast report to outline climate risks and adaptation options, reports on tribal and 
indigenous issues as well as climate justice, and a comprehensive statewide summary report. 
All research contributing to the Fourth Assessment was peer-reviewed to ensure scientific rigor 
and relevance to practitioners and stakeholders.  

For the full suite of Fourth Assessment research products, please visit 
www.climateassessment.ca.gov. This report contributes to energy sector resilience by 
improving our understanding of probabilistic forecasts, which have the potential to improve 
energy system management in California’s variable and changing climate. 

http://www.climateassessment.ca.gov/
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ABSTRACT 
Probabilistic forecasts have the potential to improve energy system management by anticipating 
climate fluctuations and possible weather extremes that influence energy consumption. Such 
forecasts must contend with a high level of natural variability as well as challenges posed by 
climate change. However, such forecasts are constrained by limited understanding of local and 
regional atmospheric predictability. This work bridges the gap between country-wide studies 
and specific, local studies of atmospheric predictability. These results indicate that statistical 
methods can provide predictability for seasonal anomalies of air temperature over much of 
California. The level of forecast skill may provide useful guidance for utility industry 
applications, but is not universally applicable because skill was found to vary over several 
elements, including forecasts of nighttime and daytime temperatures, location, season, lead 
time, and choice of predictor variables. The statistical forecast skill of seasonal air temperatures 
obtained for some regions and seasons can be superior to that provided by dynamical forecast 
models, according to results provided by a companion study (Zhang et al. 2018) submitted to 
California’s Fourth Climate Change Assessment. We developed and explored a statistical 
prediction model of minimum and maximum air temperature anomalies (Tmin and Tmax) over 
California using remote and local predictors. The first predictor variable field is sea surface 
temperature (SST) anomalies across the tropical and northern Pacific basin, representing the 
influence of large-scale climate variability patterns, which in turn affect local surface air 
temperature. The second predictor variable is soil moisture (SM), which is thought to exert a 
local or regional influence on temperatures near the surface through the effects on the surface 
energy balance. The evaluation of the predicted air temperature using historical observations 
indicates that both local and remote influences contribute to the prediction skill for air 
temperature. These influences vary with the season and vary between Tmin or Tmax 
predictands. At time leads of one season, SST has a strong effect on the summer temperatures, 
but SM provides little prediction skill. On the other hand, in the winter, both SM and SST 
anomalies provide significant skill in one season in advance predictions of Tmin and Tmax. 
However, those two predictands also present some important differences: while SST influence 
both Tmin and Tmax, the influence is stronger for Tmin for both summer and winter. On the 
other hand, SM influences Tmax more strongly during winter, especially for lags of two and 
three months. These results exhibit positive forecast skill, but demonstrate considerable 
variability across seasons in model predictors and forecast performance of seasonal air 
temperature for California and the overall far western North America region. The results also 
demonstrate the importance of careful analyses that consider season, variable being predicted, 
predictors, and time lags in forming statistical forecast models that will be used for decision 
making.  

Keywords: seasonal predictability, air temperatures, California, sea surface temperature, soil 
moisture, canonical correlation. 

Please use the following citation for this paper: 

Dias, D. F., Cayan, D. R., Gershunov, A. (Scripps Institution of Oceanography, University of 
California, San Diego). 2018. Statistical prediction of minimum and maximum air 
temperature in California and western North America. California’s Fourth Climate 
Change Assessment, California Energy Commission. Publication Number: CCCA4-CEC- 
2018-011. 
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HIGHLIGHTS 
• Development of reliable probabilistic forecasts has the potential to improve energy 

sector management in California’s highly variable and changing climate. For instance, 
simple statistical models that relate patterns of variability of different variables can be 
used with certain confidence to develop the aforementioned forecasts. The advantage of 
such models is that they are easy and economical to implement when compared to more 
complex dynamical models. 

• A linear statistical model was developed to test the seasonal predictive skill of air 
temperatures over California. Local and remote predictors were used and the results 
demonstrate that both influence this predictive skill. However, there is considerable 
variability in the forecast skill across seasons in models predictors and forecast 
performance of seasonal air temperature. 

• Pacific sea surface temperature (SST) and western North America soil moisture (SM) 
exhibit positive skills from linear statistical forecasts of winter (December, January and 
February; DJF) and summer (June, July and August: JJA) seasonal average minimum 
temperature (Tmin) and maximum temperature (Tmax) for California. 

• In summer (JJA), SST has a strong effect on the temperatures, but SM did not yield much 
predictive skill, whereas in winter, both SM and SST have some ability to predict Tmin 
and Tmax.  

• Pacific SST influences both Tmin and Tmax, but the influence is stronger for Tmin for 
both summer and winter, whereas SM influences Tmax more strongly during 
wintertime. 

• A simple model such as the one explored here may offer predictive skill for air 
temperatures over California at certain seasons, and may be useful for energy utility 
applications. Over parts of California, the forecast skill of these linear statistical models 
is comparable or better than that obtained by the North American Multi-Model 
Ensemble (NMME). For example, the summer (JJA) and winter (DJF) forecast skill 
obtained by the linear model using SST anomalies as a predictor is greater than the 
forecast skill obtained by NMME over parts Southern and coastal California regions. 

• If the forecasts’ uncertainties associated with the variability across seasons and model 
predictors can be better understood, there may be opportunities to perform real-time air 
temperature forecasts for California at one season lead times using the linear statistical 
model developed here, in order to inform decision makers, especially in the energy 
sector. 
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1: Introduction 
Skillful predictions of climate fluctuations at seasonal or longer time scales have many 
economical and societal applications. Anticipating the climate fluctuations, and possible 
associated weather extremes, at one or more season in advance would have measurable benefits 
for decision-making relating to hydrology, agriculture, health, energy, and other sectors. 
Surface air temperature anomalies exert great influence on agriculture, where both warm and 
cool anomalous temperatures can affect crop production, especially for spring and early 
summer. And, concerning the energy sector, the variability of regional surface air temperature 
plays an important role. For example, a summer when temperatures are much higher than the 
average would increase the demand for cooling, therefore increasing energy consumption 
through the heavy load of electrical usage from air conditioners. Likewise, a winter cooler than 
the average will bring the energy consumption up by increasing the demand for heating.  

Although the dynamics of the climate system have important nonlinear features, seasonal 
predictions are often made with linear statistical methods. In fact, it has been found that the 
traditional linear methods are comparable in skill to the nonlinear statistical ones (Tang et al. 
2000; van den Dool 2007) and can perform better than dynamical ones (Gershunov and Cayan 
2003). Most of those linear approaches seek to estimate related patterns of variability in the 
predictor and the predictand fields, such as by canonical correlation analysis (CCA; e.g, 
Gershunov and Cayan, 2003; Wilks 2008). The advantage of those statistical forecasts is that 
they can be formulated and implemented easily and they perform economically, and the 
forecast skill they produce can be evaluated in a straightforward manner. 

The scientific basis for seasonal atmospheric climate predictability arises from the fact that 
variations in slowly changing influences, such as oceanic and terrestrial conditions at Earth’s 
surface, in particular those having time scales of several days to several months, can affect 
atmospheric circulation and accordingly, the climate at the surface. Ocean thermal anomalies 
often persist for several months, and a large body of studies have shown that slowly evolving 
sea surface temperature (SST) anomaly patterns can be used to make useful forecast of seasonal 
weather and climate anomalies a season or more in advance (e.g, Namias, 1965; Barnett and 
Preisendorfer 1987; Barnston and Smith 1996; Gershunov 1998, Gershunov and Cayan, 2003; 
Neelin et al., 1998; Rasmusson and Wallace, 1983; Xoplaki et al., 2003). This is particularly 
important for North America, where the low-frequency variability in Pacific SST climate modes 
influences atmospheric circulation over the Pacific-North America sector and consequently, the 
United States climate (Hartman, 2015; Horel and Wallace, 1981; Mantua et al. 1997). 

Those oceanic influences on surface temperatures over North America often involve large scale 
variability patterns and operate at relatively long distances. However, there may also be 
regional influences that come to play, including the state of the land surface. In particular, the 
variability of soil moisture has been shown to affect the surface energy balance (Koster et al. 
2000) and thereby add predictability for seasonal time scales (Alfaro et al., 2006; Seneviratne et 
al., 2010; Whan et al., 2015). This may be the case when the impact of SST fields on the 
atmospheric variability is modest, which has been demonstrated during the summer season in 
mid-latitudes (Koster et al. 2000; Shukla 1998; Trenberth et al. 1998).  

Additionally, antecedent surface moisture deficits have been statistically linked to the frequency 
of hot summer days and to the duration of summer heatwaves over a large fraction of the global 
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land surface, including most areas of South and North America, Europe, Australia, and parts of 
China (Mueller and Seneviratne, 2012, Gershunov and Douville 2006). Within these results, the 
predictability of hot extremes was shown to be enhanced by sequences of days following wetter 
conditions because the moisture in the soil leads to a decrease in the number of hot days 
(Quesada et al., 2012). Therefore, soil moisture may increase the skill for seasonal predictions at 
some specific locations and seasons (Koster and Suarez, 2003). 

Some studies have explored the role of soil moisture in the predictability of summer air 
temperature over the United States. Initially, Barnett and Preisendorfer (1987) suggested that 
some portion of air temperature variability may be explained by forcings other than large scale 
ocean influences when studying the predictability of U.S. summer air temperatures using 
Pacific SST patterns. From studies of potential predictability, they found that the average SST 
predictive skill for summer air temperature was lower than expected. In fact, Georgakakos et al. 
(1995) found significant cross-correlation for the upper soil moisture leading maximum 
temperature values with 5 to 10 days of lag in two locations in the interior of the U.S. 
Additionally, Huang and Van den Dool (1993) found that soil moisture has an impact on the 
next month’s surface air temperature in summer, and Huang et al. (1996) found an inverse 
correlation between soil moisture and air temperature in the interior of the U.S. This enhances 
the temperature persistence during warm season months, therefore providing extra skill in 
predicting air temperature in large interior areas, particularly for the daily maximum values. 

Alfaro et al. (2006), hereafter A06, studied associations of Pacific SST and the Palmer Drought 
Severity Index (PDSI) with summer maximum and minimum temperatures over the central and 
western United States during 1950-2001. A06 found that large-scale and remote climate 
conditions exert their influence more strongly on minimum than maximum temperature. 
Interestingly, summer surface maximum air temperatures were more predictable than those in 
winter, despite summer having less spatially coherent and lower amplitude climate patterns 
than those in winter. This was attributed to the additive effect of soil moisture, presumably 
augmenting effects of large-scale patterns, represented by SST. In other words, during the warm 
season, regional or local soil moisture processes provide another source of predictability.  

In this work, we investigate predictability of seasonal average minimum and maximum air 
temperatures over the western United States in the winter and summer. As in A06, we employ 
linear statistical methods, using Pacific SST and regional soil moisture predictors. This work is 
similar to A06, but includes more years, is more regionally focused, and provides a broader 
seasonal consideration. Here, using 66 years of record, we focus on the western conterminous 
U.S. and compare seasonal forecasts of summer air temperature with those of winter. In 
particular, we ask to what degree does this approach offer skill in predicting seasonal air 
temperature over the California region. 

 

2: Data and Methods 
Our objective was to explore the predictability of air temperature over California at seasonal 
time-scales. Encouraged by earlier results demonstrated in A06, we adopt a linear statistical 
approach using canonical correlation analysis. The variables and the data used as predictors 
and predictands, as well as the details of the implemented model, are described in this section. 
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2.1 Predictands 
The variability of daytime temperatures, represented by time averages of the daily maximum 
temperature (Tmax), differ from that of nighttime temperatures, represented by time averages 
of daily minimum temperature (Tmin). From a statistical perspective, daytime temperature 
anomalies have higher amplitude (larger daily, monthly and seasonal fluctuations) than do 
nighttime temperatures, especially in summer months (A06). Additionally, seasonal anomalies 
of Tmax and Tmin over California are at best (in spring) correlated moderately, and at worst 
(late summer-fall) correlated poorly (Table 1).  

 

Table 1: Correlation coefficients between seasonal averages of Tmin and Tmax anomalies 
averaged over the California region. 

Season DJF JFM FMA MAM AMJ MJJ JJA JAS ASO SON OND NDJ 

Correlation 0.41 0.43 0.60 0.65 0.58 0.50 0.38 0.35 0.35 0.33 0.37 0.44 

 

This lack of strong correlation evidently reflects the different mechanisms that affect daytime 
and nighttime temperatures and their predictability. From an energy utility perspective, 
daytime and nighttime temperature anomalies may have different effects on the supply of 
energy and on the demand for energy. For example, in summer extreme hot daytime 
temperatures increase demand for electricity because of the use of air conditioners but usually 
occur under clear skies, which results in high solar energy production. Warmer summer 
nighttime temperatures would diminish beneficial diurnal cooling relief from hot days and thus 
might increase the magnitude and duration of air conditioning electrical load, which could 
increase system failures. In winter, other kinds of impacts may occur. In cooler parts of 
California, warm nighttime anomalies may lead to less space heating and thus lower electrical 
and natural gas demand, whereas cool daytime anomalies may provoke higher indoor energy 
requirements from increased space heating and other indoor utility use.  

In view of the above, in our study of air temperature predictability over the California region, 
we investigate a separate set of forecast models for Tmax and Tmin in summer and winter. The 
1950-2013 period is used in the model development and validation. The predictands variables 
considered are the seasonally averaged Tmin and Tmax, respectively from the Livneh CONUS 
near-surface gridded meteorological data (Livneh et al. 2015), provided by the Earth System 
Research Laboratory of the National Oceanic & Atmospheric Administration (ESRL/NOAA). 
These datasets are gridded at a spatial resolution of 1/16° by 1/16° (approximately 6km square) 
and are derived from daily temperature observations from approximately 20,000 NOAA 
Cooperative Observer (COOP) stations (Livneh et al., 2015). We use seasonal averages of Tmax 
and Tmin anomalies because they represent short period climate fluctuations over multi-day 
time scales. The predictand dataset are obtained by first calculating the monthly anomalies for 
each variable, and then calculating seasonal means of the Tmin and Tmax anomalies. While the 
models are developed for Tmax and Tmin over a broader domain of the far western part of 
North America, this study present results for Tmax and Tmin predictions with focus on the 
California region by providing validation maps and statistics exclusively over California. 
Forecasts for winter (December, January and February – DJF season) and summer (June, July 
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and August – JJA season) are presented. The similarity of the model experiments with those of 
A06 provide an interesting comparison of Tmax and Tmin predictive skill obtained by that prior 
study, when the regional domain is narrowed to California and the far western United States 
and the model testing period is extended by several years. 

2.2 Predictors 
Two variables were used as predictor fields for the air temperature. The first predictor variable 
is Sea Surface Temperatures (SST) anomalies for the Pacific Basin (15°S to 60°N and 135°E to 
110°W), which are obtained from the Hadley Center Sea Ice and Sea Surface Temperature 
(HadISST, Rayner et al., 2003). The HadISST data has a resolution of 1° by 1°and it can be 
obtained at the following website: 
https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html.  

The second predictor variable is soil moisture (SM) anomalies. In contrast to prior studies, 
including A06, that have used soil moisture indices such as the Palmer Drought Severity Index 
(PDSI), SM employed here is estimated from an existing (developed by Dennis Lettenmaier and 
colleagues) hydrological model reanalysis produced by the Variable Infiltration Capacity (VIC) 
model, forced by observed daily precipitation and temperature. VIC is a macroscale 
hydrological water and energy balance accounting model (Liang et al., 1994; Cherkauer and 
Lettenmaier, 2003) that has been used in numerous studies of climate and hydrological 
variability and changes (e.g. Hamlet et al. 2007; Das et al. 2009). The forcing data is the gridded 
daily precipitation and temperature historical dataset from Livneh et al. 2015, which covers the 
conterminous United States and adjoining portions of Canada and Mexico, and is forced at the 
same resolution as the Livneh predictand fields, resulting in SM data that is distributed over the 
identical 1/16° grid. The VIC SM domain is also identical to that of the Tmax and Tmin 
predictands, covering the land area from 25°N to 53°N and 105°W to 125°W.  

SST and SM were selected as predictors because they are broadly representative of large scale 
and regional and local scale climate measures that vary over time scales that are relevant to 
seasonal air temperature fluctuations. While Tmax and Tmin are affected by several other 
variables such as winds, clouds, and topographic influences, we have not included those here 
since our purpose is to explore linear prediction using a plausible, readily available, and 
manageable predictor set. Both predictor datasets consist of monthly means from 1950 to 2013, 
from which monthly anomalies are calculated by removing the climatological (1950-2013) 
monthly mean for each grid cell and each month. Importantly, trends in the predictors and 
predictands were not removed.  

2.3 Model Details 
2.3.1 Canonical Correlation Analysis and Prediction 
The model framework implemented to make the seasonal predictions of air temperature over 
California uses Canonical Correlation Analysis (CCA), following an approach that has been 
used in several prior climate prediction and analysis studies (e.g. Barnett and Preisendorfer 
1987; Gershunov et al. 2000; Gershunov and Cayan 2003). This method explores and identifies 
the linear combinations between two sets of variables that have the greatest correlation with 
each other, seeking to match patterns in the predictor fields (SST and SM) with patterns in the 
predictand fields (Tmin and Tmax). For many climate-related phenomena, the CCA approach 
condenses much of the spatial and temporal variability and it is a simple and cheap way to 

https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html
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perform the predictions. These spatial patterns and their time variations provide a set of modes 
for which we can interpret climate-scale associations and test for possible association with 
commonly known climate variation patterns at different timescales. Moreover, the predictions 
are made by fitting a linear model that relates antecedent observation of the monthly-averaged 
predictor fields to the time-lagged seasonally-averaged predictand fields. This methodology 
follows the hypotheses addressed by A06: on one side, the anomalous Pacific SST causes 
changes in the large-scale atmospheric circulation, which in turn influences the land surface 
temperatures over a broad sector; on the other side, soil moisture modulates the local air 
temperature via the interaction between latent and sensible heating. With those hypotheses 
addressed, a CCA prediction model for the winter (DJF) and summer (JJA) is constructed 
considering SST and SM lagged by one to three months. Therefore, for the winter, “Lag 1” 
considers the monthly-averaged predictor field from November, “Lag 2” from October, and 
“Lag 3” from September; for the summer, “Lag 1” includes the monthly-averaged predictor 
field from May, “Lag 2” from April, and “Lag 3” from March. 

The statistical model is constructed first by selecting the antecedent observations of the 
predictor fields and the contemporaneous observations of the predictand field. For example, to 
make the Tmin one-month lag winter prediction using SST as predictor, we select all the 
Novembers of SST and all the DJFs of Tmin, but excluding the year that is being predicted. The 
predictor and predictand fields are separately pre-filtered with the same number of p principal 
components (PCs), which are statistically orthogonal patterns of spatial and temporal 
variability, ordered by amount of variance explained, in the predictor and predictand fields. 
Those patterns are then related to each other using the q canonical correlates (CCs) extracted 
from the CCA analysis. To avoid artificial skill (e.g, Davis 1976) from over-fitting, the models 
are optimized (Section 2.3.2) wherein skill over a range of predictor and predictand 
membership is evaluated under a cross-validation scheme – the number of PCs and CCs are 
thus determined as the model complexity which maximizes cross-validated prediction skill 
(Gershunov and Cayan 2003). Therefore, p ≤ q ≤ T (in fact p and q are much fewer than T), 
where T is the number of years available for the training period.  

Importantly, all results pertaining to model performance are cross-validated, wherein the year 
of a given prediction has been left out of the model development. That is, separate models are 
made for each year, wherein the training period of each year’s model is made using a period 
that excludes the season and adjacent months being predicted. This is implemented by 
excluding the year predicted from the training period (lagged month for the predictor and 
season for the predictand). 

2.3.2 Skill Optimization and Model Validation 
Given the cross-validated forecasts, an evaluation is then conducted of the sequence of resulting 
yearly forecasts compared to that of the observed data to provide a realistic estimate of forecast 
skill. The first measure of skill we applied is the correlation between the observed and the 
predicted air temperature (Tmin and Tmax) at each grid point. The squared correlation is the 
amount of Tmax or Tmin variance explained. From this measure maps of correlation values can 
be investigated that represent the correlation skill of the statistical models, using a different set 
of predictors (SST and SM), predictands (Tmin and Tmax), seasons (summer and winter), and 
lags (one, two and three months). 
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Another skill measure applied is the “Heidke Skill Score” (HSS), which measures the fraction of 
corrected forecasts after eliminating those forecasts that would be correct due to random 
chance. HSS is applied to the forecast time series of a region near Sacramento, in central 
California, and for the eight different models described here. Sacramento is chosen because of 
its central location geographically, because it represents a major population who depend on 
natural gas and energy utilities, and because it is a well-known location. The formulation of this 
skill score is given by: 

 

𝐻𝐻𝐻𝐻𝐻𝐻 =
(𝑁𝑁𝑁𝑁 − 𝐸𝐸)
𝑇𝑇 − 𝐸𝐸

 

 

Where NC is the number of correct forecasts, hence the number of forecasts that falls in the 
same category as the observed values, T is the total number of forecasts, and E is the number of 
forecasts expected to verify based on chance. To calculate those values, the observations time 
series are divided in three categories (above normal, normal and below normal). NC represents 
the number of the predicted values that fall into one of those categories (xii), whereas E 
represents the predicted values that do not correspond to those categories (xip or xpi):  

 

𝑁𝑁𝑁𝑁 =�𝑥𝑥𝑖𝑖𝑖𝑖

𝑚𝑚

𝑖𝑖=1

 

 

𝐸𝐸 =�𝑥𝑥𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖

𝑚𝑚

𝑖𝑖=1

/𝑇𝑇 

 

The resultant HSS is a number between Infinity and 1, where 1 represents the perfect model, 0 
indicates no skill, and negative values indicate that the forecasts are less skillful than randomly 
generated ones. 

For each of the forecast model cases (season, lag, predictor, and predictand), a certain number of 
p PCs and q CCs is determined by finding the optimum model, i.e., the combination of PCs and 
CCs that maximize the forecast skill. The model is calculated using all different combinations of 
PCs and CCs, from 1 to 18 and with PCs ≤ CCs. For each option of model complexity (i.e., 
combination of the number of PCs and CCs), the cross-validated skill is estimated for each grid 
point and then summarized in one value by averaging the correlation of all the points. In 
practice, we use the field averaged correlation between the predicted and observed air 
temperature as a measure of forecast skill when determining the optimum model. Therefore, for 
each model combination (i.e., predictor-predictand-season), we have a different model 
complexity (combination of PCs and CCs numbers) that maximizes the forecast skill. Finally, 
the optimum model is determined by selecting the model complexity that presents the better 
skill. Details of the model optimization process are presented below in Section 3.1. 
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3: Results 
In this section, results from the CCA prediction models are presented. We first describe the skill 
optimization and show the different model complexity for the different experiments. Then we 
briefly explain the canonical correlation patterns, that represent the physical sources of 
predictability for Tmin and Tmax. Finally, we show the forecast skill for Tmin and Tmax using 
all the model combinations described in the previous section. 

3.1 Optimum Model 
The model complexity (numbers of PCs and CCs, i.e. p and q) used for each experiment is 
presented in Table 2 and the variance explained by each CC mode is presented in Table 3 for the 
predictands (Tmin and Tmax) and in Table 4 for the predictors (SST and SM).  

Table 2: Optimum number of Principal Components (PCs) and Canonical Correlates (CCs) for all 
one month lag summer (JJA) and winter (DJF) forecast experiments, the field-averaged skill for 

the optimum model (Skill), and the lower (rl) and upper (ru) limits of the 95th confidence interval of 
skill obtained from 100 randomized experiments. 

Season Predicted Predictor Predictand PC CC Skill 

JJA SST Tmin 16 16 0.21 -0.

rl ru

003 0.013 

DJF SST Tmin 10 9 0.20 -0.011 0.011 

JJA SST Tmax 16 16 0.24 -0.001 0.017 

DJF SST Tmax 14 12 0.26 -0.008 0.026 

JJA SM Tmin 11 10 0.13 -0.007 0.010 

DJF SM Tmin 10 6 0.15 -0.008 0.012 

JJA SM Tmax 2 2 0.22 0.001 0.026 

DJF SM Tmax 13 5 0.10 -0.001 0.016 
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Table 3: Variance explained by each predictand Canonical Correlate (rows, CC mode), for each 
experiment (columns). The number of CC modes included in each experiment was determined by 

the optimization process (see Table 2 and Section 3.1 for details). 

 SST SM 

CC 
mode 

Tmin 
JJA 

Tmin 
DJF 

Tmax 
JJA 

Tmax
DJF 

Tmin 
JJA 

Tmin 
DJF 

Tmax 
JJA 

Tmax 
DJF 

1 34.7% 14.8% 4.9% 8.1% 10.3% 17.4% 50.1% 57.0% 

2 3.9% 1.0% 4.7% 7.5% 1.3% 10.8% 49.9% 41.3% 

3 7.9% 0.5% 1.8% 5.7% 0.4% 0.0% -- 0.0% 

4 0.3% 7.4% 19.8% 7.9% 20.1% 70.9% -- 1.1% 

5 9.4% 6.4% 11.9% 0.0% 23.3% 0.7% -- 0.6% 

6 0.1% 0.6% 0.5% 28.0% 17.8% 0.2% -- -- 

7 0.2% 8.6% 0.0% 9.6% 4.8% -- -- -- 

8 12.0% 44.1% 12.2% 2.3% 3.2% -- -- -- 

9 4.4% 16.7% 5.1% 1.1% 1.8% -- -- -- 

10 3.3% -- 2.5% 6.1% 17.1% -- -- -- 

11 4.5% -- 10.7% 22.7% -- -- -- -- 

12 0.5% -- 9.7% 0.9% -- -- -- -- 

13 8.2% -- 0.0% -- -- -- -- -- 

14 2.6% -- 9.0% -- -- -- -- -- 

15 4.4% -- 1.5% -- -- -- -- -- 

16 3.8% -- 5.6% -- -- -- -- -- 
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Table 4: Variance explained by each predictor Canonical Correlate (rows, CC mode), for each 
experiment (columns). The number of CC modes included in each experiment was determined by 

the optimization process (see Table 2 and Section 3.1 for details). 

 SST SM 

CC 
mode 

Tmin 
JJA 

Tmin 
DJF 

Tmax 
JJA 

Tmax 
DJF 

Tmin 
JJA 

Tmin 
DJF 

Tmax 
JJA 

Tmax 
DJF 

1 14.1% 3.3% 7.9% 0.1% 20.8% 35.1% 50.0% 33.2% 

2 0.9% 23.2% 5.4% 17.5% 30.0% 15.9% 50.0% 11.6% 

3 0.0% 16.3% 8.0% 2.1% 5.1% 28.7% -- 0.9% 

4 2.0% 13.0% 0.2% 0.1% 14.6% 1.1% -- 14.4% 

5 6.1% 12.5% 3.0% 14.3% 0.0% 18.8% -- 40.0% 

6 16.7% 2.0% 5.8% 0.8% 0.0% 0.4% -- -- 

7 0.0% 9.8% 2.7% 4.8% 0.2% -- -- -- 

8 21.9% 2.7% 2.7% 19.8% 1.8% -- -- -- 

9 21.2% 17.1% 17.7% 31.0% 26.6% -- -- -- 

10 2.3% -- 1.5% 1.3% 0.9% -- -- -- 

11 1.6% -- 5.3% 2.4% -- -- -- -- 

12 2.8% -- 6.1% 5.8% -- -- -- -- 

13 5.2% -- 18.4% -- -- -- -- -- 

14 1.4% -- 3.7% -- -- -- -- -- 

15 1.0% -- 5.2% -- -- -- -- -- 

16 2.8% -- 6.5% -- -- -- -- -- 

 

Those choices were made based on the skill optimization matrix, where the field-averaged skill 
is calculated for each different combination of PCs and CCs. To reduce the number of 
calculations required in this exercise, the number of PCs representing the predictor and 
predictand fields was fixed as the same number of modes in producing these optimization 
estimates. 
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Figure 1: Skill optimization for DJF Tmin prediction using SST as predictor. Figure shows the 

cross-validated field-averaged skill, expressed as the correlation between the predicted and the 
observed temperatures, using different combination of the Principal Components (PCs) and the 

Canonical Correlates (CCs). The optimum is defined the number of PC and CC modes that yielded 
the highest cross validated skill (PC=10 and CC=9). 

As an example, Figure 1 shows the plot of this matrix for the prediction of winter Tmin using 
one-month lagged SST as a predictor. In this case, the resulting skill matrix exhibits not one, but 
a set of optimal regions where the skill is equally highest (for example, number of CCs between 
7 and 11, and the number of PCs between 8 and 12). In proceeding with the model experiments, 
in the spirit of parsimony, i.e. “simpler is better”, we chose the simpler model complexity (the 
fewer PCs/CCs number) that can have the best predictability. In Figure 1, this number is 10 PCs 
and 9 CCs, and this procedure was repeated for all the other experiments, as shown in Table 2. 
This table also presents the field-averaged skill for that chosen number of CCs and PCs and 
compares it to the field-averaged correlation of a randomized experiment: the time series of the 
predictor was randomized and used to generate the CCA model to forecast air temperature. 
This procedure was repeated 100 times and the lower and upper limits of the 95th confidence 
intervals of those repetitions were calculated. The field-averaged correlation is always bigger 
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than both of those limits, which indicates that the predictability derived from the model is not 
due to a stochastic forcing results from a deterministic process between the predictors and the 
predictand. Therefore, in all of these experiments, the skill achieved is highly likely to be real 
and not simply artifacts from the data or the model. 

Surveying the model results, the optimization produces different combinations of 
predictors/predictands and canonical correlations produced for different seasons. The model 
complexity ranges from very simple models, where few PCs and CCs results in the maximum 
predictability, to more complex models, where a greater number of modes were required to 
obtain the highest forecast skill. For example, the JJA SM-Tmax model gives the greatest skill 
when using only two PCs and CCs modes, while the JJA SST-Tmax is optimized at 16 of each. 
This is a hint that the sources of predictability for Tmin and Tmax vary according to the 
predictor and the season that is being analyzed. Therefore, it appears to be important to 
perform this skill optimization analysis across each case to maximize the potential air 
temperature forecast skill. 

3.2 Canonical Patterns 
Before exploring the prediction skill with CCA, it is important to elucidate the spatial patterns 
and their time variations to provide insight into the physical sources of predictability. To do so, 
the canonical correlation patterns that relate SST and SM to Tmax and Tmin can be explored. 
We show only the three leading CC modes because the spatial structure associated with the 
higher-order modes typically becomes continuously less spatially coherent and they contribute 
progressively less to the field-averaged forecast skill, although they may be important for 
predicting sub-regional anomalies in specific years. 
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Figure 2: First three coupled CCA modes of DJF Tmin related to November SST. Left panel 

displays the time series of the CCA modes (CC1, CC2 and CC3), where predictor (SST) is in black 
and predictand (Tmin) is in blue; ρ is the correlation between the two time-series (CC1=0.91; 

CC2=0.87 and CC3=0.71). Middle and right panels show the spatial pattern associated with the 
SST and Tmin fields, respectively, expressed as correlation between the CCA mode time series 

and their respective variable field for each location. 

The spatial patterns of the canonical correlates are explored. Those spatial patterns are maps of 
the correlations, calculated at each point, between the canonical correlates (CC) time series and 
the original data time series. First, concerning winter forecasts using antecedent monthly SST, 
Figure 2 presents the spatial patterns that relate November SST to DJF Tmin, as well as the time-
series associated with those patterns. The leading mode (CC1) of the SST-Tmin pattern captures 
a warming effect for the air temperature over land, and its SST expression as a warming in the 
Western Pacific. The pattern exhibited by the third mode (CC3) is an expression of the Pacific 
Decadal Oscillation (PDO, Mantua et al., 1997). The second mode (CC2) presents weaker 
correlations than the other two, although the SST pattern resembles the shape of the Pacific 
Meridional Mode (PMM, Vimont et al., 2001). For the case where November SM was used to 
predict winter temperatures, interesting regional scale patterns also emerge.  
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Figure 3: First three coupled CCA modes of DJF Tmin related to November SM. Left panel displays 

the time series of the CCA modes (CC1, CC2 and CC3), where predictor (SM) is in black and 
predictand (Tmin) is in blue; ρ is the correlation between the two time-series (CC1=0.79; CC2=0.75 
and CC3=0.64). Middle and right panels show the spatial pattern associated with the SM and Tmin 

fields, respectively, expressed as correlation between the CCA mode time series and their 
respective variable field for each location. 

Figure 3 shows the November SM spatial pattern that is related to DJF Tmin and the time series 
to which those patterns are associated. Although we cannot name the SM modes because they 
have not been so broadly studied as the SST modes, we can see that the patterns are spatially 
coherent and the CC time series appear to have interannual to decadal temporal variation. 
Within the SM-CC correlation maps, some of the regions of strongest correlations are opposite 
of those produced by the Tmin-CC correlation maps, meaning that in these regions, positive SM 
anomalies are associated with negative Tmin anomalies and vice versa. The first SM canonical 
mode (CC1) shows a clear north-south gradient, and it is associated with an opposite gradient 
for Tmin, especially in the southernmost part of the domain. For the second mode (CC2), this 
opposite pattern between SM and Tmin is more evident in the Northwestern part of the 
domain, although the correlations are weaker. Finally, the third mode (CC3) has also weaker 
correlations (i.e. weaker coupling overall by definition, and also less local variance), and the 
patterns are alike, with positive SM anomalies linked to positive Tmin anomalies (and vice 
versa). 

In general, the Tmin and Tmax CC modes consist of spatial patterns that have few to several 
hundred km scales. This indicates that the forecasted temperature anomalies are regional, not 
local, so the value to utilities would often cover major parts of their service areas. 
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Several of the CC time series are quite closely related to known climate modes. Figure 4 shows 
the correlation of the leading three CC modes from each of the experiments with 12 different 
climate variability patterns. The climate patterns are ones that have been identified in numerous 
previous studies, capturing regional to global scale variability at the ocean surface in the 
Atlantic and Pacific basins, and in the atmosphere near Earth’s surface and aloft in the mid-
troposphere. Some studies also have explored the effect of those modes in the predictability of 
California air temperature. For example, Alfaro et al. (2004) demonstrated the predictive 
capability of the spring PDO for the following summer temperatures over California, and 
Schwartz et al. (2014) explored the mechanism behind this forcing, through links between the 
coastal low cloudiness and PDO. Schwartz et al. (2014) found that the North Pacific SST 
variability, in the form of PDO, is well correlated with the coastal cloud variability, helping to 
organize those summer patterns along the coast of North America, which in turn may 
accomplish in part the PDO association with California summer temperature anomalies.  

The time series associated with these patterns vary over a range of time scales from seasonal to 
multi-decadal. Several of the CC modes derived from the SST predictor present high 
correlations with those large-scale patterns. For example, as shown in Figure 2i, the third mode 
of the winter SST-tmin model resembles the pattern of PDO and indeed it presents a correlation 
of 0.7 with that time series (Figure 4b). Moreover, the time series representing ENSO (Niño1.2, 
Niño3.4, and Niño4) also exhibit strong correlations with certain CC modes, for example the 
second mode of the winter tmax-SST model. Therefore, those CC patterns indicate that the 
forecast models developed here, especially using SST as a predictor, rely on the effect of the 
large-scale climate variations over the regional variability. In contrast to the SST CC modes, the 
SM CC modes do not correlate strongly with any of the climate modes. 

3.3 Forecast Skill 
Since a primary goal of this work is aimed at developing temperature forecasts related to 
California energy supply and demand, forecast skill over the state of California is presented 
here. It was expected that forecast skill would diminish as the forecast lead is increased – e.g., 
the greatest forecast skill is obtained for forecast lead time of one month, and least for lead of 
three months. Considering results from A06, it was expected that SM forecasts would yield 
more skillful forecasts during the warm season, and SM forecasts for Tmax would be superior 
to those for Tmin. Furthermore, A06 found that summer SM forecast skill was greater than the 
skill of Pacific SST forecasts.  
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Figure 4: Tmin forecast skill using SST as predictor for JJA (top panel) and DJF (bottom panel). 
The forecast was made for different lags: one month (May SST predicting JJA Tmin (a) and Nov 

SST predicting DJF Tmin (d)); two months (Apr SST predicting JJA Tmin (b) and Oct SST 
predicting DJF Tmin (e)); and three months (Mar SST predicting JJA Tmin (c) and Sep SST 
predicting DJF Tmin (f)). Skill is expressed as correlation between the cross-validated CCA 

forecast and observation at each grid point in California. 

Forecast skill for the CCA models is presented in Figure 5 to Figure 8, which are maps of cross-
validated correlations between the time series of forecasts at each grid point and that of the 
attendant Tmin or Tmax observations. The maps are presented for the array of different 
predictors, predictands, seasons, and lags. The correlation values indicate the portion of the 
variability of Tmin and Tmax that was explained by the predictor for the season that is being 
predicted. As noted earlier, squared correlations represent the amount of variance explained. 
Those maps show that there are significant differences in forecast skill for both Tmax and Tmin, 
with considerable differences across the season that is being predicted and by the predictor that 
is being used. Furthermore, the ability to predict air temperature for higher lags (two and three 
months) is also dependent on those factors, with some remarkable differences.  
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Figure 5: Tmax forecast skill using SST as predictor for JJA (top panel) and DJF (bottom panel). 
The forecast was made for different lags: one month (May SST predicting JJA Tmax (a) and Nov 

SST predicting DJF Tmax (d)); two months (Apr SST predicting JJA Tmax (b) and Oct SST 
predicting DJF Tmax (e)); and three months (Mar SST predicting JJA Tmax (c) and Sep SST 
predicting DJF Tmax (f)). Skill is expressed as correlation between the cross-validated CCA 

forecast and observation at each grid point in California. 

For summer (JJA) forecasts, SST provides significant (positive) skill in predicting Tmax and Tmin 
variability, but SM offers little. The skill of predicting summer Tmin is somewhat higher than 
forecasts of Tmax. Summer Tmin skill over California using SST as a predictor is higher than 0.5 
over nearly the entire State (Figure 5a); when using SM as a predictor the skill decays to zero and 
to negative values (Figure 7a). Likewise, the model using SST as a predictor for Tmax during the 
summer provides positive forecast skill although not quite as high as for Tmin, but higher than 
that of the model using SM (compare Figure 6a with Figure 8a). Moreover, the skill of SST 
predicting Tmax and Tmin persists with little decline throughout the three months of lead time 
(May, April and March leading JJA) (Figure 5b,c and Figure 7b,c). Forecasts of summer Tmin and 
Tmax from SM predictors (Figure 7a,b,c and  Figure 8a,b,c) have mostly insignificant or negative 
skill  but interestingly March SM leading JJA Tmin produces positive skill over much of the state, 
perhaps reflecting the fact that March SM is greater and has greater influence on subsequent air 
temperature anomalies than April or May SM, when soils are rapidly drying out in California. 
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Figure 6: Tmin forecast skill using SM as predictor for JJA (top panel) and DJF (bottom panel). 

The forecast was made for different lags: one month (May SM predicting JJA Tmin (a) and Nov SM 
predicting DJF Tmin (d)); two months (Apr SM predicting JJA Tmin (b) and Oct SM predicting DJF 
Tmin (e)); and three months (Mar SM predicting JJA Tmin (c) and Sep SM predicting DJF Tmin (f)). 

Skill is expressed as correlation between the cross-validated CCA forecast and observation at 
each grid point in California. 

For winter forecasts, Tmax and Tmin predictions for the winter (DJF) present some noteworthy 
differences when comparing to the predictions for JJA. First, SST seems to explain less of the 
variance for both Tmax and Tmin, given the lower correlation coefficients over California. 
Moreover, with increasing forecast lags, the skill decreases faster than in summer: whereas for 
the summer skill persists at relatively high levels up to three months of lag, when predicting the 
winter the skill decreases to less than 0.3 for lag 2 and it is near zero for lag 3 (compare Figure 
5a,b,c with Figure 5d,e,f and Figure 6a,b,c with  Figure 6d,e,f). On the other hand, the predictions 
of winter Tmin and Tmax made using SM as a predictor have much higher skill than the ones 
made for the summer (compare Figure 7a,b,c with Figure 7d,e,f and Figure 8a,b,c with Figure 
8d,e,f). There is skill comparable to the one obtained using SST and sometimes higher for longer 
lead times. For example, the DJF Tmax forecast using SM as predictor has positive skill for the 
three lead times (Figure 8d,e,f), while the skill is partially lost for the second lag and is 
completely gone in the third lag when using SST as predictor (Figure 6d,e,f). 
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Figure 7: Tmax forecast skill using SM as predictor for JJA (top panel) and DJF (bottom panel). 
The forecast was made for different lags: one month (May SM predicting JJA Tmax (a) and Nov 

SM predicting DJF Tmax (d)); two months (Apr SM predicting JJA Tmax (b) and Oct SM predicting 
DJF Tmax (e)); and three months (Mar SM predicting JJA Tmax (c) and Sep SM predicting DJF 

Tmax (f)). Skill is expressed as correlation between the cross-validated CCA forecast and 
observation at each grid point in California. 

Some observations can be made from the skill maps, of the predictability of Tmax and Tmin for 
different seasons, and of their relationship with SST and SM. Tmin seems to be more strongly 
related to the SST for both summer and winter seasons, although during the summer SST can 
explain more of the Tmin variability. The greatest association of SST with subsequent air 
temperature over California is found in summer, given the high correlation values for the Lag 3 
predictions; this is true both for Tmax and especially for Tmin. On the contrary, SM exhibits a 
relatively strong influence on winter Tmax, but has less effect on winter Tmin, especially for 
higher lags. During summer (JJA), SM plays a negligible role in controlling either Tmax and 
Tmin over California. Therefore, Tmin over California seems to be more influenced by large-
scale climate patterns that are expressed as SST variability, and this effect is stronger during 
summer. For the winter, those large-scale climate fluctuations also influence both Tmin and 
Tmax, although local modulation by SM variability may also operate, as indicated by positive 
forecast skill using SM predictors. Furthermore, the forecast skill for Tmin and Tmax obtained 
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by these linear statistical models provides comparable and sometimes better than the forecast 
skill for mean air temperatures over California obtained by the North American Multi-Model 
Ensemble (NMME). As described by Zhang et al. (2018), NMME forecast skill for California for 
summer (JJA) and winter (DJF) are very low or insignificant in areas where the present linear 
models are relatively high, namely for Southern California and throughout the coastal 
California region.  

 
Figure 8: Time series for the predicted (black) and observed (red) air temperature for Sacramento 

(38.58° N and 121.49° W), for all the experiments using SST as a predictor, and for lags 1 (left 
panels) and lag 3 (right panels). ρ shows the correlation between the two time-series. 
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Figure 9: Same as Figure 9, but showing the time-series for the experiments using SM as 

predictor. 

To illustrate the predictions made for a specific region over the period of record, we show the 
time series of the predicted and the observed Tmin and Tmax for the city of Sacramento (38.58° 
N and 121.49° W), for Lag 1 and Lag 3, for both summer and winter season, and both SST 
(Figure 9) and SM predictors (Figure 10). Those time series reinforce the description provided 
above: SST variations modulate more strongly Tmin, given the higher correlation values 
between observed and predicted; this influence is stronger in the summer; Tmax is also 
influenced by SST, although it is weaker. For this specific region, the correlation values for the 
models that used SM as a predictor are very low, with the highest value being 0.16 for the 
prediction of Tmax for the summer.  
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Figure 10: Performance of lag 1 forecasts evaluated for three categories (Above, Normal, Below) 

for Sacramento (38.58° N and 121.49° W) Tmin (leftmost panels) and Tmax (rightmost panels). 
Forecasts using SST (upper panels) and SM (lower panels) predictors are shown for May 

predicting JJA (columns 1 and 3) and November forecasting DJF (columns 2 and 4). Errors are 
calculated by first splitting the observations and forecast values into three equally occurring 

classes: above (A), with values larger than the 66th percentile); normal (N), with values between 
the 33rd and 66th percentile; and below (B), with values below the 33rd percentile. The percentages 
represent the number of the predicted values that falls into one of those categories: (1) Diagonal 
(Aa, Nn, Bb), where the predicted values are in the same category as the observed; (2) Class one 
error (An, Nb, Na, Bn), where the predicted values are one category below or above the observed; 

(3) Class two errors (Ab and Ba), where the predicted values are two categories below (Ab) or 
above (Ba) the observed. Capital letters represent the observations and lowercase letters the 

forecast. The ideal model would have 33% along the diagonal, indicating that the terciles of the 
predicted values match with the terciles of the observations. The values in the lower left corner of 

each figure represent the Heidke Skill Score (HSS), in which 1 represents a perfect model, 0 
indicates no skill, and a negative value indicates that the forecasts are worse than a randomly 

generated forecast. 

Finally, Figure 11 shows the errors associated with the predictions for Sacramento for each 
model. To calculate those errors, the observations were divided in three equally occurring 
tercile categories, above normal, normal and below normal and then the percentage of the 
predicted values that fall into one of those categories were calculated. A high-performing 
forecast would have most occurrences along upper-left to lower-right diagonal, where both 
observations and predictions are in the same category (Aa, Nn, Bb), while and the worst model 
is the one that have greater values in the furthermost off-diagonal (class two errors), when the 
observed values are above the normal and the predicted values are below the normal (Ab) or 
vice-versa (Ba). Figure 11 also reports the Heidke Skill Score (HSS) (see Section 2.3.2) for each of 
the models performed.  

When using SST as a predictor, especially to predict Tmin, most of the predicted values are in 
the same tercile category as the observed values; the highest percentages lie along the diagonal. 
This is also reflected in the HSS values, which are the highest for the experiments using SST as a 
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predictor and Tmin as predictands (0.61 for the summer predictions and 0.47 for the winter). 
Two-class errors (when the above normal is forecast and below normal is observed or below 
normal is forecast and above normal is observed) are relatively low. The exception is the 
experiment predicting Tmax for the winter (Figure 11d): the values among the categories are 
similar and the two-class errors have relatively large values (11.3% for Ab and 12.9% for Ba) 
when compared to the other experiments using SST as a predictor (Figure 11a,b,c); also HSS is 
lower (0.3 against 0.61, 0.47 and 0.42). Those experiments present low two-class errors, with the 
maximum being 6.5% for the summer Tmax predictions. On the other hand, the experiments 
using SM as a predictor present bigger errors and lower HSS in most of the cases. With the 
exception of Tmax predictions for the summer, when two-class errors are smaller than 3.2% 
(Figure 11g), the other experiments present those errors varying between 12.9% and 16.1%, 
which are also similar to the values along the diagonal (Figure 11e,f,h). Moreover, HSS is 
generally lower (HSS<0.35) than most of the experiment using SST as predictor, except for the 
Tmax forecast for the winter (HSS=0.3). As was shown in the maps for California (Figure 7 and 
Figure 8) using SM predictors for summer Tmin and Tmax forecasts for the Sacramento region 
yields very little skill.  

 

4: Conclusions and Future Directions 
We developed and explored a statistical prediction model for minimum and maximum air 
temperature anomalies (Tmax and Tmin) over California using remote and local predictors. The 
first predictor variable is sea surface temperature anomalies (SST) across the tropical and 
northern Pacific basin, representing the influence of large-scale climate variability patterns, 
which in turn affect local surface air temperature. The second predictor variable is antecedent 
soil moisture (SM), which is thought to represent the local effects on surface air temperature 
that affect the atmospheric energy balance through the interaction between latent and sensible 
heating.  

These experiments indicate that both local and remote predictors influence the predictability of 
air temperature, and that this influence is dependent on the season that is being predicted as 
well as if the prediction were made for Tmin or Tmax. For summer (JJA) air temperature, 
antecedent SST exhibited a strong effect, but SM did not. On the other hand, for winter (DJF) air 
temperatures, antecedent SST and antecedent SM exhibited skill in predicting Tmin and Tmax. 
However, those two predictands also present some important differences: while SST influence 
both Tmin and Tmax, the influence is stronger for Tmin for both summer and winter. On the 
other hand, for winter Tmax, SM influences more strongly Tmax during winter, especially for 
lags of two and three months. 

The results of this study yielded some agreement and some interesting differences from those of 
a prior study by Alfaro et al. 2006 (A06), which also used Pacific SST and an index of soil 
moisture as predictors of seasonal air temperatures (applied to a larger region than explored 
here). As in A06, the present study demonstrates a degree of skill from both predictor variables. 
However, while A06 found greater predictive skill of summer air temperatures from SM than 
SST, the present study finds greater skill from SST predictors, and very little skill from SM 
predictors. And while A06 found more skill from SM in predicting Tmax than Tmin, the present 
study does not (if anything, Tmin skill from SM is higher). These differences are likely a result 
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of the larger Pacific coast to the Mississippi basin domain of the A06 study, whose Great Plains 
region has been shown to harbor relatively strong soil moisture feedback to the overlying 
atmosphere during the summer period while the West Coast United States does not (Huang et 
al. 1996). The processes involved in the positive skill of winter Tmin and Tmax forecasts from 
SM found here for the California region are not clearly understood and will require further 
study. 

Although other studies have applied a similar statistical approach to predict Tmin and Tmax 
over the United States, this work bridges a gap between generalized country-wide studies and 
specific, local studies. These results indicate that statistical methods can provide modest 
predictability for summer and winter seasonal mean temperature anomalies over much of 
California. Moreover, the forecast skill for Tmin and Tmax obtained by our statistical model is 
comparable and sometimes better than the forecast skill for mean air temperatures over 
California obtained by the North American Multi-Model Ensemble (NMME). As shown by 
Zhang et al. (2018), NMME forecast skill for California for summer (JJA) and winter (DJF) is 
very low or insignificant, especially for the Southern and coastal California region.  

While the results contain positive forecast skills, they produced considerable variability across 
seasons in model predictors and forecast performance of seasonal air temperature for California 
and the overall far western North America region. Several of the predictor patterns relate to 
large scale climate variability patterns. Somewhat surprisingly, higher skill was obtained for 
summer (JJA) forecasts than for winter (DJF), when many of the climate variability patterns 
have stronger expressions. The results demonstrate the importance of careful analysis when 
forming a statistical forecast model to determine the mix of predictor variables, and the number 
of modes of predictor and predictand variables that should be considered. 

Given updated data representing SST and SM predictors, the forecast tool presented here can be 
applied to perform real-time forecasts. With that, linear models can estimate seasonal minimum 
and maximum air temperature anomalies in the following season. Although the temperature is 
expected to increase on average, the frequency of extreme conditions is also expected to increase 
in California with climate change in the coming decades. As a result, season-ahead forecasts 
should include confidence intervals to help planners understand the level of uncertainty and 
potential for unexpected extreme events to occur during the season.  

Looking forward, the skill obtained from the set of linear statistical forecasts considered here 
suggests that more insight can be gained from additional experiments. Importantly, some of the 
present results produced positive skill with little drop off out to three months, so it will be 
useful to investigate forecast skills from similar models that have predictors at extended lead 
times. Additionally, it will be useful to investigate how such models perform in predicting other 
variables, such as warm extreme (heat waves or “heat storms”) occurrence in California and 
across the western U.S. The present study only considered forecasts of summer and winter 
mean Tmax and Tmin, but it would be of interest to explore predictability of other three month 
seasons. The results here were confined to forecasts constructed from single variable predictors 
(i.e. only SST or only SM), but it would be interesting to explore models that combine both 
predictors (SST and SM) to determine if skill provided by the two predictors is additive. This 
seems especially interesting potentially for the winter, when both SST and SM produced 
significant forecast skill.  
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This report provides more insight into seasonal air temperature variability over California and 
advances the development of a linear statistical technique for seasonal forecasting. To be ready 
for use by the energy sector, further investigation is needed to better understand the forecast 
uncertainties associated with the variability across seasons and model predictors and it is 
necessary the use of observational real-time data to perform real-time forecasts that can inform 
decision makers. We hope that further efforts by others who are well placed in the utility 
industry and other applications will be able to contribute in taking next steps toward practical 
seasonal forecasting. 
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Table 5: Correlation coefficients between seasonal averages of Tmin and Tmax anomalies 
averaged over the California region. 

Season DJF JFM FMA MAM AMJ MJJ JJA JAS ASO SON OND NDJ 

Correlation 0.41 0.43 0.60 0.65 0.58 0.50 0.38 0.35 0.35 0.33 0.37 0.44 

 

 

Table 6: Optimum number of Principal Components (PCs) and Canonical Correlates (CCs) for all 
one month lag summer (JJA) and winter (DJF) forecast experiments, the field-averaged skill for 

the optimum model (Skill), and the lower (rl) and upper (ru) limits of the 95th confidence interval of 
skill obtained from 100 randomized experiments. 

Season Predicted Predictor Predictand PC CC Skill rl ru 

JJA SST Tmin 16 16 0.21 -0.003 0.013 

DJF SST Tmin 10 9 0.20 -0.011 0.011 

JJA SST Tmax 16 16 0.24 -0.001 0.017 

DJF SST Tmax 14 12 0.26 -0.008 0.026 

JJA SM Tmin 11 10 0.13 -0.007 0.010 

DJF SM Tmin 10 6 0.15 -0.008 0.012 

JJA SM Tmax 2 2 0.22 0.001 0.026 

DJF SM Tmax 13 5 0.10 -0.001 0.016 
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Table 7: Variance explained by each predictand Canonical Correlate (rows, CC mode), for each 
experiment (columns). The number of CC modes included in each experiment was determined by 

the optimization process (see Table 2 and Section 3.1 for details). 

SST SM 

CC 
mode 

Tmin 
JJA 

Tmin 
DJF 

Tmax 
JJA 

Tmax 
DJF 

Tmin 
JJA 

Tmin 
DJF 

Tmax 
JJA 

Tmax 
DJF 

1 34.7% 14.8% 4.9% 8.1% 10.3% 17.4% 50.1% 57.0% 

2 3.9% 1.0% 4.7% 7.5% 1.3% 10.8% 49.9% 41.3% 

3 7.9% 0.5% 1.8% 5.7% 0.4% 0.0% -- 0.0% 

4 0.3% 7.4% 19.8% 7.9% 20.1% 70.9% -- 1.1% 

5 9.4% 6.4% 11.9% 0.0% 23.3% 0.7% -- 0.6% 

6 0.1% 0.6% 0.5% 28.0% 17.8% 0.2% -- -- 

7 0.2% 8.6% 0.0% 9.6% 4.8% -- -- -- 

8 12.0% 44.1% 12.2% 2.3% 3.2% -- -- -- 

9 4.4% 16.7% 5.1% 1.1% 1.8% -- -- -- 

10 3.3% -- 2.5% 6.1% 17.1% -- -- -- 

11 4.5% -- 10.7% 22.7% -- -- -- -- 

12 0.5% -- 9.7% 0.9% -- -- -- -- 

13 8.2% -- 0.0% -- -- -- -- -- 

14 2.6% -- 9.0% -- -- -- -- -- 

15 4.4% -- 1.5% -- -- -- -- -- 

16 3.8% -- 5.6% -- -- -- -- -- 
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Table 8: Variance explained by each predictor Canonical Correlate (rows, CC mode), for each 
experiment (columns). The number of CC modes included in each experiment was determined by 

the optimization process (see Table 2 and Section 3.1 for details). 

 SST SM 

CC 
mode 

Tmin 
JJA 

Tmin 
DJF 

Tmax 
JJA 

Tmax 
DJF 

Tmin 
JJA 

Tmin 
DJF 

Tmax 
JJA 

Tmax 
DJF 

1 14.1% 3.3% 7.9% 0.1% 20.8% 35.1% 50.0% 33.2% 

2 0.9% 23.2% 5.4% 17.5% 30.0% 15.9% 50.0% 11.6% 

3 0.0% 16.3% 8.0% 2.1% 5.1% 28.7% -- 0.9% 

4 2.0% 13.0% 0.2% 0.1% 14.6% 1.1% -- 14.4% 

5 6.1% 12.5% 3.0% 14.3% 0.0% 18.8% -- 40.0% 

6 16.7% 2.0% 5.8% 0.8% 0.0% 0.4% -- -- 

7 0.0% 9.8% 2.7% 4.8% 0.2% -- -- -- 

8 21.9% 2.7% 2.7% 19.8% 1.8% -- -- -- 

9 21.2% 17.1% 17.7% 31.0% 26.6% -- -- -- 

10 2.3% -- 1.5% 1.3% 0.9% -- -- -- 

11 1.6% -- 5.3% 2.4% -- -- -- -- 

12 2.8% -- 6.1% 5.8% -- -- -- -- 

13 5.2% -- 18.4% -- -- -- -- -- 

14 1.4% -- 3.7% -- -- -- -- -- 

15 1.0% -- 5.2% -- -- -- -- -- 

16 2.8% -- 6.5% -- -- -- -- -- 
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Figure 11: Skill optimization for DJF Tmin prediction using SST as predictor. Figure shows the 

cross-validated field-averaged skill, expressed as the correlation between the predicted and the 
observed temperatures, using different combination of the Principal Components (PCs) and the 

Canonical Correlates (CCs). The optimum is defined the number of PC and CC modes that yielded 
the highest cross validated skill (PC=10 and CC=9). 
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Figure 12: First three coupled CCA modes of DJF Tmin related to November SST. Left panel 

displays the time series of the CCA modes (CC1, CC2 and CC3), where predictor (SST) is in black 
and predictand (Tmin) is in blue; ρ is the correlation between the two time-series (CC1=0.91; 

CC2=0.87 and CC3=0.71). Middle and right panels show the spatial pattern associated with the 
SST and Tmin fields, respectively, expressed as correlation between the CCA mode time series 

and their respective variable field for each location. 
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Figure 13: First three coupled CCA modes of DJF Tmin related to November SM. Left panel 

displays the time series of the CCA modes (CC1, CC2 and CC3), where predictor (SM) is in black 
and predictand (Tmin) is in blue; ρ is the correlation between the two time-series (CC1=0.79; 

CC2=0.75 and CC3=0.64). Middle and right panels show the spatial pattern associated with the SM 
and Tmin fields, respectively, expressed as correlation between the CCA mode time series and 

their respective variable field for each location. 

 

 

 

 



31 

 
Figure 14: Correlation between the time series of selected climate modes (named along the y-axis) 
with the first three canonical correlates (CC) for all the lag 1 forecast experiments (x-axis). (a) SST 

predicting summer (JJA) Tmin; (b) SST predicting winter (DJF) Tmin; (c) SST predicting JJA 
Tmax; (d) SST predicting DJF Tmax; (e) SM predicting JJA Tmin; (f) SM predicting DJF Tmin; (g) 

SST predicting JJA Tmax; (h) SM predicting DJF Tmax. Climate modes are as follows: QBO (quasi 
biennial oscillation); Nino1.2, Nino3.4 and Nino4 are the different indices for El Niño Southern 

Oscillation (ENSO), correspondent to Niño 1+2 (Extreme Eastern Tropical Pacific SST), Niño 3.4 
(East Central Tropical Pacific SST), and Niño 4 (East Central Tropical Pacific SST), respectively; 

PDO (Pacific Decadal Oscillation); NPGO (North Pacific Gyre Oscillation); PNA (Pacific North 
American Index); TPI (Tripole Index for Interdecadal Pacific Oscillation); NAO (North Atlantic 

Oscillation); AMM (Atlantic Meridional Mode); NTA (North Tropical Atlantic SST Index); and AMO 
(Atlantic Multidecadal Oscillation). The time series for those indices can be found at: 

https://www.esrl.noaa.gov/psd/data/climateindices/list/ 

 

Table 9: Description of each climate mode used in Figure 4 

Index Name Description 

QBO Quasi-Biennale 
Oscillation 

Oscillation of the equatorial wind between easterlies and westerlies in the 
tropical stratosphere. (Baldwin et al., 2001) 

Nino1.2 ENSO Extreme Eastern Tropical Pacific SST: SST anomalies between 0 – 10S, 
90W – 80W 

Nino3.4 ENSO East Central Tropical Pacific SST: SST anomalies between 5N – 5S, 160E 
– 150W 

https://www.esrl.noaa.gov/psd/data/climateindices/list/
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Nino4 ENSO Central Tropical Pacific SST: SST anomalies between 5N – 5S, 170W – 
120W 

PDO Pacific Decadal 
Oscillation 

The leading principal component of monthly SST anomalies in the North 
Pacific Ocean (Mantua et al., 1997). 

NPGO North Pacific 
Gyre Oscillation  

The second leading principal component of sea surface height in the 
Northeast Pacific (Di Lorenzo et al., 2008) 

AMM Atlantic 
Meridional Mode 

Leading mode of the maximum covariance analysis between SST and 10 
m wind fields between 21S – 32N and 74W – 15W (Chiang and Vimont, 
2004). 

NTA North Tropical 
Atlantic Index 

Timeseries of SST anomalies averaged over 10N – 20N and 79W – 20W 
(Penland and Matrosova, 1998) 

 

AMO Atlantic 
Multidecadal 
Oscillation 

Average anomalies of SST in the North Atlantic basin, typically over 0-
80N (Enfield et al., 2001). 
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Figure 15: Tmin forecast skill using SST as predictor for JJA (top panel) and DJF (bottom panel). 
The forecast was made for different lags: one month (May SST predicting JJA Tmin (a) and Nov 

SST predicting DJF Tmin (d)); two months (Apr SST predicting JJA Tmin (b) and Oct SST 
predicting DJF Tmin (e)); and three months (Mar SST predicting JJA Tmin (c) and Sep SST 
predicting DJF Tmin (f)). Skill is expressed as correlation between the cross-validated CCA 

forecast and observation at each grid point in California. 
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Figure 16: Tmax forecast skill using SST as predictor for JJA (top panel) and DJF (bottom panel). 
The forecast was made for different lags: one month (May SST predicting JJA Tmax (a) and Nov 

SST predicting DJF Tmax (d)); two months (Apr SST predicting JJA Tmax (b) and Oct SST 
predicting DJF Tmax (e)); and three months (Mar SST predicting JJA Tmax (c) and Sep SST 
predicting DJF Tmax (f)). Skill is expressed as correlation between the cross-validated CCA 

forecast and observation at each grid point in California. 
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Figure 17: Tmin forecast skill using SM as predictor for JJA (top panel) and DJF (bottom panel). 

The forecast was made for different lags: one month (May SM predicting JJA Tmin (a) and Nov SM 
predicting DJF Tmin (d)); two months (Apr SM predicting JJA Tmin (b) and Oct SM predicting DJF 
Tmin (e)); and three months (Mar SM predicting JJA Tmin (c) and Sep SM predicting DJF Tmin (f)). 

Skill is expressed as correlation between the cross-validated CCA forecast and observation at 
each grid point in California. 
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Figure 18: Tmax forecast skill using SM as predictor for JJA (top panel) and DJF (bottom panel). 
The forecast was made for different lags: one month (May SM predicting JJA Tmax (a) and Nov 

SM predicting DJF Tmax (d)); two months (Apr SM predicting JJA Tmax (b) and Oct SM predicting 
DJF Tmax (e)); and three months (Mar SM predicting JJA Tmax (c) and Sep SM predicting DJF 

Tmax (f)). Skill is expressed as correlation between the cross-validated CCA forecast and 
observation at each grid point in California. 
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Figure 19: Time series for the predicted (black) and observed (red) air temperature for Sacramento 

(38.58° N and 121.49° W), for all the experiments using SST as a predictor, and for lags 1 (left 
panels) and lag 3 (right panels). ρ shows the correlation between the two time-series. 
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Figure 20: Same as Figure 9, but showing the time-series for the experiments using SM as 

predictor. 
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Figure 21: Performance of lag 1 forecasts evaluated for three categories (Above, Normal, Below) 

for Sacramento (38.58° N and 121.49° W) Tmin (leftmost panels) and Tmax (rightmost panels). 
Forecasts using SST (upper panels) and SM (lower panels) predictors are shown for May 

predicting JJA (columns 1 and 3) and November forecasting DJF (columns 2 and 4). Errors are 
calculated by first splitting the observations and forecast values into three equally occurring 

classes: above (A), with values larger than the 66th percentile); normal (N), with values between 
the 33rd and 66th percentile; and below (B), with values below the 33rd percentile. The percentages 
represent the number of the predicted values that falls into one of those categories: (1) Diagonal 
(Aa, Nn, Bb), where the predicted values are in the same category as the observed; (2) Class one 
error (An, Nb, Na, Bn), where the predicted values are one category below or above the observed; 

(3) Class two errors (Ab and Ba), where the predicted values are two categories below (Ab) or 
above (Ba) the observed. Capital letters represent the observations and lowercase letters the 

forecast. The ideal model would have 33% along the diagonal, indicating that the terciles of the 
predicted values match with the terciles of the observations. The values in the lower left corner of 

each figure represent the Heidke Skill Score (HSS), in which 1 represents a perfect model, 0 
indicates no skill, and a negative value indicates that the forecasts are worse than a randomly 

generated forecast. 
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