

FEDERATION INTERNATIONALE DE L'AUTOMOBILE

NORME FIA 8864-2013 STANDARD FIA 8864-2013

CABLES DE RETENUE DE ROUE WHEEL RESTRAINT CABLES

11.04.2014 Page 1/14

NORME FIA 8864-2013 : CABLES DE RETENUE

FIA STANDARD 8864-2013: WHEEL RESTRAINT CABLES

AVANT-PROPOS

Les présentes spécifications ont été préparées sous la direction du Groupe de Recherche Voitures ouvertes de la FIA et du Groupe de Travail Technique Formule Un à partir d'une analyse d'accident, d'une modélisation mathématique et d'un essai dynamique sur chariot. Le but de ces spécifications est de permettre d'évaluer en toute objectivité les performances des câbles de retenue des roues. Les présentes spécifications ont été élaborées à l'origine pour les câbles de retenue des roues de Formule Un mais elles ont été étendues à d'autres câbles de retenue des roues pour différents championnats de la FIA, avec des ajouts ou modifications spécifiques détaillés à l'Annexe B.

CHAMP D'APPLICATION

Les systèmes de retenue des roues sont importants pour améliorer la protection des pilotes et du personnel (spectateurs et officiels) à proximité de la course. Il a été démontré que lors d'un accident, une roue peut être éjectée à des vitesses dépassant de 150 km/h (42 m/s) la vitesse de la voiture, ce qui correspond à une énergie cinétique linéaire de 17 kJ pour un assemblage de roues de 20 kg.

La présente spécification fournit des méthodes d'essai, des critères et des limites destinés à évaluer les performances des systèmes de retenue des roues afin de réduire la possibilité qu'une roue soit éjectée. Néanmoins, dans certaines conditions d'accident, l'énergie cinétique d'une roue éjectée peut quand même excéder la capacité de ces câbles de retenue améliorés ou, de fait, de toute solution pratique. Par ailleurs, dans certaines conditions d'accident très spécifiques, il peut y avoir un compromis à trouver entre la retenue d'une roue et le décollage de la voiture. Dans ce cas, les objectifs de performance définis dans la

FOREWORD

This specification has been compiled under the direction of the FIA Open Cockpit Research Group and the Formula One Technical Working Group based on accident analysis, mathematic modelling and dynamic sled testing. The aim of this specification is to enable objective evaluation of the performance of wheel restraint cables.

This specification was originally developed for Formula One wheel restraint cables, but has been expanded to other wheel restraint cables for different FIA championships, with specific inclusions or modifications which are detailed in Appendix B.

1. SCOPE

Wheel restraint systems are important to improve protection to the drivers and the personnel (spectators and officials) within the proximity of the race event. It has been shown that during an accident a wheel may be ejected at velocities in excess of 150km/h (42m/s) relative to the car, which corresponds to a linear kinetic energy of 17kJ for a 20kg wheel assembly.

This specification provides test methods, criteria and limits to assess the performance of wheel restraint systems to ensure that the potential for wheel ejection is reduced. Nevertheless, during certain accident conditions the kinetic energy of an ejected wheel may exceed the capability of even these improved restraint cables or, indeed, any practicable solution. Furthermore, during very specific accident conditions, there may be a compromise between wheel retention and car launching, in which case the performance objectives defined in this specification aim to prioritise wheel retention.

11.04.2014 Page 2/14

présente spécification visent à privilégier la retenue de la roue.

Lors des premiers travaux de développement, un système perfectionné de retenue des roues a été envisagé, il comprenait deux parties : une unité d'absorption d'énergie et un câble de liaison. Toutefois, les dernières recherches ont démontré qu'un câble intégré peut absorber l'énergie requise sans qu'une unité d'absorption d'énergie distincte soit nécessaire. Par conséquent, le câble intégré est la solution privilégiée. D'autres conceptions peuvent convenir, mais leur géométrie et leur fonctionnement doivent être approuvés par la FIA avant de les soumettre pour certification.

During early development work, an advanced wheel restraint system was considered in two parts; an energy absorbing unit and a connecting tether. However, the latest research has demonstrated that an integrated tether can absorb the required energy without the need for a separate energy absorbing unit. And, therefore, an integrated tether is the preferred solution. Other designs may be acceptable, but the geometry and function shall be approved by the FIA before submitting for certification.

2. GENERALITES

2.1 Procédure d'approbation

Le fabricant doit fournir à la FIA le rapport de test (voir Annexe A6) établi par un laboratoire approuvé par la FIA et listé dans la Liste Technique N: 37, certifiant que le câble de retenue de roue répond aux exigences de la présente norme.

La liste des câbles de retenue conformes à la présente norme sera publiée par la FIA dans la Liste Technique N: 37 (Partie 1 - Liste des câbles de retenue des roues de F1 approuvés par la FIA, Partie 2 - Liste des câbles de retenue de roues LMP1 approuvés par la FIA et Partie 3 - Liste de câbles conformes à l'ancienne Norme de la FIA pour câbles de retenue des roues de F1).

3. **DEFINITIONS**

Les composants clés sont définis ci-après.

3.1 Assemblage de roue

Eléments, comprenant généralement la roue, le pneu, le moyeu, l'étrier de frein et le disque de frein, qui sont considérés comme un projectile unique lors de l'éjection d'une roue.

2. GENERAL

2.1 Approval procedure

The manufacturer shall supply to the FIA the test report (see Appendix A6) from an FIA-approved test house listed in technical list No:37 certifying that the restraint cable complies with this standard.

The list of restraint cables in compliance with this standard will be published by the FIA in the technical list No:37 (Part 1 - List of FIA-approved wheel restraint cables for F1, Part 2 - List of FIA-approved wheel restraint cables for LMP1, and Part 3 – List of cables according to old FIA Standard for F1 wheel restraint cables).

3. DEFINITIONS

A definition of the key components is provided below.

3.1 Wheel Assembly

Those parts, likely to include the wheel, tyre, upright, brake calliper and brake disk, that are considered to be a single projectile during a wheel ejection event.

11.04.2014 Page 3/14

3.2 Câble de retenue de roue

Elément flexible supportant la charge reliant l'assemblage de roue à la structure principale de la voiture et présentant la résistance et la capacité d'absorption d'énergie requises.

3.3 Absorbeur d'énergie

Capacité d'absorption d'énergie du câble. Un élément d'absorption d'énergie distinct peut être autorisé mais il doit être approuvé par la FIA avant d'être soumis pour certification.

3.4 Fixation d'extrémité du câble

Elément situé à chaque extrémité du câble afin d'en faciliter la fixation à la voiture et à l'assemblage de roue. La fixation d'extrémité peut comprendre une boucle si ceci correspond aux conditions à l'intérieur de la voiture.

La fixation d'extrémité intérieure du câble se rattache au châssis de la voiture.

La fixation d'extrémité extérieure du câble se rattache à l'assemblage de roue.

3.5 Attache de câble

Attache entre la fixation d'extrémité du câble et la structure principale de la voiture correspondant aux critères géométriques et de résistance définis par le Règlement Technique.

3.6 Surface de frottement du câble

Structure rigide correspondant à la structure ponctuelle de la voiture sur laquelle le câble doit glisser si la roue est éjectée dans toute direction perpendiculaire à l'axe de rotation des roues arrière.

4. EVALUATION DES PERFORMANCES

4.1 Essai du câble de retenue des roues

Les performances du système de retenue des roues seront mesurées conformément aux essais dynamiques définis à l'Annexe A.

4.1.1 Un câble de retenue de roue (par

3.2 Wheel Restraint Cable (Tether)

Flexible load carrying element that connects the wheel assembly to the main structure of the car and that provides the required strength and energy absorbing capability.

3.3 Energy Absorber

The energy absorbing capability of the tether. A separate energy absorbing element may be permitted but shall be approved by the FIA before submitting for certification.

3.4 Tether End Fitting

Feature at each end of the tether to facilitate attachment to the car and the wheel assembly. The tether end fitting may include a bobbin if this represents the in-car conditions.

The in-board-tether-end-fitting connects to car chassis.

The out-board-tether-end-fitting connects to wheel assembly.

3.5 Tether Attachment

Attachment between the tether end fitting and the main structure of the car that achieves the strength and geometrical requirements defined by the Technical Regulations.

3.6 Tether Sliding Surface

Rigid structure that represents the local structure of the car over which the tether shall slide if the wheel is ejected in any direction normal to the axis of rotation of the rear wheels.

4. PERFORMANCE ASSESSMENT

4.1 Wheel Restraint Cable Test

The performance of the wheel restraint system shall be measured in accordance with the dynamic tests defined in Appendix A.

4.1.1 One Wheel Restraint Cable (per

11.04.2014 Page 4/14

assemblage de roue)

Lors des essais de traction et des essais de la surface de frottement du câble, tous les échantillons d'essai doivent répondre aux critères suivants :

L'absorption d'énergie ne doit pas être inférieure à 6kJ sur les 250 premiers mm de déplacement. La force maximale ne doit pas dépasser 70 kN (CFC 1000) sur les 250 premiers mm de déplacement.

4.1.2 Deux câbles de retenue de roue (par assemblage de roue)

Lors des essais de traction et des essais de la surface de frottement du câble, tous les échantillons d'essai doivent répondre aux critères suivants :

L'absorption d'énergie ne doit pas être inférieure à 3kJ sur les 250 premiers mm de déplacement. La force maximale ne doit pas dépasser 70 kN (CFC 1000) sur les 250 premiers mm de déplacement.

5. ETIQUETAGE

Les informations et le format doivent être tels qu'indiqués à la Figure 1, numéro de série unique y compris. Les dimensions de l'étiquette doivent être de 84 mm x 34 mm et l'emplacement carré vide où coller les étiquettes de la FIA mesurera 15 x 15 mm. Le nom du fabricant peut être remplacé par son logo. L'étiquette comportera un fond blanc avec caractères imprimés en noir. La police du texte sera de l'Arial taille 8 et le fabricant devra respecter les caractères en gras, le cas échéant.

L'étiquette sera apposée à proximité de l'une des extrémités du câble de retenue de roue, côté intérieur. Elle doit être du type « se détruisant lorsqu'on l'enlève », et il est recommandé de prévoir des éléments de sécurité mis en place par le fabricant afin d'éviter toute falsification ou copie. Les étiquettes ne doivent pas être disponibles en dehors du lieu de fabrication.

L'étiquette sera contrôlée par la FIA, qui réserve à ses officiels, ou à ceux d'une ASN, le droit d'enlever ou d'annuler l'étiquette. Cela se produira lorsque, de l'avis du commissaire technique en chef de l'épreuve, un accident

wheel assembly)

During the tensile tests and tether sliding surface tests, the following performance shall be achieved by all test samples;

The energy absorption shall not be less than 6kJ over the first 250mm of displacement.

The peak force shall not exceed 70kN (CFC 1000) over the first 250mm of displacement.

4.1.2 Two Wheel Restraint Cables (per wheel assembly)

During the tensile tests and tether sliding surface tests, the following performance shall be achieved by all test samples;

The energy absorption shall not be less than 3kJ over the first 250mm of displacement. The peak force shall not exceed 70kN (CFC 1000) over the first 250mm of displacement.

5. LABELLING

The information and format shown in Figure 1 shall be respected, including a unique serial number. The dimensions of the label shall be 84mm x 34mm and the empty square for gluing the FIA Stickers shall be 15 x 15 mm. The manufacturer's name can be replaced by its logo. The label shall have a white background and the print shall be in black. The text font style shall be Arial size 8pt, and the manufacturer shall follow the bold font style when applicable.

The label shall be affixed close to one of the ends of the wheel thether on the inboard side. It shall be a destruct-on-removal foil label and it is recommended that it includes some security features put in place by the manufacturer to avoid tampering and copying. The labels shall not be available outside the manufacturer's premises.

The label will be controlled by the FIA, which reserves the right for its officials or the officials of an ASN to remove or strike out the label. Such action will be taken when, in the opinion of

11.04.2014 Page 5/14

survenu au véhicule à bord duquel est monté le câble de retenue de roue mettra en cause la future performance du câble de retenue de roue. the chief scrutineer of the event, an accident to the vehicle in which the wheel tether is fitted will jeopardise the future performance of the wheel tether.

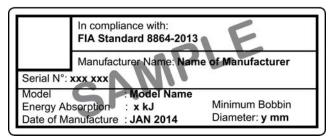


Figure 1. Modèle d'étiquette à apposer sur le câble de retenue de roue Figure 1. Sample of label to be fitted to the wheel tether

11.04.2014 Page 6/14

ANNEXE A / APPENDIX A

PROCEDURE D'ESSAI DU CABLE DE RETENUE DES ROUES

A1. Appareillage

Les photos A1 et A2 montrent l'appareillage adéquat.

Cet essai a pour but d'exercer une charge dynamique sur le câble dans une direction de traction afin de déterminer les caractéristiques de résistance, d'allongement et d'absorption d'énergie. Les essais doivent être réalisés au moyen d'un chariot dynamique sur le modèle de l'essai de choc frontal en Formule Un. La masse du chariot doit être de 780 kg \pm 7,8 kg.

Deux attaches de câble doivent être fournies : l'une fixée au chariot et l'autre à un ancrage au sol situé à proximité du chariot. La position du point d'attache du câble au chariot par rapport au centre de gravité du chariot doit être choisie de manière à éviter que des couples excessifs ne s'exercent sur le chariot. La position du point d'attache du câble à l'ancrage au sol doit permettre de former avec le câble un angle conforme aux critères définis en A1.1 et A1.2. Les attaches du câble doivent reproduire la méthode de fixation adoptée à l'intérieur de la voiture et définie par le Règlement Technique. Le fabricant du câble pourra fournir une boucle si ceci correspond à la méthode de fixation utilisée dans la voiture.

Lors de l'essai, toute l'énergie cinétique du chariot doit être dirigée vers les fixations d'extrémité du câble afin d'exercer une force de tension sur le câble. Le câble doit se déplacer avec le chariot lors de la phase précédant l'impact, la fixation d'extrémité intérieure du câble étant engagée dans l'attache du câble au chariot. Au point d'impact, la fixation d'extrémité extérieure du câble doit être engagée avec l'attache du câble à l'ancrage au sol. A mesure que la charge s'exerce sur le câble, le chariot décélère. Le déplacement du chariot doit par ailleurs se faire sans entrave jusqu'à ce que le chariot ait dépassé de 500 mm le point d'impact. Le chariot peut ensuite être arrêté à l'aide de tubes en déformation ou autre dispositif

WHEEL RESTRAINT CABLE TEST PROCEDURE

A1. Apparatus

An appropriate test apparatus is shown in Figures A1 and A2.

The aim of the test is to dynamically load the tether in a tensile direction, in order to determine the strength, elongation and energy absorbing characteristics. The tests shall be conducted using a dynamic sled apparatus based on the Formula One frontal impact test. The mass of the sled shall be $780 \text{kg} \pm 7.8 \text{kg}$.

Two tether attachments shall be provided; one fitted to the sled and one fitted to a ground anchor within a close proximity to the sled. The position of the sled tether attachment point relative to the CoG of the sled shall be chosen to prevent excessive torque loadings to the sled. The position of the ground anchor tether attachment point shall achieve the tether angle requirements defined in A1.1 and A1.2. The tether attachments shall reproduce the in-car fixing method as defined by the Technical Regulations. The tether manufacturer may provide a bobbin arrangement if this represents the in-car fixing method.

During the test, the entire kinetic energy of the sled shall be directed into the tether end fittings to load the tether in tension. The tether shall move with the sled during the pre-impact phase with the in-board tether end fitting engaged with the sled tether attachment. At the point of impact, the out-board tether end fitting shall engage with the ground anchor tether attachment. As the tether is loaded the sled will be decelerated. The motion of the sled shall be otherwise unrestrained until the displacement of the sled has exceeded 500mm from the point of impact. After this time, the sled may be arrested using crush tubes or any other appropriate device.

11.04.2014 Page 7/14

approprié.

Deux configurations d'essai sont préconisées.

A1.1 Essai de traction(0°)

Lors de l'essai de traction, le câble devra être soumis à une charge entre deux points uniquement : le point de fixation du chariot et le point d'ancrage au sol. Au point d'impact, l'angle entre l'axe principal du câble et l'axe du chariot ne doit pas dépasser 20°.

A1.2 Essai de la surface de frottement du câble (90°)

Lors de l'essai de la surface de frottement du câble, le câble doit être soumis à une charge en trois points: le point de fixation du chariot, la surface de frottement et le point d'ancrage au sol. La surface de frottement doit être un cylindre solide en acier d'un diamètre de 25 mm et d'une longueur d'au moins 100 mm. L'axe principal est perpendiculaire à l'axe du câble. Au point d'impact, la distance entre l'extrémité intérieure du câble et le centre de la surface de frottement doit être de 115 mm ± 15 mm. L'appareillage est configuré de manière à tordre le câble de 90° ± 5° autour de la surface de frottement. Au point d'impact, l'angle entre la section extérieure du câble et l'axe du chariot ne devra pas dépasser 20°.

A2. Echantillons d'essai

Les échantillons d'essai devront inclure le câble et ses fixations d'extrémité. La longueur de ces échantillons, mesurée entre les centres des fixations d'extrémité du câble, sera de 600 mm ± 15 mm.

A3. Conditionnement

La FIA pourra exiger que les câbles polymériques soient conditionnés avant les essais de la manière suivante :

Température: 100°C pendant 24 heures Humidité: Immersion dans une eau à 25°C pendant 48 heures

Ultra violet : 250 mm d'une lampe à quartz contenant du xénon à 125 V pendant 48 heures

A4. Instrumentation

L'appareillage doit comprendre un capteur de force monoaxial permettant de mesurer la force exercée sur la fixation d'extrémité extérieure du Two loading configurations are prescribed.

A1.1 Tensile Test (0°)

During the tensile test, the tether shall be loaded between two points only; the sled attachment point and the ground anchor attachment point. At the point of impact, the angle between the major axis of the tether and the axis of the sled shall not exceed 20°.

A1.2 Tether Sliding Surface Test (90°)

During the tether sliding surface test, the tether shall be loaded at three points; the sled attachment point, the tether sliding surface and the ground anchor attachment point. The tether sliding surface shall be a solid steel cylinder with a diameter of 25mm and a length of at least 100mm. The major axis shall be perpendicular to the axis of the tether. At the impact point, the distance between the in-board end of the tether and the centre of the Tether Sliding Surface shall be 115mm ± 15mm. The apparatus shall be configured such that the tether is flexed through 90° ± 5° around the tether sliding surface. At the point of impact, the angle between the out-board section of the tether and the axis of the sled shall not exceed 20°.

A2. Test Samples

The test samples shall include the tether and the tether end fittings. The test samples shall have a length of $600 \text{mm} \pm 15 \text{mm}$ measured between the centres of the tether end fittings.

A3. Environmental Conditioning

The FIA may require that polymeric tethers are conditioned before testing as follows;

Temperature: 100°C for 24 hours

Moisture: Immersed in water 25°C for 48

hours

Ultra-violet: 250mm from 125V xenon-filled

quartz lamp for 48hours

A4. Instrumentation

The apparatus shall be fitted with a single axis load cell to measure the force exerted at the

11.04.2014 Page 8/14

câble dans la direction du câble. L'axe sensible du capteur de force doit être aligné avec l'axe du câble à $\pm\,5^\circ$ du point d'impact. Il est entendu que lors de l'impact, l'angle du câble sera modifié à mesure que le câble s'allongera. Toutefois, l'axe sensible du capteur de force devra être fixé à l'emplacement du point d'impact.

Une méthode de mesure de la vitesse du chariot juste avant le point d'impact devra être fournie. Le chariot devra être équipé d'un accéléromètre pour mesurer l'accélération longitudinale lors de l'impact.

Tous les instruments devront être conformes à la norme SAE J211 (dernière version) avec une classe de fréquence (CFC) de 1000. La fréquence de l'échantillonnage sera d'au moins 20 000 Hz.

A5. Procédures d'essai

Essai A5.1. Retenue des roues - Essai de tension

Les <u>L'</u>échantillons d'essai ser<u>aent</u> montés sur le chariot conformément à la configuration d'essai de tension décrite en A1. La vitesse d'impact sera d'au moins 14 m/s. Les <u>L'</u>essais ser<u>aent</u> menés sur deux <u>un</u> échantillons et les résultats seront présentés comme défini en A6.

Essai A5.2. Retenue des roues - Essai de la surface de frottement du câble

Les <u>L'</u>échantillons d'essai ser<u>aent</u> montés sur le chariot conformément à la configuration d'essai de la surface de frottement du câble décrite en A1. La vitesse d'impact sera d'au moins 14 m/s. Les <u>L'</u>essais ser<u>aent</u> menés sur sur deux <u>un</u> échantillons et les résultats seront présentés comme défini en A6.

Ces essais ne seront pas considérés comme valables si la déformation de la goupille mesurée depuis son centre jusqu'aux bords du capteur de force est supérieure à 1 mm.

A6. Résultats

Les résultats devront comprendre :

(a) La longueur de l'échantillon d'essai (en mm)

out-board tether end fitting along the direction of the tether. The sensitive axis of the load cell must be aligned with the axis of the tether \pm 5° at the point of impact. It is understood that during the impact event, the angle of the tether will change as the tether extends. However, the sensitive axis of the load cell shall be fixed at the point of impact position.

A method of measuring the velocity of the sled immediately before the point of impact shall be provided. The sled shall be fitted with an accelerometer to measure the fore-aft acceleration during the impact event.

All instrumentation shall conform to SAE J211 (latest revision) with a channel frequency class (CFC) of 1000. The sampling frequency shall be at least 20,000Hz.

A5. Test Procedures

Test A5.1. Wheel Restraint Tensile Test

The test samples shall be fitted to the sled with the in accordance with the tensile test configuration as described in A1. The impact velocity shall be at least 14m/s. The tests shall be conducted on two one test samples and the results shall be reported as defined in A6.

Test A5.2. Wheel Restraint Tether Sliding Surface Test

The test samples shall be fitted to the sled with the in accordance with the tether sliding surface test configuration as described in A1. The impact velocity shall be at least 14m/s. The tests shall be conducted on two one test samples and the results shall be reported as defined in A6.

These tests will not be considered valid if the pin-deformation measured from the pin centre to loadcell-edges is higher than 1mm.

A6. Results

The results shall include:

(a) Length of test sample (mm)

11.04.2014 Page 9/14

- (b) Le diamètre (ou section) de l'échantillon d'essai (en mm ou mm²)
- (c) La masse de l'échantillon d'essai (g), fixations d'extrémité y compris
- (d) La vitesse d'impact réelle (en m/s)
- (e) La courbe temps accélération du chariot CFC1000 (en g, ms)
- (f) La courbe temps vitesse¹ du chariot (en m/s, ms)
- (g) La courbe temps force du câble montrant la force maximale CFC1000 (N, ms)
- (h) La courbe déplacement² force du câble CFC1000 (N, mm)
- (i) L'énergie³ absorbée sur les 250 premiers mm
- (j) Les diamètres de la goupille/du boulon utilisé(e) lors des essais
- 1. La vitesse sera calculée en intégrant une fois l'accélération.
- ^{2.} Le déplacement sera calculé en intégrant deux fois l'accélération.
- 3. L'énergie sera calculée en intégrant la force par rapport au déplacement.

- (b) Diameter (or x-sectional area) of test sample (mm or mm²)
- (c) Mass of test sample (g) including end fittings
- (d) Actual impact velocity (m/s)
- (e) Acceleration-time history of the sled CFC1000 (g, ms)
- (f) Velocity¹-time history of the sled (m/s, ms)
- (g) Force-time history for tether showing peak force CFC1000 (N, ms)
- (h) Force-displacement² history for tether CFC1000 (N, mm)
- (i) Energy³ absorbed over first 250mm
- (j) diameters of the pin/bolt used during the tests
- ^{1.} The velocity shall be calculated by single integration of acceleration
- ^{2.} The displacement shall be calculated by double integration of acceleration
- ^{3.} The energy shall be calculated by integration of force with respect to displacement

11.04.2014 Page 10/14

Figure A1. Test apparatus for 0o (tensile) tests on wheel restraint cables

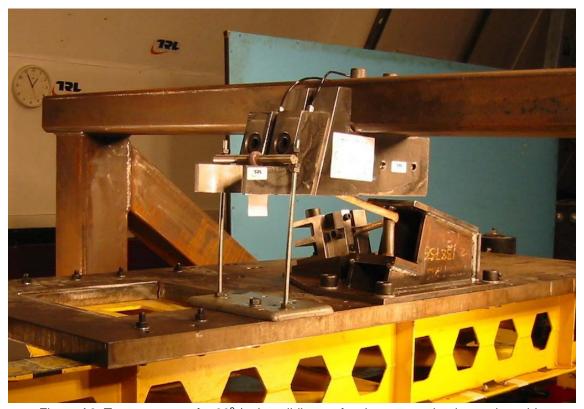


Figure A2. Test apparatus for 90° (tether sliding surface) tests on wheel restraint cable

11.04.2014 Page 11/14

ANNEXE B / APPENDIX B SPECIFICATION FOR LMP1 WHEEL RESTRAINT CABLE / SPECIFICATIONS POUR CABLE DE RETENUE DE ROUE LMP1

METHODE D'ESSAI ET EXIGENCES

Essai conformément à la procédure et performance d'essai ci-dessus, avec les modifications indiquées ci-dessous.

EVALUATION DES PERFORMANCES

1. CÂBLE DE RETENUE DE ROUE

Lors des essais de traction et des essais de la surface de frottement du câble, tous les échantillons d'essai doivent répondre aux critères suivants :

L'absorption d'énergie ne doit pas être inférieure à 8 kJ sur les 400 premiers mm de déplacement.

La force maximale ne doit pas dépasser 80 kN (CFC 1000) sur les 400 premiers mm de déplacement.

PROCEDURE D'ESSAI DU CABLE DE RETENUE DES ROUES

B1. Appareillage

Comme pour A1.

B1.1 Essai de traction (0°)

Lors de l'essai de traction, le câble devra être soumis à une charge entre deux points uniquement : le point de fixation du chariot et le point d'ancrage au sol. Au point d'impact, l'angle entre l'axe principal du câble et l'axe du chariot ne doit pas dépasser 30°.

B1.2 Essai de la surface de frottement du câble (90°)

Comme pour A1.2, à l'exception de ce qui suit : Au point d'impact, l'angle entre la section extérieure du câble et l'axe du chariot ne devra pas dépasser 30°.

B2. Echantillons d'essai

Les échantillons d'essai devront inclure le câble et ses fixations d'extrémité. La longueur de ces

TEST METHOD AND REQUIREMENTS

Test in accordance with the above test performance and procedure, with the modifications set out below.

PERFORMANCE ASSESSMENT

1. WHEEL RESTRAINT CABLE

During the tensile tests and tether sliding surface tests, the following performance shall be achieved by all test samples:

The energy absorption shall not be less than 8kJ over the first 400mm of displacement.

The peak force shall not exceed 80kN (CFC 1000) over the first 400mm of displacement.

WHEEL RESTRAINT CABLE TEST PROCEDURE

B1. Apparatus

Same as A1.

B1.1 Tensile Test (0°)

During the tensile test, the tether shall be loaded between two points only: the sled attachment point and the ground anchor attachment point. At the point of impact, the angle between the major axis of the tether and the axis of the sled shall not exceed 30°.

B1.2 Tether Sliding Surface Test (90°)

Same as A1.2, with the following exception: At the point of impact, the angle between the out-board section of the tether and the axis of the sled shall not exceed 30°.

B2. Test Samples

The test samples shall include the tether and

11.04.2014 Page 12/14

échantillons, mesurée entre les centres des fixations d'extrémité du câble, sera de $450 \text{ mm} \pm 15 \text{ mm}$.

the tether end fittings. The test samples shall have a length of $450 \text{mm} \pm 15 \text{mm}$ measured between the centres of the tether end fittings.

B3. Conditionnement

Comme pour A3.

B4. Instrumentation

Comme pour A4.

B5. Procédures d'essai

Comme pour A5.

B6. Résultats

Comme pour A6, à l'exception de ce qui suit : (i) L'énergie absorbée sur les 400 premiers mm

B3. Environmental Conditioning

Same as A3.

B4. Instrumentation

Same as A4.

B5. Test Procedures

Same as A5.

B6. Results

Same as A6 with the following exception:

(i) Energy absorbed over first 400mm

11.04.2014 Page 13/14

LISTE DES MODIFICATIONS LIST OF MODIFICATIONS

Nouveau texte : <u>ainsi</u>

Texte supprimé : <u>ainsi</u>

Commentaires : *ainsi*New text: <u>thus</u>

Deleted text: <u>thus</u>

Comments: *thus*

Date	Modifications	Modifications
28.06.2013	Première version	First version
04.12.2013	A5. Procédures d'essai	A5. Test Procedures
	Essai A5.1. Retenue des roues - Essai de tension Les L'échantillons d'essai seraent montés sur le chariot conformément à la configuration d'essai de tension décrite en A1. La vitesse d'impact sera d'au moins 14 m/s. Les L'essais seraent menés sur deux un échantillons et les résultats seront présentés comme défini en A6.	Test A5.1. Wheel Restraint Tensile Test The test samples shall be fitted to the sled with the in accordance with the tensile test configuration as described in A1. The impact velocity shall be at least 14m/s. The tests shall be conducted on two one test samples and the results shall be reported as defined in A6.
	Essai A5.2. Retenue des roues - Essai de la surface de frottement du câble Les L'échantillons d'essai seraent montés sur le chariot conformément à la configuration d'essai de la surface de frottement du câble décrite en A1. La vitesse d'impact sera d'au moins 14 m/s. Les L'essais seraent menés sur sur deux un échantillons et les résultats seront présentés comme défini en A6.	Test A5.2. Wheel Restraint Tether Sliding Surface Test The test samples shall be fitted to the sled with the in accordance with the tether sliding surface test configuration as described in A1. The impact velocity shall be at least 14m/s. The tests shall be conducted on two one test samples and the results shall be reported as defined in A6.
	A5. Procédures d'essai	A5. Test Procedures
11.04.2014	Essai A5.2. Retenue des roues - Essai de la surface de frottement du câble / Ces essais ne seront pas considérés comme valables si la déformation de la goupille	Test A5.2. Wheel Restraint Tether Sliding Surface Test / The tests will not be considered valid if the pin-deformation measured from the pin centre to loadcell-edges is higher
	mesurée depuis son centre jusqu'aux bords du capteur de force est supérieure à 1 mm.	than 1mm.

11.04.2014 Page 14/14