
GNU Parallel Design

Page 1

Design of GNU Parallel
This document describes design decisions made in the development of
GNU parallel and the
reasoning behind them. It will give an
overview of why some of the code looks the way it does, and
will help
new maintainers understand the code better.

One file program
GNU parallel is a Perl script in a single file. It is object
oriented, but contrary to normal Perl scripts
each class is not in its
own file. This is due to user experience: The goal is that in a pinch
the user will
be able to get GNU parallel working simply by copying
a single file: No need to mess around with
environment variables like
PERL5LIB.

Choice of programming language
GNU parallel is designed to be able to run on old systems. That
means that it cannot depend on a
compiler being installed - and
especially not a compiler for a language that is younger than 20 years

old.

The goal is that you can use GNU parallel on any system, even if
you are not allowed to install
additional software.

Of all the systems I have experienced, I have yet to see a system that
had GCC installed that did not
have Perl. The same goes for Rust, Go,
Haskell, and other younger languages. I have, however, seen
systems
with Perl without any of the mentioned compilers.

Most modern systems also have either Python2 or Python3 installed, but
you still cannot be certain
which version, and since Python2 cannot
run under Python3, Python is not an option.

Perl has the added benefit that implementing the {= perlexpr =}
replacement string was fairly easy.

The primary drawback is that Perl is slow. So there is an overhead of
3-10 ms/job and 1 ms/MB
output (and even more if you use --tag).

Old Perl style
GNU parallel uses some old, deprecated constructs. This is due to a
goal of being able to run on old
installations. Currently the target
is CentOS 3.9 and Perl 5.8.0.

Scalability up and down
The smallest system GNU parallel is tested on is a 32 MB ASUS
WL500gP. The largest is a 2 TB
128-core machine. It scales up to
around 100 machines - depending on the duration of each job.

Exponentially back off
GNU parallel busy waits. This is because the reason why a job is
not started may be due to load
average (when using --load), and
thus it will not make sense to just wait for a job to finish. Instead
the
load average must be rechecked regularly. Load average is not the
only reason: --timeout has a
similar problem.

To not burn up too much CPU GNU parallel sleeps exponentially
longer and longer if nothing
happens, maxing out at 1 second.

Shell compatibility
It is a goal to have GNU parallel work equally well in any
shell. However, in practice GNU parallel is
being developed in bash and thus testing in other shells is limited to reported bugs.

When an incompatibility is found there is often not an easy fix:
Fixing the problem in csh often breaks
it in bash. In these
cases the fix is often to use a small Perl script and call that.

env_parallel
env_parallel is a dummy shell script that will run if env_parallel is not an alias or a function and tell
the user how to
activate the alias/function for the supported shells.

GNU Parallel Design

Page 2

The alias or function will copy the current environment and run the
command with GNU parallel in the
copy of the environment.

The problem is that you cannot access all of the current environment
inside Perl. E.g. aliases,
functions and unexported shell variables.

The idea is therefore to take the environment and put it in $PARALLEL_ENV which GNU parallel
prepends to every command.

The only way to have access to the environment is directly from the
shell, so the program must be
written in a shell script that will be
sourced and there has to deal with the dialect of the relevant shell.

env_parallel.*

These are the files that implements the alias or function env_parallel for a given shell. It could be
argued that these
should be put in some obscure place under /usr/lib, but by putting
them in your path
it becomes trivial to find the path to them and source them:

 source `which env_parallel.foo`

The beauty is that they can be put anywhere in the path without the
user having to know the location.
So if the user's path includes
/afs/bin/i386_fc5 or /usr/pkg/parallel/bin or

/usr/local/parallel/20161222/sunos5.6/bin the files can be put in the
dir that makes most sense for the
sysadmin.

env_parallel.bash / env_parallel.sh / env_parallel.ash /
env_parallel.dash / env_parallel.zsh /
env_parallel.ksh /
env_parallel.mksh

env_parallel.(bash|sh|ash|dash|ksh|mksh|zsh) defines the function env_parallel. It uses alias and
typeset to dump the
configuration (with a few exceptions) into $PARALLEL_ENV before
running
GNU parallel.

After GNU parallel is finished, $PARALLEL_ENV is deleted.

env_parallel.csh

env_parallel.csh has two purposes: If env_parallel is not an
alias: make it into an alias that sets
$PARALLEL with arguments
and calls env_parallel.csh.

If env_parallel is an alias, then env_parallel.csh uses $PARALLEL as the arguments for GNU
parallel.

It exports the environment by writing a variable definition to a file
for each variable. The definitions of
aliases are appended to this
file. Finally the file is put into $PARALLEL_ENV.

GNU parallel is then run and $PARALLEL_ENV is deleted.

env_parallel.fish

First all functions definitions are generated using a loop and functions.

Dumping the scalar variable definitions is harder.

fish can represent non-printable characters in (at least) 2
ways. To avoid problems all scalars are
converted to \XX quoting.

Then commands to generate the definitions are made and separated by
NUL.

This is then piped into a Perl script that quotes all values. List
elements will be appended using two
spaces.

Finally \n is converted into \1 because fish variables cannot
contain \n. GNU parallel will later convert
all \1 from $PARALLEL_ENV into \n.

This is then all saved in $PARALLEL_ENV.

GNU Parallel Design

Page 3

GNU parallel is called, and $PARALLEL_ENV is deleted.

parset (supported in sh, ash, dash, bash, zsh, ksh, mksh)
parset is a shell function. This is the reason why parset can
set variables: It runs in the shell which is
calling it.

It is also the reason why parset does not work, when data is piped
into it: ... | parset ... makes parset
start in a subshell, and
any changes in environment can therefore not make it back to the
calling shell.

Job slots
The easiest way to explain what GNU parallel does is to assume that
there are a number of job slots,
and when a slot becomes available a
job from the queue will be run in that slot. But originally GNU
parallel did not model job slots in the code. Job slots have been
added to make it possible to use {%}
as a replacement string.

While the job sequence number can be computed in advance, the job slot
can only be computed the
moment a slot becomes available. So it has
been implemented as a stack with lazy evaluation: Draw
one from an
empty stack and the stack is extended by one. When a job is done, push
the available
job slot back on the stack.

This implementation also means that if you re-run the same jobs, you
cannot assume jobs will get the
same slots. And if you use remote
executions, you cannot assume that a given job slot will remain on
the
same remote server. This goes double since number of job slots can be
adjusted on the fly (by
giving --jobs a file name).

Rsync protocol version
rsync 3.1.x uses protocol 31 which is unsupported by version
2.5.7. That means that you cannot
push a file to a remote system using rsync protocol 31, if the remote system uses 2.5.7. rsync does

not automatically downgrade to protocol 30.

GNU parallel does not require protocol 31, so if the rsync
version is >= 3.1.0 then --protocol 30 is
added to force newer rsyncs to talk to version 2.5.7.

Compression
GNU parallel buffers output in temporary files. --compress
compresses the buffered data. This is a
bit tricky because there
should be no files to clean up if GNU parallel is killed by a power
outage.

GNU parallel first selects a compression program. If the user has
not selected one, the first of these
that is in $PATH is used: pzstd
lbzip2 pbzip2 zstd pixz lz4 pigz lzop plzip lzip gzip lrz pxz bzip2

lzma xz clzip. They are sorted by speed on a 128 core machine.

Schematically the setup is as follows:

 command started by parallel | compress > tmpfile
 cattail tmpfile | uncompress | parallel which reads the output

The setup is duplicated for both standard output (stdout) and standard
error (stderr).

GNU parallel pipes output from the command run into the compression
program which saves to a
tmpfile. GNU parallel records the pid of
the compress program. At the same time a small Perl script
(called cattail above) is started: It basically does cat followed by tail -f, but it also removes the tmpfile
as soon as the first byte
is read, and it continuously checks if the pid of the compression
program is
dead. If the compress program is dead, cattail reads the
rest of tmpfile and exits.

As most compression programs write out a header when they start, the
tmpfile in practice is removed
by cattail after around 40 ms.

More detailed it works like this:

 bash (command) |

GNU Parallel Design

Page 4

 sh (emptywrapper (bash (compound compress)) >tmpfile)
 cattail (rm tmpfile; compound decompress) < tmpfile

This complex setup is to make sure compress program is only started if
there is input. This means
each job will cause 8 processes to run. If
combined with --keep-order these processes will run until
the job
has been printed.

Wrapping
The command given by the user can be wrapped in multiple
templates. Templates can be wrapped in
other templates.

$COMMAND

the command to run.

$INPUT

the input to run.

$SHELL

the shell that started GNU Parallel.

$SSHLOGIN

the sshlogin.

$WORKDIR

the working dir.

$FILE

the file to read parts from.

$STARTPOS

the first byte position to read from $FILE.

$LENGTH

the number of bytes to read from $FILE.

--shellquote

echo Double quoted $INPUT

--nice pri

Remote: See The remote system wrapper.

Local: setpriority(0,0,$nice)

--cat

 cat > {}; $COMMAND {};
 perl -e '$bash = shift;
 $csh = shift;
 for(@ARGV) { unlink;rmdir; }
 if($bash =~ s/h//) { exit $bash; }
 exit $csh;' "$?h" "$status" {};

{} is set to $PARALLEL_TMP which is a tmpfile. The Perl script
saves
the exit value, unlinks the tmpfile, and returns the exit value
- no matter if
the shell is bash/ksh/zsh (using $?) or *csh/fish (using $status).

--fifo

 perl -e '($s,$c,$f) = @ARGV;

GNU Parallel Design

Page 5

 # mkfifo $PARALLEL_TMP
 system "mkfifo", $f;
 # spawn $shell -c $command &
 $pid = fork || exec $s, "-c", $c;
 open($o,">",$f) || die $!;
 # cat > $PARALLEL_TMP
 while(sysread(STDIN,$buf,131072)){
 syswrite $o, $buf;
 }
 close $o;
 # waitpid to get the exit code from $command
 waitpid $pid,0;
 # Cleanup
 unlink $f;
 exit $?/256;' $SHELL -c $COMMAND $PARALLEL_TMP

This is an elaborate way of: mkfifo {}; run $COMMAND in the
background
using $SHELL; copying STDIN to {}; waiting for background
to complete;
remove {} and exit with the exit code from $COMMAND.

It is made this way to be compatible with *csh/fish.

--pipepart

 < $FILE perl -e 'while(@ARGV) {
 sysseek(STDIN,shift,0) || die;
 $left = shift;
 while($read =
 sysread(STDIN,$buf,
 ($left > 131072 ? 131072 :
$left))){
 $left -= $read;
 syswrite(STDOUT,$buf);
 }
 }' $STARTPOS $LENGTH

This will read $LENGTH bytes from $FILE starting at $STARTPOS
and
send it to STDOUT.

--sshlogin $SSHLOGIN

 ssh $SSHLOGIN "$COMMAND"

--transfer

 ssh $SSHLOGIN mkdir -p ./$WORKDIR;
 rsync --protocol 30 -rlDzR \
 -essh ./{} $SSHLOGIN:./$WORKDIR;
 ssh $SSHLOGIN "$COMMAND"

Read about --protocol 30 in the section Rsync protocol version.

--transferfile file

<<todo>>

--basefile

<<todo>>

--return file

 $COMMAND; _EXIT_status=$?; mkdir -p $WORKDIR;

GNU Parallel Design

Page 6

 rsync --protocol 30 \
 --rsync-path=cd\ ./$WORKDIR\;\ rsync \
 -rlDzR -essh $SSHLOGIN:./$FILE ./$WORKDIR;
 exit $_EXIT_status;

The --rsync-path=cd ... is needed because old versions of rsync
do not
support --no-implied-dirs.

The $_EXIT_status trick is to postpone the exit value. This makes it

incompatible with *csh and should be fixed in the future. Maybe a

wrapping 'sh -c' is enough?

--cleanup

$RETURN is the wrapper from --return

 $COMMAND; _EXIT_status=$?; $RETURN;
 ssh $SSHLOGIN \(rm\ -f\ ./$WORKDIR/{}\;\
 rmdir\ ./$WORKDIR\
\>\&/dev/null\;\);
 exit $_EXIT_status;

$_EXIT_status: see --return above.

--pipe

 perl -e 'if(sysread(STDIN, $buf, 1)) {
	 open($fh, "|-", "@ARGV") || die;
	 syswrite($fh, $buf);
	 # Align up to 128k block
	 if($read = sysread(STDIN, $buf, 131071)) {
	 syswrite($fh, $buf);
	 }
	 while($read = sysread(STDIN, $buf, 131072)) {
	 syswrite($fh, $buf);
	 }
	 close $fh;
	 exit ($?&127 ? 128+($?&127) : 1+$?>>8)
 }' $SHELL -c $COMMAND

This small wrapper makes sure that $COMMAND will never be run if

there is no data.

--tmux

<<TODO Fixup with '-quoting>>
mkfifo /tmp/tmx3cMEV &&
sh -c 'tmux -S
/tmp/tmsaKpv1 new-session -s p334310 -d "sleep .2" >/dev/null 2>&1';

tmux -S /tmp/tmsaKpv1 new-window -t p334310 -n wc\ 10 \(wc\ 10\)\;\
perl\ -e\ \'while\(\$t++\<3\)\{\ print\ \$ARGV\[0\],\"\\n\"\ \}\'\ \$\?h/\$status\
\>\>\ /tmp/tmx3cMEV\&echo\ wc\\\ 10\;\ echo\ \Job\ finished\ at:\
\`date\`\;sleep\ 10;
exec perl -e '$/="/";$_=<>;$c=<>;unlink $ARGV;
/(\d+)h/ and exit($1);exit$c' /tmp/tmx3cMEV

mkfifo tmpfile.tmx;
tmux -S <tmpfile.tms> new-session -s pPID -d 'sleep
.2' >&/dev/null;
tmux -S <tmpfile.tms> new-window -t pPID -n <<shell
quoted input>> \(<<shell quoted input>>\)\;\ perl\ -e\ \'while\(\$t++\<3\)\{\
print\ \$ARGV\[0\],\"\\n\"\ \}\'\ \$\?h/\$status\ \>\>\ tmpfile.tmx\&echo\
<<shell double quoted input>>\;echo\ \Job\ finished\ at:\ \`date\`\;sleep\
10;
exec perl -e '$/="/";$_=<>;$c=<>;unlink $ARGV; /(\d+)h/ and
exit($1);exit$c' tmpfile.tmx

First a FIFO is made (.tmx). It is used for communicating exit
value. Next
a new tmux session is made. This may fail if there is
already a session,

GNU Parallel Design

Page 7

so the output is ignored. If all job slots finish
at the same time, then tmux
will close the session. A temporary
socket is made (.tms) to avoid a race
condition in tmux. It is
cleaned up when GNU parallel finishes.

The input is used as the name of the windows in tmux. When the job

inside tmux finishes, the exit value is printed to the FIFO (.tmx).
This
FIFO is opened by perl outside tmux, and perl then
removes the FIFO.
Perl blocks until the first value is read from
the FIFO, and this value is
used as exit value.

To make it compatible with csh and bash the exit value is
printed as:
$?h/$status and this is parsed by perl.

There is a bug that makes it necessary to print the exit value 3
times.

Another bug in tmux requires the length of the tmux title and
command to
not have certain limits. When inside these limits, 75 '\ '
are added to the
title to force it to be outside the limits.

You can map the bad limits using:

 perl -e 'sub r { int(rand(shift)).($_[0] &&
"\t".r(@_)) } print map { r(@ARGV)."\n" } 1..10000'
1600 1500 90 |
 perl -ane '$F[0]+$F[1]+$F[2] < 2037 and print ' |
 parallel --colsep '\t' --tagstring '{1}\t{2}\t{3}'
 tmux -S /tmp/p{%}-'{=3 $_="O"x$_ =}' \
 new-session -d -n '{=1 $_="O"x$_ =}' true'\ {=2
$_="O"x$_ =};echo $?;rm -f /tmp/p{%}-O*'

 perl -e 'sub r { int(rand(shift)).($_[0] &&
"\t".r(@_)) } print map { r(@ARGV)."\n" } 1..10000'
17000 17000 90 |
 parallel --colsep '\t' --tagstring '{1}\t{2}\t{3}'
 \
 tmux -S /tmp/p{%}-'{=3 $_="O"x$_ =}' new-session -d
-n '{=1 $_="O"x$_ =}' true'\ {=2 $_="O"x$_ =};echo
$?;rm /tmp/p{%}-O*'
 > value.csv 2>/dev/null

 R -e
'a<-read.table("value.csv");X11();plot(a[,1],a[,2],col
=a[,4]+5,cex=0.1);Sys.sleep(1000)'

For tmux 1.8 17000 can be lowered to 2100.

The interesting areas are title 0..1000 with (title + whole command)
in
996..1127 and 9331..9636.

The ordering of the wrapping is important:

$PARALLEL_ENV which is set in env_parallel.* must be prepended to the
command first, as
the command may contain exported variables or
functions.

--nice/--cat/--fifo should be done on the remote machine

--pipepart/--pipe should be done on the local machine inside --tmux

Convenience options --nice --basefile --transfer --return
--cleanup --tmux --group --compress
--cat --fifo --workdir --tag
--tagstring

These are all convenience options that make it easier to do a
task. But more importantly: They are
tested to work on corner cases,
too. Take --nice as an example:

GNU Parallel Design

Page 8

 nice parallel command ...

will work just fine. But when run remotely, you need to move the nice
command so it is being run on
the server:

 parallel -S server nice command ...

And this will again work just fine, as long as you are running a
single command. When you are
running a composed command you need nice
to apply to the whole command, and it gets harder still:

 parallel -S server -q nice bash -c 'command1 ...; cmd2 | cmd3'

It is not impossible, but by using --nice GNU parallel will do
the right thing for you. Similarly when
transferring files: It starts
to get hard when the file names contain space, :, `, *, or other
special
characters.

To run the commands in a tmux session you basically just need to
quote the command. For simple
commands that is easy, but when commands
contain special characters, it gets much harder to get
right.

--compress not only compresses standard output (stdout) but also
standard error (stderr); and it does
so into files, that are open but
deleted, so a crash will not leave these files around.

--cat and --fifo are easy to do by hand, until you want to clean
up the tmpfile and keep the exit code
of the command.

The real killer comes when you try to combine several of these: Doing
that correctly for all corner
cases is next to impossible to do by
hand.

--shard
The simple way to implement sharding would be to:

1 start n jobs,

2 split each line into columns,

3 select the data from the relevant column

4 compute a hash value from the data

5 take the modulo n of the hash value

6 pass the full line to the jobslot that has the computed value

Unfortunately Perl is rather slow at computing the hash value (and
somewhat slow at splitting into
columns).

One solution is to use a compiled language for the splitting and
hashing, but that would go against the
design criteria of not
depending on a compiler.

Luckily those tasks can be parallelized. So GNU parallel starts n
sharders that do step 2-6, and
passes blocks of 100k to each of those
in a round robin manner. To make sure these sharders
compute the hash
the same way, $PERL_HASH_SEED is set to the same value for all sharders.

Running n sharders poses a new problem: Instead of having n outputs
(one for each computed value)
you now have n outputs for each of the n
values, so in total n*n outputs; and you need to merge these
n*n
outputs together into n outputs.

This can be done by simply running 'parallel -j0 --lb cat :::
outputs_for_one_value', but that is rather
inefficient, as it spawns a
process for each file. Instead the core code from 'parcat' is run,
which is
also a bit faster.

GNU Parallel Design

Page 9

All the sharders and parcats communicate through named pipes that are
unlinked as soon as they are
opened.

Shell shock
The shell shock bug in bash did not affect GNU parallel, but the
solutions did. bash first introduced
functions in variables named: BASH_FUNC_myfunc() and later changed that to
BASH_FUNC_myfunc%%. When transferring functions GNU parallel
reads off the function and
changes that into a function definition,
which is copied to the remote system and executed before the
actual
command is executed. Therefore GNU parallel needs to know how to
read the function.

From version 20150122 GNU parallel tries both the ()-version and
the %%-version, and the function
definition works on both pre- and
post-shell shock versions of bash.

The remote system wrapper
The remote system wrapper does some initialization before starting the
command on the remote
system.

Make quoting unnecessary by hex encoding everything

When you run ssh server foo then foo has to be quoted once:

 ssh server "echo foo; echo bar"

If you run ssh server1 ssh server2 foo then foo has to be quoted
twice:

 ssh server1 ssh server2 \'"echo foo; echo bar"\'

GNU parallel avoids this by packing everyting into hex values and
running a command that does not
need quoting:

 perl -X -e GNU_Parallel_worker,eval+pack+q/H10000000/,join+q//,@ARGV

This command reads hex from the command line and converts that to
bytes that are then eval'ed as a
Perl expression.

The string GNU_Parallel_worker is not needed. It is simply there to
let the user know, that this
process is GNU parallel working.

Ctrl-C and standard error (stderr)

If the user presses Ctrl-C the user expects jobs to stop. This works
out of the box if the jobs are run
locally. Unfortunately it is not so
simple if the jobs are run remotely.

If remote jobs are run in a tty using ssh -tt, then Ctrl-C works,
but all output to standard error (stderr)
is sent to standard output
(stdout). This is not what the user expects.

If remote jobs are run without a tty using ssh (without -tt),
then output to standard error (stderr) is kept
on stderr, but Ctrl-C
does not kill remote jobs. This is not what the user expects.

So what is needed is a way to have both. It seems the reason why
Ctrl-C does not kill the remote jobs
is because the shell does not
propagate the hang-up signal from sshd. But when sshd dies, the

parent of the login shell becomes init (process id 1). So by
exec'ing a Perl wrapper to monitor the
parent pid and kill the child
if the parent pid becomes 1, then Ctrl-C works and stderr is kept on
stderr.

Ctrl-C does, however, kill the ssh connection, so any output from
a remote dying process is lost.

To be able to kill all (grand)*children a new process group is
started.

--nice

niceing the remote process is done by setpriority(0,0,$nice). A
few old systems do not implement
this and --nice is unsupported on
those.

GNU Parallel Design

Page 10

Setting $PARALLEL_TMP

$PARALLEL_TMP is used by --fifo and --cat and must point to a
non-exitent file in $TMPDIR. This
file name is computed on the
remote system.

The wrapper

The wrapper looks like this:

 $shell = $PARALLEL_SHELL || $SHELL;
 $tmpdir = $TMPDIR || $PARALLEL_REMOTE_TMPDIR;
 $nice = $opt::nice;
 $termseq = $opt::termseq;

 # Check that $tmpdir is writable
 -w $tmpdir ||
 die("$tmpdir is not writable.".
 	 " Set PARALLEL_REMOTE_TMPDIR");
 # Set $PARALLEL_TMP to a non-existent file name in $TMPDIR
 do {
 $ENV{PARALLEL_TMP} = $tmpdir."/par".
 	 join"", map { (0..9,"a".."z","A".."Z")[rand(62)] } (1..5);
 } while(-e $ENV{PARALLEL_TMP});
 # Set $script to a non-existent file name in $TMPDIR
 do {
 $script = $tmpdir."/par".
 	 join"", map { (0..9,"a".."z","A".."Z")[rand(62)] } (1..5);
 } while(-e $script);
 # Create a script from the hex code
 # that removes itself and runs the commands
 open($fh,">",$script) || die;
 # ' needed due to rc-shell
 print($fh("rm \'$script\'\n",$bashfunc.$cmd));
 close $fh;
 my $parent = getppid;
 my $done = 0;
 $SIG{CHLD} = sub { $done = 1; };
 $pid = fork;
 unless($pid) {
 # Make own process group to be able to kill HUP it later
 eval { setpgrp };
 # Set nice value
 eval { setpriority(0,0,$nice) };
 # Run the script
 exec($shell,$script);
 die("exec failed: $!");
 }
 while((not $done) and (getppid == $parent)) {
 # Parent pid is not changed, so sshd is alive
 # Exponential sleep up to 1 sec
 $s = $s < 1 ? 0.001 + $s * 1.03 : $s;
 select(undef, undef, undef, $s);
 }
 if(not $done) {
 # sshd is dead: User pressed Ctrl-C
 # Kill as per --termseq
 my @term_seq = split/,/,$termseq;
 if(not @term_seq) {
 	 @term_seq = ("TERM",200,"TERM",100,"TERM",50,"KILL",25);

GNU Parallel Design

Page 11

 }
 while(@term_seq && kill(0,-$pid)) {
 	 kill(shift @term_seq, -$pid);
 	 select(undef, undef, undef, (shift @term_seq)/1000);
 }
 }
 wait;
 exit ($?&127 ? 128+($?&127) : 1+$?>>8)

Transferring of variables and functions
Transferring of variables and functions given by --env is done by
running a Perl script remotely that
calls the actual command. The Perl
script sets $ENV{variable} to the correct value before
exec'ing a
shell that runs the function definition followed by the
actual command.

The function env_parallel copies the full current environment into
the environment variable
PARALLEL_ENV. This variable is picked up
by GNU parallel and used to create the Perl script
mentioned above.

Base64 encoded bzip2
csh limits words of commands to 1024 chars. This is often too little
when GNU parallel encodes
environment variables and wraps the
command with different templates. All of these are combined
and quoted
into one single word, which often is longer than 1024 chars.

When the line to run is > 1000 chars, GNU parallel therefore
encodes the line to run. The encoding
bzip2s the line to run,
converts this to base64, splits the base64 into 1000 char blocks (so csh does
not fail), and prepends it with this Perl script that
decodes, decompresses and evals the line.

 @GNU_Parallel=("use","IPC::Open3;","use","MIME::Base64");
 eval "@GNU_Parallel";

 $SIG{CHLD}="IGNORE";
 # Search for bzip2. Not found => use default path
 my $zip = (grep { -x $_ } "/usr/local/bin/bzip2")[0] || "bzip2";
 # $in = stdin on $zip, $out = stdout from $zip
 my($in, $out,$eval);
 open3($in,$out,">&STDERR",$zip,"-dc");
 if(my $perlpid = fork) {
 close $in;
 $eval = join "", <$out>;
 close $out;
 } else {
 close $out;
 # Pipe decoded base64 into 'bzip2 -dc'
 print $in (decode_base64(join"",@ARGV));
 close $in;
 exit;
 }
 wait;
 eval $eval;

Perl and bzip2 must be installed on the remote system, but a small
test showed that bzip2 is installed
by default on all platforms
that runs GNU parallel, so this is not a big problem.

The added bonus of this is that much bigger environments can now be
transferred as they will be
below bash's limit of 131072 chars.

GNU Parallel Design

Page 12

Which shell to use
Different shells behave differently. A command that works in tcsh
may not work in bash. It is
therefore important that the correct
shell is used when GNU parallel executes commands.

GNU parallel tries hard to use the right shell. If GNU parallel
is called from tcsh it will use tcsh. If it
is called from bash it will use bash. It does this by looking at the
(grand)*parent process: If the
(grand)*parent process is a shell, use
this shell; otherwise look at the parent of this (grand)*parent. If

none of the (grand)*parents are shells, then $SHELL is used.

This will do the right thing if called from:

an interactive shell

a shell script

a Perl script in `` or using system if called as a single string.

While these cover most cases, there are situations where it will fail:

When run using exec.

When run as the last command using -c from another shell (because
some shells use exec):

 zsh% bash -c "parallel 'echo {} is not run in bash; \
 set | grep BASH_VERSION' ::: This"

You can work around that by appending '&& true':

 zsh% bash -c "parallel 'echo {} is run in bash; \
 set | grep BASH_VERSION' ::: This && true"

When run in a Perl script using system with parallel as the first
string:

 #!/usr/bin/perl

 system("parallel",'setenv a {}; echo $a',":::",2);

Here it depends on which shell is used to call the Perl script. If the
Perl script is called from tcsh it
will work just fine, but if it
is called from bash it will fail, because the command setenv is
not
known to bash.

If GNU parallel guesses wrong in these situation, set the shell using $PARALLEL_SHELL.

Always running commands in a shell
If the command is a simple command with no redirection and setting of
variables, the command could
be run without spawning a
shell. E.g. this simple grep matching either 'ls ' or ' wc >> c':

 parallel "grep -E 'ls | wc >> c' {}" ::: foo

could be run as:

 system("grep","-E","ls | wc >> c","foo");

However, as soon as the command is a bit more complex a shell must
be spawned:

 parallel "grep -E 'ls | wc >> c' {} | wc >> c" ::: foo
 parallel "LANG=C grep -E 'ls | wc >> c' {}" ::: foo

It is impossible to tell how | wc >> c should be
interpreted without parsing the string (is the | a pipe in
shell or
an alternation in a grep regexp? Is LANG=C a command in csh
or setting a variable in bash?
Is >> redirection or part
of a regexp?).

GNU Parallel Design

Page 13

On top of this, wrapper scripts will often require a shell to be
spawned.

The downside is that you need to quote special shell chars twice:

 parallel echo '*' ::: This will expand the asterisk
 parallel echo "'*'" ::: This will not
 parallel "echo '*'" ::: This will not
 parallel echo '*' ::: This will not
 parallel echo \''*'\' ::: This will not
 parallel -q echo '*' ::: This will not

-q will quote all special chars, thus redirection will not work:
this prints '* > out.1' and does not save '*'
into the file out.1:

 parallel -q echo "*" ">" out.{} ::: 1

GNU parallel tries to live up to Principle Of Least Astonishment
(POLA), and the requirement of using
-q is hard to understand, when
you do not see the whole picture.

Quoting
Quoting depends on the shell. For most shells '-quoting is used for
strings containing special
characters.

For tcsh/csh newline is quoted as \ followed by newline. Other
special characters are also \-quoted.

For rc everything is quoted using '.

--pipepart vs. --pipe
While --pipe and --pipepart look much the same to the user, they are
implemented very differently.

With --pipe GNU parallel reads the blocks from standard input
(stdin), which is then given to the
command on standard input (stdin);
so every block is being processed by GNU parallel itself. This is

the reason why --pipe maxes out at around 500 MB/sec.

--pipepart, on the other hand, first identifies at which byte
positions blocks start and how long they
are. It does that by seeking
into the file by the size of a block and then reading until it meets
end of a
block. The seeking explains why GNU parallel does not know
the line number and why -L/-l and -N
do not work.

With a reasonable block and file size this seeking is more than 1000
time faster than reading the full
file. The byte positions are then
given to a small script that reads from position X to Y and sends

output to standard output (stdout). This small script is prepended to
the command and the full
command is executed just as if GNU parallel had been in its normal mode. The script looks like this:

 < file perl -e 'while(@ARGV) {
 sysseek(STDIN,shift,0) || die;
 $left = shift;
 while($read = sysread(STDIN,$buf,
 ($left > 131072 ? 131072 : $left))){
 $left -= $read; syswrite(STDOUT,$buf);
 }
 }' startbyte length_in_bytes

It delivers 1 GB/s per core.

Instead of the script dd was tried, but many versions of dd do
not support reading from one byte to
another and might cause partial
data. See this for a surprising example:

 yes | dd bs=1024k count=10 | wc

GNU Parallel Design

Page 14

--block-size adjustment
Every time GNU parallel detects a record bigger than --block-size it increases the block size by 30%.
A small --block-size gives very poor performance; by exponentially
increasing the block size
performance will not suffer.

GNU parallel will waste CPU power if --block-size does not
contain a full record, because it tries to
find a full record and will
fail to do so. The recommendation is therefore to use a --block-size > 2
records, so you always get at least one full
record when you read one block.

If you use -N then --block-size should be big enough to contain
N+1 records.

Automatic --block-size computation
With --pipepart GNU parallel can compute the --block-size
automatically. A --block-size of -1 will
use a block size so
that each jobslot will receive approximately 1 block. --block -2
will pass 2 blocks
to each jobslot and -n will pass n blocks
to each jobslot.

This can be done because --pipepart reads from files, and we can
compute the total size of the input.

--jobs and --onall
When running the same commands on many servers what should --jobs
signify? Is it the number of
servers to run on in parallel? Is it the
number of jobs run in parallel on each server?

GNU parallel lets --jobs represent the number of servers to run
on in parallel. This is to make it
possible to run a sequence of
commands (that cannot be parallelized) on each server, but run the

same sequence on multiple servers.

--shuf
When using --shuf to shuffle the jobs, all jobs are read, then they
are shuffled, and finally executed.
When using SQL this makes the --sqlmaster be the part that shuffles the jobs. The --sqlworkers

simply executes according to Seq number.

--csv
--pipepart is incompatible with --csv because you can have
records like:

 a,b,c
 a,"
 a,b,c
 a,b,c
 a,b,c
 ",c
 a,b,c

Here the second record contains a multi-line field that looks like
records. Since --pipepart does not
read then whole file when
searching for record endings, it may start reading in this multi-line
field,
which would be wrong.

Buffering on disk
GNU parallel buffers output, because if output is not buffered you
have to be ridiculously careful on
sizes to avoid mixing of outputs
(see excellent example on https://catern.com/posts/pipes.html).

GNU parallel buffers on disk in $TMPDIR using files, that are
removed as soon as they are created,
but which are kept open. So even
if GNU parallel is killed by a power outage, there will be no files
to
clean up afterwards. Another advantage is that the file system is
aware that these files will be lost in
case of a crash, so it does
not need to sync them to disk.

It gives the odd situation that a disk can be fully used, but there
are no visible files on it.

GNU Parallel Design

Page 15

Partly buffering in memory

When using output formats SQL and CSV then GNU Parallel has to read
the whole output into
memory. When run normally it will only read the
output from a single job. But when using --linebuffer
every line
printed will also be buffered in memory - for all jobs currently
running.

If memory is tight, then do not use the output format SQL/CSV with --linebuffer.

Comparing to buffering in memory

gargs is a parallelizing tool that buffers in memory. It is
therefore a useful way of comparing the
advantages and disadvantages
of buffering in memory to buffering on disk.

On an system with 6 GB RAM free and 6 GB free swap these were tested
with different sizes:

 echo /dev/zero | gargs "head -c $size {}" >/dev/null
 echo /dev/zero | parallel "head -c $size {}" >/dev/null

The results are here:

 JobRuntime Command
 0.344 parallel_test 1M
 0.362 parallel_test 10M
 0.640 parallel_test 100M
 9.818 parallel_test 1000M
 23.888 parallel_test 2000M
 30.217 parallel_test 2500M
 30.963 parallel_test 2750M
 34.648 parallel_test 3000M
 43.302 parallel_test 4000M
 55.167 parallel_test 5000M
 67.493 parallel_test 6000M
 178.654 parallel_test 7000M
 204.138 parallel_test 8000M
 230.052 parallel_test 9000M
 255.639 parallel_test 10000M
 757.981 parallel_test 30000M
 0.537 gargs_test 1M
 0.292 gargs_test 10M
 0.398 gargs_test 100M
 3.456 gargs_test 1000M
 8.577 gargs_test 2000M
 22.705 gargs_test 2500M
 123.076 gargs_test 2750M
 89.866 gargs_test 3000M
 291.798 gargs_test 4000M

GNU parallel is pretty much limited by the speed of the disk: Up to
6 GB data is written to disk but
cached, so reading is fast. Above 6
GB data are both written and read from disk. When the 30000MB
job is
running, the disk system is slow, but usable: If you are not using the
disk, you almost do not feel
it.

gargs has a speed advantage up until 2500M where it hits a
wall. Then the system starts swapping
like crazy and is completely
unusable. At 5000M it goes out of memory.

You can make GNU parallel behave similar to gargs if you point
$TMPDIR to a tmpfs-filesystem: It
will be faster for small outputs,
but may kill your system for larger outputs and cause you to lose

output.

GNU Parallel Design

Page 16

Disk full
GNU parallel buffers on disk. If the disk is full, data may be
lost. To check if the disk is full GNU
parallel writes a 8193 byte
file every second. If this file is written successfully, it is removed

immediately. If it is not written successfully, the disk is full. The
size 8193 was chosen because 8192
gave wrong result on some file
systems, whereas 8193 did the correct thing on all tested filesystems.

Memory usage
Normally GNU parallel will use around 17 MB RAM constantly - no
matter how many jobs or how
much output there is. There are a few
things that cause the memory usage to rise:

Multiple input sources. GNU parallel reads an input source only
once. This is by design, as an
input source can be a stream
(e.g. FIFO, pipe, standard input (stdin)) which cannot be rewound
and
read again. When reading a single input source, the memory is freed as
soon as the job is
done - thus keeping the memory usage constant.

But when reading multiple input sources GNU parallel keeps the
already read values for
generating all combinations with other input
sources.

Computing the number of jobs. --bar, --eta, and --halt xx%
use total_jobs() to compute the
total number of jobs. It does this
by generating the data structures for all jobs. All these job data

structures will be stored in memory and take up around 400 bytes/job.

Buffering a full line. --linebuffer will read a full line per
running job. A very long output line (say 1
GB without \n) will
increase RAM usage temporarily: From when the beginning of the line is
read
till the line is printed.

Buffering the full output of a single job. This happens when using --results *.csv/*.tsv or --sql*.
Here GNU parallel will read
the whole output of a single job and save it as csv/tsv or SQL.

Argument separators ::: :::: :::+ ::::+
The argument separator ::: was chosen because I have never seen ::: used in any command. The
natural choice -- would be a bad
idea since it is not unlikely that the template command will contain --.
I have seen :: used in programming languanges to separate
classes, and I did not want the user to be
confused that the separator
had anything to do with classes.

::: also makes a visual separation, which is good if there are
multiple :::.

When ::: was chosen, :::: came as a fairly natural extension.

Linking input sources meant having to decide for some way to indicate
linking of ::: and ::::. :::+ and
::::+ were chosen, so
that they were similar to ::: and ::::.

In 2022 I realized that /// would have been an even better choice,
because you cannot have an file
named /// whereas you can have a
file named :::.

Perl replacement strings, {= =}, and --rpl
The shorthands for replacement strings make a command look more
cryptic. Different users will need
different replacement
strings. Instead of inventing more shorthands you get more
flexible replacement
strings if they can be programmed by the user.

The language Perl was chosen because GNU parallel is written in
Perl and it was easy and
reasonably fast to run the code given by the
user.

If a user needs the same programmed replacement string again and
again, the user may want to
make his own shorthand for it. This is
what --rpl is for. It works so well, that even GNU parallel's
own
shorthands are implemented using --rpl.

In Perl code the bigrams {= and =} rarely exist. They look like a
matching pair and can be entered on
all keyboards. This made them good
candidates for enclosing the Perl expression in the replacement

strings. Another candidate ,, and ,, was rejected because they do not
look like a matching pair.
--parens was made, so that the users can
still use ,, and ,, if they like: --parens ,,,,

GNU Parallel Design

Page 17

Internally, however, the {= and =} are replaced by \257< and
\257>. This is to make it simpler to make
regular expressions. You
only need to look one character ahead, and never have to look behind.

Test suite
GNU parallel uses its own testing framework. This is mostly due to
historical reasons. It deals
reasonably well with tests that are
dependent on how long a given test runs (e.g. more than 10 secs is
a
pass, but less is a fail). It parallelizes most tests, but it is easy
to force a test to run as the single test
(which may be important for
timing issues). It deals reasonably well with tests that fail
intermittently. It
detects which tests failed and pushes these to the
top, so when running the test suite again, the tests
that failed most
recently are run first.

If GNU parallel should adopt a real testing framework then those
elements would be important.

Since many tests are dependent on which hardware it is running on,
these tests break when run on a
different hardware than what the test
was written for.

When most bugs are fixed a test is added, so this bug will not
reappear. It is, however, sometimes
hard to create the environment in
which the bug shows up - especially if the bug only shows up

sometimes. One of the harder problems was to make a machine start
swapping without forcing it to its
knees.

Median run time
Using a percentage for --timeout causes GNU parallel to compute
the median run time of a job. The
median is a better indicator of the
expected run time than average, because there will often be outliers
taking way longer than the normal run time.

To avoid keeping all run times in memory, an implementation of
remedian was made (Rousseeuw et
al).

Error messages and warnings
Error messages like: ERROR, Not found, and 42 are not very
helpful. GNU parallel strives to inform
the user:

What went wrong?

Why did it go wrong?

What can be done about it?

Unfortunately it is not always possible to predict the root cause of
the error.

Determine number of CPUs
CPUs is an ambiguous term. It can mean the number of socket filled
(i.e. the number of physical
chips). It can mean the number of cores
(i.e. the number of physical compute cores). It can mean the
number of
hyperthreaded cores (i.e. the number of virtual cores - with some of
them possibly being
hyperthreaded).

On ark.intel.com Intel uses the terms cores and threads for
number of physical cores and the number
of hyperthreaded cores
respectively.

GNU parallel uses uses CPUs as the number of compute units and
the terms sockets, cores, and
threads to specify how the
number of compute units is calculated.

Computation of load
Contrary to the obvious --load does not use load average. This is
due to load average rising too
slowly. Instead it uses ps to list
the number of threads in running or blocked state (state D, O or
R).
This gives an instant load.

As remote calculation of load can be slow, a process is spawned to run ps and put the result in a file,
which is then used next time.

GNU Parallel Design

Page 18

Killing jobs
GNU parallel kills jobs. It can be due to --memfree, --halt,
or when GNU parallel meets a condition
from which it cannot
recover. Every job is started as its own process group. This way any

(grand)*children will get killed, too. The process group is killed
with the specification mentioned in
--termseq.

SQL interface
GNU parallel uses the DBURL from GNU sql to give database
software, username, password, host,
port, database, and table in a
single string.

The DBURL must point to a table name. The table will be dropped and
created. The reason for not
reusing an existing table is that the user
may have added more input sources which would require
more columns in
the table. By prepending '+' to the DBURL the table will not be
dropped.

The table columns are similar to joblog with the addition of V1
.. Vn which are values from the input
sources, and Stdout and
Stderr which are the output from standard output and standard error,

respectively.

The Signal column has been renamed to _Signal due to Signal being a
reserved word in MySQL.

Logo
The logo is inspired by the Cafe Wall illusion. The font is DejaVu
Sans.

Citation notice
For details: See
https://git.savannah.gnu.org/cgit/parallel.git/tree/doc/citation-notice-faq.txt

Funding a free software project is hard. GNU parallel is no
exception. On top of that it seems the less
visible a project is, the
harder it is to get funding. And the nature of GNU parallel is that
it will never
be seen by "the guy with the checkbook", but only by the
people doing the actual work.

This problem has been covered by others - though no solution has been
found:
https://www.slideshare.net/NadiaEghbal/consider-the-maintainer

https://www.numfocus.org/blog/why-is-numpy-only-now-getting-funded/

Before implementing the citation notice it was discussed with the
users:

https://lists.gnu.org/archive/html/parallel/2013-11/msg00006.html

Having to spend 10 seconds on running parallel --citation once is
no doubt not an ideal solution, but
no one has so far come up with an
ideal solution - neither for funding GNU parallel nor other free

software.

If you believe you have the perfect solution, you should try it out,
and if it works, you should post it on
the email list. Ideas that will
cost work and which have not been tested are, however, unlikely to be

prioritized.

Running parallel --citation one single time takes less than 10
seconds, and will silence the citation
notice for future runs. This is
comparable to graphical tools where you have to click a checkbox

saying "Do not show this again". But if that is too much trouble for
you, why not use one of the
alternatives instead? See a list in: man parallel_alternatives.

As the request for citation is not a legal requirement this is
acceptable under GPLv3 and cleared with
Richard M. Stallman
himself. Thus it does not fall under this:

https://www.gnu.org/licenses/gpl-faq.en.html#RequireCitation

Ideas for new design
Multiple processes working together

Open3 is slow. Printing is slow. It would be good if they did not tie
up resources, but were run in
separate threads.

GNU Parallel Design

Page 19

--rrs on remote using a perl wrapper
... | perl -pe '$/=$recend$recstart;BEGIN{ if(substr($_) eq $recstart) substr($_)="" } eof and substr($_)
eq $recend) substr($_)=""

It ought to be possible to write a filter that removed rec sep on the
fly instead of inside GNU parallel.
This could then use more cpus.

Will that require 2x record size memory?

Will that require 2x block size memory?

Historical decisions
These decisions were relevant for earlier versions of GNU parallel,
but not the current version. They
are kept here as historical record.

--tollef
You can read about the history of GNU parallel on
https://www.gnu.org/software/parallel/history.html

--tollef was included to make GNU parallel switch compatible
with the parallel from moreutils (which
is made by Tollef Fog
Heen). This was done so that users of that parallel easily could port
their use to
GNU parallel: Simply set PARALLEL="--tollef" and
that would be it.

But several distributions chose to make --tollef global (by putting
it into /etc/parallel/config) without
making the users aware of this,
and that caused much confusion when people tried out the examples
from
GNU parallel's man page and these did not work. The users became
frustrated because the
distribution did not make it clear to them that
it has made --tollef global.

So to lessen the frustration and the resulting support, --tollef
was obsoleted 20130222 and removed
one year later.

