MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS 01886

February 2, 2022
Telephone: 617-715-5533

To: EDGES Group

From: Alan E.E. Rogers
Subject: Further optimization of wire grid ground plane
Wire grid ground planes have been studied in memos 298, 308 and 378. A "meandering wire grid" ground plane was used in the EDGES-3 deployment described in memo 310.A comparison of wire grid ground planes of different sizes and wire spacing are compared with solid ground planes in memo 378. The solid metal ground planes are assumed to be equivalent to welded mesh ground planes which are studied in memos 316, 328 and 350 because the loss due to leakage through the mesh with 5 cm spacing is less than 0.1% and resistive loss is also under 0.1% if galvanized as studied in memos 179, 258, 315 and 316. The wire grid parameters included are in the list in table 1

parameter	Range studied	comments
Length in the direction of antenna E-field	$5-30 \mathrm{~m}$	square, rectangular and 45 degree
Length perpendicular to antenna E-field	$5-30 \mathrm{~m}$	can be obtained and spacing away
Wire spacing	$3.125-25 \mathrm{~cm}$	from antenna increased to save wire
Meandering		whether wire in continuous or cut
Wire size/diameter	$14-18 \mathrm{awg}$	$1.042-1.628 \mathrm{~mm}$ in diameter
Change of wire spacing with distance	$1-2$ or more	change of 2 as in memo 310
Use of shorted annular-ring SAR	$1-4$ rings	use of outer shorted squares of wire
Height off the ground or soil for test only	$0-25 \mathrm{~cm}$	>1 cm degrades performance
Overall shape	square or rectangle	Also square rotated by 45 degrees

Table 1. Wire grid ground plane parameters
Estimates of loss were made in memo 298 are repeated here for different wire gauges and for smaller sizes which then can be extended to larger sizes by increasing the spacing with increased distance from the center line of the antenna E-field in order to save wire.

The loss estimates in table 2 are derived using FEKO which uses the Green's function (GF) method to account for the soil which has limited accuracy and some "glitches" which make it difficult to access the smoothness of the loss variation with frequency. However the loss at the 2% level typically has little contribution to the beam chromaticity based on comparisons using the "reflection method" in FEKO. See memos 258, 277 and 315.

Wire gauge awg	Diam mm	Size m	spacing cm	loss
18	1.024	5×5	12.5	5.6%
18		5×5	6.25	3.3%
18		10×10	6.25	2.1%
18		10×10	3.125	1.4%
14	1.628	10×10	6.25	1.9%
14		30×30	6.25100	1.1%
18		30×30	6.25100	1.6%
18		30×30	3.125250	0.7%

Table 2. Loss dependence at 76 MHz on wire gauge and spacing
Since $30 x 30 \mathrm{~m}$ wire grid with uniform wire spacing of 6.25 cm would take 960 pegs and 14.4 km of wire there is a strong motivation to examine ways of reducing these numbers. Figures 1 and 2 show the use of adding wire squares or meandering wires with 1 meter spacing beyond a $10 \times 10 \mathrm{~m}$ meandering ground plane with constant of 6.25 cm . The motivation for squares comes from the use of shorted annular-ring (SAR) used in some planar GPS and GNSS antennas. FEKO
simulations of these 2 cases show lower chromaticity for the continuation of the meandering with wide spacing while in both cases the ground loss is about the same. A variation of the spacing of the meandering is also examined. Meandering results in slightly better chromaticity than cutting each wire to remove the connections between adjacent wires.

Wire gauge	Inner size	Overall size	Initial spacing	Final spacing	Av rms mK	rms 1	rms 2	loss	comments
18		10×10	6.25	6.25	199	97	50	2.0%	$\mathrm{Az}=0$ deg
18	10×10	30×30	6.25	1000	191	53	29	2.0%	Added squares
18	10×10	30×30	6.25	1000	119	74	28	1.7%	Added meander
18		30×30	6.25	250	109	85	33	0.8%	Continuous spacing
solid	20 m	diam	circle		330	81	13	0.2%	$\mathrm{Az}=60$ deg
solid	20 m	diam	circle		314	112	40	0.2%	$\mathrm{Az}=0$ deg
mesh	30×30	perf			89	64	4	0.2%	$\mathrm{Az}=60$ deg
mesh	30×30	perf			81	55	7	0.2%	$\mathrm{Az}=0$ deg
18	10×10	square	rotated 45 deg	3.1 cm	154	76	1	1.6%	$\mathrm{Az}=60$ deg
18	10×10	square	rotated 45 deg	to 6.28	154	50	10	1.6%	$\mathrm{Az}=0$ deg
18	15×15	square	rotated 45 deg	3.1 cm	182	63	8	1.6%	$\mathrm{Az}=60$ deg
18	15×15	square	rotated 45 deg	to 7.8	182	42	18	1.6%	$\mathrm{Az}=0$ deg
18	20×20	square	rotated 45 deg	3.1 cm	214	60	1	1.0%	$\mathrm{Az}=60$ deg
18	20×20	square	rotated 45 deg	to 9.5	220	120	36	1.0%	$\mathrm{Az}=0$ deg

solid	$20 x 20$	square	rotated 45 deg		175	50	9	0.1%	$\mathrm{Az}=60 \mathrm{deg}$
solid	20×20	square	rotated 45 deg		179	119	28	0.1%	$\mathrm{Az}=0 \mathrm{deg}$
18	30×30	square	6.25	250	102	56	6	0.8%	$\mathrm{Az}=60 \mathrm{deg}$
18	30×30	square	6.25	250	110	85	34	0.8%	$\mathrm{Az}=0 \mathrm{deg}$
18	30×30	square	3.125		112	63	7	1%	$\mathrm{Az}=60 \mathrm{deg}$
18	30×30	square	3.125		139	111	47	1%	$\mathrm{Az}=0 \mathrm{deg}$
18	20×10	rectangle	3.125		184	90	18	1.3%	$\mathrm{Az}=60 \mathrm{deg}$
18	20×10	rectangle	3.125		184	68	13	1.3%	$\mathrm{Az}=0 \mathrm{deg}$
18	10×5	rectangle	3.125		216	108	67	3.0%	$\mathrm{Az}=60 \mathrm{deg}$
18	10 x 5	rectangle	3.125		166	57	26	3.0%	$\mathrm{Az}=0 \operatorname{deg}$

Table 3. Effect of wire spacing on average rms over 1 hour blocks of GHA at latitude 69 degrees and rms before and after fitting the Nature absorption with 5-terms removed from $55-97 \mathrm{MHz}$ When testing square ground planes it was noticed that when the square in rotated by 45 degrees to the antenna electric field vector as shown in Figure 3 the chromaticity is reduced because with this orientation the edges smear the phases of the reflections like in the 30×30 "perforated" ground plane in memo 204. It is noted that the square ground plane shows a large range of performance vs azimuth angle which requires a closer examination as the orientation cannot be easily changed without removing the pegs and wire and reinstalling the pegs and using a new supply of wire.

parameters	change	Avrms mK	rms1	rms2	comments
30x30m_meav6_2p5_t2_1e-3_18a_0cm	$1 \mathrm{e}-2-1 \mathrm{e}-3$	69	64	4	$\mathrm{Az}=60 \mathrm{deg}$
"	"	73	65	8	$\mathrm{Az}=0$ deg
20x10m_mea1_mspac4_1e-2_18a_0cm_rock2	rock 0-2	65	55	5	$\mathrm{Az}=60 \mathrm{deg}$
"	"	76	70	6	$\mathrm{Az}=0$ deg
20x10m_mea1_mspac4_1e-2_18a_0cm	$1 \mathrm{e}-2-1 \mathrm{e}-3$	75	59	8	$\mathrm{Az}=60 \mathrm{deg}$
"	"	74	61	7	$\mathrm{Az}=0$ deg

Table 4. Effects of a change in soil conductivity and layer of rock below
The chromaticity with 5-physical terms removed is examined for various cases

Wire gauge	Inner size	Init grid spacing	Soil S/m	diel	Av rms mK	rms 1	rms 2	loss	comments
18	20×10	3.125 cm	$1 \mathrm{e}-2$	3.5	184	90	18	1.4%	$\mathrm{Az}=60 \mathrm{deg}$
18	20×10	$"$	$1 \mathrm{e}-2$	3.5	184	69	14	1.4%	$\mathrm{Az}=0 \mathrm{deg}$
18	20×10	$"$	$1 \mathrm{e}-3$	3.5	204	94	22	1.5%	$\mathrm{Az}=60 \mathrm{deg}$
18	20×10	$"$	$1 \mathrm{e}-3$	3.5	204	72	14	1.5%	$\mathrm{Az}=0 \mathrm{deg}$

18	20×10	$"$	$1 \mathrm{e}-2$	rock2	194	83	16	1.5%	$\mathrm{Az}=60 \mathrm{deg}$
18	20 x 10	$"$	$1 \mathrm{e}-2$	rock2	196	76	11	1.5%	$\mathrm{Az}=0 \mathrm{deg}$
18	10×20	$"$	$1 \mathrm{e}-2$	3.5	197	68	13	1.2%	$\mathrm{Az}=60 \mathrm{deg}$
18	10×20	$"$	$1 \mathrm{e}-2$	3.5	195	74	50	1.2%	$\mathrm{Az}=0 \mathrm{deg}$
18	15 x 15	$"$	$1 \mathrm{e}-2$	3.5	206	70	14	1.0%	$\mathrm{Az}=60 \mathrm{deg}$
18	15 x 15	$"$	$1 \mathrm{e}-2$	3.5	227	72	12	1.0%	$\mathrm{Az}=0 \mathrm{deg}$

Table 5. Effects of the different soil conductivity and rock layer below for $20 \times 10 \mathrm{~m}$ and $10 \times 20 \mathrm{~m}$ rectangular wire grid ground plane.

size	nspac	awg	wire spacings	\#pegs	Wire len m	loss	chromaticity
15×15	4	18	3.1256 .2512 .525	562	4215	1.0%	227
15×15	8	18	3.125 gradual	588	2589	1.6%	181
30×16	Oregon	18	6.2512 .5	320	4800	1.7%	146
30×15	4	18	3.1256 .2512 .425	562	8430	1.7%	146
30×30	4	18	3.1256 .2512 .525	754	11310	0.7%	139
30×30	4	18	6.2512 .525	378	5670	1.6%	133
30×30	4	14	6.2512 .525	378	5670	1.4%	135
30×15	4	18	6.2512 .525	282	4230	1.8%	133
30×15	4	14	6.2512 .525	282	4230	1.6%	135
$15-45 \times 15$	4	18	6.2512 .525	282	4308	1.8%	116

Table 6. The number of pegs and wire lengths needed for a few selected cases
The last entry in table 6 in which the wire length is varied from 15 to 45 m to form 4 perforations on each end shown in Figure 6. The chromaticity is slightly better but the layout of pegs in more complex.
Based on consideration of wire size and length of wire needed the best choice is $30 \times 15 \mathrm{~m}$ with about 4.23 km of 18 awg which is close to the design used in Oregon with a more gradual change in spacing from 6.25 to 12.25 at 2 m to 25.0 at 6 m from antenna using 282 pegs.
In overall summary of ground planes this study combined with previous studies show:
1] The antenna should be as electrically small as possible without compromise of the S11 magnitude
2] The antenna should have the small delay in the S11
3] The antenna should be horizontally polarized to minimize reflections from the edges of the ground plane
4] A square ground plane has a lower chromaticity than a circular ground plane of the same area
5] A ground plane with perforated edges has lower chromaticity but is not practical with a wire grid
6] The ground plane needs to be level to within 1 degree and flat to within 5 cm peak deviation

Figure $1.10 \times 10 \mathrm{~m}$ wire grid with wire squares with 1 m spacing to extend to $30 \times 30 \mathrm{~m}$ the first case in table 3.

FEKO

test7

2022-01-16 21:13

$$
\begin{aligned}
& \text { View direction } \\
& \text { Theta }=35^{\circ} \\
& \text { Phi }=-135^{\circ}
\end{aligned}
$$

Figure 2. $10 \times 10 \mathrm{~m}$ wire grid with meandering wire with 1 m spacing to extend to $30 \times 30 \mathrm{~m}$ the second case case in table 3.

Figure $3.10 \times 10 \mathrm{~m}$ square meandering wire grid orientated 45 degrees to the antenna

FERQ	test7	View direction Theta $=1^{\circ}$ Phi $=-135^{\circ}$

Figure $4.20 \times 10 \mathrm{~m}$ rectangular meandering wire grid with change in spacing

Figure 5 . The chromaticity (5 terms removed) of the 20 m diameter circular ground plane in space on the left and on soil $3.5 \mathrm{le}-2 \mathrm{~S} / \mathrm{m}$ in the middle and $30 \times 30 \mathrm{~m}$ EDGES-3 mesh ground plane on the right. In this case the chromaticity is for the latitude of -26.7 degrees of the MRO

Figure 6. The $15 \times 15 \mathrm{~m}$ to $45 \times 15 \mathrm{~m}$ meandering wire grid layout used for the last

