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38.1.5. Möbius 452

38.2. Algebraic Geometry 453
38.2.1. Plücker 454
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PREFACE

Like its immediate predecessor, this third edition of The History of Mathematics: A Brief
Course must begin with a few words of explanation to users of the earlier editions. The
present volume, although it retains most of the material from the second edition, has been
reorganized once again. In the first edition each chapter was devoted to a single culture or
period within a single culture and subdivided by mathematical topics. In the second edition,
after a general survey of mathematics and mathematical practice in Part 1, the primary
division was by subject matter: numbers, geometry, algebra, analysis, mathematical infer-
ence. After long consideration, I found this organization less desirable than a chronological
ordering. As I said in the preface to the second edition,

For reasons that mathematics can illustrate very well, writing the history of mathematics is a
nearly impossible task. To get a proper orientation for any particular event in mathematical
history, it is necessary to take account of three independent “coordinates”: the time, the math-
ematical subject, and the culture. To thread a narrative that is to be read linearly through this
three-dimensional array of events is like drawing one of Peano’s space-filling curves. Some
points on the curve are infinitely distant from one another, and the curve must pass through
some points many times. From the point of view of a reader whose time is valuable, these
features constitute a glaring defect. The problem is an old one, well expressed eighty years
ago by Felix Klein, in Chapter 6 of his Lectures on the Development of Mathematics in the
Nineteenth Century:

I have now mentioned a large number of more or less famous names, all closely connected
with Riemann. They can become more than a mere list only if we look into the literature
associated with the names, or rather, with those who bear the names. One must learn
how to grasp the main lines of the many connections in our science out of the enormous
available mass of printed matter without getting lost in the time-consuming discussion
of every detail, but also without falling into superficiality and dilettantism.

I have decided that in the lexicographic ordering of the three-dimensional coordinate
system mentioned above, culture is the first coordinate, chronology the second, and math-
ematical content the third. That is the principle on which the first six parts of the present
edition are organized. In the seventh and final part, which covers the period from 1800
on, the first coordinate becomes irrelevant, as mathematics acquires a worldwide scope.
Because so much new mathematics was being invented, it also becomes impossible to give
any coherent description of its whole over even a single decade, and so the chronological
ordering has to become the second coordinate, as mathematical content becomes the first.

Changes from the Second Edition

Besides the general reorganization of material mentioned above, I have also had a feeling
that in the previous edition I succumbed in too many places to the mathematician’s impulse
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to go into mathematical detail at the expense of the history of the subject and to discuss
some questions of historical minutiae that are best omitted in a first course. I have therefore
condensed the book somewhat. The main difference with earlier editions is that I have
tried to adapt the text better to the needs of instructors. To that end, I have made the
chapters more nearly uniform in length, usually ten to twelve pages each, putting into each
chapter an amount of material that I consider reasonable for a typical 50-minute class. In
addition, I have scrutinized the problems to be sure that they are reasonable as homework
problems. They are of three types: (1) those that develop a mathematical technique, such as
the Chinese method of solving polynomial equations numerically, the kuttaka, computation
by the Egyptian method, prosthaphæresis, and the like; (2) those that ask the student to
recall a specific set of historic facts (these generally have brief answers of a sentence or two
and should be answerable directly from the narrative); and (3) those that ask the student to
speculate and synthesize the history into a plausible narrative, including possible motives
for certain investigations undertaken by mathematicians. In survey chapters at the beginning
of some parts, only the last two types occur.

The book is divided into seven parts. The first six, comprising the first 34 chapters,
contain as systematic a discussion as I can manage of the general history of mathematics
up to the nineteenth century. Because it is aimed at a general audience, I have given extra
attention to topics that continue to be in the school curriculum, while at the same time trying
to discuss each topic within the context of its own time. At the end of each chapter are a few
questions to provide a basis for classroom discussions. More such questions can be found
in the accompanying teacher’s manual. I believe that these 34 chapters, totaling about 400
pages, constitute a one-semester course and that any extra class meetings (I assume 42 such
meetings) will be devoted to quizzes, midterms, and perhaps one or two of the specialized
chapters in Part VII.

The seventh and last part of the book consists of more narrowly focused discussions.
Except for Chapter 35, which discusses a small portion of the history of women in mathe-
matics, these are updates, arranged by subject matter and carrying the history of the topics
they treat into the twentieth century. Since this material involves modern mathematics, it
is technically much more difficult than the first six parts of the book, and the mathemat-
ical homework problems reflect this greater difficulty, making much higher demands on
the reader’s mathematical preparation. Instructors will of course use their own judgment
as to the mathematical level of their students. In some of these chapters, I have exceeded
the self-imposed limit of 12 pages that I tried to adhere to in the first six parts of the book,
assuming that instructors who wish to discuss one of these chapters will be willing to devote
more than one class meeting to it.

Elementary Texts on the History of Mathematics

A textbook on the history of mathematics aimed at a first course in the subject, whose audi-
ence consists of teachers, mathematicians, and interested students from other specialties,
cannot be as complete or as focused as an encyclopedia of the subject. Connections with
other areas of science deserve attention quite as much as historical issues of transmission
and innovation. In addition, there are many mathematical skills that the reader cannot be
presumed to have, and these need to be explained as simply as possible, even when the
explanation does not faithfully reproduce the historical text in which the subject arose.
Thus, I have hybridized and simplified certain mathematical techniques in order to provide
a usable model of what was actually done while stripping away complications that make
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the original texts obscure. This much sacrifice of historical accuracy is necessary, I believe,
in order to get to the point within the confines of a single semester. At the same time, I think
the exposition of these and other topics gives a reasonable approximation to the essence of
the original texts.

This concept of a reasonable approximation to the original presents a problem that
requires some judgment to solve: How “authentic” should we be when discussing works
written long ago and far away, using concepts that have either disappeared or evolved into
something very different? Historians have worked out ways of giving some idea of what
original documents looked like. We can simply write numbers, for example, in our own
notation. But when those numbers are part of a system with operational connections, it
is necessary to invent something that is isomorphic to the original system, so that, for
example, numbers written in sexagesimal notation still have a sexagesimal appearance, and
computations done in the Egyptian manner are not simply run through a calculator and
the output used. This problem is particularly acute in Euclidean geometry, which makes
no reference to any units of length, area, or volume. The “Euclidean” geometry that is
taught to students in high school nowadays freely introduces such units and makes use of
algebraic notation to give formulas for the areas and volumes of circles, spheres, cones,
and the like. This modernization conceals the essence of Euclid’s method, especially his
theory of proportion. He did not speak of the area of a circle, for example, only of the ratio
of one circle to another, proving that it was the same as the ratio of the squares having
their diameters as sides (Book 12, Proposition 2). How much of that authentic Euclidean
geometry, which I call metric-free, should the student be subjected to? Without it, many
of the most important theorems proved by Euclid, Archimedes, and Apollonius look very
different from their original forms. On the other hand, it is cumbersome to expound, and
one is constantly tempted to capitulate and “modernize” the discussion. I have made the
decision in this book to draw the line at conic sections, using symbolic notation to describe
them, though I do so with a very bad conscience. But I would never dream of presenting, in
an introductory text, the actual definition of the latus rectum given by Apollonius. I try to
hold the use of symbolic algebra to a minimum, but compromises are necessary in the real
world.

When it comes to algebra, symbolic notation is a very late arrival. Algorithms for solving
cubic and quartic equations preceded it, and those algorithms are very cumbersome to
explain without symbols. Once again, I surrender to necessity and try to present the essence
of the method without getting bogged down in the technical details of the original works.
There is a further difficulty that most students have learned algebra by rote and can carry
out certain operations, but have no insight into the essence of the problems they have been
taught to solve. They may know what American students call the FOIL method of solving
quadratic equations with integer coefficients, and some of them may even remember the
quadratic formula, but I have yet to encounter a student who has grasped the simple fact that
solving a quadratic equation is a way of finding two numbers if one knows their sum and
product. Nor have I found a student who has the more general insight that classical algebra
is the search for ways of rendering explicit numbers that are determined only implicitly,
even though this insight is crucial for recognizing algebra when it occurs in early treatises,
where there is no symbolic notation.

Besides the enormous amount of mathematics that the human race has created, so enor-
mous that no one can be really expert except over a tiny region of it, the historian has the
additional handicap of trying to fit that mathematics into the context of a wide range of
cultures, most of which will not be his or her area of expertise. I feel these limitations with
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particular keenness when it comes to languages. Despite a lifetime spent trying to acquire
new languages in what spare time I have had, I really feel comfortable (outside of English,
of course) only when working in Russian, French, German, Latin, and ancient Greek. (I
have acquired only a modest ability to read a bit of Japanese, which I constantly seek to
expand.) Of course, having a language from each of the Romance, Germanic, and Slavic
groups makes it feasible to attempt reading texts in perhaps two dozen languages, but one
needs to be on guard and never rely on one’s own translations in such cases. I am most
sharply aware of my total dependence on translations of works written in Chinese, Sanskrit,
and Arabic. Even though I report what others have said about certain features of these lan-
guages for the reader’s information, let it be noted here and now that anything I say about
any of these languages is pure hearsay.

Just to reiterate: One can really glimpse only a small portion of the history of mathematics
in an introductory course. Some idea of how much is being omitted can be seen by a glance
at the website at the University of St Andrews.

http://www-history.mcs.st-and.ac.uk/

That site provides biographies of thousands of mathematicians. Under the letter G alone
there are 125 names, fewer than 40 of which appear in this book. While many of the “small
fry” have made important contributions to mathematics, they do not loom large enough to
appear on a map the size and scale of the present work. Thus, it needs to be kept in mind
that the picture is being painted in very broad brush strokes, and many important details are
simply not being shown. Every omission is regrettable, but omissions are necessary if the
book is to be kept within 600 pages.

And, finally, a word about the cover. When I was asked what kind of design I wished,
I thought of a collage of images encompassing the whole history of the subject: formulas
and figures. In the end, I decided to keep it simple and let one part stand for the whole. The
part I chose was the conic sections, because of the length and breadth of their influence
on the history of the subject. Arising originally as tools to solve the problems of trisecting
the angle and doubling the cube, they were the subject of one of the profoundest treatises
of ancient times, that of Apollonius. Later, they turned out to be the key to solving cubic
and quartic equations in the work of Omar Khayyam, and they became a laboratory for the
pioneers of analytic geometry and calculus to use in illustrating their theories. Still later,
they were a central topic in the study of projective geometry, and remained so in algebraic
geometry far into the nineteenth century. It is no accident that non-Euclidean geometries are
classified as elliptic and hyperbolic, or that linear partial differential equations are classified
as elliptic, parabolic, and hyperbolic. The structure revealed by this trichotomy of cases for
the intersection of a plane with a cone has been enormous. If any one part deserves to stand
for the whole, it is the conic sections.



PART I

WHAT IS MATHEMATICS?

This first part of our history is concerned with the “front end” of mathematics (to use
an image from computer algebra)—its relation to the physical world and human soci-
ety. It contains some general considerations about mathematics, what it consists of, and
how it may have arisen. This material is intended as an orientation for the main part of
the book, where we discuss how mathematics has developed in various cultures around
the world. Because of the large number of cultures that exist, a considerable paring down
of the available material is necessary. We are forced to choose a few sample cultures to
represent the whole, and we choose those that have the best-recorded mathematical history.
The general topics studied in this part involve philosophical and social questions, which are
themselves specialized subjects of study, to which a large amount of scholarly literature has
been devoted. Our approach here is the naive commonsense approach of an author who is
not a specialist in either philosophy or sociology. Since present-day governments have to
formulate policies relating to mathematics and science, it is important that such questions
not be left to specialists. The rest of us, as citizens of a republic, should read as much as
time permits of what the specialists have to say and make up our own minds when it comes
time to judge the effects of a policy.

Contents of Part I

1. Chapter 1 (Mathematics and Its History) considers the general nature of mathematics
and gives an example of the way it can help to understand the physical world. We
also outline a series of questions to be kept in mind as the rest of the book is studied,
questions to help the reader flesh out the bare bones in the historical documents.

2. Chapter 2 (Proto-mathematics) studies the mathematical reasoning invented by peo-
ple in the course of solving the immediate and relatively simple practical problems
of administering a government or managing a construction site. In this area we
are dependent on archaeologists and anthropologists for the historical information
available.

The History of Mathematics: A Brief Course, Third Edition. Roger L. Cooke.
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CHAPTER 1

Mathematics and its History

. . . all histories, to the extent that they contain a system, a drama, or a moral, are so much
literary fiction.

Those who cannot remember the past are condemned to repeat it. (Often misquoted as “Those
who do not learn from history are doomed to repeat it.”)

George Santayana (1863–1952), Spanish–American philosopher
(born Jorge Agustin Nicolás Ruiz de Santayana y Borrás)

The history of mathematics is a hybrid subject, taking its material from mathematics and
history, sometimes invoking other areas such as psychology, political history, sociology, and
philosophy to give a detailed picture of the development of mathematics. Obviously, no one
can be an expert in all of these areas, and some compromises have to be accepted. Especially
in an introductory course, it is often necessary to oversimplify both the mathematics itself
and the social and historical context in which it arose so that the most significant portions
can be included. No history of the subject that covers more than a narrow band of time can
aim for anything like completeness.

1.1. TWO WAYS TO LOOK AT THE HISTORY OF MATHEMATICS

One of the most distinguished historians of mathematics, Ivor Grattan-Guinness (b. 1941),
has made a distinction between history and heritage. History asks the question “What
happened in the past?” Heritage asks “How did things come to be the way they are?”
Obviously, the first of these two questions is more general than the second. Many things
happened in the past that had no influence on the current shape of things, not only in
mathematics but in all areas of human endeavor, including art, music, and politics. Such
events are history, but not heritage. The study of history in this sense is a purely intellectual
exercise, not aimed at any applications, nor to teach a moral, nor to make people better
citizens. What it does aim at is getting an accurate picture of the past for the edification of
those who have a taste for such knowledge. It is difficult to write such a history, as the first
epigram from George Santayana given above shows.

Even on the most impersonal, objective level, we don’t want the raw, unedited past, which
is a raging tsunami of sneezes and hiccups; some judgment is needed to select the events in
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4 MATHEMATICS AND ITS HISTORY

the past that are of interest. To that extent, Santayana’s implication is correct: All history is
literary fiction. The danger for the historian lies in trying to frame a particular picture of the
past in order to make it tell the story that one personally would like to hear. In the history of
mathematics, there is a special danger because the mathematics itself fits together in a very
logical way, while the routes by which it has been discovered and developed have all the
illogical disorder that is inherent in any process involving human thinking. For example,
it is known that there is no finite algebraic formula involving only arithmetic operations
and root extractions that will yield a root of every quintic equation when the coefficients of
that equation are substituted for its variables. This result follows very neatly from what we
now call Galois theory, after Evariste Galois (1811–1832), who first introduced its basic
ideas. It is nowadays always proved using this technique. But the theorem was first stated
and given a semblance of a proof by Paolo Ruffini (1765–1822) and Niels Henrik Abel
(1802–1829), neither of whom knew Galois theory. They both proceeded by counting the
number of different values that such a hypothetical formula would generate if all possible
values were substituted in the formula for each nth root it contains. This example is typical
of many cases in the history of mathematics, where the proof of a proposition resulted
not from rigorously arranged steps following in logical order from one another, but from a
number of independent ideas gradually coming into focus.

1.1.1. History, but not Heritage

During the fifteenth and sixteenth centuries, tables of sines were used to simplify multipli-
cation and reduce it to addition and subtraction. This procedure was called prosthaphæresis,
from the Greek words prosthairesis (πρoσθαίρεσις), meaning taking toward, and aphairesis
(
,
αφαίρεσις), meaning taking away. This technique disappeared almost without a trace after

the discovery of logarithms in the early seventeenth century, and it is nowadays unknown
even to most professional mathematicians. Nevertheless, it was an important idea in its time
and deserves to be remembered. We shall take the time to discuss it and practice it a bit.
As we shall see, it is actually more efficient than logarithms for computing the formulas of
spherical trigonometry.

1.1.2. Our Mathematical Heritage

The appeal of history is to a person of a particular “antiquarian” bent of mind. Heritage,
which is parasitic upon history, has a somewhat more practical aim: to help us understand the
world that we ourselves live in. This is the “useful” part of history that historians advertise to
the public to gain support, and it is the point of view expressed in the second of Santayana’s
epigrams at the beginning of this lecture. (Notice that the two epigrams taken together imply
that the human race needs a variety of history that is actually literary fiction.)

If you have taken a course called “modern algebra,” for example, you found yourself
confronted with a collection of abstract objects—groups, rings, fields, vector spaces—that
seemed to have nothing in common with high-school algebra except that they required
the use of letters. How did these abstract subjects come to be referred to as algebra? By
tracing the story of the unsolvability of the general equation of degree five, we can answer
this question.

After algebraic formulas were found for solving equations of degree 3 and 4 in the
sixteenth century, two centuries were spent in the quest for a mathematical “Holy Grail,” an
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algebraic formula to solve the general equation of degree 5. Some people thought they had
succeeded; but in the late eighteenth and early nineteenth centuries, Ruffini, Abel (one of
those who for a time thought he had succeeded in finding the formula), and William Rowan
Hamilton (1805–1865) were able to show that no such formula could exist. The question
then arose of determining which equations could be solved by algebraic operations (the
operations of arithmetic, together with the extraction of roots) and which could not. The
answer to this question, as shown by Galois, depends on the abstract nature of a certain set
of permutations of the roots. This was the beginning of the study of groups, a word first
used by Galois. The concept of an abstract group arose some decades later, along with the
rest of these abstract creations, all of which found numerous applications in other areas of
mathematics. The original problem that gave rise to much of this modern algebra was, in
the end, only one part of the vast edifice of modern algebra.

1.2. THE ORIGIN OF MATHEMATICS

The farther we delve into the past, the more we find mathematics entangled with account-
ing, surveying, astronomy, and the general administration of empires. Mathematics arises
wherever people think about the physical world or about the world of ideas embodied in
laws and even theology. It grows like a plant, from a seed that germinates and later ramifies
to produce roots, branches, leaves, flowers, and fruit. It is constantly growing.

1.2.1. Number

It seems nearly certain that the small positive integers, the kinds of numbers that are in-
tuitively known to everyone, are the “seed” of mathematics. Essentially all mathematical
concepts can be traced ultimately to the use of numbers to explain the world. Numbers seem
to be a universal mode of human thought. They were probably used originally in a kind
of informal accounting, when it was necessary to keep track of objects that could be re-
garded as interchangeable, such as the cattle in a herd. Through anthropology, archaeology,
and written texts, we can trace a general picture of arithmetical progress in handling such
discrete collections, from counting, through computation, and finally to abstract number
theory. Many different cultures have shown a convergent development in this area, although
in the final stage there is considerable variety in the choice of topics developed. Through this
history, we shall gradually introduce the properties of numbers in the chapters that follow.
At the moment, we take note of just one important property that they have, namely that dis-
crete collections can be exactly equal: If I have $9845.63 in my checking account, and you
have $9845.63 in your checking account, then we have exactly the same amount of money,
for all financial purposes whatsoever. When you count—votes, pennies, or attendance at a
football game—it is at least theoretically possible to get the outcome exactly right, with no
error at all.

1.2.2. Space

While discrete collections are naturally handled through counting, nature presents us with
the need to measure quantities that are continuous rather than discrete, quantities such as
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length, area, volume, weight, time, and speed. Number is invoked to solve such problems;
but in each case, it is necessary to choose a unit and regard the continuous quantity as if it
were a discrete collection of units. Doing so adds a layer of complication, since the unit is
arbitrary and culturally dependent. When people from different groups meet and talk about
such quantities, they need to reconcile their units.

The essence of continuous quantities is that they can be divided into pieces of arbitrarily
small size. A continuous measurement therefore always has precision limited by the size of
the unit chosen. Equality of two continuous objects of the same kind is always approximate,
only up to the standard unit of measurement in which their sizes are expressed.1

This distinction between the discrete and the continuous is fundamental in mathematics,
and it brings with it many metaphysical and mathematical complications. In particular,
the notion of infinite precision, which is required to define what we call “real numbers,” is
difficult to visualize and define. In “real-world” applications, computers finesse the problem
by replacing real numbers with floating-point numbers. The result is that most engineers and
scientists never really have to encounter the difference between the two, and mathematicians
who attempt to talk to them tend to forget that they are not really speaking the same
language. Some computer algebra programs (Mathematica and Maple, for example) will
handle irrational numbers like π and

√
2 symbolically and will convert them to decimal

approximations only when a numerical result is requested by the user.
The ideas needed to handle continuous quantities were first applied to lengths, areas, and

volumes. They led to geometry, which arose in many different places as a way of comparing
the sizes of objects having different shapes. Like the positive integers, these shapes seem
to be a cultural universal, as all over the world we find people discussing triangles, squares,
rectangles, circles, spheres, pyramids, and the like. Moreover, the shape of a standard unit
area is universally square.

As happens with arithmetic, geometry passes through certain stages in a particular order
in many different cultures. The first stage is simply measurement, finding physical ways
of counting how many standard units of length, area, or volume there are in a piece of
rope, a plot of land, or a ditch that is to be excavated. Soon, the processes of arithmetic are
invoked to provide indirect ways of computing areas and volumes. At this stage, the universal
shapes named above are isolated for study. Finally, relations among the parts of a geometric
figure are studied, leading to abstract geometry, and some way is found to give geometric
demonstrations of relations that are not obvious. Here again we find a cultural universal in
the Pythagorean theorem, which was apparently discovered in several places independently.
Since it invokes the notion of a square, it shows that human imagination is by nature
Euclidean.2 This third stage occurs in several places, among them Mesopotamia, China,
India, and ancient Greece. In addition, the ancient Greeks mixed philosophy and abstract
logic into their geometry and number theory, producing a number of long treatises that were
unique in their time and became a model for later mathematical writing the world over.

1We may or may not have in the back of our minds a picture of an infinitely precise number that represents the
exact volume of water in a jar, for example, but we can meaningfully talk about only a measured volume and say
with absolute assurance that the “true” volume lies between two limits. This “true” volume, given with infinite
precision, is unknowable. This problem always arises in applications to the physical world. It is meaningful to
ask what the 3000th decimal digit of 1

π
is (it is 2); it does not make sense to ask what the 3000th decimal digit of

Planck’s constant in MKS units is.
2Rectangles do not exist in non-Euclidean geometry. There is a Pythagorean theorem in both elliptic and hyperbolic
geometry, but it involves trigonometric and hyperbolic functions and is more analytic than geometric in nature.
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1.2.3. Are Mathematical Ideas Innate?

The cross-cultural constancy of the arithmetic operations and the standard shapes of geom-
etry is a very striking fact and lends some support to the views of the eighteenth-century
philosopher Immanuel Kant (1724–1804), who thought mathematical knowledge was “syn-
thetic but a priori.” By that he meant that statements such as 7 + 5 = 12 or that a triangle
can be constructed having sides of three given lengths provided the sum of the smaller
two exceeds the third (his examples) are not things we learn from observation, like that
statement that pandas eat bamboo. Things learned from experience are a posteriori in
Kant’s language.

Mathematical facts are, as we would now say, “hard-wired” into the human brain, or,
as Kant said, a priori (anterior to experience). At the same time, they are “synthetic,” that
is, they are not mere tautologies like the statement that two first cousins have a common
grandparent. Tautological statements were called analytic by Kant, meaning that the very
definition of first cousinhood involves a common grandparent, but (Kant said) the notions
of 7, 5, and addition do not by their nature involve the number 12. We shall return to this
topic when we discuss logic in Chapter 45.

In the late nineteenth and early twentieth century, a school of philosophy of mathematics
arose known as logicism. Its adherents defended the proposition that mathematics could
be derived from logic. If they are correct, then Kant’s belief that arithmetic and geometric
propositions are synthetic must be wrong. It is true that logicists produce a formal proof
of the simple fact that twice two make four. In that sense, they have made this proposition
analytic rather than synthetic. Still, there is a more colloquial sense of the word proof that
is violated in the process. A proof is usually thought of as deriving a proposition that is not
obvious from others that are obvious. Unfortunately, the axioms of set theory are very far
from being more obvious than the equality 2 + 2 = 4.

1.2.4. Symbolic Notation

We noted above that symbolism entered mathematics via algebra, as the most elegant way
of giving a description of an unknown or unspecified number. Eventually, this symbolism
conquered number theory and geometry as well, and there is now no branch of mathematics,
pure or applied, that is not dominated by symbolic formulas. This tool for thinking is so
important that we shall consider it a third ingredient of mathematics, after number and space.
Algebra itself, however, got along without symbols for centuries. If algebra is defined as
a subject where symbols are used to represent unspecified numbers in equations, then we
shall find no algebra at all until a few centuries ago. But the essence of algebra is not in
the symbolism, or even in the equation. It is in the process of naming an implicitly defined
number, and that will be our definition. Thus, finding a number that yields 24 when squared
and added to five times itself is an algebra problem. It need not be stated as the equation
x2 + 5x = 24.

1.2.5. Logical Relations

The fourth and last ingredient of mathematics is the logical organization of the subject.
The strict formalism that we now associate with mathematical theories was first set out
in connection with geometry and number theory in ancient Greece. The earliest major
work embodying it is Euclid’s Elements, which was the model for later work by Greek
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mathematicians such as Archimedes, Apollonius, Ptolemy, Pappus, and others and became
the inspiration for many of the classic treatises of modern mathematics, such as Newton’s
famous Philosophiæ naturalis principia mathematica (Mathematical principles of natural
philosophy).3

1.2.6. The Components of Mathematics

We shall consider mathematics as being made up of the four basic components just described.
The first of these can be loosely described as arithmetic,4 the second as geometry, the third
as algebra, and the fourth as mathematical reasoning.

Out of these four elements arise calculus, probability, statistics, set theory, topology,
complex analysis, mathematical logic, and a host of other areas of modern mathematics
that make it the magnificent monument to the human intellect that it is.

1.3. THE PHILOSOPHY OF MATHEMATICS

If we were to study merely what happened in the past, even if we did it with an eye toward
the present, the development of mathematics would seem very much like one wave after
another breaking on the shore. Without some interesting conjectures as to what the creators
were trying to do, it would be difficult to make any sense of this history. This problem
is particularly acute in algebra, as you may recall from the “story problems” you were
asked to solve in high school, which are without exception, colossally useless. Surely the
complicated mathematical reasoning in this subject was not invented in order to find out
when two trains will meet if they set out from different stations at different times. In order
to flesh out the subject and paint it in brighter and more realistic colors, we need to ask
ourselves broad philosophical questions while we are studying the past. Here is a short list
of questions of interest.

Epistemological Questions (Theory of Knowledge)

1. What is the nature of mathematical objects such as numbers, triangles, probabilities,
and functions? In what sense do they “exist”?

2. What can we know about infinite collections of things? Is a finite human mind capable
of knowing infinitely many different things?

3. What is meant by continuity? Is it possible to formulate continuity in the discrete
symbols of ordinary language?

Metaphysical Questions (Nature of Reality)

1. What is the relation of the objects of pure mathematics to those of applied mathemat-
ics? Many logical relations exist in pure mathematics; and when they are applied in

3Natural philosophy was the name once given to what we now call the natural sciences.
4Throughout most of history, however, arithmetic meant what we now call number theory. The modern use of this
word to denote the four basic operations on numbers is largely an American innovation, and not a desirable one, in
my opinion. Since the word comes from Greek and uses the root arithmos, meaning number, and the suffix -ikos,
meaning skilled in, I prefer to translate it as the numerical art.
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real-world situations, they very often make predictions that can be verified by obser-
vation. Does that mean that pure-mathematics relations correspond to relations in the
physical universe? If so, what is the nature of these physical relations? To paraphrase
the Nobel Prize-winning physicist Eugene Wigner (1902–1995), what is the reason
for “the unreasonable effectiveness of mathematics” in explaining the world? For a
republication of Wigner’s 1960 paper on this subject, see the following website:

http://www.dartmouth.edu/∼matc/MathDrama/reading/Wigner.html

2. Why do probability and statistics work so well in practice that insurance companies
and gambling casinos can rely on the seeming chaos of random events to stay pre-
dictable “in the large”? For that matter, why do we make the assumption that the
future will resemble the past, so that we can make mathematical predictions about
the future state of the physical universe?

Metamathematical Questions

1. The business of the pure mathematician is to prove theorems, that is, to make valid
inferences from premises. What premises should be allowed, and what rules of in-
ference can be trusted? There is a school of mathematicians—the intuitionists—that
refuses to use certain basic logical and mathematical assumptions, chiefly the law of
excluded middle (if not-A is false, then A is true) or the axiom of choice, which says
intuitively that if you have a collection of containers and each one has something
inside it, you can reach in and take one object out of each. The collections obtained in
this way are the elements of a new set called the Cartesian product of the containers
in the original collection.) Most mathematicians use these two principles freely and
have no qualms about doing so.

2. How important is a formal, deductive presentation of a mathematical subject? Can a
mathematical paper that appeals to intuition rather than formal proof be accepted as
valid?

Sociological Questions

1. How important is mathematics to society? What genuine material or moral progress
in the world can be traced to the activity of mathematicians?

2. What mathematics, if any, should be taught to every citizen of a modern democracy?

1.3.1. Mathematical Analysis of a Real-World Problem

We shall illustrate just one of the ways in which this course is intended to make you think
about the mathematical link between the physical world around us and our thinking pro-
cesses. We choose music as an example. On April 17, 1712, the philosopher–mathematician
Leibniz (1646–1716) wrote to Christian Goldbach (1690–1764)

Musica est exercitium arithmeticæ occultum nescientis se numerare animi. (Music is a myste-
rious practicing of the numerical art by a mind that does not realize it is counting.)

(See Epistolæ ad diversos, edited by Christian Kortholt, Vol. 1, Leipzig, 1734, p. 241, Letter
CLIV.)
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Figure 1.1. A rhythm pattern compounded of two simple periodic beats.

What Leibniz probably meant in this aphorism is that the rhythm patterns that are part
of all music can be analyzed and found to be regular repetitions of simple periodic patterns,
superimposed in some very complex ways. He may also have suspected that the pitch and
quality of the notes coming from string and wind instruments can be analyzed in the same
way. The rhythm is a case of a discrete phenomenon, while the pitch involves continuous
periodic waves. It is possible to represent the pitch and the overtones of musical instruments
as superimposed simple sine waves of various frequencies, amplitudes, and phases. From
those sine waves, it is not only theoretically but also practically possible (as we now know)
to synthesize music. Theoretically, one can play an entire orchestral symphony with nothing
but tuning forks struck with the proper strength and at the proper times. We shall illustrate
the underlying principle with a simple discrete example, leaving the more complicated
continuous case for later description.

If you can read music, try tapping out the rhythm pattern depicted in Fig. 1.1. If you
cannot, ask someone who can read music to do this for you.

You will find that you can duplicate this rhythm pattern if you count by twelves, bringing
both hands down on the count of 1, then alternating right and left hands on 4, 5, 7, 9, and
10. In this way, the left hand can be tapping out ONE-two-three-FOUR-five-six-SEVEN-
eight-nine-TEN-eleven-twelve, while the right hand is tapping ONE-two-three-four-FIVE-
six-seven-eight-NINE-ten-eleven-twelve. In other words, the left hand is tapping four beats
to the bar while the right hand taps three beats to the bar. Each hand is tapping a simple
periodic pulse every three beats or every four beats. The combined effect is the pattern ONE-
two-three-FOUR-FIVE-six-SEVEN-eight-NINE-TEN-eleven-twelve, which sounds very
syncopated. Imagine this example elaborated to describe a whole orchestra, and extended
to the pitch of the tones each instrument is producing, and you get an idea of the complexity of
music when it is analyzed mathematically. Musical patterns, however, are felt by musicians;
they are not produced mechanically, at least not by good musicians. The quickest way to
master this rhythm pattern is simply to hear it. Nearly everyone can reproduce it, much more
rapidly than anyone can count aloud, after hearing it for a few seconds. That is the point
of Leibniz’ comment that the mind does not realize it is counting. Mathematical analysis
of tones and rhythms has the same relation to the pleasure of hearing music that chemical
analysis of a cup of coffee has to the pleasure of drinking it.

It is not physically possible to play a symphony with tuning forks, and we don’t actually
do this. But we do an equivalent thing in our digital music. That is the point of the cartoon
shown here, which appeared in The New Yorker on October 4, 2010 (p. 71).

From the mathematician’s point of view, digital radio amounts to breaking the sound
into a finite set of simple frequencies, each having a particular amplitude and phase. (The
amplitude associated with frequency n in the cartoon is

√
A2

n + B2
n.) When a digital radio

receives that set of amplitudes and frequencies, it sends them in the form of electrical
signals to the speakers, which then reproduce them as an audible signal. Since the human
ear “truncates” the signal by being unable to pick up frequencies below 20 cycles per second
or higher than 20,000 cycles per second, the result is what mathematicians call a band-
limited signal. It is an important mathematical result—the Whittaker–Shannon interpolation
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The Fourier series of a symphony. Copyright © Jack Ziegler/The New Yorker Collection.

theorem, named after Edmund Taylor Whittaker (1873–1956) and Claude Elwood Shannon
(1916–2001)—that such a signal can be reproduced perfectly from a finite number of sample
points.

The humor in this cartoon—imagine being given the Fourier series of a symphony and
having to do the Fourier inversion in your head in order to interpret the symphony!—is
rather esoteric and will be appreciated only by the tiny segment of the population that
knows Fourier analysis. For the rest of the public, this cartoon was probably just one more
way of saying, “Math is hard.”

1.4. OUR APPROACH TO THE HISTORY OF MATHEMATICS

We are going to study the history of mathematics partly for its intrinsic interest. That will
lead us to develop a few mathematical skills that will not be of much use outside this course.
We do this partly for an ethical reason: to preserve the memory of brilliant people whose
contributions to human history should not be forgotten. Except for these excursions into
true history, our focus is on the “heritage” aspect of mathematical history. The main aim of
this course is to give insight into the way that today’s mathematics developed, the motives
of its creators, and the social and intellectual context in which they worked. As Santayana
said, in so doing, we are to some extent creating literary fiction. But it is useful fiction.
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Questions for Reflection

At the end of most of the chapters in this book, there will be a set of mathematical problems
testing for understanding of the mathematics discussed in that chapter, followed by a set
of questions of historical fact to reinforce the historical narrative of the chapter, in turn
followed by a set of questions calling for reflection on the historical and mathematical
issues that arise in the chapter. In this introductory chapter, where we have not introduced
any mathematics or discussed any systematic development of it, only the third category
seems appropriate. The following questions are therefore intended to make you think about
general issues such as those raised in the questions listed above.

1.1. In what practical contexts of everyday life are the fundamental operations of
arithmetic—addition, subtraction, multiplication, and division—needed? Give at
least two examples of the use of each. How do these operations apply to the problems
for which the theory of proportion was invented?

1.2. Measuring a continuous object involves finding its ratio to some standard unit. For
example, when you measure out one-third of a cup of flour in a recipe, you are
choosing a quantity of flour whose ratio to the standard cup is 1 : 3. Suppose that you
have a standard cup without calibrations, a second cup of unknown size, and a large
bowl. How could you determine the volume of the second cup?

1.3. Units of time, such as a day, a month, and a year, have ratios. In fact you probably
know that a year is about 365 1

4 days long. Imagine that you had never been taught
that fact. How would you—how did people originally—determine how many days
there are in a year?

1.4. Why is a calendar needed by an organized society? Would a very small society
(consisting of, say, a few dozen families) require a calendar if it engaged mostly
in hunting, fishing, and gathering vegetable food? What if the principal economic
activity involved following a reindeer herd? What if it involved tending a herd of
domestic animals? Finally, what if it involved planting and tending crops?

1.5. Describe three different ways of measuring time, based on different physical princi-
ples. Are all three ways equally applicable to all lengths of time?

1.6. In what sense is it possible to know the exact value of a number such as
√

2? Obviously,
if a number is to be known only by its whole infinite decimal expansion, nobody does
know and nobody ever will know the exact value of this number. What immediate
practical consequences, if any, does this fact have? Is there any other sense in which
one could be said to know this number exactly? If there are no direct consequences
of being ignorant of its exact value, is there any practical value in having the concept
of an exact square root of 2? Why not simply replace it by a suitable approximation
such as 1.41421? Consider also other “irrational” numbers, such as π, e, and � =
(1 + √

5)/2. What is the value of having the concept of such numbers as opposed to
approximate rational replacements for them?

1.7. Does the development of personal knowledge of mathematics mirror the historical
development of the subject? That is, do we learn mathematical concepts as individuals
in the same order in which these concepts appeared historically?
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1.8. Topology, which may be unfamiliar to you, studies (among other things) the math-
ematical properties of knots, which have been familiar to the human race at least as
long as most of the subject matter of geometry. Why was such a familiar object not
studied mathematically until the twentieth century?

1.9. What function does logic fulfill in mathematics? Is it needed to provide a psycholog-
ical feeling of confidence in a mathematical rule or assertion? Consider, for example,
any simple computer program that you may have written. What really gave you con-
fidence that it worked? Was it your logical analysis of the operations involved, or was
it empirical testing on an actual computer with a large variety of different input data?

1.10. Logic enters the mathematics curriculum in high-school geometry. The reason for
introducing it at that stage is historical: Formal treatises with axioms, theorems, and
proofs were a Greek innovation, and the Greeks were primarily geometers. There
is no logical reason why logic is any more important in geometry than in algebra
or arithmetic. Yet it seems that without the explicit statement of assumptions, the
parallel postulate of Euclid would never have been questioned. Suppose things had
happened that way. Does it follow that non-Euclidean geometry would never have
been discovered? How important is non-Euclidean geometry, anyway? What other
kinds of geometry do you know about? Is it necessary to be guided by axioms and
postulates in order to discover or fully understand, say, the non-Euclidean geometry
of a curved surface in Euclidean space? If it is not necessary, what is the value of an
axiomatic development of such a geometry?

1.11. According to musical theory, the frequency of the major fifth in each scale should
be 3/2 of the frequency of the base tone, while the frequency of the octave should be
twice the base frequency. If you start at the lowest A on the piano and ascend in steps
of a major fifth, twelve steps will bring you to the highest A on the piano. If all these
fifths are tuned properly, that highest A should have a frequency of

( 3
2

)12
times the

frequency of the lowest A. On the other hand, that highest A is seven octaves above
the lowest, so that, if all the octaves are tuned properly, the frequency should be 27

times as high. Now obviously,
( 3

2

)12 ≈ 129.75 is not the same thing as 27 = 128,
since equality of these two quantities would mean 312 = 219, that is, an odd number
would equal an even number. The difference between these two frequency ratios is
called the Pythagorean comma. (The Greek word komma means a break or cutoff.)
What is the significance of this discrepancy for music? Could you hear the difference
between a piano tuned so that all these fifths are exactly right and a piano tuned
so that all the octaves are exactly right? In fact, because of the properties of metal
strings and the peculiarities of human perception, piano tuning (like music itself) is
very much an art or a skill, not reducible to formula.



CHAPTER 2

Proto-mathematics

Most of the history of mathematics is inferred from documents written down by scholars,
starting about 4000 years ago. Before that time, and in more recent times among certain
groups, mathematical ideas were being used, but not written down. In the present chapter,
we shall explore this proto-mathematics, the kinds of mathematical thinking that people
naturally engage in while going about the practical business of daily life. This inquiry
assumes that there is a mode of thought called mathematizing that is intrinsic to human
nature and therefore common to different cultures. The simplest assumption is that counting
and common shapes such as squares and circles have the same meaning to everyone. Our
inquiry will make use of three sources:

1. Animal behavior, which often seems to show an ability to judge numbers, shapes,
and causes (if event B always follows event A, animals will come to infer that B is
about to happen whenever A happens).

2. Developmental psychology, which reveals the order in which children develop math-
ematical abilities.

3. Archaeology, which sometimes turns up artifacts that seem to imply mathematical
reasoning on the part of their makers.

We shall examine these sources as they relate to the four basic ingredients of mathematics
listed in the preceding chapter.

2.1. NUMBER

There is ample evidence of counting from all three of the sources listed above.

2.1.1. Animals’ Use of Numbers

It is not clear just how high animals and birds can count, but they certainly have the ability
to distinguish not merely patterns, but actual numbers. The counting abilities of birds were
studied in a series of experiments conducted in the 1930s and 1940s by O. Koehler (1889–
1974) at the University of Freiburg. Koehler (1937) kept the trainer isolated from the bird.
In the final tests, after the birds had been trained, the birds were filmed automatically, with
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no human beings present. Koehler found that parrots and ravens could learn to compare the
number of dots, up to 6, on the lid of a hopper with a “key” pattern in order to determine
which hopper contained food. They could make the comparison no matter how the dots
were arranged, thereby demonstrating an ability to take account of the number of dots
rather than the pattern.

2.1.2. Young Children’s Use of Numbers

Preschool children also learn to count and use small numbers. The results of many studies
have been summarized by Karen Fuson (1988). A few of the results from observation of
children at play and at lessons were as follows:

1. A group of nine children aged from 21 to 45 months was found to have used the word
two 158 times, the word three 47 times, the word four 18 times, and the word five 4
times.

2. The children seldom had to count “one–two” in order to use the word two correctly;
for the word three, counting was necessary about half the time; for the word four, it
was necessary most of the time; for higher numbers, it was necessary all the time.

One can thus observe in children the capacity to recognize groups of two or three without
performing any conscious numerical process. This observation suggests that these numbers
are primitive, while larger numbers are a conscious creation.

2.1.3. Archaeological Evidence of Counting

Animal bones containing notches have been found in Africa and Europe, suggesting that
some sort of counting procedure was being carried on at a very early date, although what
exactly was being counted remains unknown. One such bone, the radius bone of a wolf, was
discovered at Věstonice (Moravia) in 1937. This bone is marked with two series of notches,
grouped by fives, the first series containing five groups and the second six. Its discoverer,

The Věstonice wolf bone. Copyright © Illustrated London News, October 2, 1937. Courtesy of the
Mary Evans Picture Library.
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Karel Absolon (1887–1960), believed the bone to be about 30,000 years old, and modern
tests on artifacts from the site appear to confirm this dating. The people who produced this
bone were clearly a step above mere survival, since a human portrait carved in ivory was
found in the same settlement, along with a variety of sophisticated tools. Because of the
grouping by fives, it seems likely that this bone was being used to count something. Even if
the groupings are meant to be purely decorative, they point to a use of numbers and counting
for a practical or artistic purpose.

2.2. SHAPE

Spatial relations are also used by animals, and the gradual mastery of these phenomena
by children has been charted by psychologists. In addition, many crafts, both ancient and
modern show how these relations are used for both practical and decorative purposes.

2.2.1. Perception of Shape by Animals

Obviously, the ability to perceive shape is of value to an animal in determining what is or
is not food, what is a predator, and so forth; and in fact the ability of animals to perceive
space has been very well documented. One of the most fascinating examples is the ability of
certain species of bees to communicate the direction and distance of sources of plant nectar
by performing a dance inside the beehive. The pioneer in this work was Karl von Frisch
(1886–1982), and his work has been continued by James L. Gould and Carol Grant Gould
(1995). The experiments of von Frisch left many interpretations open and were challenged
by other specialists. The Goulds performed more delicately designed experiments which
confirmed the bee language by deliberately misleading the bees about the food source. The
bee will traverse a circle alternately clockwise and counterclockwise if the source is nearby.
If it is farther away, the alternate traversals will spread out, resulting in a figure eight, and the
dance will incorporate sounds and waggling. By moving food sources, the Goulds were able
to determine the precision with which this communication takes place (about 25%). Still
more intriguing is the fact that the direction of the food source is indicated by the direction
of the axis of the figure eight, oriented relative to the sun if there is light and relative to the
vertical if there is no light.

As another example, in his famous experiments on conditioned reflexes using dogs as
subjects the Russian scientist Pavlov (1849–1936) taught dogs to distinguish ellipses of
very small eccentricity from circles. He began by projecting a circle of light on the wall
each time he fed the dog. Eventually the dog came to expect food (as shown by salivation)
every time it saw the circle. When the dog was conditioned, Pavlov began to show the dog
an ellipse in which one axis was twice as long as the other. The dog soon learned not to
expect food when shown the ellipse. At this point the malicious scientist began making the
ellipse less eccentric and found, with fiendish precision, that when the axes were nearly
equal (in a ratio of 8:9, to be exact) the poor dog had a nervous breakdown (Pavlov, 1928,
p. 122).

2.2.2. Children’s Concepts of Space

The most famous work on the development of mathematical concepts in children is due
to Jean Piaget (1896–1980) of the University of Geneva, who wrote several books on the
subject, some of which have been translated into English. Piaget divided the development
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of the child’s ability to perceive space into three periods: a first period (up to about 4 months
of age) consisting of pure reflexes and culminating in the development of primary habits,
a second period (up to about one year) beginning with the manipulation of objects and
culminating in purposeful manipulation, and a third period in which the child conducts
experiments and becomes able to comprehend new situations. He categorized the primitive
spatial properties of objects as proximity, separation, order, enclosure, and continuity. These
elements are present in greater or less degree in any spatial perception. In the baby they
come together at the age of about 2 months to provide recognition of faces. The human
brain seems to have some special “wiring” for recognizing faces.1

The interesting thing about these concepts is that mathematicians recognize them as
belonging to the subject of topology, an advanced branch of geometry that developed in
the late nineteenth and early twentieth centuries. It is an interesting paradox that the human
ability to perceive shape depends on synthesizing topological concepts; this progression
reverses the pedagogical and historical ordering between geometry and topology. Piaget
pointed out that children can make topological distinctions (often by running their hands
over models) before they can make geometric distinctions. Discussing the perceptions of a
group of 3-to-5-year-olds, Piaget and Inhelder (1967) stated that the children had no trouble
distinguishing between open and closed figures, surfaces with and without holes, inter-
twined rings and separate rings, and so forth, whereas the seemingly simpler relationships
of geometry—distinguishing a square from an ellipse, for example—were not mastered
until later.

2.2.3. Geometry in Arts and Crafts

Weaving and knitting are two excellent examples of activities in which the spatial and
numerical aspects of the world are combined. Even the sophisticated idea of a rectangular
coordinate system is implicit in the placing of different-colored threads at intervals when
weaving a carpet or blanket so that a pattern appears in the finished result.

Marcia Ascher (1991) has assembled many examples of rather sophisticated mathematics
connected with arts and crafts. The Bushoong people of Zaire make part of their living
by supplying embroidered cloth, articles of clothing, and works of art to others in the
economy of the Kuba chiefdom. As a consequence of this work, perhaps as preparation
for it, Bushoong children amuse themselves by tracing figures on the ground. The rule of
the game is that a figure must be traced without repeating any strokes and without lifting
the finger from the sand. In graph theory, this problem is known as the unicursal tracing
problem. It was analyzed by the Swiss mathematician Leonhard Euler (1707–1783) in the
eighteenth century in connection with the famous Königsberg bridge problem. According
to Ascher, in 1905 some Bushoong children challenged the ethnologist Emil Torday (1875–
1931) to trace a complicated figure without lifting his finger from the sand. Torday did not
know how to do this, but he did collect several examples of such figures. The Bushoong
children seem to learn intuitively what Euler proved mathematically: A unicursal tracing
of a connected graph is possible if there are at most two vertices where an odd number of
edges meet. The Bushoong children become very adept at finding such a tracing, even for
figures as complicated as that shown in Fig. 2.1.

1And for “seeing” faces on the moon, in clouds, and on burnt pieces of toast!
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Figure 2.1. A graph for which a unicursal tracing is possible.

Examples of intricate geometric patterns susceptible to mathematical analysis are abun-
dant throughout human history. A recent example is the book of Belcastro and Yackel (2008),
which gives detailed analyses of the connections between mathematics and needlework.

2.3. SYMBOLS

Visual symbolism seems to be a peculiarly human mode of thought, not observable in ani-
mals, and one learned by children only through teaching. Artifacts from archaeological sites
are sometimes interpreted as representations of divinities, but generally ancient paintings
and statues tend to represent physical objects, with certain distortions in size that reflect their
relative importance to the artist, or the artist’s employer, in the case of Egyptian paintings
that show the pharaoh much larger than anyone else.

We tend to think of symbolism as arising in algebra, since that is the subject in which we
first become aware of it as a concept. The thing itself, however, is implanted in our minds
much earlier, when we learn to talk. Human languages, in which sounds correspond to
concepts and the temporal order or inflection of those sounds maps some relation between the
concepts they signify, exemplify the process of abstraction and analogy, essential elements
in mathematical reasoning.

Once numbers have been represented symbolically, the next logical step would seem to
be to introduce symbols for arithmetic operations or for combining the number symbols
in other ways. This step may not be necessary for rapid computation, since mechanical
devices such as counting rods, pebbles, counting boards, and the like can be used as analog
computers. The symbolic ability of the human mind is shown when pebbles or tally marks
are used to represent objects in the mind of the calculator. The operations performed using
these methods can rise to a high level of sophistication without the need for any written
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computations. An example of the use of an automatic counting device is given by Ascher
(1997) in a discussion of a system of divination used by the Malagasy of Madagascar, in
which four piles of seeds are arranged in a column and the seeds removed from each pile
two at a time until only one or two seeds remain. Each set of seeds in the resulting column
can be interpreted as “odd” or “even.” After this procedure is performed four times, the four
columns and four rows that result are combined in different pairs using the ordinary rules
for adding odds and evens to generate eight more columns of four numbers. The accuracy
of the generation is checked by certain mathematical consequences of the method used.
If the results are satisfactory, the 16 sets of four odds and evens are used as an oracle for
making decisions and ascribing causes to such events as illnesses.

Divination seems to fulfill a nearly universal human desire to feel in control of the
powerful forces that threaten human happiness and prosperity. It manifests itself in a variety
of ways, as just shown by the example of the Malagasy. We could also cite large parts of
the Jewish Kabbalah, the mysticism of the Pythagoreans, and many others, down to the
geometric logic of Ramon Lull (1232–1316), who was himself steeped in the Kabbalah.
The variety of oracles that people have consulted for advice about the conduct of their
lives—tarot cards, crystal balls, astrology, the entrails of animals and birds, palmistry, and
the like—seems endless. For the purposes of this book, however, we shall be interested only
in those aspects of divination that involve mathematics, such as magic squares. Whether
or not a person believes that divination reveals hidden truth about the universe—the author
does not—it remains a prominent form of human behavior over the centuries and deserves
to be studied for that reason alone. But it is time to return to more prosaic matters.

The primary mathematical example of symbolism is the writing of positive integers.
Some systems, like those of ancient Egypt, Greece, and Rome, are adequate for recording
numbers, but comparatively cumbersome in computation. Just imagine trying to multiply
XLI by CCCIV! [However, Detlefsen et al. (1975) demonstrate that this task is not as
difficult as it might seem.] Even to use a 28 × 19 table of dates of Easter compiled in Russia
some centuries ago, the calculators had to introduce simplifications to accommodate the
fact that dividing a four-digit number by a two-digit number was beyond the skill of many
of the users of the table.

The earliest mathematical texts discuss arithmetical operations using everyday words
that were probably emptied of their usual meaning, thereby becoming abstract symbols
capable of representing a variety of objects. Students had to learn to generalize from a
particular example to the abstract case, and many problems that refer to specific objects
probably became archetypes for completely abstract reasoning, just as we use such expres-
sions as “putting the cart before the horse” and “comparing apples and oranges” to refer to
situations having no connection at all with horse-and-buggy travel or the appraisal of fruit.
For example, problems of the type “If 3 bananas cost 75 cents, how much do 7 bananas
cost?” occur in the work of Brahmagupta from 1300 years ago. Brahmagupta named the
three data numbers argument (3), fruit (75), and requisition (7). His rule for getting the
answer was to multiply the fruit by the requisition and divide by the argument, a rule now
known as the Rule of Three. As another example, cuneiform tablets from Mesopotamia that
are several thousand years old contain general problems that we would now solve using
quadratic equations. These problems are stated as variants of the problem of finding the
length and width of a rectangle whose area and perimeter are known. The mathematician
and historian of mathematics B. L. van der Waerden (1903–1996) claimed that the words
for length and width were being used in a completely abstract sense in these problems. They
had become abstract symbols, rather than words denoting concrete objects.
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In algebra, symbolism seems to have occurred for the first time in the work of the
(probably third- or fourth-century) Greek mathematician Diophantus of Alexandria, who
introduced the symbol ς for an unknown number. A document from India, the Bakshali
manuscript, which may have been written within a century of the work of Diophantus, also
introduces an abstract symbol for an unknown number. Symbolism developed gradually in
modern algebra. Originally, the Arabic word for thing was used to represent the unknown
in a problem. This word, and its Italian translation cosa, was eventually replaced by the
familiar x most often used today. In this way an entire word was gradually pared down to a
single letter that could be manipulated graphically.

2.4. MATHEMATICAL REASONING

Inferences made by animals and young children that appear to fit the “if A, then B” pattern
are usually traceable to conditioning. When people or animals experience B after A, they
rather quickly come to expect B any time that A happens, especially if the first experience
had powerful emotional connections.

2.4.1. Animal Reasoning

Logic is concerned with getting conclusions that are as reliable as the premises. From a
behavioral point of view, the human tendency to make inferences based on logic is probably
hardwired and expressed as the same mechanism by which habits are formed. This same
mechanism probably accounts for the metaphysical notion of cause. If A implies B, one feels
that in some sense A causes B to be true. The dogs in Pavlov’s experiments, described above,
were given total reinforcement as they learned geometry and came to make associations
based on the constant conjunction of a given shape and a given reward or lack of reward.
In the real world, however, we frequently encounter a weaker type of cause, where A

is usually, but not always, followed by B. For example, lightning is always followed by
thunder; but if the lightning is very distant, the thunder will not be heard. The analog of
this weaker kind of cause in conditioning is partial reinforcement. A classical example is
a famous experiment of Skinner (1948), who put hungry pigeons in a cage and attached
a food hopper to the cage with an automatic timer to permit access to the food at regular
intervals. The pigeons at first engaged in aimless activity when not being fed, but tended to
repeat whatever activity they happened to be doing when the food arrived, as if they made an
association between the activity and the arrival of food. Naturally, the more they repeated a
given activity, the more likely that activity was to be reinforced by the arrival of food. Since
they were always hungry, it was not long before they were engaged full time in an activity
that they apparently considered an infallible food producer. This activity varied from one
bird to another. One pigeon thrust its head into an upper corner of the cage; another made
long sweeping movements with its head; another tossed its head back; yet another made
pecking motions toward the floor of the cage.

The difficulties that people, even mathematicians, have in understanding and applying
probability can be seen in this example. For example, the human body has some capacity to
heal itself. Like the automatic timer that eventually provided food to the pigeons, the human
immune system often overcomes the disease. Yet sick people, like hungry pigeons, try
various methods of alleviating their misery. The consequence is a wide variety of nostrums
said to cure a cold or arthritis. One of the triumphs of modern mathematical statistics is the
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establishment of reliable systems of inference to replace the inferences that Skinner called
“superstitious.”

Modern logic has purged the concept of implication of all connection with the notion
of cause. The statement “If Abraham Lincoln was the first President of the United States,
then 2 + 2 = 4” is considered a true implication, even though Lincoln was not the first
President and in any case his being such would have no causal connection with the truth
of the statement “2 + 2 = 4.” In standard logic the statement “If A is true, then B is true”
is equivalent to the statement “Either B is true, or A is false, or both.” Absolute truth or
falsehood is not available in relation to the observed world, however. As a result, science
must deal with propositions of the form “If A is true, then B is highly probable.” One cannot
infer from this statement that “If B is false, then A is highly improbable.” For example, an
American citizen, taken at random, is probably not a U. S. Senator. It does not follow that
if a person is a U. S. Senator, that person is probably not an American citizen.

Since we cannot trace the development of mathematical reasoning through the sources we
have been using, we look instead at ancient documents and at the modern school curriculum
to see how it arose. Taking the latter first, we note that students generally learn all of
arithmetic and the rules for manipulating algebraic expressions by rote. Any justification of
these rules is purely experimental. Logic enters the curriculum, along with proof, in the study
of geometry. This sequence is not historical and may leave the impression that mathematics
was an empirical science until the time of Euclid (ca. 300 bce). But the ancient documents
give us good reason to believe that some facts were deduced from simpler considerations at
a very early stage. The main reason for thinking so is that the conclusions reached by some
ancient authors are not visually obvious.

2.4.2. Visual Reasoning

As an example, it is immediately obvious that a diagonal divides a rectangle into two
congruent triangles. If through any point on the diagonal we draw two lines parallel to the
sides, these two lines will divide the rectangle into four rectangles. The diagonal divides
two of these smaller rectangles into pairs of congruent triangles, just as it does the whole
rectangle, thus yielding three pairs of congruent triangles, one large pair and two smaller
pairs. It then follows (see Fig. 2.2) that the two remaining rectangles must have equal area,
even though their shapes are different and to the eye they do not appear to be equal. Each of
these rectangles is obtained by subtracting the two smaller triangles from the large triangle
in which they are contained. When we find an ancient author mentioning that these two
rectangles of different shape are equal, as if it were a well-known fact, we can be confident

(a) (b)

Figure 2.2. (a) The diagonal AC divides the rectangle ABCD into congruent triangles ABC and
CDA. (b) When the congruent pairs (AEI, IGA) and (IHC, CFI) are subtracted from the congruent
pair (ABC, CDA), the remainders (rectangles EBHI and GIFD) must be equal.
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that this knowledge does not rest on an experimental or inductive foundation. Rather, it is
the result of a combination of numerical and spatial reasoning.

Ancient authors often state what they know without saying how they know it. As the
example just cited shows, we can be confident that the basis was not always induction or
experiment. Perminov (1997) points out that solutions of complicated geometric problems
which can be shown to be correct are stated without proof by the writers of the very
earliest mathematical documents, such as the Rhind papyrus from Egypt and cuneiform
tablets from Mesopotamia. The facts that an author presents not merely a solution but a
sequence of steps leading to that solution and that this solution can now be reconstructed
justify the conclusion that the result was arrived at through mathematical reasoning, even
though the author does not write out the details. This observation is particularly important
in evaluating the mathematical achievements of the Mesopotamian, Egyptian, Hindu, and
Chinese mathematicians, who did not write out formal proofs in the Greek sense. Since
they often got results that agree with modern geometry, they must have used some form of
visual reasoning such as we have presented here.

PROBLEMS AND QUESTIONS

Mathematical Problems

2.1. Find a unicursal tracing of the graph shown in Fig. 2.1.

2.2. Perminov (1997, p. 183) presents the following example of tacit mathematical rea-
soning from an early cuneiform tablet. Given a right triangle ACB divided into a
smaller right triangle DEB and a trapezoid ACED by the line DE parallel to the
leg AC, such that EC has length 20, EB has length 30, and the trapezoid ACED

has area 320, what are the lengths AC and DE? (See Fig. 2.3b.) The author of
the tablet very confidently computes these lengths by the following sequence of op-
erations: (1) 320 ÷ 20 = 16; (2) 30 · 2 = 60; (3) 60 + 20 = 80; (4) 320 ÷ 80 = 4;
(5) 16 + 4 = 20 = AC; (6) 16 − 4 = 12 = DE. As Perminov points out, to present

(a) (b)
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Figure 2.3. (a) Line DE divides triangle ABC into triangle DEB and trapezoid ACED. (b) Line
FGIH bisects line AD. Rectangle FCEI has the same area as trapezoid ACED, and rectangle JCED

equals rectangle MDKL.
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this computation with any confidence, you would have to know exactly what you are
doing. What was this anonymous author doing?

To find out, fill in the reasoning in the following sketch. The author’s first compu-
tation shows that a rectangle of height 20 and base 16 would have exactly the same
area as the trapezoid. Hence if we draw the vertical line FH through the midpoint G

of AD, and complete the resulting rectangles as in Fig. 2.3, rectangle FCEI will have
area 320. Since AF = MI = FJ = DI, it now suffices to find this common length,
which we will call x; for AC = CF + FA = 16 + x and DE = EI − DI = 16 − x.
By the principle demonstrated in Fig. 2.2, JCED has the same area as DKLM, so
that DKLM + FJDI = DKLM + 20x. Explain why DKLM = 30 · 2 · x, and hence
why 320 = (30 · 2 + 20) · x.

Could this procedure have been obtained experimentally?

2.3. A now-famous example of mathematical blunders committed by mathematicians (not
statisticians, however) occurred a few decades ago. At the time, a very popular tele-
vision show in the United States was called Let’s Make a Deal. On that show, the
contestant was often offered the chance to keep his or her current winnings or to trade
them for a chance at some other unknown prize. In the case in question the contestant
had chosen one of three boxes, knowing that only one of them contained a prize of
any value, but not knowing the contents of any of them. For ease of exposition, let us
call the boxes A, B, and C and assume that the contestant chose box A.

The emcee of the program was about to offer the contestant a chance to trade for
another prize, but in order to make the program more interesting, he had box B opened,
in order to show that it was empty. Keep in mind that the emcee knew where the prize
was and would not have opened box B if the prize had been there. Just as the emcee
was about to offer a new deal, the contestant asked to exchange the chosen box (A) for
the unopened box (C) on stage. The problem posed to the reader is: Was this a good
strategy? To decide, analyze 300 hypothetical games, in which the prize is in box A
in 100 cases, in box B in 100 cases (in these cases, of course, the emcee will open
box C to show that it is empty), and in box C in the other 100 cases. First assume that
in all 300 games the contestant retains box A. Then assume that in all 300 games the
contestant exchanges box A for the unopened box on stage. By which strategy does
the contestant win more games?

2.4. Explain why the following analysis of the game described in the preceding question
leads to an erroneous result. Consider all the situations in which the contestant has
chosen box A and the emcee has shown box B to be empty. Imagine 100 games in which
the prize is in box A and 100 games in which it is in box C. Suppose the contestant
retains box A in all 200 games; then 100 will be won and 100 lost. Likewise, if the
contestant switches to box C in all 200 games, then 100 will be won and 100 lost.
Hence there is no advantage to switching boxes.

2.5. The fallacy discussed in the last two exercises is not in the mathematics, but rather in
its application to the real world. The question involves what is known as conditional
probability. Mathematically, the probability of event E, given that event F has occurred,
is defined as the probability that E and F both occur, divided by the probability of F.
The many mathematicians who analyzed the game erroneously proceeded by taking
E as the event “The prize is in box C” and F as the event “Box B is empty.” Given
that box B has a 2/3 probability of being empty and the event “E and F” is the same as
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event E, which has a probability of 1/3, one can then compute that the probability of E
given F is (1/3)/(2/3) = 1/2. Hence the contestant seems to have a 50% probability
of winning as soon as the emcee opens Box B, revealing it to be empty.

Surely this conclusion cannot be correct, since the contestant’s probability of having
chosen the box with the prize is only 1/3 and the emcee can always open an empty
box on stage. Replace event F with the more precise event “The emcee has shown that
box B is empty” and redo the computation. Notice that the emcee is going to show
that either box B or box C is empty and that the two outcomes are equally likely.
Hence the probability of this new event F is 1/2. Thus, even though the mathematics of
conditional probability is quite simple, it can be a subtle problem to describe just what
event has occurred. Conclusion: To reason correctly in cases of conditional probability,
one must be very clear in describing the event that has occurred.

2.6. Reinforcing the conclusion of the preceding question, exhibit the fallacy in the fol-
lowing “proof” that lotteries are all dishonest.

Proof. The probability of winning a lottery is less than one chance in 1,000,000
( = 10−6). Since all lottery drawings are independent of one another, the probabil-

ity of winning a lottery five times is less than
(
10−6

)5 = 10−30. But this probability
is far smaller than the probability of any conceivable event. Any scientist would dis-
believe a report that such an event had actually been observed to happen. Since the
lottery has been won five times in the past year, it must be that winning it is not a
random event; that is, the lottery is fixed.

What is the event that has to occur here? Is it “Person A (specified in advance) wins
the lottery,” or is it “At least one person in this population (of, say, 30 million people)
wins the lottery”? What is the difference between those two probabilities? (The same
fallacy occurs in the probabilistic arguments purporting to prove that evolution cannot
occur, based on the rarity of mutations.)

Questions for Reflection

2.7. At what point do you find it necessary to count in order to say how large a collection
is? Can you look at a word such as tendentious and see immediately how many letters
it has? The American writer Henry Thoreau (1817–1863) was said to have the ability
to pick up exactly one dozen pencils out of a pile. Try as an experiment to determine
the largest number of pencils you can pick up out of a pile without counting. The point
of this exercise is to see where direct perception needs to be replaced by counting.

2.8. How confidently can we make inferences about the development of mathematics from
the study of animals, children, and archaeological sites?

2.9. One aspect of symbolism that has played a large role in human history is the mystical
identification of things that exhibit analogous relations. The divination practiced by
the Malagasy is one example, and there are hundreds of others: astrology, alchemy,
numerology, tarot cards, palm reading, and the like, down to the many odd beliefs in
the effects of different foods based on their color and shape. Even if we dismiss the
validity of such divination, is there any value for science in the development of these
subjects?



PART II

THE MIDDLE EAST, 2000–1500 BCE

In the five chapters that constitute this part of our study, we examine the mathematics
produced in two contemporaneous civilizations, in Mesopotamia and Egypt, over a period
from about 4000 to 3500 years ago. We shall look at the way each of these societies
wrote numbers and calculated with them, and we shall discuss the uses they made of their
calculations in geometry and applied problems.

Contents of Part II

1. Chapter 3 (Overview of Mesopotamian Mathematics) sketches the archaeological
and mathematical background needed to appreciate the mathematical achievements
recorded on the Old Babylonian tablets.

2. Chapter 4 (Computations in Ancient Mesopotamia) discusses some of the arithmetical
and algebraic problems solved on the cuneiform tablets.

3. Chapter 5 (Geometry in Mesopotamia) looks at the area and volume problems solved
by Mesopotamian mathematicians and their use of the Pythagorean theorem.

4. Chapter 6 (Egyptian Numerals and Arithmetic) introduces the numbering system used
in ancient Egypt and the idiosyncratic method of multiplying by repeated doubling
that is characteristic of this culture.

5. Chapter 7 (Algebra and Geometry in Ancient Egypt) discusses the applications of
these numerical techniques made by the Egyptians in the areas of surveying, com-
merce, and engineering.
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CHAPTER 3

Overview of Mesopotamian Mathematics

Some quite sophisticated mathematics was developed four millennia ago in the portion of
the Middle East that now forms the territory of Iraq and Turkey. This mathematics, along
with a great deal of other lore, was written on small clay tablets in a style known as cuneiform
(wedge-shaped), each tablet devoted to a limited topic. Nothing like a systematic treatise
contemporary with this early mathematics exists. Scholars have had to piece together a
mosaic picture of this mathematics from a few hundred clay tablets that show how to solve
particular problems.

3.1. A SKETCH OF TWO MILLENNIA OF MESOPOTAMIAN HISTORY

The region known as Mesopotamia (Greek for “between the rivers”) was the home of many
successive civilizations. The name of the region derives from the two rivers, the Euphrates
and the Tigris, that flow from the mountainous regions around the Mediterranean, Black, and
Caspian seas into the Persian Gulf. In ancient times this region was invaded and conquered
many times, and the successive dynasties spoke and wrote in many different languages. The
long-standing convention of referring to all the mathematical texts that come from this area
as “Babylonian”—a term used as early as 450 bce by the Greek historian Herodotus—gives
undue credit to a single one of the many dynasties that dominated this region. Nevertheless,
the appellation does fit the present discussion, since the tablets we are going to discuss are
written in Old Babylonian.

Although many different peoples invaded this region over time, occupying different parts
of it, we are going to oversimplify this history and divide it into eight different civilizations,
as follows:

1. Sumerian. The Sumerians were either the original inhabitants of the region or immi-
grants from farther east. They spoke a language unrelated to the Semitic and Indo-
European groups. They held sway over this region for several hundred years, starting
about 3000 bce. It was the Sumerians who invented the cuneiform writing, made by
pressing a stylus into wet clay. Many of the small clay tablets containing such records
dried out and have kept their information for over 4000 years.

2. Akkadian. These people were conquerors who spoke a Semitic language and adapted
the Sumerian cuneiform writing to their own language. One consequence was the
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compilation of Sumerian–Akkadian dictionaries, very useful for the later deciphering
of these documents. The Akkadians established a commercial empire under King
Sargon (ca. 2371–2316 bce), which eventually collapsed and was replaced by a
system of city–states in which the city of Ur at the mouth of the Euphrates was
dominant.

3. Amorite. The Amorites, like the Akkadians, spoke a Semitic language. They invaded
the area just before 2000 bce and established a number of small kingdoms, of which
Assyria was the first to become prominent, soon to be succeeded by Babylon under
Hammurabi (1792–1750 bce). This was the time when the Old Babylonian mathe-
matical tablets were written. These tablets are the ones that will be discussed in the
present chapter and the two following.

4. Hittite. The Hittites expanded from the west, the region now called Turkey. They
spoke a language of the Indo-European family (the family to which English belongs).
By 1650 bce they had established a kingdom to rival the Amorites, and in 1595 they
sacked the city of Babylon. The Hittite civilization collapsed around 1200 bce due
ultimately to pressure from the west exerted by the “Sea Peoples,” among whom were
the Peleset, a people known to us from the Bible as the Philistines. They are the source
of the name Palestine.

5. Assyrian. The Sea Peoples, although they caused the collapse of the Hittite Empire,
did not occupy the portion of Mesopotamia that had been part of that empire. In-
stead, an empire based in the old city of Assyria began to grow and expand as far as
its very well organized army and clever diplomacy could sustain it. The Assyrians
eventually controlled a large portion of the region between the Mediterranean and the
Persian Gulf, including present-day Palestine and parts of northern Egypt. Since this
empire included the city of Babylon, it absorbed a great deal of the culture associated
with that city. The Assyrian Empire was finally conquered by the Chaldean King
Nebuchadnezzar (605–562 bce).

6. Chaldean. This empire, although very short-lived (ca. 625–539 bce), is well-known
in the West because of Nebuchadnezzar, who is mentioned in the books of Kings,
Jeremiah, and Daniel in the Bible. It was Nebuchadnezzar who conquered Jerusalem
in 597 BCE and took the King of Judah and his followers into exile in Babylon.
This civilization exerted a great influence on the writers of the Bible, especially the
customs of the Chaldean court, where astrology was taken seriously.

7. Persian. As is well known from the Book of Daniel, the Chaldean empire was con-
quered in 539 bce by the Persian king Cyrus the Great. Cyrus repatriated the exiles
from Jerusalem and allowed the rebuilding of the Temple. The Persians, who speak an
Indo-European language, have had an unbroken civilization since that time, although
one subject to many changes of dynasty and religion. We shall see them coming into
the story of mathematics at various points.

8. Seleucid. The high period of culture in mainland Greece coincided with the rise of
the Athenian Empire in the middle of the fifth century bce. The Athenian Empire
was perceived as a threat by the Spartans, who brought it down through the Pelo-
ponnesian War (431–404 bce). By that time, however, Greek scholarship and the
Greek language were well established as intellectual forces. When the Macedonian
kings Philip and Alexander conquered the territory eastward from mainland Greece
to India and westward along the African coast of the Mediterranean, they consciously
attempted to spread this culture. As a result, intellectual centers grew up in widely
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separated places where scholars, not all Greek by birth, wrote and argued in the
Greek language. The three best-known Greek mathematicians, Euclid, Archimedes,
and Apollonius, lived and worked in Egypt, Sicily, and what is now Turkey.

When Alexander died in 323 bce, his empire was divided among three of his
generals. Besides the original Macedonian kingdom centered at Pella just north of
Greece, there were two other regions with centers in Egypt and the Fertile Crescent.
Egypt was ruled by the general Ptolemy Soter (the last of his heirs was Cleopatra,
who presided over the incorporation of Egypt into the Roman Empire under Julius
Caesar) while the regions around the Fertile Crescent were ruled by general Seleucus
and thereby became known as the Seleucid Kingdom.

Unfortunately, in an introductory course, we cannot provide full details of the devel-
opment of mathematics over this vast period of time. The reader should bear in mind that
the mathematical examples in this chapter and the two following are a limited selection,
wrenched out of their context. We are focusing on just a few salient features of one or two
periods in this long and complicated history and are cherry-picking only the mathematics
that seems most likely to interest the modern reader.

3.2. MATHEMATICAL CUNEIFORM TABLETS

Of the many thousands of cuneiform texts scattered through museums around the world,
several hundred have been found to be mathematical in content. Deciphering them was made
simpler by mutilingual tablets that were created because the cuneiform writers themselves
had need to know what had been written in earlier languages. A considerable amount of the
credit for the decipherment must go to Sir Henry Rawlinson (1810–1895), who spent several
years transcribing a trilingual inscription carved in a cliff at what is now Bisutun, Iran. This
inscription, in Old Persian (an Indo-European language), Babylonian (a Semitic language
derived from Akkadian), and Elamite (a “language isolate,” having no close relatives), tells
of the reign of the Persian king Darius, who was successor to Cyrus the Great and reigned
from 522 to 486. Its decipherment led to the recovery of the Akkadian language, which
had gone extinct in the first century ce; and Akkadian led to the recovery of the Sumerian
language, the language of the earliest civilization in Mesopotamia. Sumerian and Akkadian
were freely mixed over a period of centuries and nearly melded into a single language.

By 1854, enough tablets had been deciphered to reveal the system of computation used
in ancient Mesopotamia, and by the early twentieth century a considerable number of
mathematical texts had been deciphered and analyzed. A detailed analysis of the ones
known up to 1935 was presented in a two-volume work by Otto Neugebauer (1899–1992),
Mathematische Keilschrifttexte, republished by Springer-Verlag in 1973. A more up-to-date
study has been published by the Oxford scholar Eleanor Robson (1999).

Some of the tablets that have been discussed by historians of mathematics appear to be
“classroom materials,” written by teachers as exercises for students. One clue that points
toward this conclusion is that the answers so often “come out even.” As Robson (1995, p.
11, quoted by Melville, 2002, p. 2) states, “Problems were constructed from answers known
beforehand.” See also the more recent book of Robson (2008, p. 21). Melville provides an
example of a different kind from tablet YBC 4652 of the Yale Babylonian Collection in
which the figures are not “rigged,” but a certain technique is presumed. Although there
is an unavoidable lack of unity and continuity in the Mesopotamian texts compared with
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mathematics written on media more amenable to extensive treatises, such as papyrus and
paper, the cuneiform tablets nevertheless contain many problems similar to problems studied
in other places such as India, China, and Egypt.

The applications that were made of these techniques must be conjectured, but we may
confidently assume that they were the same everywhere: commerce, government admin-
istration, and religious rites, all of which call for counting and measuring objects on the
earth and making mathematical observations of the sky in order to keep track of months
and years. According to Robson (2009, pp. 217–218), the education of a surveyor, which
required both numerical and geometric skill, was of crucial importance in keeping public
order:

When I go to divide a plot, I can divide it; when I go to apportion a field, I can apportion the
pieces, so that when wronged men have a quarrel I soothe their hearts and [. . . ]. Brother will
be at peace with brother.

3.3. SYSTEMS OF MEASURING AND COUNTING

The systems of numeration still used in the United States, the last bastion of resistance to
the metric system, show that people once counted by twos, threes, fours, sixes, eights, and
twelves. In the United States, eggs and pencils, for example, are sold by the dozen or the
gross. Until recently, stock averages were quoted in eighths rather than tenths. Measures of
length, area, and weight show other groupings. Consider the following words: fathom (6
feet), foot (12 inches), pound (16 ounces), yard (3 feet), league (3 miles), furlong (1/8 of
a mile), dram (1/8 or 1/16 of an ounce, depending on the context), karat (1/24, used as a
pure number to indicate the proportion of gold in an alloy),1 peck (1/4 of a bushel), gallon
(1/2 peck), pint (1/8 of a gallon), and teaspoon (1/3 of a tablespoon). The strangest unit of
all in the formidable English system—no longer the English system since the UK became
part of the European Union—is the acre, 1/640 of a square mile. In the United States, a
square mile was called a section, and farms commonly consisted of a quarter of a section,
160 acres. (In metric units, an acre is about 0.4 hectares.)

Even in science, however, there remain some vestiges of nondecimal systems of measure-
ment inherited from the ancient Middle East. In the measurement of both angles and time,
minutes and seconds represent successive divisions by 60. A day is divided into 24 hours,
each of which is divided into 60 minutes, each of which is divided into 60 seconds. At that
point, our division of time becomes decimal; we measure races in tenths and hundredths of
a second. A similar renunciation of consistency came in the measurement of angles as soon
as hand-held calculators became available. Before these calculators came into use, students
(including the present author) were forced to learn how to interpolate trigonometric tables
in minutes (1/60 of a degree) and seconds (1/60 of a minute). In physical measurements,
as opposed to mathematical theory, we still divide circles into 360 equal degrees. But our
hand-held calculators have banished minutes and seconds. They divide degrees decimally
and of course make interpolation an obsolete skill. Since π is irrational, it seems foolish to
adhere to any rational fraction of a circle as a standard unit; hand-held calculators are per-
fectly content to use the natural (radian) measure, and we could eliminate a useless button

1The word is a variant of carat, which also means 200 milligrams when applied to the size of a diamond.
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by abandoning degrees entirely. That reform, however, is likely to require even more time
than the adoption of the metric system.2

3.3.1. Counting

A nondecimal counting system reported (1937) by the American mathematicians David
Eugene Smith (1860–1944) and Jekuthiel Ginsburg (1889–1957) as having been used by
the Andaman of Australia illustrates how one can count up to certain limits in a purely binary
system. The counting up to 10, translated into English, goes as follows: “One two, another
one two, another one two, another one two, another one two. That’s all.” In saying this
last phrase, the speaker would bring the two hands together. This binary counting appears
to be very inefficient from a human point of view, but it is the system that underlies the
functioning of computers, since a switch has only two positions. The binary digits or bits,
a term that seems to be due to the American mathematician Claude Shannon, are generally
grouped into larger sets for processing.

Although bases smaller than 10 are used for various purposes, some societies have used
larger bases. Even in English, the word score for 20 (known to most Americans only from the
first sentence of Lincoln’s Gettysburg Address) does occur. In French, counting between 60
and 100 is by 20s. Thus, 78 is soixante dix-huit (sixty-eighteen) and 97 is quatre-vingt dix-
sept (four-twenty seventeen). Menninger (1969, pp. 69–70) describes a purely vigesimal
(base 20) system used by the Ainu of Sakhalin. Underlying this system is a base 5 system
and a base 10 system. Counting begins with shi-ne (begin-to-be = 1), and progresses through
such numbers as aschick-ne (hand = 5), shine-pesan (one away from [10] = 9), wan (both
sides = both hands = 10), to hot-ne (whole- [person]-to-be = 20). In this system 100 is
ashikne hotne or 5 twenties; 1000, the largest number used is ashikne shine wan hotne or 5
ten-twenties. There are no special words for 30, 50, 70, or 90, which are expressed in terms
of the basic 20-unit. For example, 90 is wan e ashikne hotne (10 from 5 twenties). Counting
by subtraction probably seems novel to most people, but it does occur in Roman numerals
(IV = 5 − 1), and we use subtraction to tell time in expressions such as ten minutes to four
and quarter to five.3

3.4. THE MESOPOTAMIAN NUMBERING SYSTEM

As the examples of angle and time measurement show, the successive divisions or regroup-
ings in a number system need not have the same number of elements at every stage. The
Mesopotamian sexagesimal system appears to have been superimposed on a decimal sys-
tem. In the cuneiform tablets in which these numbers are written the numbers 1 through

2By abandoning another now-obsolete system—the Briggsian logarithms—we could eliminate two buttons on
the calculators. The base 10 was useful in logarithms only because it allowed the tables to omit the integer part
of the logarithm. Since no one uses tables of logarithms any more, and the calculators don’t care how messy a
computation is, there is really no reason to do logarithms in any base except the natural one, the number e, or
perhaps base 2 (in number theory). Again, don’t expect this reform to be achieved in the near future.
3Technology, however, is rapidly removing this last vestige of the old way of counting from everyday life. Circular
clock faces have been largely replaced by linear digital displays, and ten minutes to four has become 3:50. This
process began long ago when railroads first imposed standard time in place of mean solar time and brought about
the first 24-hour clocks.
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Figure 3.1. The cuneiform number 45.

9 are represented by a corresponding number of wedge-shaped vertical strokes, and 10 is
represented by a new symbol, a hook-shaped mark that resembles a boomerang (Fig. 3.1).
However, the next grouping is not ten groups of 10, but rather six groups of 10. Even more
strikingly, the symbol for the next higher group is again a vertical stroke. Logically, this sys-
tem is equivalent to a base-60 place-value system with a floating “decimal” (sexagesimal)
point that the reader or writer had to keep track of mentally. Within each unit (sexagesimal
rank) of this system there is a truncated decimal system that is not place-value, since the
ones and tens are distinguished by different symbols rather than physical location.

3.4.1. Place-Value Systems

Since we take our familiar place-value decimal system for granted, it is worth remembering
that several advanced civilizations, including those of Egypt, ancient Greece, and ancient
Rome, did not have such a system. The Egyptians and ancient Greeks (who probably copied
the Egyptians in this matter) had, as we do, individual symbols for the numbers 1 through 9,
but they had nine more symbols for 10 through 90 and another nine symbols for 100 through
900. (The Greeks used their 24-letter alphabet, along with three obsolete letters, to get these
27 symbols.) Even the Chinese system, which was decimal, used separate symbols for each
power of 10. For example, the numbers 1, 2, and 3 are symbolized as –, =, and ≡, while 10
was represented by a cross shape (+ or †). But 20 was written as = +, that is, a 2 whose
value was shown by being attached to the symbol for the corresponding power of 10. This
extra symbol, we can now see, was not needed if you have a symbol for an empty place,
since the physical location of the 2 suffices to show its value. Thus, the Chinese system was
“just short of” a full place-value system.

It is therefore somewhat surprising that a pure place-value sexagesimal system arose as
early as 4000 years ago in Mesopotamia, with which Egypt, Greece, and Rome were in
contact. Somehow, the advantages of the system penetrated only Greco-Roman science,
not commerce and other economic activity.4 In its original form, this system lacked one

4Perhaps, considering the cries of outrage whenever any attempt is made to use the metric system in the United
States, we should not be surprised.
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feature that we regard as essential today, a symbol for an empty place (zero). The later
Greek writers, such as Ptolemy in the second century ce, used the sexagesimal notation
with a circle to denote an empty place.

Although it obviously began as a decimal system, since there are distinct symbols for 1
and 10, the special symbol for 100, which one would expect in such a system, does not occur
in the clay tablets from which most of our knowledge about Mesopotamian mathematics is
derived. The reason is that at some point the Mesopotamians developed a true place-value
system of writing numbers, using 60 as a base. This system was taken over, but for scientific
purposes only, by the Greeks, who passed on to the modern world the idea of dividing a
day into 24 hours, an hour into 60 minutes, a minute into 60 seconds, and a circle into 360
degrees. To get a picture of the way the writers were thinking that doesn’t require the use
of non-standard symbols, historians of the subject have invented a way of transcribing the
numbers into easily recognizable forms. We shall now describe this transcription.

3.4.2. The Sexagesimal Place-Value System

You are familiar with the fact that the number 3926 means 3 × 103 + 9 × 102 + 2 × 101 +
6 × 100, that is, 3000 + 900 + 20 + 6. We are working in base 10 here, and each digit will
be an integer between 0 and 9.

If we were interpreting it in base 60, the symbol 3926 would mean 3 × 603 + 9 × 602 +
2 × 60 + 6, that is, 648000 + 32400 + 120 + 6, or 680,526 in decimal notation. We could
write this equality as 392660 = 68052610. However, we shall normally omit the subscripts,
since it will be obvious which of the two bases is meant.

In sexagesimal notation, each digit is between 0 and 59, and that fact gives rise to some
ambiguity: How can we be sure the number we just looked at was not meant to be, for ex-
ample, 39 × 60 + 26? The distinction would be clear in authentic cuneiform notation, since
there is a special symbol for 10. To make it clear in our transcription, we will use a comma
to separate the digits of all sexagesimal numbers. In that way, we can distinguish between
3, 9, 2, 6 and 39, 26. Between the integer and fractional parts of the number, we shall write
a semicolon in our transcription. Thus 35, 6; 12, 9 means 35 × 60 + 6 + 12

60 + 9
602 , which

in decimal notation would be 2106.2025. As another example, the number that we write as
85.25 could be transcribed into this notation as 1, 25; 15, meaning 1 · 60 + 25 · 1 + 15 · 1

60 .
Converting a number written in sexagesimal notation into decimal notation is a very

easy matter. Just insert the appropriate power of 60 (positive for digits left of the units
digit, negative for digits right of it) in each place and multiply by the digit in that place;
then add the products. This skill requires hardly any practice. You should be able to verify
easily that 13,7;21 converts to 13 × 60 + 7 + 21

60 = 787.35 and that 2,29;15,11 converts to
3629 911

3600 = 3629.25305555 . . . , where the 5’s repeat forever. As you see, a terminating
sexagesimal number may fail to terminate when translated into decimal notation. A ter-
minating decimal number, however, will always terminate when converted to sexagesimal
notation, because 10 divides 60. Our first task is to spend a little time converting between
the hybrid notation just introduced for the sexagesimal system and the decimal system we
are familiar with, so that numbers written in this system will appear less strange.

3.4.3. Converting a Decimal Number to Sexagesimal

The procedure for converting from decimal notation to sexagesimal requires separate han-
dling of the integer and fractional parts of a number. We begin by discussing how to convert
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integers. The general procedure is sufficiently well illustrated by the conversion of the dec-
imal number 3,874,065 into sexagesimal notation. The rule is to do repeated long division
with 60 as the divisor, using the remainder at each stage as the sexagesimal digit and the
quotient as the next dividend, until finally a quotient less than 60 is obtained and used as
the leftmost digit:

3874065 ÷ 60 = 64567

with a remainder of 45. Hence the units place is 45. Now we divide the quotient (64567)
by 60:

64567 ÷ 60 = 1076

with a remainder of 7. Hence the 60-digit is 7. We then divide 1076 by 60:

1076 ÷ 60 = 17

with a remainder of 56, so that the 602-digit is 56, and now the 603-digit is immediately
seen to be 17. Thus

3, 874, 06510 = 17 , 56 , 7 , 4560 .

All you have to remember is that you are working leftward from the “sexagesimal point”
(the semicolon). You can verify that this is correct by converting in the opposite direction:
17 × 603 + 56 × 602 + 7 × 60 + 45 = 3, 874, 065.

We next show how to convert a fractional number from either common-fraction or
decimal-fraction form into sexagesimal form. Since multiplying a number by 60 is equiva-
lent to moving the sexagesimal point to the right, the basic principle is that these successive
sexagesimal digits reveal themselves as the integer part of the product when the num-
ber is repeatedly multiplied by 60. This principle is completely obvious and trivial if the
fraction is given in sexagesimal form to begin with. For example, suppose the number is
N = 0 ; 43 , 12 , 19. Then 60N = 43 ; 12 , 19, so that the first digit of the original frac-
tional number N is the integer part (43) of 60N. After discarding that integer part, we can
get the second digit by multiplying what is left again by 60, and obviously that will be 12 in
the present case. This procedure works whether or not the fraction is given in sexagesimal
form. All we have to remember is to carry out the procedure “dual” to the procedure just
described for converting integers. In this dual procedure, you repeatedly multiply by 60 and
take the integer parts of the products as the successive digits. This time, you are working
rightward, again away from the “sexagesimal point.”

We illustrate with the fraction 2
25 . We find

2 × 60

25
= 120

25
= 4

20

25
= 4

4

5
.
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Thus, the first digit right of the sexagesimal point is 4. To get the second one, we need to
convert the fraction 4

5 , which is done exactly the same way:

4 × 60

5
= 48 .

Thus, we have found that

2

25
= 0 ; 4 , 48 .

And you can verify that this is correct:

4

60
+ 48

602 = 1

15
+ 1

75
= 6

75
= 2

25
.

Decimal fractions can be converted by following this procedure, using a hand calculator
to facilitate the computation, or by changing it to a common fraction. For example, we could
convert 0.337 to 337

1000 and proceed:

60 × 337

1000
= 3 × 337

50
= 1011

50
= 20

11

50
.

The first digit is thus 20. To get the next one we continue:

60 × 11

50
= 66

5
= 13

1

5
.

Thus second digit is now seen to be 13, and we get the third and final digit by converting 1
5

to 12
60 . Hence

0.33710 = 0 ; 20 , 13 , 1260 .

Peculiarities to Watch For. If you have a repeating decimal for which you know an
exact value as a common fraction, for example, 0.33333 . . . , which you know is 1

3 , it is best
to convert it to the common fraction before converting it to sexagesimal. The procedure
given above will correctly convert 1

3 into 0 ; 20. But if you work with its infinite decimal
expression 0.3333. . . , you will first of all have difficulty multiplying it by 60, since the
multiplication has to start at the right-hand end, which is infinitely distant. Even if you do
the obvious thing and say that 0.333 · · · × 60 = 19.99999 . . . , you will get 19 as the first
digit and then have to convert 0.99999. . . , which will similarly yield 59.999999. . . when
multiplied by 60. Hence you’d find that 0.333 . . .10 = 0 ; 19 , 59 , 59 , 59, . . .60, which is
correct, but clumsily expressed.

Some fractions do have nonterminating sexagesimal expansions. For example, 2
7 will

repeat with period 3:

2

7
= 0 ; 17 , 8 , 34 , 17 , 8 , 34 , . . . .
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3.4.4. Irrational Square Roots

Some of the tablets contain the sexagesimal number 1 ; 24 , 51 , 10, which is 30547
21600 ≈

1.41421296296 . . . . It is clear from the context that this number is being used as an approx-
imation to

√
2. The tablet YBC 7289 in the Yale Babylonian Collection exhibits the number

0 ; 42 , 30 in a context where it clearly means 1√
2

. There are various ways in which these
approximations might have been arrived at. The simplest conjecture amounts essentially to
what eventually became generalized as the Newton–Raphson method of approximating the
root of a functional equation f (x) = 0. In the limited context of the equation x2 − 2 = 0,
the method has a much simpler explanation than it gets in calculus courses.

We begin by noting that
√

2 must be between 1 and 2. Hence, let us begin with 3
2 as an

approximation. This number happens to be too large, but we do not have to know that in
order to improve the approximation. If an approximation a is too large, then 2

a
will be too

small, and hence we are likely to improve the approximation by averaging a and 2
a

:

a → 1

2

(
a + 2

a

)
= a

2
+ 1

a
.

Starting with a = 3
2 , we find the next approximation to be

3

4
+ 2

3
= 17

12
.

This is our new a, and we continue from there. If 17
12 is taken as an approximation of

√
2,

then 17
24 is an approximation for 1√

2
, and that is the approximation actually used in the tablet

YBC 7289. The next approximation to
√

2 is 577
408 = 1 + 169

408 , and its sexagesimal expansion
begins 1; 24, 51, 10, which is the approximation used in the tablets.

This explanation is only a conjecture; we don’t really know how square roots were found.
In the next chapter, we shall discuss how computations were done within the sexagesimal
system. You can imagine that it was not so easy as it is with our base-10 system.

PROBLEMS AND QUESTIONS

Mathematical Problems

3.1. Convert the sexagesimal number 11 , 4 , 29 ; 58 , 7 into decimal notation.

3.2. Convert the decimal number 4752.73 into sexagesimal notation.

3.3. Convert the improper fraction 9437
2755 into sexagesimal notation. (Get the first four digits

on the right of the sexagesimal point. This sexagesimal expansion does eventually
repeat. However, it has a powerfully long period!)

Historical Questions

3.4. What special circumstances made it possible to decipher the cuneiform tablets?

3.5. Why was it important for a government in ancient times to have a cadre of competent
surveyors?
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3.6. What are the differences in the counting systems used in ancient China, Egypt, and
Mesopotamia?

Questions for Reflection

3.7. Why would it be more difficult to use a sexagesimal place-value system than a decimal
place-value system? How would you overcome this difficulty if you had only the
sexagesimal system to use?

3.8. What other bases, besides 10 and 60, have you heard of being used? Suppose one
person was using base 7 and another base 12. What advantages would each have over
the other?

3.9. How might a sexagesimal system have originated in the first place, since by far the
commonest bases used throughout the world are 10, 5, and 20?



CHAPTER 4

Computations in Ancient Mesopotamia

We might expect that, with their place-value system, the ancient Mesopotamians would
have done arithmetic somewhat as we do. There are, however, a few differences. While we
have no need to discuss addition and subtraction, we do need to compare multiplication and
division in the two systems.

4.1. ARITHMETIC

Cuneiform tablets at the British Museum from the site of Senkereh (also known as Larsa)
contain tables of products, reciprocals, squares, cubes, square roots, and cube roots of
integers. It appears that the people who worked with mathematics in Mesopotamia learned
by heart, just as we do, the products of all the small integers. Of course, for them a theoretical
multiplication table would have to go as far as 59 × 59, and the consequent strain on memory
would be large. That fact may account for the existence of so many written tables. Just as most
of us learn, without being required to do so, that 1

3 = 0.3333 . . . , the Mesopotamians wrote
their fractions as sexagesimal fractions and probably came to recognize certain reciprocals,
for example 1

9 = 0; 6, 40. With a system based on 30 or 60, all numbers less than 10 except
7 have terminating reciprocals. In order to get a terminating reciprocal for 7, one would
have to go to a system based on 210, which would be far too complicated.

Even with base 60, multiplication can be quite cumbersome, and historians have con-
jectured that calculating devices such as an abacus might have been used, although none
have been found. Høyrup (2002) has analyzed the situation by considering the errors in two
problems on Old Babylonian cuneiform tablets and deduced that any such device would
have had to be some kind of counting board, in which terms that were added could not be
identified and subtracted again (like pebbles added to a pile).

If we try to reconstruct a base-60 multiplication using what we know of decimal multi-
plication, where we “carry” the tens digit to the next column to the left when the product
of two digits is larger than 10, we find that it is possible to do so. However, any reasonably
complicated multiplication will task the calculator’s patience, since the carrying involves a
sixties digit rather than a tens digit. Here is a sample multiplication that, when translated
into decimal notation, verifies the computation

84, 387, 829

1200
× 4636

15
= 97, 805, 493, 811

4500
.

The History of Mathematics: A Brief Course, Third Edition. Roger L. Cooke.
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As you see, even without a calculator, the sexagesimal computation is only a little harder
than the decimal calculation, especially since neither denominator has a terminating decimal
expansion.

19, 32, 3; 11, 27

5, 9; 4
—————————————————

1, 18, 8; 12, 45, 48

2, 55, 48, 28; 43, 3

1, 37, 40, 15, 57; 15
—————————————————
1, 40, 37, 22, 34; 10, 48, 48

4.1.1. Square Roots

Not only are sexagesimal fractions handled easily in all the tablets, the concept of a square
root occurs explicitly, and actual square roots are approximated by sexagesimal fractions,
showing that the mathematicians of the time realized that they hadn’t been able to make these
square roots come out even. Whether they realized that the square root would never come
out even is not clear. For example, text AO 6484 (the AO stands for Antiquités Orientales)
from the Louvre in Paris contains the following problem on lines 19 and 20:

The diagonal of a square is 10 Ells. How long is the side? [To find the answer] multiply 10 by
0;42,30. [The result is] 7;5.

Now 0 ; 42 , 30 is 42
60 + 30

3600 = 17
24 ≈ 0.7083. This is the same approximation to 1/

√
2 ≈

0.7071 that is found on the tablet YBC 7289, discussed in the preceding chapter. The answer
7 ; 5 is 7 1

12 ≈ 7.083 = 10 · 0.7083. It seems that the writer of this tablet knew that the ratio
of the side of a square to its diagonal is approximately 17

24 . As mentioned in the preceding
chapter, the approximation to

√
2 that arises from what is now called the Newton–Raphson

method, starting from 3
2 as the first approximation, turns up the number 17

12 as the next

approximation, and hence 17
24 represents an approximation to

√
2

2 = 1√
2

.
The writers of these tablets realized that when numbers are combined by arithmetic

operations, it may be of interest to know how to recover the original data from the result.
This realization is the first step toward attacking the problem of inverting binary operations.
Although we now handle such problems by solving quadratic equations, the Mesopotamian
approach did not involve any explicit mention of equations. Instead, many of the tablets show
a routine procedure, associating with a pair of numbers, say 13 and 27, two other numbers:
their average (13 + 27)/2 = 20 and their semidifference1 (27 − 13)/2 = 7. The average

1This word is coined because English contains no one-word description of this concept, which must otherwise be
described as half of the difference of the two numbers. It is clear from the way in which the semidifference occurs
constantly that the writers of these tablets automatically looked at this number along with the average when given
two numbers as data. There seems to be no word in the Akkadian, Sumerian, and ideogram glossary given by
Neugebauer to indicate that the writers of the clay tablets had a special word for these concepts. It seems clear,
however, that the scribes were trained to calculate these numbers when dealing with this type of problem. In the
translations given by Neugebauer, the average and semidifference are obtained one step at a time, by first adding
or subtracting the two numbers and then taking half of the result.
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and semidifference can be calculated from the two numbers, and the original data can be
calculated from the average and semidifference. The larger number (27) is the sum of the
average and semidifference: 20 + 7 = 27, and the smaller number (13) is their difference:
20 − 7 = 13. The realization of this mutual connection makes it possible essentially to
“change coordinates” from the number pair (a, b) to the pair

(
(a + b)/2, (a − b)/2

)
.

At some point lost to history, some Mesopotamian mathematician came to realize that the
product of two numbers is the difference of the squares of the average and semidifference:
27 · 13 = (20)2 − 72 = 351 (or 5, 51 in Mesopotamian notation). This principle made it
possible to recover two numbers when knowing their sum and product or knowing their
difference and product. For example, given that the sum is 10 and the product is 21, we
know that the average is 5 (half of the sum), hence that the square of the semidifference is
52 − 21 = 4. Therefore, the semidifference is 2, and the two numbers are 5 + 2 = 7 and
5 − 2 = 3. Similarly, knowing that the difference is 9 and the product is 52, we conclude that
the semidifference is 4.5 and the square of the average is 52 + (4.5)2 = 72.25. Hence the
average is

√
72.25 = 8.5. Therefore, the two numbers are 8.5 + 4.5 = 13 and 8.5 − 4.5 =

4. The two techniques just illustrated occur constantly in the cuneiform texts and seem to be
procedures familiar to everyone, requiring no explanation. At this point, the development of
computational procedures has led to algebra, in the sense that the problems require turning
an implicit definition of a number into an explicit numerical value.

The important principle here, that the difference of the squares of the average and semi-
difference is the product, was to have important consequences over the next four thousand
years of mathematical progress, after it was combined with the Pythagorean theorem. The
principle that was in the minds of the Mesopotamian mathematicians was a two-part proce-
dure: (1) If you are given two numbers a and b, the numbers c = (a + b)/2 (their average)
and d = (a − b)/2 (their semidifference) reveal important information about them; (2) the
difference of the squares of c and d is the product of a and b. In the cuneiform tablets,
this principle finds algebraic application, making it possible by taking the square root to
find either the average or the semidifference, provided that you know the other and that
you also know their product. When combined with the Pythagorean theorem, which the
Mesopotamians also knew, this “polarization principle” can lead to even more interesting
new results, and did so for nearly four thousand years.

4.2. ALGEBRA

If we interpret Mesopotamian algebra in our own terms, we can credit the mathematicians
of that culture with knowing how to solve some systems of two linear equations in two
unknowns, any quadratic equation having at least one real positive root, some systems of
two equations where one of the equations is linear and the other quadratic, and a poten-
tially complete set of cubic equations. Of course, it must be remembered that these people
were solving problems, not equations. They did not have any classification of equations
in which some forms were solvable and others not. What they knew was that they could
find certain numbers from certain data. For that reason, the reader is cautioned to read the
following subsection headings with reservations. The ancient mathematicians were solv-
ing problems that we now solve using algebra and classify according to these headings.
They themselves must have had some other classification, since the concept of an equation
did not yet exist.
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4.2.1. Linear and Quadratic Problems

As just mentioned, the Mesopotamian approach to algebraic problems was to associate with
every pair of numbers another pair: their average and their semidifference. These associations
provide what we now call linear changes of variable. Linear problems arise frequently as
a subroutine in the solution of more complex problems involving squares and products of
unknowns. In Mesopotamia, what we now think of as quadratic equations occur most often
as problems in two unknown quantities, usually the length and width of a rectangle. The
Mesopotamian mathematicians were able to reduce a large number of problems to the form
in which the sum and product or the difference and product of two unknown numbers are
given. We shall consider an example that has been written about by many authors. It occurs
on a tablet from the Louvre in Paris, known as AO 8862.

A loose translation of the text of this tablet, made from Neugebauer’s German translation,
reads as follows:

I have multiplied the length and width so as to make the area. Then I added to the area the
amount by which the length exceeds the width, obtaining 3,3. Then I added the length and
width together, obtaining 27. What are the length, width, and area?

27 3,3 the sums
15 length
3,0 area
12 width

You proceed as follows:

Add the sum (27) of the length and width to 3,3. You thereby obtain 3,30. Next add 2 to 27,
getting 29. You then divide 29 in half, getting 14;30. The square of 14;30 is 3,30;15. You
subtract 3,30 from 3,30;15, leaving the difference of 0;15. The square root of 0;15 is 0;30.
Adding 0;30 to the original 14;30 gives 15, which is the length. Subtracting 0;30 from 14;30
gives 14 as width. You then subtract 2, which was added to the 27, from 14, giving 12 as the
final width.

The author continues, verifying that these numbers do indeed solve the problem. This text
requires some commentary, since it is baffling at first. Knowing the general approach of the
Mesopotamian mathematicians to problems of this sort, one can understand the reason for
dividing 29 in half (so as to get the average of two numbers) and the reason for subtracting
3,30 from the square of 14;30 (the difference between the square of the average and the
product will be the square of the semidifference of the two numbers whose sum is 29 and
whose product is 3,30, that is, 210). What is not clear is the following: Why add 27 to
the number 3,3 in the first place, and why add 2 to 27? Possibly the answer is contained
in Fig. 4.1, which shows that adding the difference between length and width to the area
amounts to gluing a smaller rectangle of unit width onto the rectangle whose dimensions
are to be found. Then adding the sum of length and width amounts to gluing a gnomon
onto the resulting figure in order to complete a rectangle two units wider than the original.
Finding the dimensions of that rectangle from its perimeter and area is the standard technique
of solving a quadratic equation, and that is what the author does. It is not clear that this
gluing of additions onto the rectangle represents the thought process of the original author.
The present author finds this very plausible, but it is worth noting that van der Waerden
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Figure 4.1. Reduction of a problem to standard form.

(1963) insisted that the original author was actually carrying out the mathematically absurd
operation of adding length to area. On those grounds, he concluded that “we may safely set
this down as a pair of equations in two unknowns.”2

The tablet AO 6670, as explicated by van der Waerden (1963, pp. 73–74), involves two
unknowns and two conditions, given in abstract terms without specific numbers. Unfor-
tunately, the explanation is very difficult to understand. The statement of the problem is
taken directly from Neugebauer’s translation: Length and width as much as area; let them
be equal. Thereafter, the translation given by van der Waerden, due to François Thureau-
Dangin (1872–1944), goes as follows:

The product you take twice. From this you subtract 1. You form the reciprocal. With the product
that you have taken you multiply, and the width it gives you.

Van der Waerden asserts that the formula y = (1/(x − 1)) · x is “stated in the text” of
Thureau-Dangin’s translation. If so, it must have been stated in a place not quoted by van
der Waerden, since x is not a “product” here, nor is it taken twice. Van der Waerden also
notes that according to Evert Marie Bruins (1909–1990), the phrase “length and width”
does not mean the sum of length and width. Van der Waerden says that “the meaning of the
words has to be determined in relation to the mathematical content.” The last two sentences

2Van der Waerden also argued that the words for length and width (uš and šag), being indeclinable, were being
used as symbols for an abstract unknown quantity. The choice is stark: We must conclude that the scribe either
was using a kind of linguistic shorthand in which a length becomes a rectangle of unit width or was a modern
algebraist for whom dimensional consistency is of no importance.
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Figure 4.2. A scenario that may “fit” a text from cuneiform tablet AO 6670.

in the description tell how to determine the width once the length has been found. That is,
you take the reciprocal of the length and multiply it by the product of length and width,
which must be given in the problem as the area. The mystery is then pushed into the first
two instructions. What product is being “taken twice”? Does taking a product twice mean
multiplying by 2, or does it mean cubing? Why is the number 1 being subtracted? Perhaps
we should go back to the original statement and ask whether “as much as area” implies an
equation, or whether it simply means that length and width form an area. What does the
word them refer to in the statement, “Let them be equal”? Is it the length and the width, or
some combination of them and the area? Without knowing the original language and seeing
the original text, we cannot do anything except suggest possible meanings, based on what
is mathematically correct, to those who do know the language.

We can get a geometric problem that fits this description by considering Fig. 4.2, where
two equal squares have been placed side by side and a rectangle of unit length, shown by
the dashed line, has been removed from the end. If the problem is to construct a rectangle
on the remaining base equal to the part that was cut off, we have conditions that satisfy
the instructions in the problem. That is, the length x of the base of the new rectangle is
obtained numerically by subtracting 1 from twice the given area. Still, it is dangerous for
any nonspecialist to speculate about the meaning without being able to read the original
document, and it is probably best to leave this problem at this point.

4.2.2. Higher-Degree Problems

Cuneiform tablets have been found—one such being VAT 8402, for example3 [see Neuge-
bauer (1935, p. 76)]—that give the sum of the square and cube of an integer for many
values of the integer. These tablets may have been used for finding the numbers to which
this operation was applied in order to obtain a given number. In modern terms these tablets
make it possible to solve the equation x3 + x2 = a, a difficult problem to attack directly,

3VAT stands for Vorderasiatisches (Near East) Museum, in Berlin, part of the Pergamon Museum.
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being in principle just as difficult as solving the general cubic equation. However, that was
probably not the purpose of the tablet, which remains a mystery.

Neugebauer (1935, p. 99; 1952, p. 43) reports that the Mesopotamian mathematicians
moved beyond algebra proper and investigated the laws of exponents, compiling tables of
successive powers of numbers and determining the power to which one number must be
raised in order to yield another. Such problems occur in a commercial context, involving
compound interest. For example, the tablet AO 6484 gives the sum of the powers of 2 from 0
to 9 as the last term plus one less than the last term, as well as the sum of the squares of
the first segment of integers as the sum of the same integers multiplied by the sum of the
number 1

3 and 2
3 of the last integer in the segment. This recipe is equivalent to the modern

formula for the sum of the squares of the first n integers. That is,

n∑

k=1

k2 = 2n + 1

3

( n∑

k=1

k

)
.

PROBLEMS AND QUESTIONS

Mathematical Problems

4.1. Find the product 37 ; 11 , 7 × 6 , 13 ; 41 through standard multiplication.

4.2. Find two numbers whose sum is 15 and whose product is 40.25 by following the
standard Mesopotamian technique of forming the average and semidifference.

4.3. Find two numbers whose difference is 4 and whose product is 76
9 using the standard

Mesopotamian technique.

Historical Questions

4.4. In what sense did the Mesopotamian authors “do algebra”? Did they have the concept
of an equation or a classification of types of equations?

4.5. Give an example of a mathematical technique developed in Mesopotamia and extended
to solve problems more general than the model on which it is based.

4.6. How did the Mesopotamian mathematicians deal with irrational square roots?

Questions for Reflection

4.7. For what purpose is it important to be able to find two numbers given their sum and
product? Is there any practical application of this technique in everyday life?

4.8. For what purpose might a person need a table giving the sum of the cube and square
of various numbers? Obviously, this table had some purpose, but was it perhaps sim-
ply an exercise in arithmetic for a pupil learning how to calculate? The expression
can be interpreted geometrically, but does this geometric interpretation suggest any
application?
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4.9. The power of modern mathematical methods is so fascinating that there is a strong
temptation to apply them to ancient texts. With our algebraic notation, we can reduce
every cubic equation ax3 + bx2 + cx + d = 0 to an equation of the form y3 + y2 = A.
Give at least two reasons why it is not plausible that the table of such values found
on the tablet VAT 8402 had this purpose. [Hint: The transformation that brings about

this reduction is the fractional-linear substitution x −→ 3b(3ac−b)y+(9abc−2b3−27a2d)
9a(b2−3ac)y

.

Here A = (9abc−2b3−27a2d)2

(3(b2−3ac))3 . (If you feel like verifying this fact, a computer algebra
program such as Mathematica will help.)]



CHAPTER 5

Geometry in Mesopotamia

Mesopotamian geometry was mostly concerned with the measurement of length, area, and
volume. Still, many of the problems that are posed in geometric garb have no apparent
practical application but are very good exercises in computation. For example, the Old
Babylonian tablet BM 13901 contains the following problem: Given two squares such that
the side of one is two-thirds that of the other plus 5 GAR and whose total area is 25,25
square GAR, what are the sides of the squares? Where in real life would one encounter
such a problem? The tablet itself gives no practical context, and we conclude that this
apparently geometric problem is really a computational problem. Earlier historians may
have carried this idea too far. Neugebauer (1952, p. 41) stated, “It is easy to show that
geometrical concepts play a very secondary part in Babylonian algebra, however extensively
a geometrical terminology may be used.” Both Neugebauer and van der Waerden (1963,
p. 72) point out that the cuneiform tablets contain operations that are geometrically absurd,
such as adding a length to an area or multiplying two areas. These two giant figures in the
history of mathematics a half century ago may have been too eager to press modern notions
down on documents from the past. The very use of the word algebra tends to be misleading,
since it suggests manipulation of symbols rather than numbers and the writing of equations,
both of which are absent from the cuneiform tablets. Høyrup, one of the leading experts in
this area, denies that any such dimensional inconsistency occurs, stating (2010, p. 5) that
“No Babylonian text ever adds a number and either a length or an area.” His research (see
Robson, 2009, p. 7), confirms that the numbers found in the geometric tablets are what we
call concrete numbers, having a physical dimension like length or area.

5.1. THE PYTHAGOREAN THEOREM

There is conclusive evidence that the Mesopotamians knew the Pythagorean theorem at
least 1000 years before Pythagoras (who, as we shall see, may have had nothing at all
to do with it). They were thus already on the road to finding more abstract properties of
geometric figures than mere size. This theorem was known at an early date in India and
China, so that one cannot say certainly where the earliest discovery was and whether the
appearance of this theorem in different localities was the result of independent discovery or
transmission. But as far as present knowledge goes, the earliest examples of the use of the
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“Pythagorean” principle that the square of the hypotenuse of a right triangle equals the sum
of the squares of the other two legs occur in the cuneiform tablets. The Old Babylonian text
known as BM 85196 contains a problem that has appeared in algebra books for centuries,
the “leaning-ladder” problem, in which a ladder 30 units long is leaning against a wall, its
top being 6 units below where it would be if pressed flush against the wall. The student is
supposed to find how far away from the wall the bottom of the ladder is. In this problem
we are dealing with a right triangle of hypotenuse 30 with one leg equal to 30 − 6 = 24.
Obviously, this is the famous 3–4–5 right triangle with all sides multiplied by 6. Obviously
also, the interest in this theorem was more numerical than geometric. How often, after all,
are we called upon to solve problems of this type in everyday life?

How might the Pythagorean theorem have been discovered? The following hypothesis
was presented by Allman (1889, pp. 35–37), who cited a work (1870) by Carl Anton
Bretschneider (1808–1878). Allman thought this dissection was due to the Egyptians, since,
he said, it was done in their style.

Suppose that you find it necessary to construct a square twice as large as a given square.
How would you go about doing so? (This is a problem the Platonic Socrates poses in the
dialogue Meno.) You might double the side of the square, but you would soon realize that
doing so actually quadruples the size of the square. If you drew out the quadrupled square
and contemplated it for a while, you might be led to join the midpoints of its sides in
order, that is, to draw the diagonals of the four copies of the original square. Since these
diagonals cut the four squares in half, they will enclose a square twice as big as the original
one (Fig. 5.1a). It is quite likely that someone, either for practical purposes or just for fun,
discovered this way of doubling a square. If so, someone playing with the figure might have
considered the result of joining in order the points at a given distance from the corners of a
square instead of joining the midpoints of the sides. Doing so creates a square in the center of
the larger square surrounded by four copies of a right triangle whose hypotenuse equals the
side of the center square (Fig. 5.1b); it also creates the two squares on the legs of that right
triangle and two rectangles that together are equal in area to four copies of the triangle. (In
Fig. 5.1b, one of these rectangles is divided into two equal parts by its diagonal, which is
the hypotenuse of the right triangle.) Hence the larger square consists of four copies of the
right triangle plus the center square. It also consists of four copies of the right triangle plus
the squares on the two legs of the right triangle. The inevitable conclusion is that the square
on the hypotenuse of any right triangle equals the sum of the squares on the legs. This is
the Pythagorean theorem, and it is used in many places in the cuneiform texts.

(a) (b)

Figure 5.1. (a) Doubling a square; (b) the Pythagorean theorem.
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Given that they knew the Pythagorean principle and also the polarization identity that
makes it possible to express the product of two numbers as a difference of squares, it
seems remarkable that the Mesopotamian mathematicians did not combine the two. If
the hypotenuse of a right triangle is the average of two lengths and one of the legs is
the semidifference, then the square on the other leg is the difference of the squares of the
average and semidifference and, hence, is equal to the rectangle on the original two lengths.
In this way, one can turn any rectangle into a square. The ingredients of a tasty mathematical
dish were all there, but it does not appear that the Mesopotamians combined them and made
them into a meal. It was left to the early Greeks to do that.

5.2. PLANE FIGURES

Some cuneiform tablets give the area of a circle in a way that we would interpret as implying
π = 3. That statement, however, may mislead, since the procedure used for finding the area
was not to multiply the square on the radius by a number, as we do, but to divide the square
on the circumference by a number. That divisor needs to be 4π in our terms, and it appears
to be 12 on at least one tablet. Hence the misleading shorthand that π = 3. On the other
hand (Neugebauer, 1952, p. 46), the ratio of the circumference to the diameter, which we
are going to call one-dimensional π,1 was given with more precision. On a tablet excavated
at Susa in 1936, it was stated that the perimeter of a regular hexagon, which is three times
its diameter, is 0 ; 57 , 36 times the circumference of the circumscribed circle. That makes
the circumference of a circle of unit diameter equal to

3

0 ; 57 , 36
= 3 ; 7 , 30 = 3

1

8
.

That the Mesopotamian mathematicians saw a relation between the area and the cir-
cumference of a circle is shown by two Old Babylonian tablets from the Yale Babylonian
Collection (YBC 7302 and YBC 11120, see Robson, 2001, p. 180). The first contains a cir-
cle with the numbers 3 and 9 on the outside and 45 on the inside. These numbers fit perfectly
the formula A = C2/(4π), given that the scribe was using π = 3. Assuming that the 3 repre-
sents the circumference, 9 its square, and 45 the quotient, we find 9/(4 · 3) = 3/4 = 0; 45.
Confirmation of this hypothesis comes from the other tablet, which contains 1; 30 outside
and 11; 15 inside, since (1; 302)/(4 · 3) = (2; 15)/12 = 135/12 = 11.25 = 11; 15.

5.2.1. Mesopotamian Astronomy

The strongest area of Mesopotamian science that has been preserved is astronomy, and it is
here that geometry becomes most useful. The measurement of angles—arcs of circles—is
essential to observation of the sun, moon, stars, and planets, since to the human eye they
all appear to be attached to a large sphere rotating overhead. The division of a circle into

1We use this term to specify the ratio of the circumference to the diameter of a circle. The geometric fact that this
ratio is the same for all circles is taken for granted. What we shall call two-dimensional π is the ratio of the area
enclosed by a circle to the interior of the square on its radius. Again, it is taken for granted that this ratio is the
same for all circles. The reader can formulate the definition of three-dimensional π. That these ratios are all the
same real number is not obvious, but seems to have been known even by ancient peoples.
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360 degrees is one convention that came from Mesopotamia, was embraced by the Greeks,
and became an essential part of applied geometry down to the present day. The reason for the
number 360 is the base-60 computational system used in Mesopotamia. The astronomers
divided all circles into 360 or 720 equal parts and divided the radius into 60 equal parts. In
that way, a unit of length along the radius was approximately equal to a unit of length on
the circle.

5.3. VOLUMES

The cuneiform tablets contain computations of the volumes of some simple solid figures.
For example, the volume of a frustum of a square pyramid is computed in an Old Babylonian
tablet (BM 85194). The Mesopotamian scribe seems to have generalized incorrectly from
the case of a trapezoid and reasoned that the volume is the height times the average area
of the upper and lower faces. This rule overestimates the volume. There is, however, some
disagreement as to the correct translation of the tablet in question. Neugebauer (1935, Vol. 1,
p. 187) claimed that the computation was based on an algebraic formula that is geometrically
correct. The square bases are given as having sides 10 and 7, respectively, and the height
is given as 18. The incorrect rule just mentioned would give a volume of 1341, which is
22,21 in sexagesimal notation; but the actual text reads 22,30. The discrepancy could be
a simple misprint, with three ten-symbols carelessly written for two ten-symbols and a
one-symbol. The computation used is not entirely clear. The scribe first took the average
base side (10 + 7)/2 and squared it to get 1, 12; 15 in sexagesimal notation (72.25). At this
point there is apparently some obscurity in the tablet itself. Neugebauer interpreted the next
number as 0; 45, which he assumed was calculated as one-third of the square of (10 − 7)/2.
The sum of these two numbers is 1, 13, which, multiplied by 18, yields 21, 54 (that is,
1314), which is the correct result. But it is difficult to see how this number could have been
recorded incorrectly as 22, 30. If the number that Neugebauer interprets as 0 ; 45 is actually
2; 15 (which is a stretch—three ten-symbols would have to become two one-symbols), it
would be exactly the square of (10 − 7)/2, and it would yield the same incorrect formula as
the assumption that the average of the areas of the two bases was being taken. In any case,
the same procedure is used to compute the volume of the frustum of a cone (Neugebauer,
1935, p. 176), and in that case it definitely is the incorrect rule stated here, taking the average
of the two bases and multiplying by the height.

5.4. PLIMPTON 322

The diagonals and sides of rectangles are the subject of a cuneiform tablet from the period
1900–1600 bce, number 322 of the Plimpton collection at Columbia University. The num-
bers on this tablet have intrigued many mathematically oriented people, leading to a wide
variety of speculation as to the original purpose of the tablet.

As you can see from the photograph, there are a few chips missing, so that some of the
cuneiform numbers in the tablet will need to be restored by plausible conjecture. Notice also
that the column at the right-hand edge contains the cuneiform numbers in the sequence 1,
2, 3, 4, . . . , . . . , 7, 8, 9, 10, 11, 12, 13, . . . , . . . . Obviously, this column merely numbers the
rows. The column second from the right consists of identical symbols that we shall ignore
entirely. Pretending that this column is not present, if we transcribe only what we can see
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Plimpton 322. © Rare Book and Manuscript Library, Columbia University.

into our version of sexagesimal notation, denoting the chipped-off places with brackets
([. . . ]), we get the four-column table shown below.

Before analyzing the mathematics of this table, we make one preliminary observation:
Row 13 is anomalous, in that the third entry is smaller than the second entry. For the
time being, we shall ignore this row and see if we can figure out how to correct it. Row
15 (the bottom row) is damaged, and we shall temporarily exclude it from considera-
tion. Since the long numbers in the first column must be the result of computation—it is
unlikely that measurements could be carried out with such precision—we make the rea-
sonable conjecture that the shorter numbers in the second and third columns are data. As
mentioned in the preceding chapter, the Mesopotamian mathematicians routinely asso-
ciated with any pair of numbers (a, b) two other numbers: their average (a + b)/2 and
their semidifference (b − a)/2. Let us compute these numbers for all the rows except
rows 13 and 15 to see how they would have appeared to a mathematician of the time.
We get the following 13 pairs of numbers, which we write in decimal notation: (144, 25),
(7444, 4077), (5625, 1024), (15625, 2916), (81, 16), (400, 81), (2916, 625), (1024, 225),
(655, 114), (6561, 1600), (60, 15), (2304, 625), (2500, 729).

You will probably recognize a large number of perfect squares in the table. Indeed, all
of these numbers, except for those corresponding to rows 2, 9, and 11, are perfect squares:
10 pairs of perfect squares out of thirteen! That is too unusual to be a mere coincidence.
A closer examination reveals that they are squares of numbers whose only prime factors
are 2, 3, and 5. Now these are precisely the prime factors of the number 60, which the
Mesopotamian mathematicians used as a base. That means that the reciprocals of these
numbers will have terminating sexagesimal expansions. We should therefore keep in mind
that the reciprocals of these numbers may play a role in the construction of the table.
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Notice also that these ten pairs are all relatively prime pairs. Let us now denote the square
root of the average by p and denote the square root of the semidifference by q. Column 2
will then be p2 − q2, and column 3 will be p2 + q2. Having identified the pairs (p, q) as
important clues, we now ask which pairs of integers occur here and how they are arranged.
The values of q, being smaller, are easily handled. The smallest q that occurs is 5 and the
largest is 54, which also is the largest number less than 60 whose only prime factors are 2,
3, and 5. Thus, we could try constructing such a table for all values of q less than 60 having
only those prime factors. But what about the values of p? Again, ignoring the rows for
which we do not have a pair (p, q), we observe that the rows occur in decreasing order
of p/q, starting from 12/5 = 2.4 and decreasing to 50/27 = 1.85185185. . . . Let us then
impose the following conditions on the numbers p and q:

Width Diagonal
[. . . ] 15 1,59 2,49 1
[. . . ] 58,14,50,6,15 56,7 3,12,1 2
[. . . ] 41,15,33,45 1,16,41 1,50,49 3
[. . . ] 29,32,52,16 3,31,49 5,9,1 4
48,54,1,40 1,5 1,37 5
47,6,41,40 5,19 8,1 6
43,11,56,28,26,40 38,11 59,1 7
41,33,45,14,3,45 13,19 20,49 8
38,33,36,36 9,1 12,49 9
35,10,2,28,27,24,26 1,22,41 2,16,1 10
33,45 45 1,15 11
29,21,54,2,15 27,59 48,49 12
27,[. . . ],3,45 7,12,1 4,49 13
25,48,51,35,6,40 29,31 53,49 14
23,13,46,40 [. . . ] [. . . ] [. . . ]

1. The integers p and q are relatively prime.

2. The only prime factors of p and q are 2, 3, and 5.

3. q < 60.

4. 1.8 ≤ p/q ≤ 2.4

Now, following an idea of Price (1964), we ask which possible (p, q) satisfy these four
conditions. We find that every possible pair occurs with only five exceptions: (2, 1), (9, 5),
(15, 8), (25, 12), and (64, 27). There are precisely five rows in the table—rows 2, 9, 11, 13,
and 15—for which we did not find a pair of perfect squares. Convincing proof that we are
on the right track appears when we arrange these pairs in decreasing order of the ratio p/q.
We find that (2, 1) belongs in row 11, (9, 5) in row 15, (15, 8) in row 13, (25, 12) in row 9,
and (64, 27) in row 2, precisely the rows for which we did not previously have a pair p, q.
The evidence is overwhelming that these rows were intended to be constructed using these
pairs (p, q). When we replace the entries that we can read by the corresponding numbers
p2 − q2 in column 2 and p2 + q2 in column 3, we find the following:

In row 2, the entry 3,12,1 has to be replaced by 1,20,25, that is, 11521 becomes 4825.
The other entry in this row, 56,7, is correct.
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In row 9, the entry 9,1 needs to be replaced by 8,1, so here the writer simply inserted an
extra unit character.

In row 11, the entries 45 and 75 must be replaced by 3 and 5; that is, both are divided by
15. It has been remarked that if these numbers were interpreted as 45 · 60 and 75 · 60, then
in fact, one would get p = 60, q = 30, so that this row was not actually “out of step” with
the others. But of course when that interpretation is made, p and q are no longer relatively
prime, in contrast to all the other rows.

In row 13 the entry 7,12,1 must be replaced by 2,41; that is, 25921 becomes 161. In other
words, the table entry is the square of what it should be.

The illegible entries in row 15 now become 56 and 106. The first of these is consistent
with what can be read on the tablet. The second tablet entry appears to be 53, half of what
it should be.

The final task in determining the mathematical meaning of the tablet is to explain the
numbers in the first column and interpolate the missing pieces of that column. Notice that
the second and third columns in the table are labeled “width” and “diagonal.” Those labels
tell us that we are dealing with dimensions of a rectangle here and that we should be looking

for its length. By the Pythagorean theorem, that length is
√(

p2 + q2
)2 − (

p2 − q2
)2 =

√
4p2q2 = 2pq. Even with this auxiliary number, however, it requires some ingenuity to

find a formula involving p and q that fits the entries in the first column that can be read.
If the numbers in the first column are interpreted as the sexagesimal representations of
numbers between 0 and 1, those in rows 5 through 14—the rows that can be read—all fit
the formula2

(
p/q − q/p

2

)2

.

Assuming this interpretation, since it works for the 10 entries we can read,3 we can fill
in the missing digits in the first four and last rows. This involves adding one or two digits
to the beginning of the first four rows, and it appears that there is just the right amount of
room in the chipped-off place to allow this to happen.4 The digits that occur in the bottom

2In some discussions of Plimpton 322 the claim is made that a sexagesimal 1 should be placed before each of the
numbers in the first column. Although the tablet is clearly broken off on the left, it does not appear from pictures
of the tablet—the author has never seen it “live”—that there were any such digits there before. Neugebauer (1952,
p. 37) claims that parts of the initial 1 remain from line 4 on “as is clearly seen from the photograph” and that
the initial 1 in line 14 is completely preserved. When that assumption is made, however, the only change in the
interpretation is a trivial one: The negative sign in the formula must be changed to a positive sign, and what Friberg
interpreted as a column of squares of tangents becomes a column of squares of secants, since tan2 θ + 1 = sec2 θ.
3Comparing the original in the photograph with the computed values in the first column of the table, it appears
that the original tablet has the single digit 59 in the middle of Column 1 of row 8 instead of the computed digits
45, 14 which we entered in the table. This seeming discrepancy—if it is a discrepancy—is easily explained by
assuming that the scribe simply merged the two sexagesimal digits, which have a total of five 10-symbols and nine
1-symbols between them.
4The digits to be inserted are as follows. Row 1: 59, 0 (but the zero would have been a blank space in the original).
Row 2: 56, 56. Row 3: 55, 7. Row 4: 53, 10.
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row are 23,13,46,40, and they are consistent with the parts that can be read from the tablet
itself.

5.4.1. The Purpose of Plimpton 322: Some Conjectures

The structure of the tablet is no longer a mystery, except for the tiny mystery of the misprint
in row 2, column 3. Its purpose, however, is not clear. What information was the table
intended to convey? Was it intended to be used as people once used tables of products,
square roots, and logarithms—that is, to look up a number or pair of numbers? If so, which
columns contained the input and which the output? One geometric problem that can be
solved by use of this tablet is that of multiplying a square by a given number; that is, given
a square of side a, it is possible to find the side b of a square whose ratio to the first square
is given in the first column. To do so, take a rope whose length equals the side a and divide
it into the number of equal parts given in the second column, then take a second rope with
the same unit of length and total length equal to the number of units in the third column
and use these two lengths to form a leg and the hypotenuse of a right triangle. The other leg
will then be the side of a square having the given ratio to the given square. The problem of
shrinking or enlarging squares was considered in other cultures, but such an interpretation
of Plimpton 322 has only the merit that there is no way of proving the tablet wasn’t used in
this way. There is no proof that the tablet was ever put to this use.

Friberg (1981) suggested that the purpose of the tablet was trigonometrical—that is, that
it was a table of squares of tangents. Columns 2 and 3 give one leg and the hypotenuse
of 15 triangles with angles intermediate between those of the standard 45–45–90 and 30–
60–90 triangles. What is very intriguing is that, if this was its purpose, the table covers
the case of all possible triangles whose shapes are between these two and whose legs
have lengths that are multiples of a standard unit by numbers having only 2, 3, and 5 as
factors. Of all right triangles, the 45–45–90 and the 30–60–90 are the two that play the
most important role in all kinds of geometric applications; plastic models of them were
once used as templates in mechanical drawing, and such models are still sold. It is easy
to imagine that a larger selection of triangle shapes might have been useful in the past,
before modern drafting instruments and computer-aided design. Using this table, one could
build 15 model triangles with angles varying in increments of approximately 1◦. One can
imagine such models being built and the engineer of 4000 years ago reaching for a “number
7 triangle” when a slope of 574/675 = .8504 was needed. However, this scenario still lacks
plausibility. Even if we assume that the engineer kept the tablet around as a reference when
it was necessary to know the slope, the tablet stores the square of the slope in column 1. It
is difficult to imagine any engineering application for that number.

We now explore the computational and pedagogical possibilities inherent in this tablet.
The left-hand column contains numbers that are perfect squares and remain perfect squares
when 1 is added to them. If the purpose of the table was to generate numbers with this
property, the use of the table would be as follows: Square the entry in column 3, square the
entry in column 2, and then divide each by the difference of these squares. The results of
these two divisions would be two squares differing by 1. The numbers p and q that generate
the two columns can be arbitrary, but in order to get a sexagesimally terminating entry
in the first column, the difference (p2 + q2)2 − (p2 − q2)2 = 4p2q2 should have only 2, 3,
and 5 as prime factors, and hence p and q also should have only these factors. Against this
interpretation there lies the objection that p and q are concealed from the casual reader of
the tablet.
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In a paper that was never published (see Buck, 1980, p. 344), D. L. Voils5 pointed out that
tablets amounting to “teacher’s manuals” have been found in which the following problem
is set: Find a number that yields a given number when its reciprocal is subtracted. In modern
terms, this problem requires solving the equation

x − 1

x
= d,

where d is the given number. Obviously, if you were a teacher setting such a problem for
a student, you would want the solution x to be such that both x and 1/x have terminating
sexagesimal digits. So, if the solution is to be x = p/q, we already see why we need both
p and q to be products of 2, 3, and 5. This problem amounts to the quadratic equation
x2 − dx − 1 = 0, and its unique positive solution is x = d/2 +

√
1 + (d/2)2. Column 1 of

the tablet, which contains (d/2)2, then appears as part of the solution process. It is necessary
to take its square root and also the square root of

√
1 + d2/4 (which is the same number with

a 1 prefixed to it) in order to find the solution x = p/q. This explanation seems to fit very
well with the tablet. One could assume that the first column gives values of d that a teacher
could use to set such a problem with the assurance that the pupil would get terminating
sexagesimal expansions for both x and 1/x. This hypothesis also fits very well with the
fact already noted that many of the cuneiform tablets are pedagogical in nature. On the
other hand, it does not fully explain why the tablet gives the numbers p2 − q2 and p2 + q2,
rather than simply p and q, in subsequent columns. Doing our best for this theory, we note
that columns 2 and 3 contain, respectively, the numerators of x − 1/x and x + 1/x and that
their common denominator is the square root of the difference of the squares of these two
numerators. Against that explanation is the fact that the Mesopotamians did not work with
common fractions. The concepts of numerator and denominator to them would have been
the concepts of dividend and divisor, and the final sexagesimal quotient would not display
these numbers. Still, a terminating sexagesimal expansion is a common fraction, and these
special numbers (the only numbers ever considered in Mesopotamia) amount to the use of
common fractions, confined to those whose denominators are products of powers of 2, 3,
and 5. The recipe for getting from columns 2 and 3 to column 1 would be first to square each
of these columns, then find the reciprocal of the difference of the squares as a sexagesimal
expansion, and, finally, multiply the last result by the square in column 2.

PROBLEMS AND QUESTIONS

Mathematical Problems

5.1. Explain the author’s solution of the “leaning-ladder” problem from the cuneiform
tablet BM 85196. Here the numbers in square brackets were worn off the tablet and
have been reconstructed.

5In early 2011, Prof. Douglas Rogers of the University of Hawaii made a diligent search and located Voils, now
retired in Florida. Voils reported that he had indeed written such a paper, but declined to revise it for publication,
since his interest had shifted to computer science.
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A beam of length 0;30 GAR [about 3 meters] is leaning against a wall. Its upper end is 0;6
GAR lower than it would be if it were perfectly upright. How far is its lower end from the
wall?

Do the following: Square 0;30, obtaining 0;15. Subtracting 0;6 from 0;30 leaves 0;24.
Square 0;24, obtaining 0;9,36. Subtract 0;9,36 from [0;15], leaving 0;5,24. What is the square
root of 0;5,24? The lower end of the beam is [0;18] from the wall.

When the lower end is 0;18 from the wall, how far has the top slid down? Square 0;18,
obtaining 0;5;24. . . .

5.2. Show that the average of the areas of the two bases of a frustum of a square pyramid
is the sum of the squares of the average and semidifference of the sides of the bases.

5.3. Solve the problem from BM 13901, finding two squares, one of which has a side five
units longer than the other and whose total area is 25 , 25 square units.

Historical Questions

5.4. From which time period and dynasty do the Old Babylonian tablets come?

5.5. What standard geometric figures are studied in the Old Babylonian tablets discussed
in this chapter?

5.6. Why is it misleading to talk about the “Babylonian value of π”?

Questions for Reflection

5.7. In what everyday applications might some of the geometric problems discussed above
(such as finding the volume of a frustum of a pyramid) be useful?

5.8. Could the relation noted above between the areas of the two bases of a frustum of a
square pyramid and the squares of the average and semidifference of their sides have
led the Mesopotamian mathematicians astray in their computation of the volume of
the frustum?

5.9. Given that it is difficult to think of applications of the many geometric problems studied
in the tablets, what could have been the motive for writing them?



CHAPTER 6

Egyptian Numerals and Arithmetic

The earliest systematic treatises on mathematics come from the Egyptian civilization, which
was already 2000 years old before the mathematical treatises that survive today were written.
After several thousand years during which the area now called Egypt was the home of
isolated agricultural communities, a process of consolidation began, and by 3100 bce there
were two major kingdoms, Upper Egypt in the south and Lower Egypt in the north. Egypt
became politically unified about this time when a ruler of Upper Egypt, variously said to
be named Menes, Narmer, or “Scorpion,” conquered Lower Egypt. In the four centuries
following this conquest, a number of technological advances were made in Egypt, making
it possible to undertake large-scale engineering projects. Such projects required a certain
amount of arithmetic and geometry. Shortly after the beginning of the Old Kingdom (2685
bce) the famous Step Pyramid of Djoser was built, the first structure made entirely of hewn
stone. The Old Kingdom, which lasted just over five centuries, was a time of active building
of temples and tombs. The collapse of central authority at the end of this period led to
a century and a half during which the real power was held by provincial governors. The
central authority recovered when the governors of Thebes extended their power northward
and over several generations brought about the Middle Kingdom (2040–1785 bce).

When the central authority weakened again at the end of this period, foreign invaders
known as the Hyksos conquered most of Egypt from the north. The Hyksos rule lasted for
about a century, until some of their puppet governors became strong enough to usurp their
authority; the Hyksos were driven out in 1570 bce, which marked the beginning of the
New Kingdom. It was during the Hyksos period that the earliest mathematical treatises still
extant were written. We therefore begin with a discussion of mathematics as practiced in
the Middle Kingdom.

6.1. SOURCES

Mathematics has been practiced in Egypt continuously starting at least 4000 years ago.
Aristotle believed that the study of mathematics first arose among the Egyptians. In his
Metaphysics (Bekker1 981b), he wrote

1Analogous to the Stephanus indexing of the works of Plato, which will be mentioned in Section 8.2 of Chapter 8,
the works of Aristotle were issued by the Prussian Academy of Sciences in the nineteenth century, edited by
August Immanuel Bekker (1785–1871).

The History of Mathematics: A Brief Course, Third Edition. Roger L. Cooke.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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Thus it was that the mathematical sciences first arose in Egypt. For it was there that the priestly
caste was granted the necessary leisure.

In the late fourth century bce, it merged with the mathematics of the Greeks, who had
learned the basics of geometry from the Egyptians. Indeed, the intellectual center of the
Western world, the city of Alexandria founded by Alexander the Great, was in Egypt.
Centuries later, Egypt formed part of the Muslim culture centered in Baghdad, which also
produced some brilliant mathematics, and mathematical creativity continues in Egypt at the
present day. The Egyptian mathematics we are going to discuss, however, had a beginning
and an end. It began with hieroglyphic inscriptions containing numbers and dating to the
third millennium bce and ended at the time of Euclid, in the third century bce. After that
time, the city of Alexandria in the Nile delta was the main school of mathematics in the
Hellenistic world, and many of the most prominent mathematicians who wrote in Greek
studied there. We shall confine our attention, however, to what was for many centuries the
standard set of mathematical techniques used by the professionals who administered the
Egyptian state during the Middle Kingdom.

6.1.1. Mathematics in Hieroglyphics and Hieratic

The great architectural monuments of ancient Egypt are covered with hieroglyphic charac-
ters, some of which contain numbers. In fact, the ceremonial mace of the founder of the first
dynasty contains records that mention oxen, goats, and prisoners and contain hieroglyphic
symbols for the numbers 10,000, 100,000, and 1,000,000. These hieroglyphic symbols, al-
though suitable for ceremonial recording of numbers, were not well adapted for writing on
papyrus or leather. The language of the earliest written documents that have been preserved
to the present time is a cursive known as hieratic.

The most detailed information about Egyptian mathematics comes from a single doc-
ument written in the hieratic script on papyrus around 1650 bce and preserved in the dry
Egyptian climate. This document is known as the Rhind papyrus, after the British lawyer
Alexander Rhind (1833–1863), who went to Egypt for his health and became an Egyptolo-
gist. Rhind purchased the papyrus in Luxor, Egypt, in 1857. Parts of the original document
have been lost, but a section consisting of 14 sheets glued end to end to form a continuous
roll 3 1

2 feet wide and 17 feet long remains. Part of it is on public display in the British
Museum, where it has been since 1865. Some missing pieces of this document were dis-
covered in 1922 in the Egyptian collection of the New York Historical Society; these are
now housed at the Brooklyn Museum of Art. A slightly earlier mathematical papyrus, now
in the Moscow Museum of Fine Arts, consists of sheets about one-fourth the size of the
Rhind papyrus. This papyrus was purchased by V. S. Golenishchev (1856–1947) in 1893
and donated to the museum in 1912. A third document, a leather roll purchased along with
the Rhind papyrus, was not unrolled for 60 years after it reached the British Museum be-
cause the curators feared it would disintegrate if unrolled. It was some time before suitable
techniques were invented for softening the leather, and the document was finally unrolled
in 1927. The contents turned out to be a collection of 26 sums of unit fractions, from which
historians were able to gain insight into Egyptian methods of calculation. A fourth set of
documents, known as the Reisner papyri after the American archaeologist George Andrew
Reisner (1867–1942), who purchased them in 1904, consists of four rolls of records from
dockyard workshops, apparently from the reign of Senusret I (1971–1926 bce). They are
now in the Boston Museum of Fine Arts. Another document, the Akhmim Wooden Tablet,
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is housed in the Egyptian Museum in Cairo. The Akhmim Wooden Tablet contains several
ways of expressing reciprocals of integers based on dividing unity (64/64) by these integers.
According to Milo Gardner (http://mathworld.wolfram.com/AkhmimWoodenTablet.html),
the significance of the number 64 is that it is the number of ro in a hekat of grain. It
also relates to the so-called Horus-eye fractions, as we shall discuss below. This origin
for the numbers makes sense and gives a solid practical origin for Egyptian arithmetic.
These documents show the practical application of Egyptian mathematics in construction
and commerce. We shall mostly discuss the Rhind papyrus in this chapter and the next, only
occasionally mentioning items from the others.

6.2. THE RHIND PAPYRUS

What do these documents tell us about the practice of mathematics in ancient Egypt? The
author of the Rhind papyrus begins his work by describing it as a “correct method of reckon-
ing, for grasping the meaning of things, and knowing everything that is, obscurities. . . and
all secrets.”2 The author seems to value mathematics because of its explanatory power, but
that explanatory power was essentially practical, not at all mystical.

We are fortunate to be able to date the Rhind papyrus with such precision. The author,
a scribe named Ahmose (or Ahmes), gives us his name and tells us that he is writing in the
fourth month of the flood season of the thirty-third year of the reign of Pharaoh A-user-
re (Apepi I). From this information, Egyptologists arrived at a date of around 1650 bce
for this papyrus, which is approximately the latest date of the Old Babylonian cuneiform
tablets discussed in the preceding chapters. Ahmose tells us, however, that he is merely
copying work written down in the reign of Pharaoh Ny-maat-re, also known as Amenemhet
III (1842–1797 bce), the sixth pharaoh of the Twelfth Dynasty. From that information it
follows that the mathematical knowledge contained in the papyrus is nearly 4000 years old.

The introductory paragraph of the Rhind papyrus is followed by certain tables that re-
semble multiplication tables (more on this subject below), along with 87 problems involv-
ing various mathematical processes. Attempts have been made to discern a pattern in the
arrangement of these problems. The suggestion that seems most plausible intuitively is
that the problems are grouped according to their application rather than their method of
solution. The first six problems, for example, involve dividing loaves of bread among 10
people. Problems 7–23 are purely technical and show how to add fractional parts and, given
a certain number of fractional parts, how to find complementary fractional parts to obtain
a whole. Problems 24–38 are concerned with finding a quantity of which certain fractional
parts will yield a given number. Area, volume, and general measurement problems are num-
bered from 40 to 60, and the remaining problems are concerned with various commercial
applications to the distribution of goods.

6.3. EGYPTIAN ARITHMETIC

Let us begin our discussion of Egyptian mathematics by describing the way numbers were
written. In hieroglyphics, numbers are represented as vertical strokes (|) for each individual

2This is the translation given by Robins and Shute (1987, p. 11). Chace et al. (1927, p. 49) give the translation as
“the entrance into the knowledge of all existing things and all secrets.”
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100 101 102 103 104 105 106

Figure 6.1. Powers of 10 from 100 to 106 in hieroglyphics.

digit, up to 9; then 10 is written as ∩, 20 as ∩ ∩, and so on. To represent 100, the Egyptians
used a symbol resembling a coil of rope. Such a system requires new symbols to be invented
for higher and higher groupings, as larger and larger numbers become necessary. As Fig.
6.1 shows, the Egyptians had hieroglyphic symbols for 1000 (a lotus blossom), 10,000 (a
crooked thumb), 100,000 (a turbot fish), and 1,000,000 (said to be the god of the air). With
this system of recording numbers, no symbol for zero was needed, nor was the order of
digits of any importance, since, for example, | | | ∩ ∩ and ∩ ∩ | | | both mean 23. The
disadvantage of the notation is that the symbol for each power of 10 must be written a
number of times equal to the digit that we would put in its place. This system is very far
from our place-value decimal system, in which there are symbols for the numbers 0 through
9, interpreted as multiples of powers of ten, with the power indicated by physical location
in the number. Later on, in the hieratic script that replaced hieroglyphics, they had special
symbols for 1 through 9, 10 through 90, 100 through 900, and so on, as shown in Fig. 6.2.
This system was later used by the Greeks, with Greek letters replacing the hieratic symbols.

6.4. COMPUTATION

After the descriptive title, the Rhind papyrus exhibits the table of numbers shown in Fig. 6.3,
which will be discussed below. In contrast to our modern arithmetic, which consists of the
four operations of addition, subtraction, multiplication, and division performed on whole
numbers and fractions, the fundamental operations in Egypt were addition, subtraction, and
doubling, and these operations were performed on whole numbers and parts. We need to
discuss both the operations and the objects on which they were carried out.

Let us consider first the absence of multiplication and division as we know them. First
of all, there is something special about the number 2. It is a number that we can grasp easily
without even having to count. It has always played a special role in ordinary conversation.
For example, we don’t normally say “one–twoth” for the result of dividing something in two
parts. This linguistic peculiarity suggests that doubling is psychologically different from
applying the general concept of multiplying in the special case when the multiplier is 2.

Next consider the absence of what we call fractions. The closest Egyptian equivalent to
a fraction is something we shall call a part. For example, what we refer to nowadays as
the fraction 1

7 would be referred to as “the seventh part.” This way of expressing fractions
has a venerable history, even in English, and you will frequently encounter it in writing
from earlier centuries. The phrase “seventh part” conveys the image of a thing divided into
seven equal parts arranged in a row and the seventh (and last) one being chosen. For that
reason, according to van der Waerden (1963), there can be only one seventh part, namely
the last one; there would be no way of expressing what we call the fraction 3

7 , since there
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Figure 6.2. Hieratic symbols, arranged as a multiplication table.

couldn’t be three seventh parts. An exception was the fraction that we call 2
3 , which occurs

constantly in the Rhind papyrus. There was a special symbol meaning “the two parts” out
of three. It is very easy to interpret parts in our own language. They are unit fractions,
that is, fractions whose numerator is 1. But for historical purposes, it is better to retain the
obsolete language of parts. Our familiarity with fractions in general makes it difficult to
see what the fuss is about when the author asks what must be added to the two parts and
the fifteenth part in order to make a whole (Problem 21 of the papyrus). If this problem is
stated in modern notation, it merely asks for the value of 1 − ( 1

15 + 2
3

)
. We get the answer

immediately, expressing it as 4
15 . Both this process and the answer would have been foreign

to the Egyptian, whose solution is described below.
To understand the Egyptians, we shall try to imitate their way of writing down a problem.

On the other hand, we would be at a great disadvantage if our desire for authenticity led
us to try to solve the entire problem using their notation. The best compromise seems to
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be to use our symbols for the whole numbers and express a part by the corresponding
whole number with a bar over it. Thus, the fifth part will be written 5, the thirteenth part
will be represented by 13, and so on. For “the two parts”

( 2
3

)
we shall use a double bar,

that is, 3.

6.4.1. Multiplication and Division

Since the only operation other than addition and subtraction of integers (which are per-
formed automatically without comment) is doubling, the problem that we would describe
as “multiplying 11 by 19” would have been written out as follows:

19 1 *
38 2 *
76 4

152 8 *
Result 209 11

Inspection of this process shows its justification. The rows are kept strictly in proportion
by doubling each time. The final result can be stated by comparing the first and last rows:
19 is to 1 as 209 is to 11. The rows in the right-hand column that must be added in order to
obtain 11 are marked with an asterisk, and the corresponding entries in the left-hand column
are then added to obtain 209. In this way any two positive integers can easily be multiplied.
The only problem that arises is to decide how many rows to write down and which rows to
mark with an asterisk. But that problem is easily solved. You stop creating rows when the
next entry in the right-hand column would be bigger than the number you are multiplying
by (in this case 11). You then mark your last row with an asterisk, subtract the entry in its
right-hand column (8) from 11 (getting a remainder of 3), then move up and mark the next
row whose right-hand column contains an entry not larger than this remainder (in this case
the second row), subtract the entry in its right-hand column (2), from the previous remainder
to get a smaller remainder (in this case 1), and so forth.

We shall refer to this general process of doubling and adding as calculating. What we
call division is carried out in the same way, by reversing the roles of the two columns. For
example, what we would call the problem of dividing 873 by 97 amounts to calculating
with 97 so as to obtain 873. We can write it out as follows:

* 97 1
194 2
388 4

* 776 8
873 9 Result

The process, including the rules for creating the rows and deciding which ones to mark
with an asterisk, is exactly the same as in the case of multiplication, except that now it is
the left-hand column that is used rather than the right-hand column. We create rows until
the next entry in the left-hand column would be larger than 873. We then mark the last row,
subtract the entry in its left-hand column from 873 to obtain the remainder of 97, then look
for the next row above whose left-hand entry contains a number not larger than 97, mark
that row, and so on.
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6.4.2. “Parts”

It has probably occurred to you that the second use of the two-column system may lead to
complications. While in the first problem we can always express any positive integer as a
sum of powers of 2, the second problem is a different matter. We were just lucky that we
happened to find multiples of 97 that add up to 873. If we hadn’t found them, we would have
had to deal with those parts that have already been discussed. For example, if the problem
were “calculate with 12 so as to obtain 28,” it might have been handled as follows:

12 1
* 24 2

8 3
* 4 3

28 2 3 Result

What is happening in this computation is the following. We stop creating rows after 24
because the next entry in the left-hand column (48) would be bigger than 28. Subtracting
24 from 28, we find that we still need 4, yet no 4 is to be found. We therefore go back to the
first row and multiply by 2

3 , getting the row containing 8 and 3. Dividing by 2 again gets a
4 in the left-hand column. We then have the numbers we need to get 28, and the answer is
expressed as 2 3. Quite often the first multiplication by a part involves the two-thirds part
3. The scribes probably began with this part instead of one-half for the same reason that a
carpenter uses a plane before sandpaper: The work goes faster if you take bigger “bites.”

The parts that are negative powers of 2 play a special role. When applied to a hekat
of grain, they are referred to as the Horus-eye parts. According to Egyptian legend, the
god Horus lost an eye in a fight with his uncle, and the eye was restored by the god
Thoth. Each of these fractions was associated with a particular part of Horus’ eye. Since
1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 = 63/64, the scribes apparently saw that unity
could be restored (approximately), as Horus’ eye was restored, by using these parts. The
fact that (in our terms) 63 occurs as a numerator shows that division by 3, 7, and 9 is facilitated
by the use of the Horus-eye series. In particular, since 1/7 = (1/7) · (

(63/64) + 1/64
) =

9/64 + 1/448 = 8/64 + 1/64 + 1/448, the seventh part could have been written as 8 64
448. In this way, the awkward seventh part gets replaced by the better-behaved Horus-eye
fractions, plus a corrective term (in this case 448, which might well be negligible in practice).
Five such replacements are implied, though not given in detail, in the Akhmim Wooden
Tablet. As another example, since 64 = 4 · 13 + 8 + 4, which, when both expressions are
divided by 13 × 64, becomes 1

13 = 1
16 + 1

8×13 + 1
16×13 , we find that 13 = 16 104 208. This

expansion makes it easy to see how to write the double of 13 in terms of parts.
There are two more complications that arise in doing arithmetic the Egyptian way. The

first complication is obvious. Since the procedure is based on doubling, but the double of
a part may not be expressible as a part, how does one “calculate” with parts? It is easy
to double, say, the twenty-sixth part: The double of the twenty-sixth part is the thirteenth
part. If we try to double again, however, we are faced with the problem of doubling a part
involving an odd number. The table at the beginning of the papyrus gives the answer: The
double of the thirteenth part is the eighth part plus the fifty-second part plus the one hundred
fourth part. In our terms this tabular entry expresses the fact that

2

13
= 1

8
+ 1

52
+ 1

104
.
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Figure 6.3. Doubles of unit fractions in the Rhind papyrus.

Gillings (1972, p. 49) lists five precepts apparently followed by the compiler of this
table in order to make it maximally efficient for use. The most important of these are the
following three. One would like each double (1) to have as few terms as possible, (2) with
each term as small as possible (that is, the “denominators” as small as possible), and (3) with
even “denominators” rather than odd ones. These principles have to be balanced against one
another, and the table in Fig. 6.3 represents the resulting compromise. However, Gillings’
principles are purely negative ones, telling what not to do. The positive side of creating such a
table is to find simple patterns in the numbers. One pattern that occurs frequently is illustrated
by the double of 5, and amounts to the identity 2/p = 1/

(
(p + 1)/2

) + 1/
(
p(p + 1)/2

)
.

Another, illustrated by the double of 13, probably arises from the Horus-eye representation
of the original part.

With this table, which gives the doubles of all parts involving an odd number up to 101,
calculations involving parts become feasible. There remains, however, one final compli-
cation before one can set out to solve problems. The calculation process described above
requires subtraction at each stage in order to find what is lacking in a given column. When
the column already contains parts, this leads to the second complication: the problem of
subtracting parts. (Adding parts is no problem. The author merely writes them one after
another. The sum is condensed if, for example, the author knows that the sum of 3 and 6 is 2.)
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This technique, which is harder than the simple procedures discussed above, is explained
in the papyrus itself in Problems 21–23. As mentioned above, Problem 21 asks for the parts
that must be added to the sum of 3 and 15 to obtain 1. The procedure used to solve this
problem is as follows. Begin with the two parts in the first row:

3 15 1.

Now the problem is to see what must be added to the two terms on the left-hand side in
order to obtain the right-hand side. Preserving proportions, the author multiplies the row
by 15, getting

10 1 15

It is now clear that when the problem is “magnified” by a factor of 15, we need to add 4
units. Therefore, the only remaining problem is, as we would put it, to divide 4 by 15, or in
language that may reflect better the thought process of the author, to “calculate with 15 so
as to obtain 4.” This operation is carried out in the usual way:

15 1
1 15
2 10 30 [from the table]
4 5 15 Result

Thus, the parts that must be added to the sum of 3 and 15 in order to reach 1 are 5 and
15. This “subroutine,” which is essential to make the system of computation work, was
written in red ink in the manuscripts, as if the writers distinguished between computations
made within the problem to find the answer and computations made in order to operate
the system. Having learned how to complement (subtract) parts, what are called hau (or
aha) computations by the author, one can confidently attack any arithmetic problem what-
soever. Although there is no single way of doing these problems, specialists in this area
have detected (a) systematic procedures by which the table of doubles was generated and
(b) patterns in the solution of problems that indicate, if not an algorithmic procedure, at
least a certain habitual approach to such problems.

Let us now consider how these principles are used to solve a problem from the papyrus.
The one we pick is Problem 35, which, translated literally and misleadingly, reads as follows:

Go down 1 times 3. My third part is added to me. It is filled. What is the quantity saying this?

To clarify: This problem asks for a number that yields 1 when it is tripled and the result
is then increased by the third part of the original number. In other words, “calculate with 3
3 so as to obtain 1.” The solution is as follows:

3 3 1
10 3 [multiplied by 3]
5 1 2
1 5 10 Result
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PROBLEMS AND QUESTIONS

Mathematical Problems

6.1. Double the hieroglyphic number
|||
||||

∩
∩∩.

6.2. Multiply 27 times 42 the Egyptian way.

6.3. (Stated in the Egyptian style.) Calculate with 13 so as to obtain 364.

Historical Questions

6.4. What are the main documentary sources for our knowledge of ancient Egyptian
mathematics?

6.5. What benefits are to be gained from learning mathematics, according to the author of
the Rhind papyrus?

6.6. Is the information in the Rhind papyrus older or more recent than what is found on
the Old Babylonian tablets?

Questions for Reflection

6.7. Why do you suppose that the author of the Rhind papyrus did not choose to say that
the double of the thirteenth part is the seventh part plus the ninety-first part, that is,

2

13
= 1

7
+ 1

91
?

Why is the relation

2

13
= 1

8
+ 1

52
+ 1

104

made the basis for the tabular entry instead?

6.8. How do you account for the fact that the ancient Greeks used a system of counting and
calculating that mirrored the notation found in Egypt, whereas in their astronomical
measurements they borrowed the sexagesimal system of Mesopotamia? Why were
they apparently blind to the computational advantages of the place-value system used
in Mesopotamia?

6.9. Could the ability to solve a problem such as Problem 35 of the Rhind papyrus, discussed
above, have been of any practical use? Try to think of a situation in which such a
problem might arise.



CHAPTER 7

Algebra and Geometry in Ancient Egypt

Although arithmetic and geometry fill up most of the Egyptian papyri, there are some prob-
lems in them that can be considered algebra, provided that we use the very general definition
introduced in Chapter 1—that is, the study of techniques for giving the explicit value of a
number starting from conditions that determine it implicitly. Most of these problems involve
direct proportion and thus lead to linear (first-degree) equations. In the present chapter, we
shall examine a selection of these problems and then look at some that have geometric
application. In both areas, the goal is to get numerical answers using the computational
techniques described in the preceding chapter.

7.1. ALGEBRA PROBLEMS IN THE RHIND PAPYRUS

The concept of proportion is the key to the problems based on the “rule of false position.”
Problem 24 of the Rhind papyrus, for example, asks for the quantity that yields 19 when
its seventh part is added to it. The author notes that if the quantity were 7 (the “false
[sup]position”), it would yield 8 when its seventh part is added to it. Therefore, the correct
quantity will be obtained by performing the same operations on the number 7 that yield 19
when performed on the number 8. Thus, we first “calculate with 8 until we reach 19”:

1 8

2 16 ∗
2 4

4 2 ∗
8 1 ∗

2 4 8 19 Result

Next, perform these same operations on 7:

1 7

∗2 14

2 3 2

∗4 1 2 4

∗8 2 4 8

2 4 8 16 2 8 Result

The History of Mathematics: A Brief Course, Third Edition. Roger L. Cooke.
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This is the answer. The scribe seems quite confident of the answer and does not carry
out the computation needed to verify that it works. Notice that it involves the Horus-
eye fractions. These fractions were obviously the easiest to work with, and so occur very
frequently in the problems we shall be considering.

The Egyptian scribes were capable of performing operations more complicated than
mere proportion. They could take the square root of a number, which they called a corner.
The Berlin papyrus 6619, contains the following problem (Gillings, 1972, p. 161):

The area of a square of 100 is equal to that of two smaller squares. The side of one is 2 4 the
side of the other. Let me know the sides of the two unknown squares.

Here we are asking for two quantities given their ratio ( 3
4 ) and the sum of their squares

(100). The scribe assumes that one of the squares has side 1 and the other has side 2 4.
Since the resulting total area is 1 2 16, the square root of this quantity is taken (1 4), yielding
the side of a square equal to the sum of these two given squares. This side is then multiplied
by the correct proportionality factor so as to yield 10 (the square root of 100). That is, the
number 10 is divided by 1 4, giving 8 as the side of the larger square and hence 6 as the side
of the smaller square. This example, incidentally, was cited by van der Waerden as evidence
of early knowledge of the Pythagorean theorem in Egypt.

7.1.1. Applied Problems: The Pesu

The Rhind papyrus contains problems that involve the concept of proportion in the guise
of the slope of pyramids and the strength of beer. Both of these concepts involve what we
think of as a ratio, along with the technique of finding the fourth element in a proportion
by the procedure once commonly taught to grade-school students and known as the Rule
of Three. (See Section 2.3 of Chapter 2.) Since the Egyptian procedure for multiplication
was based on an implicit notion of proportion, such problems yield easily to the Egyptian
techniques, as we shall see below. Several units of weight are mentioned in these prob-
lems, but the measurement we shall pay particular attention to is a measure of the dilution
of bread or beer. It is called a pesu and defined as the number of loaves of bread or jugs of
beer obtained from one hekat of grain. A hekat was slightly larger than a gallon, 4.8 liters
to be precise. Just how much beer or bread it would produce under various circumstances
is a technical matter that need not concern us. The thing we need to remember is that the
number of loaves of bread or jugs of beer produced by a given amount of grain equals the
pesu times the number of hekats of grain. A large pesu indicates weak beer or bread. In
the problems in the Rhind papyrus the pesu of beer varies from 1 to 4, while that for bread
varies from 5 to 45.

Problem 71 tells of a jug of beer produced from half a hekat of grain (thus its pesu was 2).
One-fourth of the beer is poured off, and the jug is topped up with water. The problem asks
for the new pesu. The author reasons that the eighth part of a hekat of grain was removed,
leaving (in his terms) 4 8, that is, what we would call 3

8 of a hekat of grain. Since this amount
of grain goes into one jug, it follows that the pesu of that beer is what we call the reciprocal

of that number, namely 2 3. The author gives this result immediately, apparently assuming
that by now the reader will know how to “calculate with 4 8 until 1 is reached.”

The Rule of Three procedure is invoked in Problem 73, which asks how many loaves of
15-pesu bread are required to provide the same amount of grain as 100 loaves of 10-pesu
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bread. The answer is found by dividing 100 by 10, then multiplying by 15, which is precisely
the Rule of Three.

7.2. GEOMETRY

The most fascinating aspect of Egyptian mathematics is the application of these computa-
tional techniques to geometry. In Section 109 of Book 2 of his History, the Greek historian
Herodotus writes that King Sesostris1 dug a multitude of canals to carry water to the arid
parts of Egypt. He goes on to connect this Egyptian engineering with Greek geometry:

It was also said that this king distributed the land to all the Egyptians, giving an equal quadri-
lateral farm to each, and that he got his revenue from this, establishing a tax to be paid for it.
If the river carried off part of someone’s farm, that person would come and let him know what
had happened. He would send surveyors to remeasure and determine the amount by which the
land had decreased, so that the person would pay less tax in proportion to the loss. It seems
likely to me that it was from this source that geometry was found to have come into Greece.
For the Greeks learned of the sundial and the twelve parts of the day from the Babylonians.

The main work of Egyptian surveyors was measuring fields. That job is literally described
by its Latin name agrimensor. Our word surveyor comes through French, but has its ori-
gin in the Latin supervideo, meaning I oversee. The equivalent word in Greek was used
by Herodotus in the passage above. He described episkepsoménous kaı̀ anametrēsontas
(
,
επισκεψoμένoυς καὶ

,
αναμετρήσoντας), using future participles that mean literally

“[people who] will be inspecting for themselves and measuring carefully.”2 The process
of measuring a field is shown in a painting from the tomb of an Egyptian noble named
Menna at Sheikh Abd el-Qurna in Thebes. Menna bore the title Scribe of the Fields of the
Lord of the Two Lands during the Eighteenth Dynasty, probably in the reign of Amenhotep
III or Thutmose IV, around 1400 bce. His job was probably that of a steward, to oversee
planting and harvest. The instrument used to measure distance was a rope that could be
pulled taut. That measuring instrument has given rise to another name often used to refer
to these surveyors: harpedonáptai, from the words harpedónē, meaning rope, and háptō,
meaning I attach. The philosopher Democritus (d. 357 bce) boasted, “In demonstration no
one ever surpassed me, not even those of the Egyptians called harpedonáptai.”3

The geometric problems considered in the Egyptian papyri all involve numerical mea-
surement rather than the more abstract proportions that make up the bulk of Greek geometry.
These problems show considerable insight into the properties of simple geometric figures
such as the circle, the triangle, the rectangle, and the pyramid; and they rise to a rather high
level of sophistication in computing the area of a hemisphere. The procedures for measuring
regions with flat boundaries (polygons and pyramids) are correct from the point of view of
Euclidean geometry, while those involving curved boundaries (disks and spheres) have an
error controlled entirely by the error in the ratio the area of a circle bears to the square on

1There were several pharaohs with this name. Some authorities believe that the one mentioned by Herodotus was
actually Ramses II, who ruled from 1279 to 1212 bce.
2Or “remeasuring.”
3Quoted by the second-century theologian Clement of Alexandria, in his Stromata (Miscellanies), Book 1,
Chapter 15.
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its diameter. In the papyrus, this ratio is given as
( 8

9

)2 ≈ 0.79012345679 . . . . In Euclidean
geometry, it is π

4 ≈ 0.785398163397 . . . .

7.3. AREAS

Since the areas of rectangles and triangles are easy to compute, it is understandable that
very little attention is given to these problems. Only four problems in the Rhind papyrus
touch on these questions, namely Problems 6, 49, 51, and 52.

7.3.1. Rectangles, Triangles, and Trapezoids

Problem 49 involves computing the area of a rectangle that has dimensions 1 khet by 10
khets. This in itself would be a trivial problem, except that areas are to be expressed in square
cubits rather than square khets. Since a khet is 100 cubits, the answer is given correctly as
100,000 square cubits. Problem 51 is a matter of finding the area of a triangle, and it is
illustrated by a figure showing the triangle. The area is found by multiplying half of the
base by the height. In Problem 52, this technique is generalized to a trapezoid, and half of
the sum of the upper and lower bases is multiplied by the height.

Of all these problems, the most interesting is Problem 6, which involves a twist that
makes it equivalent to a quadratic equation. A rectangle is given having area 12 cubit strips;
that is, it is equal to an area 1 cubit by 12 cubits, though not of the same shape. The problem
is to find its dimensions given that the width is three-fourths of the length (2 4 in the notation
of the papyrus). The first problem is to “calculate with 2 4, until 1 is reached,” that is, in our
language, dividing 1 by 2 4. The result is 1 3. Then 12 is multiplied by 1 3, yielding 16,
after which the scribe takes the corner (square root) of 16, getting 4 as the length. This is a
very nice example of thinking in terms of descriptions that determine a quantity and using
those descriptions to exhibit its value explicitly, exactly what we are defining algebra to be.
The scribe seems to have in mind a picture of the length being multiplied by three-fourths of
the length, the result being 12. This 12, which is 3

4 of the square of the length, is multiplied
by the reciprocal of 3

4 , after which the length is found by taking the square root. From the
scribe’s point of view, the heart of the problem was getting the reciprocal of 3

4 .

7.3.2. Slopes

Given that the Egyptians had no trigonometry as we now understand it, it is interesting to
observe the solutions of problems that involve the slope of the sides of pyramids and other
figures. There is a unit of slope analogous to the pesu that we have just seen in the problems
involving strength of bread and beer. The unit of slope is the seked, defined as the number
of palms of horizontal displacement associated with a vertical displacement of 1 royal
cubit. One royal cubit was 7 palms. Because of the relative sizes of horizontal and vertical
displacements, it makes sense to use the larger unit of length (the cubit) for vertical distances
and the smaller one (the palm) for horizontal distances, even at the expense of introducing
an extra factor into computations of slope. In our terms the seked is seven times the tangent
of the angle that the sloping side makes with the vertical. In some of the problems the seked
is given in such a way that the factor of 7 drops out. Notice that if you were ordering a stone
from the quarry, the seked would tell the stonecutter immediately where to cut. One would
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mark a point one cubit (distance from fingertip to elbow) from the corner in one direction
and a point at a number of palms equal to the seked in the perpendicular direction and then
simply cut between the two points marked.

In Problem 57 a pyramid with a seked of 5 4 and a base of 140 cubits is given. The
problem is to find its height. The seked given here ( 3

4 of 7) is exactly that of one of the
actual pyramids, the pyramid of Khafre, who reigned from 2558 to 2532 bce. It appears that
stones were mass-produced in several standard shapes with a seked that could be increased
in intervals of one-fourth. Pyramid builders and designers could thereby refer to a standard
brick shape, just as architects and contractors since the time of ancient Rome have been
able to specify a standard diameter for a water pipe. Problem 58 gives the dimensions of
the same pyramid and asks for its seked, apparently just to reinforce the reader’s grasp of
the relation between seked and dimension.

7.3.3. Circles

Five of the problems in the Rhind papyrus (41–43, 48, and 50) involve calculating the
area of a circle. The answers given are approximations, but, as mentioned above, would be
precise if the value 64/81 used in the papyrus where we would use π/4 were exact. The
author makes no comment suggesting that this value is only an approximation. Nor should
we expect him to, since he would have had no concept of infinite precision in measuring
continuous objects.

A Digression: Commercial Computation of Volumes. When physical objects such as
grain silos are built, the parts used to build them have to be measured. In addition, the
structures and their contents have a commercial, monetary value. Some number has to be
used to express that value. It would therefore not be absurd—although it would probably
be unnecessary—for a legislature to pass a bill prescribing a numerical value to be used
for π.4 Similarly, the claim often made that the “biblical” value of π is 3, based on the
description of a vat 10 cubits from brim to brim girdled by a line of 30 cubits (1 Kings 7:23)
is pure pedantry. It assumes more precision than is necessary in the context. The author
may have been giving measurements only to the nearest 10 cubits, not an unreasonable
thing to do in a literary description.5 We now return to the subject of circle measurements
in Egypt.

4However, in the most notorious case where such a bill was nearly passed—House Bill 246 of the 1897 Indiana
legislature—it was absurd. The bill was written by a physician and amateur mathematician named Edwin J.
Goodwin. Goodwin had copyrighted what he thought was a quadrature of the circle. He offered to allow textbooks
sold in Indiana to use his proof royalty-free provided that the Indiana House would pass this bill, whose text mostly
glorified his own genius. Some of the mathematical statements the legislature was requested to enact were pure
gibberish. For example, “a circular area is to the square on a line equal to the quadrant of the circumference, as
the area of an equilateral rectangle is to the square on one side.” The one clear statement is that “the ratio of the
chord and arc of ninety degrees. . . is as seven to eight.” That statement implies that π = 16

√
2/7 ≈ 3.232488 . . . .

The square root in this expression did not trouble Dr. Goodwin, who declared that
√

2 = 10/7. At this point, one
might have taken his value of π to be 160/49 = 3.265306122 . . . . But, in a rare and uncalled-for manifestation
of consistency, since he “knew” that 100/49 = (10/7)2 = 2, Goodwin declared this fraction equal to 16/5 = 3.2.
The bill was stopped at the last minute by lobbying from a member of the Indiana Academy of Sciences and was
tabled without action.
5However, like everything in the Bible, this passage has been subject to repeated analysis. For a summary of the
conclusions reached in the Talmud, see Tsaban and Garber (1998).
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Figure 7.1. Conjectured explanations of the Egyptian squaring of the circle.

Ahmose takes the area of a circle to be the area of the square whose side is obtained by
removing the ninth part of the diameter. In our language the area is the square on eight-ninths
of the diameter; that is, it is the square on 16

9 of the radius. In our language, not that of Egypt,

this gives a value of π for area problems equal to 256
81 . Please remember, however, that the

Egyptians had no concept of the number π. The constant of proportionality that they always
worked with represents what we would call π/4. There have been various conjectures as to
how the Egyptians might have arrived at this result. One such conjecture, given by Robins
and Shute (1987, p. 45), involves a square of side 8. If a circle is drawn through the points
2 units from each corner, it is visually clear that the four fillets at the corners, at which
the square is outside the circle, are nearly the same size as the four segments of the circle
outside the square; hence this circle and this square may be considered equal in area. Now
the diameter of this circle can be obtained by connecting one of the points of intersection
to the opposite point, as shown on the left-hand diagram in Fig. 7.3, and measurement will
show that this line is very nearly 9 units in length (it is actually

√
80 in length). A second

theory due to K. Vogel [see Gillings (1972, pp. 143–144)] is based on the fact that the circle
inscribed in a square of side nine is roughly equal to the unshaded region in the right-hand
diagram in Fig. 7.1. This area is 7

9 of 81, that is, 63. A square of equal size would therefore

have side
√

63 ≈ 7.937 ≈ 8. In favor of Vogel’s conjecture is the fact that a figure very
similar to this diagram accompanies Problem 48 of the papyrus. A discussion of various
conjectures, giving connections with traditional African crafts, was given by Gerdes (1985).

7.3.4. The Pythagorean Theorem

In the discussion of ancient cultures, the question of the role played by the Pythagorean
theorem is of interest. Did the ancient Egyptians know this theorem? It has been reported
in numerous textbooks, popular articles, and educational videos that the Egyptians laid out
right angles by stretching a rope with 12 equal intervals knotted on it so as to form a 3–4–5
right triangle. What is the evidence for this assertion? First, the Egyptians did lay out very
accurate right angles. Also, as mentioned above, it is known that their surveyors used ropes
as measuring instruments and were referred to as rope-fixers. That is the evidence that was
cited by the person who originally made the conjecture, the historian Moritz Cantor (1829–
1920) in the first volume of his history of mathematics, published in 1880. The case can
be made stronger, however. In his essay Isis and Osiris, the first-century polymath Plutarch
says the following.

It has been imagined that the Egyptians regarded one triangle above all others, likening it to the
nature of the universe. And in his Republic Plato seems to have used it in arranging marriages.
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This triangle has 3 on the vertical side, 4 on the base, and a hypotenuse of 5, equal in square
to the other two sides. It is to be imagined then that it was constituted of the masculine on the
vertical side, and the feminine on the base; also, Osiris as the progenitor, Isis as the receptacle,
and Horus as the offspring. For 3 is the first odd number and is a perfect number;6 the 4 is a
square formed from an even number of dyads; and the 5 is regarded as derived in one way from
the father and another way from the mother, being made up of the triad and the dyad.

Finally, as mentioned above, Berlin papyrus 6619 contains a problem in which one square
equals the sum of two others. It is hard to imagine anyone being interested in such conditions
without knowing the Pythagorean theorem. Against the conjecture, we could note that the
earliest Egyptian text that mentions a right triangle and finds the length of all its sides using
the Pythagorean theorem dates from about 300 bce, and by that time the presence of Greek
mathematics in Alexandria was already established. None of the older papyri mention or
use by implication the Pythagorean theorem.

On balance, one would guess that the Egyptians did know the Pythagorean theorem.
However, there is no evidence that they used it to construct right angles, as Cantor conjec-
tured. There are much simpler ways of doing that (even involving the stretching of ropes),
which the Egyptians must have known. Given that the evidence for this conjecture is so mea-
ger, why is it so often reported as fact? Simply because it has been repeated frequently since
it was originally made. We know precisely the source of the conjecture, but that knowledge
does not seem to reach the many people who report it as fact.7

7.3.5. Spheres or Cylinders?

Problem 10 of the Moscow papyrus has been subject to various interpretations. It asks for
the area of a curved surface that is either half of a cylinder or a hemisphere. In either case
it is worth noting that the area is obtained by multiplying the length of a semicircle by
another length in order to obtain the area. Finding the area of a hemisphere is an extremely
difficult problem. Intuitive techniques that work on flat or ruled surfaces break down. If the
Egyptians did compute this area, no one has given any reasonable conjecture as to how they
did so. The difficulty of this problem was given as one reason for interpreting the figure
as half of a cylinder. Yet the plain language of the problem implies that the surface is a
hemisphere. The problem was translated into German by the Russian scholar V. V. Struve
(1889–1965); the following is a translation from the German:

The way of calculating a basket, if you are given a basket with an opening of 4 2. O, tell me its
surface!

6The number 3 is not perfect according to the Euclidean definition, as Plutarch must have known. He uses the
same words that Euclid uses for odd number (perissós, meaning a number having an excess (when divided by 2),
and perfect number (téleios). Euclid defines a number to be perfect if it is equal to [the sum of] the numbers that
measure it, that is, divide it evenly. If 1 is counted as a number that measures it and the number itself is not, then
no prime can be perfect. If the opposite convention is adopted (since the Greeks generally didn’t think of 1 as a
number), then primes and perfect numbers are the same thing. What could Plutarch have been thinking?
7This point was made very forcefully by van der Waerden (1963, p. 6). In a later book (1983), van der Waerden
claimed that integer-sided right triangles, which seem to imply knowledge of the Pythagorean theorem, are ubiq-
uitous in the oldest megalithic structures. Thus, he seems to imply that the Egyptians knew the theorem, but didn’t
use it as Cantor suggested.
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Calculate 9 of 9, since the basket is half of an egg. The result is 1. Calculate what is left as 8.

Calculate 9 of 8. The result is 3 6 18. Calculate what is left of this 8 after this 3 6 18 is taken
away. The result is 7 9. Calculate 4 2 times with 7 9. The result is 32. Behold, this is the surface.
You have found it correctly.

If we interpret the basket as being a hemisphere, the scribe has first doubled the diameter
of the opening from 4 2 to 9 “because the basket is half of an egg.” (If it had been the whole
egg, the diameter would have been quadrupled.) The procedure used for finding the area
here is equivalent to the formula 2d · 8

9 · 8
9 · d. Taking

( 8
9

)2 as representing π/4, we find it
equal to (πd2)/2, or 2πr2, which is indeed the area of a hemisphere of radius r.

Van der Waerden points out (1963, pp. 33–34) that this value is also the lateral area of half
of a cylinder of height d and base diameter d if it is laid on its side and bisected by a plane
through the diameters of its two circular bases. In that case, the two bases are not counted
as part of the area, and the basket must be regarded as a semicircular lamina attached to
the two opposite sides of its top.8 In this case, the opening would be square, since its width
is the height of the cylinder, its length is the diameter of the base, and the two are equal;
the number 4 2 would be the side of the square. That would mean also that the “Egyptian
π” (π/4 = 64/81), used for area problems, which we refer to as two-dimensional π, was
also being applied to the ratio of the circumference to the diameter, which we refer to as
one-dimensional π. In other words, the Egyptians would have known that the ratio of the
circumference to the diameter of a circle is the same as the ratio of the square on its radius
to the disk it encloses. The numerical answer is consistent with this interpretation, but, as
just mentioned, only the lateral surface of the cylinder is to be included. That would indicate
that the basket was open at the sides. It would be strange to describe such a basket as “half
of an egg.” The main reason given by van der Waerden for preferring this interpretation is
an apparent inaccuracy in Struve’s statement of the problem. Van der Waerden quotes T. E.
Peet, who says that the number 4 2 occurs twice in the statement of the problem, as the
opening of the top of the basket and also as its depth. This interpretation, however, leads to
further difficulties. If the surface is indeed half of a cylinder of base diameter 4 2, its depth
is not 4 2; it is 2 4. Van der Waerden also mentions a conjecture of Neugebauer, that this
surface was intended to be a domelike structure of a sort seen in some Egyptian paintings,
resembling very much the small end of an egg. That interpretation restores the idea that this
problem was the computation of the area of a nonruled surface, and the approximation just
happens to be the area of a hemisphere.

7.3.6. Volumes

One of the most remarkable achievements of the Egyptians is the discovery of accurate ways
of computing volumes. In Problem 41 of the Rhind papyrus we find the correct procedure
used for finding the volume of a cylindrical silo, that is, the area of the circular base is
multiplied by the height. To make the numbers easy, the diameter of the base is given as
9 cubits, as in Problems 48 and 50, so that the area is 64 square cubits. The height is 10
cubits, giving a volume of 640 cubic cubits. However, the standard unit of grain volume was
a khar, which is two-thirds of a cubic cubit, resulting in a volume of 960 khar. In a further

8If the cylinder is truncated by a plane parallel to its base and at height equal to half of the radius of the base, then
one also gets the correct area. That is, the basket is an upright cylinder whose height is half the radius of its base.
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twist, to get a smaller answer, the scribe divides this number by 20, getting 48 “hundreds
of quadruple hekats.” (A khar was 20 quadruple hekats.) Problem 42 is the same problem,
only with a base of diameter 10 cubits. Apparently, once the reader has the rule well in hand,
it is time to test the limits by making the data more cumbersome. The answer is computed
to be 1185 6 54 khar, again expressed in hundreds of quadruple hekats. Problems 44–46
calculate the volume of prisms on a rectangular base by the same procedure.

Given that pyramids are so common in Egypt, it is surprising that the Rhind papyrus does
not discuss the volume of a pyramid. However, Problem 14 from the Moscow papyrus asks
for the volume of the frustum of a square pyramid, given that the side of the lower base is 4,
the side of the upper base is 2, and the height is 6. The author gives the correct procedure:
Add the areas of the two bases to the area of the rectangle whose sides are the sides of the
bases, that is, 2 · 2 + 4 · 4 + 2 · 4, then multiply by one-third of the height, getting 56. This
technique could not have been arrived at through experience. Some geometric principle
must be involved, since the writer knew that the sides of the bases, which are parallel
lines, need to be multiplied. Normally, the lengths of two lines are multiplied only when
they are perpendicular to each other, so that the product represents the area of a rectangle.
Gillings (1972, pp. 190–193) suggests a possible route by which this knowledge may have
been obtained. Robins and Shute (1987, pp. 48–49) suggest that the result may have been
obtained by completing the frustum to a full pyramid and then subtracting the volume of
the smaller pyramid from the larger. In either case, the power of visualization involved in
seeing that the procedure will work is remarkable.

Like the surface area problem from the Moscow papyrus just discussed, this problem
reflects a level of geometric insight that must have required some accumulation of obser-
vations built up over time. It is very easy to see that if a right pyramid with a square base is
sliced in half by a plane through its vertex and a pair of diagonally opposite vertices of the
base, the base is bisected along with the pyramid. Thus, a tetrahedron whose base is half of
a square has volume exactly half that of the pyramid of the same height having the whole
square as a base.

It is also easy to visualize how a cube can be cut into two wedges, as in the top row of
Fig. 7.2. Each of these wedges can then be cut into a pyramid on a face of the cube plus
an extra tetrahedron, as in the bottom row. The tetrahedron P ′Q′R′S′ has a base P ′Q′R′
that is half of the square base PQRT of the pyramid PQRST and hence has half of its
volume. It follows that the volume of the tetrahedron is one-sixth that of the cube, and so
the pyramid PQRST is one-third of the volume. A “mixed” geometric-mechanical strategy
is also possible, involving weighing of the parts. The two tetrahedra would, in theory, balance
one of the square pyramids. This model could be sawn out of stone or wood. From that
special case one might generalize the vital clue that the volume of a pyramid is one-third
the area of the base times the altitude.

Once the principle is established that a pyramid equals a prism on the same base with
one-third the height, it is not difficult to chop a frustum of a pyramid into the three pieces
described in the Moscow papyrus. Referring to Fig. 7.3, which shows a frustum with bottom
base a square of side a and upper base a square of side b with b < a, we can cut off the four
corners and replace them by four rectangular solids with square base of side (a − b)/2 and
height h/3. These four fit together to make a single solid with square base of side a − b

and height h/3. One opposite pair of the four sloping faces that remain after the corners are
removed can be cut off, turned upside down, and laid against the other two sloping faces so
as to form a rectangular prism with a rectangular base that is a × b and has height h. The
top one-third of this prism can then be cut off and laid aside. It has volume (h/3)ab. The
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Figure 7.2. Dissection of a cube into two square pyramids and two tetrahdra.

top half of what remains can then be cut off, and a square prism of base side b and height
h/3 can be cut off from it. If that square prism is laid aside (it has volume (h/3)b2), the
remaining piece, which is (a − b) × b × (h/3), will fill out the other corner of the bottom
layer, resulting in a square prism of volume (h/3)a2. Thus, we obtain the three pieces that
the scribe added to get the volume of the frustum in a way that is not terribly implausible.

Figure 7.3. Dissection of a frustum of a pyramid.



76 ALGEBRA AND GEOMETRY IN ANCIENT EGYPT

These last few paragraphs and Figs. 7.2 and 7.3 are conjectures, not facts of history. We
do not know how the Egyptians discovered that the volume of a pyramid is one-third the
volume of a prism of the same base and height or how they learned how to compute the
volume of a frustum.

PROBLEMS AND QUESTIONS

Mathematical Problems

7.1. Compare the pesu problems in the Rhind papyrus with the following problem, which
might have been taken from almost any algebra book written in the past century: A
radiator is filled with 16 quarts of a 10% alcohol solution. If it requires a 30% alcohol
solution to protect the radiator from freezing, how much 95% solution must be added
(after an equal amount of the 10% solution is drained off) to provide this protection?
Think of the alcohol as the grain in beer and the liquid in the radiator as the beer. The
liquid has a pesu of 10. What is the pesu that it needs to have, and what is the pesu of
the liquid that is to be used to achieve this result?

7.2. Problem 33 of the Rhind papyrus asks for a quantity that yields 37 when increased by
its two parts (two-thirds), its half, and its seventh part. Try to get the author’s answer:
The quantity is 16 56 679 776. [Hint: The table for doubling fractions gives the last
three terms of this expression as the double of 97. The scribe first tried the number
16 and found that the result of these operations applied to 16 fell short of 37 by the
double of 42, which, as it happens, is exactly 1 3 2 7 times the double of 97.]

7.3. Find the height of the pyramid with a square base of side 140 cubits and seked equal
to 5 4 (Problem 57 of the Rhind papyrus).

Historical Questions

7.4. Compare the procedures for computing volumes in ancient Mesopotamia with those
used in ancient Egypt.

7.5. To what audience does the Rhind papyrus appear to be addressed?

7.6. What principles seem to determine the order of the problems discussed in the Rhind
papyrus?

Questions for Reflection

7.7. Why not simply write 13 13 to stand for what we call 2
13 ? What is the reason for using

two or three other “parts” instead of these two obvious parts?

7.8. We would naturally solve many of the problems in the Rhind papyrus using an equation.
Would it be appropriate to say that the Egyptians solved equations, or that they did
algebra?

7.9. What do you imagine was the social position of Ahmose, who wrote the Rhind papyrus?
What were his normal duties, and for what purpose did he undertake this labor?



PART III

GREEK MATHEMATICS FROM
500 BCE TO 500 CE

During the millennium from 500 bce to 500 ce, mathematics, especially geometry, was
imported into Greece, became mixed with the speculations of the Greek philosophers and
developed into a body of knowledge that was unique in its time. The center of gravity
gradually shifted from the commercial Ionian colonies in the early period (along with their
colonies in Italy and Sicily) to Athens in the fifth century, reaching its peak in the third
century at Alexandria, Egypt. Along with this new, formal geometry, some of the earlier,
more practically oriented geometry survived and revived after the time of the three greatest
geometers of antiquity (Euclid, Archimedes, and Apollonius). This practical geometry was
applied to produce one great astronomical treatise, the Almagest of Claudius Ptolemy, which
became a standard reference for the next thousand years. After Ptolemy, the potential of
the Euclidean methods was nearly exhausted, and there is little that is original in the last
few centuries we are going to discuss. The one exception comes from number theory, rather
than geometry, and it is the invention of symbolic algebraic notation by Diophantus in
order to solve problems involving the arithmetic properties of figurate numbers. The next
11 chapters give a sketch of some of the highlights of this long period of development.

Contents of Part III

1. Chapter 8 (An Overview of Ancient Greek Mathematics) gives a survey of the whole
period and summarizes the sources on which our knowledge of it is based.

2. Chapter 9 (Greek Number Theory) looks at ancient Greek number theory through the
works of Euclid, Nicomachus, and Diophantus.

3. Chapter 10 (Fifth-Century Greek Geometry) presents a hypothetical scenario for the
development of geometry up to the mid-fifth century bce.

4. Chapter 11 (Athenian Mathematics I: The Classical Problems) brings the development
of geometry in Athens to the end of the fourth century bce.

5. Chapter 12 (Athenian Mathematics II: Plato and Aristotle) discusses the connection
of this geometry with the philosophies of Plato and Aristotle.

6. Chapter 13 (Euclid of Alexandria) analyzes the Elements and looks briefly at some
other works by Euclid.
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7. Chapter 14 (Archimedes of Syracuse) is devoted to the works of Archimedes.

8. Chapter 15 (Apollonius of Perga) discusses the extensive treatise on conic sections
by Apollonius of Perga.

9. Chapter 16 (Hellenistic and Roman Geometry) discusses the isoperimetric problems
studied by Zenodorus and the return of metric concepts to geometry in the work of
Heron of Alexandria.

10. Chapter 17 (Ptolemy’s Geography and Astronomy) is devoted to the geographical
and astronomical treatises of Claudius Ptolemy.

11. Chapter 18 (Pappus and the Later Commentators) summarizes the work of the later
commentators Pappus, Theon of Alexandria, and Theon’s daughter Hypatia.



CHAPTER 8

An Overview of Ancient
Greek Mathematics

Greek was the common language of scholarship in the region around the Mediterranean
for at least nine hundred years, from the time of the Athenian Empire in the mid-fifth
century bce until the Western half of the Roman Empire was destroyed by invaders from
the north in the late fifth century ce, after which contacts between the Western Latin-based
portion and the Eastern Greek-speaking portion began to decline. The Roman Empire was
multinational, and not all those who contributed to this scholarship were native speakers of
Greek. Although the great classic works of the third century bce probably were written by
native Greek speakers—Archimedes certainly was one—some of the later commentators
may have had other roots. What we call ancient Greek mathematics is therefore mathematics
originally written in Greek, not necessarily by Greeks, and some of it survives only in Arabic
translation.

The origin, flourishing, and decline of ancient Greek mathematics took place over a period
approximately 1000 years in extent, beginning with the philosopher Thales (ca. 624–546)
and ending with the death of Hypatia in 415 ce. It arose during the Hellenic era from 600 to
300 bce, when the Greek city–states were independent, achieved its greatest heights during
the Hellenistic period after the conquests of Alexander the Great, and underwent stagnation
and decline after the rise of the Roman Empire, while still producing some remarkable
works during its final 500 years.

The Greeks of the Hellenic period traced the origins of their mathematical knowledge to
Egypt and the Middle East. This knowledge probably came in “applied” form in connection
with commerce and astronomy/astrology. Mesopotamian numerical methods appear in the
later Hellenistic work on astronomy by Hipparchus (second century bce) and the work of
Ptolemy under the Roman Empire. Earlier astronomical models by Eudoxus (fourth century
bce) and Apollonius (third century bce) were more geometrical. Jones (1991, p. 445) notes
that “the astronomy that the Hellenistic Greeks received from the hands of the Babylonians
was by then more a skill than a science: The quality of the predictions was proverbial, but
in all likelihood the practitioners knew little or nothing of the origins of their schemes in
theory and observations.” Among the techniques transmitted to the Greeks and ultimately
to the modern world was the convention of dividing a circle into 360 equal parts (degrees).
Greek astronomers divided the radius into 60 equal parts so that the units of length on the
radius and on the circle were very nearly equal.
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Figure 8.1. The ancient Greek numbering system.

The amount that the Greeks learned from Egypt is the subject of controversy. Some
scholars who have read the surviving mathematical texts from papyri have concluded that
Egyptian methods of computing were too cumbersome for application to the complicated
measurements of astronomers. Yet both Plato and Aristotle speak approvingly of Egyptian
computational methods and the ways in which they were taught. As for geometry, it is
generally acknowledged that the Egyptian insight was extraordinary; the Egyptians knew
how to find the volume of a frustum of a pyramid, and it appears that they even found the
area of a hemisphere, the only case known before Archimedes in which the area of a curved
surface is found.1 The case for advanced Egyptian mathematics is argued by Bernal (1992),
who asserts that Ptolemy himself was an Egyptian. The question is difficult to settle, since
little is known of Ptolemy personally; for us, he is simply the author of certain works on
physics, astronomy, and geography. One particular aspect of Greek mathematics, however,
does bear a strong resemblance to that of Egypt, namely their system of writing numbers.
It is shown here in Fig. 8.1, which is to be compared with Fig. 6.2 of Chapter 6.

Because of their extensive commerce, with its need for counting, measurement, naviga-
tion, and an accurate calendar, the Ionian Greek colonies such as Miletus on the coast of
Asia Minor and Samos in the Aegean Sea provided a very favorable environment for the
development of mathematics, and it was there, with the philosophers Thales of Miletus and
Pythagoras of Samos (ca. 570–475 bce), that Greek mathematics began.

8.1. SOURCES

Since the material on which the Greeks wrote was not durable, all the original manuscripts
have been lost except for a few ostraca (shells) found in Egypt. We are dependent on copyists
for preserving the information in early Greek works, since few manuscripts that still exist
were written more than 1000 years ago. We are further indebted to the many commentators
who wrote summary histories of philosophy, including mathematics, for the little that we
know about the works that have not been preserved and their authors. The most prominent
among these commentators are listed below. They will be mentioned many times in the
chapters that follow.

1. Marcus Vitruvius (first century bce) was a Roman architect who wrote a treatise on
architecture in 10 books. He is regarded as a rather unreliable source for information
about mathematics, however.

1As mentioned in the preceding chapter, some authors claim that the surface in question was actually half of a
cylinder, but the words used seem more consistent with a hemisphere. In either case it was a curved surface.
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2. Plutarch (45–120 ce) was a pagan author, apparently one of the best educated people
of his time, who wrote on many subjects. He is best remembered as the author of
the Parallel Lives of the Greeks and Romans, in which he compares famous Greeks
with eminent Romans who engaged in the same occupation, such as the orators
Demosthenes and Cicero.2 Plutarch is important to the history of mathematics for
what he reports on natural philosophers such as Thales.

3. Theon of Smyrna (ca. 100 ce) was the author of an introduction to mathematics
written as background for reading Plato, a copy of which still exists. It contains many
quotations from earlier authors.

4. Diogenes Laertius (third century ce) wrote a comprehensive history of philosophy,
Lives of Eminent Philosophers, which contains summaries of many earlier works
and gives details of the lives and work of many of the pre-Socratic philosophers. He
appears to be the source of the misnomer “Pythagorean theorem” that has come down
to us (see Zhmud, 1989, p. 257).

5. Iamblichus (285–330 ce) was the author of many treatises, including 10 books on the
Pythagoreans, five of which have been preserved.

6. Pappus (ca. 300 ce) wrote many books on geometry, including a comprehensive
treatise of eight mathematical books. He is immortalized in calculus books for his
theorem on the volume of a solid of revolution. Besides being a first-rate geometer
in his own right, he wrote commentaries on the Almagest of Ptolemy and the tenth
book of Euclid’s Elements.

7. Theon of Alexandria (late fourth century ce), a commentator and philosopher who is
probably responsible for the now-standard Greek edition of Euclid’s Elements.

8. Hypatia of Alexandria (ca. 370–415), a neo-Platonist philosopher, daughter of Theon
of Alexandria. She may be the editor of the Greek text of Diophantus’ Arithmetica.

9. Proclus (412–485 ce) is the author of a commentary on the first book of Euclid, in
which he seems to have quoted a long passage from a history of mathematics, now
lost, by Eudemus, a pupil of Aristotle.

10. Simplicius (500–549 ce) was a commentator on philosophy. His works contain many
quotations from the pre-Socratic philosophers.

11. Eutocius (ca. 700 ce) was a mathematician who lived in the port city of Askelon in
Palestine and wrote an extensive commentary on the works of Archimedes.

8.1.1. Loss and Recovery

Most of these commentators wrote in Greek. Knowledge of Greek sank to a very low level
in western Europe as a result of the upheavals of the fifth century. Although learning was
preserved by the Catholic Church and all of the New Testament was written in Greek, a
Latin translation (the Vulgate) was made by Jerome in the fifth century. From that time
on, Greek documents were preserved mostly in the Eastern (Byzantine) Empire. After the
Muslim conquest of North Africa and Spain in the eighth century, some Greek documents
were translated into Arabic and circulated in Spain and the Middle East. From the eleventh
century on, as secular learning began to revive in the West, scholars from northern Europe

2Shakespeare relied on Plutarch’s account of the life of Julius Caesar, even describing the miraculous omens that
Plutarch reported as having occurred just before Caesar’s death.
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made journeys to these centers and to Constantinople, copied out manuscripts, translated
them from Arabic and Greek into Latin, and tried to piece together some long-forgotten
parts of ancient learning.

8.2. GENERAL FEATURES OF GREEK MATHEMATICS

Greek mathematics—that is, mathematics written in ancient Greek—is exceedingly rich
in authors and works. Its most unusual feature, compared with what went before, is its
formal development. From the time of Euclid on, mathematics was developed systemati-
cally from definitions and axioms, general theorems were stated, and proofs were given.
This formal development is the outcome of the entanglement of mathematics with Greek
philosophy. It became a model to be imitated in many later scientific treatises, such as
Newton’s Philosophiæ naturalis principia mathematica. Of course, Greek mathematics did
not arise in the finished form found in the treatises. Tradition credits Thales, the earliest
Greek philosopher, with knowing four geometric propositions. Thales was said to have
traveled to Egypt and determined the height of the Great Pyramid of Khufu using similar
triangles. One of the four geometric propositions that Thales is said to have known is that
an angle inscribed in a semicircle is a right angle.3

Herodotus mentions Thales in several places. Discussing the war between the Medes
and the Lydian king Croesus, which had taken place in the previous century, he says that
an eclipse of the sun frightened the combatants into making peace. Thales, according to
Herodotus, had predicted that an eclipse would occur no later than the year in which it
actually occurred. Herodotus goes on to say that Thales had helped Croesus to divert the
river Halys so that his army could cross it.

These anecdotes show that Thales had both scientific and practical interests. His predic-
tion of a solar eclipse, which, according to the astronomers, occurred in 585 bce, seems
quite remarkable, even if, as Herodotus says, he gave only a period of several years in which
the eclipse was to occur. Although solar eclipses occur regularly, they are visible only over
small portions of the earth, so that their regularity is difficult to discover and verify. Lunar
eclipses exhibit the same period as solar eclipses and are easier to observe. Eclipses recur
in cycles of about 19 solar years, a period that seems to have been known to many ancient
peoples. Among the cuneiform tablets from Mesopotamia, there are many that discuss as-
tronomy, and Ptolemy uses Mesopotamian observations in his system of astronomy. Thales
could have acquired this knowledge, along with certain simple facts about geometry, such
as the fact that the base angles of an isosceles triangle are equal. Bychkov (2001) argues
that the recognition that the base angles of an isosceles triangle are equal probably did come

3The documents from which all this semi-legendary history is assembled are widely scattered. Plutarch, in his
Discourses on the Seven Sages, Stephanus page 147, section A, said that Thales drove a stake into the ground and
used the proportion between the shadows of the stake and the pyramid to compute the height. Diogenes Laertius,
in his Lives of Eminent Philosophers, Book 1, Section 27, reported a statement by the philosopher Hieronymus
of Rhodes (third century bce) that Thales waited until the length of his own shadow equaled his own height, then
measured the length of the shadow of the Great Pyramid. He also reported (Book 1, section 24) the first-century
Roman historian Pamphila as saying that Thales was the first to inscribe a right triangle in a circle. He went
on to say that others attribute this construction to Pythagoras. (As a matter of general information, Stephanus
pagination refers to a definitive sixteenth-century edition of the works of Plato and Plutarch by Henri Estienne
(ca. 1530–1598), whose Latin name was Henricus Stephanus.)
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from Egypt. In construction—for example, putting a roof on a house—it is not crucial that
the cross section be exactly an isosceles triangle, since it is the horizontal edge of the roof
that must fit precisely, not the two slanting edges. But when a symmetric square pyramid
is built, errors in the base angles of the faces would make it impossible for the faces to
fit together tightly along the four oblique edges. Therefore, he believes, Thales must have
derived this theorem from his travels in Egypt.

The history of Greek geometry up to the time of Euclid (300 bce) was written by
Eudemus, a pupil of Aristotle. This history was lost, but it is believed to be the basis of
the first paragraph of a survey given by Proclus in the fifth century ce in the course of his
commentary on the first book of Euclid. In this passage, Proclus mentions 25 men who
were considered to have made significant contributions to mathematics. Of these 25, five
are well known as philosophers (Thales, Pythagoras, Anaxagoras, Plato, and Aristotle);
three are famous primarily as mathematicians and astronomers (Euclid, Eratosthenes, and
Archimedes). The other 17 have enjoyed much less posthumous fame. Some of them are
so obscure that no mention of them can be found anywhere except in Proclus’ summary.
Some others (Theodorus, Archytas, Menaechmus, Theaetetus, and Eudoxus) are mentioned
by other commentators or by Plato. The 13 just named are the main figures we shall use to
sketch the history of Greek geometry. It is clear from what Proclus writes that something
important happened to mathematics during the century of Plato and Aristotle, and the result
was a unique book, Euclid’s Elements.

Missing from the survey of Proclus is any reference to Mesopotamian influence on
Greek geometry. This influence is shown clearly in Greek astronomy, in the use of the
sexagesimal system of measuring angles and in Ptolemy’s explicit use of Mesopotamian
astronomical observations. It may also appear in Book 2 of Euclid’s Elements, which con-
tains geometric constructions equivalent to certain algebraic relations that are frequently
encountered in the cuneiform tablets. This relation, however, is controversial. Leaving aside
the question of Mesopotamian influence, we do see a recognition of the Greek debt to Egypt.
(Recall Herodotus’ conjecture on the origin of Greek geometry from Chapter 7. Euclid ac-
tually lived in Egypt, and the other two of the “big three” Greek geometers, Archimedes
and Apollonius, both studied there, in the Hellenistic city of Alexandria at the mouth
of the Nile.)

8.2.1. Pythagoras

By the time of Pythagoras, geometric lore had expanded beyond the propositions ascribed to
Thales, and later commentators constructed an elaborate scenario of a Pythagorean school
that devoted itself to the contemplation of geometry and number theory. Although there
certainly was a school of Pythagoreans, and Pythagoras was a real person, recent schol-
arship has cast doubt on its connection with mathematics. In particular, a close analysis
of the best-attested citations of Pythagorean doctrine by Burkert (1962) yields a picture
of a school preoccupied with mysticism and personal discipline, but not necessarily math-
ematics. Nevertheless, there remain numerous attributions of mathematical results to the
Pythagoreans in the works of the later commentators. Is it possible that Burkert’s observa-
tion is actually a matter of selection bias on the part of the people who made the quotations?
Perhaps these quotations from Pythagoras were chosen by people for whom mathematics
was not a priority. It is not certain that all the other attributions of mathematical results to
the Pythagoreans are spurious. Even if we grant the possibility that the geometers who as-
sembled the systematic knowledge ascribed to the Pythagoreans actually worked in Athens,
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perhaps in Plato’s Academy during the early fourth century bce, after the demise of the
original group of Pythagoreans and that these attributions are legends not corresponding to
fact, the mere existence of so many attributions makes the name Pythagorean mathematics
useful as a general description of this pre-Euclidean mathematics.

The philosopher Pythagoras was born on the island of Samos, another of the Greek
colonies in Ionia, about half a century after Thales. No books of Pythagoras survive, but
many later writers mention him, including Aristotle. Diogenes Laertius devotes a full chapter
to the life of Pythagoras. He acquired even more legends than Thales. According to Diogenes
Laertius, who cites the grammarian Apollodorus of Athens (ca. 180–ca. 120), Pythago-
ras sacrificed 100 oxen when he discovered the theorem that now bears his name. If the
stories about Pythagoras can be believed, he, like Thales, traveled widely, to Egypt and
Mesopotamia. He gathered about him a large school of followers, who observed a mystical
discipline and devoted themselves to contemplation. They lived in at least two places in
Italy, first at Croton, then, after being driven out,4 at Metapontion, where he died in the
early fifth century bce.

According to Book I, Chapter 9 of Attic Nights, by the Roman writer Aulus Gellius
(ca. 130–180), the Pythagoreans first looked over potential recruits for physical signs of
being educable. Those they accepted were first classified as akoustikoı́ (auditors) and were
compelled to listen without speaking. After making sufficient progress, they were promoted
to mathēmatikoı́ (learners).5 Finally, after passing through that state they became physikoı́
(natural philosophers). In his book On the Pythagorean Life, Iamblichus uses these terms
to denote the successors of Pythagoras, who split into two groups, the akoustikoı́ and the
mathēmatikoı́. According to Iamblichus, the mathēmatikoı́ recognized the akoustikoı́ as
genuine Pythagoreans, but the sentiment was not reciprocated. The akoustikoı́ kept the pure
Pythagorean doctrine and regarded the mathēmatikoı́ as followers of a disgraced former
Pythagorean named Hippasus. This part of the legend probably arose from a passage in
Chapter 18, Section 88 of On the Pythagorean Life, in which Iamblichus says that Hippasus
perished at sea, a punishment for his impiety because he published “the sphere of the 12
pentagons” (probably the radius of the sphere circumscribed about a dodecahedron), taking
credit as if he had discovered it, when actually everything was a discovery of That Man
(Pythagoras, who was too august a personage to be called by name). Apparently, new
knowledge was to be kept in-house as a secret of the initiated and attributed in a mystical
sense to Pythagoras.

Diogenes Laertius quotes the philosopher Alexander Polyhistor (ca. 105–35 bce) as
saying that the Pythagoreans generated the world from monads (units). By adding a single
monad to itself, they generated the natural numbers. By allowing the monad to move, they
generated a line, then by further motion the line generated plane figures (polygons), and the
plane figures then moved to generate solids (polyhedra). From the regular polyhedra they
generated the four elements of earth, air, fire, and water.

From all these sources, one can see how a consistent picture arose of Pythagoreans
devoted to understanding the universe mathematically. Despite this plethora of independent
sources from ancient times, this picture is not quite consistent with other documents from

4Like modern cults, the Pythagoreans seem to have attracted young people, to the despair of their parents. Accepting
new members from among the local youth probably aroused the wrath of the citizenry.
5Gellius remarks at this point that the word mathēmatikoı́ was being inappropriately used in popular speech to
denote a “Chaldean” (astrologer, from a common association with the Chaldean civilization).
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the schools of Plato and Aristotle, which indicate that the original Pythagorean group
disappeared not long after the death of Pythagoras himself. For that reason, we shall use the
word Pythagorean sparingly. But we shall use it, since so many ancient authors accepted
this view of the history of the subject and wrote as if it were true.

From Proclus and other later authors we have a picture of a sophisticated Pythagorean
geometry, entwined with mysticism. For example, Proclus reports that the Pythagoreans
regarded the right angle as ethically and aesthetically superior to acute and obtuse angles,
since it was “upright, uninclined to evil, and inflexible.” Right angles, he says, were referred
to the “immaculate essences,” while the obtuse and acute angles were assigned to divinities
responsible for changes in things. The Pythagoreans had a bias in favor of the eternal over
the changeable, and they placed the right angle among the eternal things, since unlike
acute and obtuse angles, it cannot change without losing its character. In taking this view,
Proclus is being a strict Platonist, because Plato’s ideal forms were defined precisely by their
absoluteness; they were incapable of undergoing any change without losing their identity.

8.2.2. Mathematical Aspects of Plato’s Philosophy

Plato was interested in mathematics for both philosophical and political reasons. He wanted
to solve the crucial problem of governing a state and keeping it stable. To that end, he knew
that those with political power needed to understand natural science, and he hoped to provide
a “theory of everything,” based on fundamental concepts perceived by the mind, that could
be understood by every educated person. Plato is famous for his theory of ideas, which had
both metaphysical and epistemological aspects. The metaphysical aspect was a response
to two of his predecessors, Heraclitus of Ephesus (ca. 535–475 bce), who asserted that
everything is in constant flux, and Parmenides (born around 515 bce), who asserted that
knowledge is possible only in regard to things that do not change. One can see the obvious
implication: Everything changes (Heraclitus). Knowledge is possible only about things that
do not change (Parmenides). Therefore. . . . To avoid the implication that no knowledge is
possible, Plato restricted the meaning of Heraclitus’ “everything” to objects of sense and
invented eternal, unchanging forms (ideas) that could be objects of knowledge.

The epistemological aspect of Plato’s philosophy involves universal propositions, state-
ments such as “Lions are carnivorous” (our example, not Plato’s), meaning “All lions are
carnivorous.” This sentence is grammatically (syntactically) inconsistent with its meaning
(semantics). The grammatical subject is the set of all lions, while the assertion is not about
this set but about each of its individual members. It asserts that each of them is a carni-
vore, and therein lies the epistemological problem. What is the real semantic subject of this
sentence, as opposed to the syntactical subject, which is the phrase All lions? It is not any
particular lion. Plato tried to solve this problem by inventing the form or idea of a lion. He
would have said that the sentence really asserts a relation perceived in the mind between
the form of a lion and the form of a carnivore. Mathematics, because it dealt with objects
and relations perceived by the mind, appeared to Plato to be the bridge between the world
of sense and the world of forms. Nevertheless, mathematical objects were not the same
thing as the forms. Each form, Plato claimed, was unique. Otherwise, the interpretation
of universal propositions by use of forms would be ambiguous. But mathematical objects
such as lines are not unique. There must be at least three lines, for example, in order for a
triangle to exist. Hence, as a sort of hybrid of sense experience and pure mental creation,
mathematical objects offered a way for the human soul to ascend to the height of understand-
ing, by perceiving the forms themselves. Incorporating mathematics into education so as to
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realize this program was Plato’s goal, and his pupils studied mathematics in order to achieve
it. Although the philosophical goal was not reached, the effort expended on mathematics
was not wasted; certain geometric problems were solved by people associated with Plato,
providing the foundation of Euclid’s famous work, known as the Elements.

A little over half a century after Plato’s death, Euclid wrote his famous treatise, the
Elements, which is quite free of all the metaphysical distractions that had preoccupied Plato.
Later, neo-Platonic philosophers such as Proclus attempted to reintroduce philosophical
ideas into their commentary on Euclid’s work. Neugebauer (1975, p. 572) described the
philosophical aspects of Proclus’ introduction as “gibberish,” and expressed relief that
scientific methodology survived despite the prevalent dogmatic philosophy.

According to Diels (1951, 44A5), Plato met the Pythagorean Philolaus in Sicily in 390.
In any case, Plato must certainly have known the work of Philolaus, since in the Phaedo,
Socrates says that both Cebes and Simmias are familiar with the work of Philolaus and
implies that he himself knows of it at second hand. It seems likely, then, that Plato’s interest
in mathematics began some time after the death of Socrates and continued for the rest of his
life, that mathematics played an important role in the curriculum of his Academy and the
research conducted there, and that Plato himself played a role in directing that research. We
do not, however, have any theorems that can with confidence be attributed to Plato himself.
Lasserre (1964, p. 17) believed that the most important mathematical work at the Academy
was done between 375 and 350 bce.

In Book VII of Plato’s Republic, Socrates explained that arithmetic was needed both to
serve the eye of the soul and as a practical instrument in planning civic projects and military
campaigns:

The kind of knowledge we are seeking seems to be as follows. It is necessary for a military
officer to learn (matheı̂n) these things for the purpose of proper troop deployment, and the
philosopher must have risen above change, in order to grasp the essence of things, or else never
become skilled in calculation (logistikós).

Later in the same book, Plato, through Socrates, complains of the lack of a government
subsidy for geometry. In his day, solid geometry was underdeveloped in comparison with
plane geometry, and Socrates gave what he thought were the reasons for its backwardness:

First, no government holds [the unsolved problems in solid geometry] in honor; and they are
researched in a desultory way, being difficult. Second, those who are doing the research need
a mentor, without which they will never discover anything. But in the first place, to become a
mentor is difficult; and in the second place, after one became a mentor, as things are just now,
the arrogant people doing this research would never listen to him. But if the entire state were
to act in concert in conducting this research with respect, the researchers would pay heed, and
by their combined intensive work the answers would become clear.

Plato himself, although he had practical objects in mind, connected with the best pos-
sible government, was also an intellectual for whom the “eye of the soul” was sufficient
justification for intellectual activity. He seems to have had a rather dim view of purely
practical-minded people. In his long dialogue The Laws, one of the speakers, an Athenian,
rants about the shameful Greek ignorance of incommensurables, surely a topic of limited
application in the lives of most people. (Plato would probably say even worse things about
the modern world, where almost no one knows what incommensurables are!)
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8.3. WORKS AND AUTHORS

Extensive treatises on mathematics written in Greek began appearing early in the Hellenistic
era (third century BCE) and continued in a steady stream for hundreds of years. We list here
only a few of the most outstanding authors.

8.3.1. Euclid

This author lived and worked in Alexandria, having been invited by Ptolemy Soter (Ptolemy
I) shortly after the city was founded. At the 2006 winter meeting of the Canadian Mathe-
matical Society, historian Alexander Jones argued that Euclid probably flourished around
the middle of the third century and was a contemporary of Archimedes. Essentially nothing
is known of his life beyond the fact that he worked in Alexandria, but his famous treatise
on the basics of geometry (the Elements) has become a classic known all over the world.
Several of his minor works—the Optics, the Data, and the Phænomena—also have been
preserved. Euclid did not provide any preface to tell us why he wrote his treatise. We do,
however, know enough of the Platonic philosophy to understand why he developed geom-
etry and number theory to the extent that he did, and it is safe to conclude that this kind
of work was considered valuable because it appealed to the intellect of those who could
understand it.

8.3.2. Archimedes

Much more is known of Archimedes (ca. 287–212 bce). About 10 of his works have been
preserved, including the prefaces that he wrote in the form of “cover letters” to the people
who received the works. Here is one such letter, which accompanied a report of what may
well be regarded as his most profound achievement—proving that the surface of a sphere
is four times as large as its equatorial disk.

On a former occasion I sent you the investigations which I had up to that time completed,
including the proofs, showing that any segment bounded by a straight line and a section of
a right-angled cone [parabola] is four-thirds of the triangle which has the same base with
the segment and equal height. Since then certain theorems not hitherto demonstrated have
occurred to me, and I have worked out the proofs of them. They are these: first, that the surface
of any sphere is four times its greatest circle. . . For, though these properties also were naturally
inherent in the figures all along, yet they were in fact unknown to all the many able geometers
who lived before Eudoxus, and had not been observed by anyone. Now, however, it will be
open to those who possess the requisite ability to examine these discoveries of mine. [Heath,
1897, Dover edition, pp. 1–2]

As this letter shows, mathematics was a “going concern” by Archimedes’ time, and a
community of mathematicians existed. Archimedes is known to have studied in Alexandria.
He perished when his native city of Syracuse was taken by the Romans during the Second
Punic War. Some of Archimedes’ letters, like the one quoted above, give us a glimpse of
mathematical life during his time. Despite being widely separated, the mathematicians of
the time sent one another challenges and communicated their achievements.
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8.3.3. Apollonius

Apollonius, about one generation younger than Archimedes, was a native of what is now
Turkey. He studied in Alexandria after the time of Euclid and is also said to have taught there.
He eventually settled in Pergamum (now Bergama in Turkey). He is the author of eight books
on conic sections, four of which survive in Greek and three others in an Arabic translation.
We know that there were originally eight books because commentators, especially Pappus,
described the work and reported the number of propositions in each book.

In his prefaces, Apollonius implies that geometry was simply part of what an educated
person would know, and he also implies that such people were as fascinated with it in his
time as they are today about the latest scientific achievements. Among other things, he said
the following.

During the time I spent with you at Pergamum I observed your eagerness to become acquainted
with my work in conics. [Book I]

I undertook the investigation of this subject at the request of Naucrates the geometer, at the
time when he came to Alexandria and stayed with me, and, when I had worked it out in eight
books, I gave them to him at once, too hurriedly, because he was on the point of sailing; they
had therefore not been thoroughly revised, indeed I had put down everything just as it occurred
to me, postponing revision until the end. [Book II]

8.3.4. Zenodorus

Zenodorus (second century bce) represents a new departure in the Euclidean tradition.
Instead of proving direct proportions, as earlier mathematicians had done, he worked with
inequalities and showed, as well as could be done given the tools available to him, that a
regular polygon encloses a larger area than any other polygon of the same perimeter and the
same number of sides, that the more sides a regular polygon of a given perimeter has, the
greater the area it encloses, and that a circle encloses a larger area than any polygon whose
perimeter equals the circumference of the circle. He also established similar theorems for
polyhedra and spheres. These isoperimetric problems are not found in Euclid or Apollonius,
and Archimedes only hints at them when he points out the need to assume that a convex
curve enclosing another convex curve must be longer than the one it encloses. These results
of Zenodorus are known because Theon of Alexandria quoted them in his commentary
on Ptolemy’s Sýntaxis. Pappus borrowed freely from Zenodorus in his own work on such
problems.

8.3.5. Heron

This mathematician and engineer (first century ce) is also known as Hero (just as Plato is
actually known in Greek as Platon). The name Heron was very common in his world, and
it is difficult to be sure that a person by that name is any particular Heron one might have in
mind. The one we shall be discussing is famous for having invented a steam engine of sorts,
but we shall be interested only in the way that he represents the return of metric concepts
to geometry, using numbers to describe the lengths of the sides of a triangle, for example,
and giving a method of computing the area of a triangle knowing the lengths of its sides.
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8.3.6. Ptolemy

Claudius Ptolemy was primarily an astronomer and physicist, although these subjects were
hardly distinct from mathematics in his time. He lived in Alexandria during the second
century, as is known from the astronomical observations that he made between 127 and 141
ce. He created an intricate and workable earth-centered mathematical system of explaining
the motion of the planets and systematized it in a treatise known as the Sýntaxis (treatise,
literally arrangement), which consisted of 13 books. Ptolemy’s Sýntaxis became a classic
reference and was used for well over a thousand years as the definitive work on mathematical
astronomy. It became known as the “greatest” work (megı́stē in Greek) on astronomy and,
when translated into Arabic, became al-megista or the Almagest, as we know it today.

8.3.7. Diophantus

Little is known about this author of a remarkable treatise on what we now call algebra and
number theory. He probably lived in the third century ce, although some experts believe
he lived earlier than that. His treatise is of no practical value in science or commerce, but
its problems inspired number theorists during the seventeenth century and led to the long-
standing conjecture known as Fermat’s last theorem. The 1968 discovery of what may be
four books from this treatise that were long considered lost was the subject of a debate
among the experts, some of whom believed the books might be commentaries, perhaps
written by the late fourth-century commentator Hypatia. If so, they would be the only work
by Hypatia still in existence.

8.3.8. Pappus

Pappus, who is known to have observed a solar eclipse in Alexandria in 320 ce, was the
most original and creative of the later commentators on Greek geometry and arithmetic.
His Synagōgē (Collection) consists of eight books of insightful theorems on arithmetic and
geometry, as well as commentary on the works of other authors. In some cases where works
of Euclid, Apollonius, and others have been lost, this commentary tells something about
these works. Pappus usually writes as if the reader will have a natural interest in his subject
matter, but occasionally he gives in addition a practical justification for his study, as in
Book 8:

The science of mechanics, my dear Hermodorus, has many important uses in practical life,
and is held by philosophers to be worthy of the highest esteem, and is zealously studied by
mathematicians, because it takes almost first place in dealing with the nature of the material
elements of the universe. [Thomas, 1941, p. 615]

8.3.9. Theon and Hypatia

The later commentators Theon of Alexandria (late fourth century) and his daughter Hypatia
(ca. 370–415) also produced respectable work, including a standard edition of Euclid’s
Elements. Several of Theon’s commentaries still exist, but nothing authored by Hypatia has
been preserved, unless the books of Diophantus mentioned above were written by her. Very
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little of value can be found in Greek mathematics after the fourth century. As Gow (1884,
p. 308) says:

The Collection of Pappus is not cited by any of his successors, and none of them attempted
to make the slightest use of the proofs and aperçus in which the book abounds. . . His work is
only the last convulsive effort of Greek geometry which was now nearly dead and was never
effectually revived.

QUESTIONS

Historical Questions

8.1. Describe in general terms the periods of development, flourishing, and decline in
ancient Greek mathematics, naming the primary authors and their works.

8.2. Who are the commentators who provide the context of the major works of ancient
Greek mathematics?

8.3. In what way does ancient Greek mathematics differ from the mathematics of
Mesopotamia and Egypt?

Questions for Reflection

8.4. What advantages can you see in an axiomatic development of mathematics starting
from definitions and assumptions? Are there disadvantages?

8.5. Given that we have no documents from the time of Greek mathematics—the earliest
manuscripts we have are medieval—how can we be sure that the texts we have are
actually what the authors wrote? Were the copyists who wrote the early medieval
manuscripts simply concerned with reproducing the text faithfully, or is it possible
that they tried to improve it by revisions they thought of themselves? How could we
know if they did?

8.6. Plato thought that mathematics was a sort of entranceway into the ideal world of his
forms; and he also thought that the physical world, though corrupt, could be understood
by relations grasped by the mind rather than the senses. To what extent is this view
plausible? Does modern theoretical physics presume something similar?



CHAPTER 9

Greek Number Theory

Greek number theory is of interest both intrinsically, because some of the natural questions
that it raised have not been answered even in the present time, and because it was the soil
in which algebraic symbolism first sprouted, a brilliant innovation during a time otherwise
marked by intellectual decline. The theory itself has two areas of interest that do not inter-
act during the period of Greek intellectual dominance. One is the Pythagorean topic of the
arithmetic properties of figurate numbers (triangular numbers, square numbers, pentagonal
numbers, and so on). This area has declined greatly in importance, along with Pythagore-
anism and neo-Platonism, although it is not quite extinct even today. The recent solution
of the problem of Fermat’s last theorem is a good specimen of the modern development of
this theory. The other area, which provides the theoretical foundation for much of classical
and modern number theory, is the theory of divisibility of integers. This area also has one
rather Pythagorean connection, namely the topic of perfect numbers. We shall look at just
three of the classical Greek writers on number theory:

1. Euclid, whose Elements contain three books (Books 7–9) devoted to the divisibility
properties of integers.

2. Nicomachus of Gerasa, a neo-Pythagorean philosopher who lived about 100 ce. His
Introduction to Arithmetic gives a detailed development of both figurate numbers and
the divisibility theory.

3. Diophantus, who lived sometime between the second and fourth centuries ce. He is
sometimes justly called the “father of algebra,” because in the course of his study
of the arithmetic properties of square numbers, he introduced symbolic notation for
an unspecified or unknown number and a way of writing operations on unknown
numbers.

As it happens that the treatise of Nicomachus preserves more of what was traditionally
called Pythagorean lore than the earlier work of Euclid, we shall discuss Nicomachus first.
Before we can do that, however, we need to digress to explain a mathematical technique
that is fundamental to the understanding of a great deal in the history of mathematics.
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9.1. THE EUCLIDEAN ALGORITHM

The Greeks learned early on how to find the greatest common divisor of two numbers. A
very efficient procedure for doing so is described in Chapter 13 of Book 1 of Nicomachus’
Arithmetica and in Proposition 2 of Book 7 of Euclid’s Elements. This procedure is now
known as the Euclidean algorithm, Nicomachus applies it only to integers, any two of
which naturally have 1 as a common divisor. Euclid, on the other hand, does not confine it
to integers, but states the procedure for “magnitudes,” which may lack a common measure.
It is significant that when it is applied to continuous magnitudes, the procedure terminates
if and only if there is a common measure. Euclid makes use of that fact in discussing incom-
mensurables, which are pairs of magnitudes having no common measure. The algorithm
was certainly invented long before the time of Euclid, however. Zverkina (2000) believes
that this procedure could not have arisen intuitively, but must have come about as the result
of solving specific problems, most likely the problem of reducing ratios by canceling a
common divisor. What follows is a description of the general procedure.

For definiteness, we shall imagine that the two quantities whose greatest common mea-
sure is to be found are two lengths, say a and b. Suppose that a is longer than b. (If the two
are equal, their common value is also their greatest common divisor.) The general procedure
is to keep subtracting the smaller quantity from the larger until the remainder is equal to
the smaller quantity or smaller than it. It is not difficult to show that the smaller quantity
and the remainder have the same common measures as the smaller quantity and the larger.
Hence one can start over with the smaller quantity and the remainder, which is no more than
half of the larger quantity. Either this process terminates with an equal pair, or it continues
and the pairs become arbitrarily small.

An example using integers will make the procedure clear. Let us find the greatest common
measure (divisor) of 26173996849 and 180569389. A common measure does exist: the
integer 1. Since the repeated subtraction process amounts to division with remainder, we
do it this way: 26173996849 ÷ 180569389 is 144 with a remainder of 172004833. We then
divide the smaller quantity (the previous divisor) 180569389 by the remainder 172004833,
getting a quotient of 1 and a remainder of 8564556. Next we divide the previous remainder
172004833 by the new remainder 8564556, getting a quotient of 20 and a remainder of
713713. We then divide 8564556 by 713713 and get a quotient of 12 with no remainder, so
that the greatest common divisor is 713713.

This computation can be arranged as follows, with the successive divisions performed
from right to left. The greatest common measure appears at the extreme left:

12 20 1 144

713713)8564556)172004833)180569389)26173996849

8564556 171291120 172004833 26001992016

0 713713 8564556 172004833

One can see that this procedure must produce a greatest common measure if one exists,
since the first remainder is at most half of the larger of the two original quantities (since it is
smaller than the smaller of the two original quantities and not larger than their difference).
Similarly, since the smaller quantity becomes the dividend in the second application, the
second remainder will be at most half of it. Thus the first two remainders are at most half
the size of the original quantities. Yet they are both larger than any common measure the
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two original quantities had. It follows that if there is any common measure, one of these
remainders will ultimately become zero, since repeated halving would otherwise eventually
make it smaller than that common measure. The last nonzero remainder is thus the greatest
common measure of the two quantities.

9.2. THE ARITHMETICA OF NICOMACHUS

In his first book, Nicomachus makes the elementary distinction between odd and even
numbers. Having made this distinction, he proceeds to refine it, distinguishing between
even numbers divisible by 4 (evenly even) and those that are not (doubles of odd numbers).
He goes on to classify odd numbers in a similar way, thereby coming to the concept of prime
and composite numbers. Nicomachus also introduces what we now call pairs of relatively
prime numbers. These are pairs of numbers that have no common prime divisor and hence
no common divisor except 1. Relational properties were difficult for Greek philosophers,
and Nicomachus expresses the concept of relatively prime numbers in a confused manner,
referring to three species of odd numbers: the prime and incomposite, the secondary and
composite, and “the variety which, in itself, is secondary and composite, but relatively is
prime and incomposite.” This way of writing seems to imply that there are three kinds
of integers, prime and incomposite, secondary and composite, and a third kind midway
between the other two. It also seems to imply that one can look at an individual integer and
classify it into exactly one of these three classes. Such is not the case, however. The property
of primeness is a property of a number alone. The property of being relatively prime is a
property of a pair of numbers. On the other hand, the property of being relatively prime
to a given number is a property of a number alone. Nicomachus explains the property in
a rather wordy fashion in Chapter 13 of Book 1, where he gives a method of identifying
prime numbers that has become famous as the sieve of Eratosthenes.

Nicomachus attributes this method to Eratosthenes (276–174 bce, best known for this
work on prime numbers and for having estimated the size of the earth). To use it, start with
a list of all the odd numbers from 3 on, that is,

3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, . . . .

From this list, remove the multiples of 3, starting with 3 · 3, that is, remove 9, 15, 21, 27,
33,. . . . The reduced list is then

3, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, . . . .

From this new list, remove all multiples of 5, starting with 5 · 5. The first nonprime in the
resulting list will 49 = 7 · 7, and so you remove all multiples of 7 from that list. In this way,
you can generate in short order a complete list of primes up to the square of the first prime
whose multiples were not removed. Thus, after removing the multiples of 7, we have the
list

3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61 . . . .

The first nonprime in this list would be 11 · 11 = 121.
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9.2.1. Factors vs. Parts. Perfect Numbers

Nicomachus’ point of view on this sieve was different from ours. Where we think of the
factors of, say 60, as being 2, 2, 3, and 5, Nicomachus thought of the quotients on division
by these factors and products of these factors as the parts of a number. Thus, in his language,
60 has the parts 30 (half of 60), 20 (one-third of 60), 15 (one-fourth of 60), 12 (one-fifth
of 60), 10 (one-sixth of 60), 6 (one-tenth of 60), 5 (one-twelfth of 60), 4 (one-fifteenth
of 60), 3 (one-twentieth of 60), 2 (one-thirtieth of 60), and 1 (one-sixtieth of 60). If these
parts are added, the sum is 108, much larger than 60. Nicomachus called such a number
superabundant and compared it to an animal having too many limbs. On the other hand,
14 is larger than the sum of its parts. Indeed, it has only the parts 7, 2, and 1, which total
10. Nicomachus called 14 a deficient number and compared it to an animal with missing
limbs like the one-eyed Cyclops of the Odyssey. A number that is exactly equal to the
sum of its parts, such as 6 = 1 + 2 + 3, he called a perfect number. He gave a method
of finding perfect numbers, which remains to this day the only way known to generate
such numbers, although it has not been proved that there are no other such numbers. This
procedure is also stated by Euclid as Proposition 36 of Book 9 of the Elements: If the sum
of the numbers 1, 2, 4,. . . , 2n−1 is prime, then this sum multiplied by the last term will be
perfect. To see the recipe at work, start with 1, then double and add: 1 + 2 = 3. Since 3 is
prime, multiply it by the last term, that is, 2. The result is 6, a perfect number. Continuing,
1 + 2 + 4 = 7, which is prime. Multiplying 7 by 4 yields 28, the next perfect number. Then,
1 + 2 + 4 + 8 + 16 = 31, which is prime. Hence 31 · 16 = 496 is a perfect number. The
next such number is 8128 = 64(1 + 2 + 4 + 8 + 16 + 32 + 64). In this way, Nicomachus
was able to generate the first four perfect numbers. He seems to hint at a conjecture, but
draws back from stating it explicitly:

When these have been discovered, 6 among the units and 28 in the tens, you must do the same
to fashion the next. . . the result is 496, in the hundreds; and then comes 8,128 in the thousands,
and so on, as far as it is convenient for one to follow [D’ooge, 1926, p. 211].1

This quotation seems to imply that Nicomachus expected to find one perfect number
Nk having k decimal digits. Actually, the fifth perfect number is 33,550,336, so we have
jumped from four digits to eight here. The sixth is 8,589,869,056 (10 digits) and the seventh
is 137,438,691,328 (12 digits), so that there is no regularity about the distribution of perfect
numbers. Thus, Nicomachus was wise to refrain from making conjectures too explicitly.
According to Dickson (1919, p. 8), later mathematicians, including the great sixteenth-
century algebraist Girolamo Cardano, were less restrained, and this incorrect conjecture
has been stated more than once.

For a topic that is devoid of applications, perfect numbers have attracted a great
deal of attention from mathematicians. Dickson (1919) lists well over 100 mathematical
papers devoted to this topic over the past few centuries. From the point of view of pure
number theory, the main questions about them are the following: (1) Is there an odd
perfect number?2 (2) Are all even perfect numbers given by the procedure described by

1D’ooge illustrates the procedure in a footnote, but states erroneously that 8191 is not a prime.
2The answer is unknown at present.
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Nicomachus?3 (3) Which numbers of the form 2n − 1 are prime? These are called Mersenne
primes, after Marin Mersenne (1588–1648), who, according to Dickson (1919, pp. 12–13),
first noted their importance, precisely in connection with perfect numbers. Obviously, n

must itself be prime if 2n − 1 is to be prime, but this condition is not sufficient, since
211 − 1 = 23 · 89. The set of known prime numbers is surprisingly small, considering
that there are infinitely many to choose from, and the new ones being found tend to be
Mersenne primes, mostly because that is where people are looking for them. The largest
currently known prime, discovered on August 23, 2008, is 243112609 − 1, only the forty-
fifth Mersenne prime known at the time. Since then, two more have been discovered, both
smaller than this one however.4 It was found by the GIMPS (Great Internet Mersenne Prime
Search) project, which links hundreds of thousands of computers via the Internet and runs
prime-searching software in the background of each while their owners are busy with their
own work. This prime has 12,978,189 decimal digits. Since these primes are not being dis-
covered in ascending order, it is not accurate to call the largest currently known one the 47th
Mersenne prime. Exhaustive checking by the GIMPS network since the fortieth Mersenne
prime, 220996011 − 1, was discovered on November 17, 2003 (it has 6,320,430 decimal
digits) has established that there are no others smaller than that one. Thus we know the first
40 Mersenne primes and seven others as well. In contrast, the largest non-Mersenne prime
known as of late 2011 was 19249 · 213018586 + 1, discovered in May 2007; it has 3,918,990
decimal digits and hence is tiny compared with the largest known Mersenne primes. (This
information comes from the website http://primes.utm.edu.)

9.2.2. Figurate Numbers

Beginning in Chapter 6 of Book 2, Nicomachus studies figurate numbers: polygonal num-
bers through heptagonal numbers, and then polyhedral numbers. These numbers are con-
nected with geometry, the number 1 being replaced by a geometric point. To motivate this
discussion, Nicomachus speculated that the simplest way to denote any integer would be
repeating a symbol for 1 an appropriate number of times. Thus, he said, the number 5 could
be denoted α α α α α. This train of thought, if followed consistently, would lead back to a
notation even more primitive than the hieroglyphic notation for numbers, since it would use
only the symbol for units and discard the symbols for higher powers of 10. The Egyptians
had gone beyond this principle in their hieratic notation, and the standard Greek notation
was essentially a translation of the hieratic into the Greek alphabet. You can easily see where
this speculation leads. The outcome is shown in Fig. 9.1, which illustrates triangular, square,
pentagonal, and hexagonal numbers using dots instead of the letter α. Observe that the fig-
ures are not associated with regular polygons except in the case of triangles and squares.
The geometry alone makes it clear that a square number is the sum of the corresponding
triangular number and its predecessor. Similarly, a pentagonal number is the sum of the
corresponding square number and the preceding triangular number, a hexagonal number is
the sum of the corresponding pentagonal number and the preceding triangular number, and
so forth. This is the point at which modern mathematics parts company with Nicomachus,

3The answer is yes. The result is amazingly easy to prove, but no one seems to have noticed it until a posthumous
paper of Leonhard Euler gave a proof. Victor-Amédée Lebesgue (1791–1875) published a short proof in 1844.
4The reader will correctly infer from previous footnotes that exactly 47 perfect numbers are now known.
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Figure 9.1. Figurate numbers. Top row: triangular numbers Tn = n(n + 1)/2. Second row: square
numbers Sn = n2. Third row: pentagonal numbers Pn = n(3n − 1)/2. Bottom row: hexagonal num-
bers Hn = n(2n − 1).

Proclus, and other philosophers who push analogies further than the facts will allow. As
Nicomachus states at the beginning of Chapter 7:

The point, then, is the beginning of dimension, but not itself a dimension, and likewise the
beginning of a line, but not itself a line; the line is the beginning of surface, but not surface;
and the beginning of the two-dimensional, but not itself extended in two dimensions. . . Exactly
the same in numbers, unity is the beginning of all number that advances unit by unit in one
direction; linear number is the beginning of plane number, which spreads out like a plane in
one more dimension. [D’ooge, 1926, p. 239]

This mystical mathematics was transmitted to Medieval Europe by Boethius. It is the
same kind of analogical thinking found in Plato’s Timaeus, where it is imagined that atoms
of fire are tetrahedra, atoms of earth are cubes, and so forth. Since the Middle Ages, this
topic has been of less interest to mathematicians. The phrase of less interest—rather than
of no interest—is used advisedly here: There are a few theorems about figurate num-
bers in modern number theory, and they have some connections with analysis as well.
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For example, a formula of Euler asserts that

∞∏

k=1

(1 − xk) =
∞∑

n=−∞
(−1)nxn(3n−1)/2.

Here the exponents on the right-hand side range over the pentagonal numbers for n pos-
itive. By defining the nth pentagonal number for negative n to be n(3n − 1)/2, we gain
an interesting formula that can be stated in terms of figurate numbers. Carl Gustav Jacobi
(1804–1851) was pleased to offer a proof of this theorem as evidence of the usefulness of
elliptic function theory. Even today, these numbers crop up in occasional articles in graph
theory and elsewhere.

9.3. EUCLID’S NUMBER THEORY

Euclid devotes most of his three books on number theory to divisibility theory, spending
most of the time on proportions among integers and on prime and composite numbers, with
fewer results on figurate numbers. Only at the end of Book 9 does he prove a theorem of
a different sort, giving the method of constructing perfect numbers described above. It is
interesting that, except for squares and cubes, Euclid does not mention figurate numbers.
Although the Pythagorean and Platonic roots of Euclid’s treatise are obvious, Euclid appears
to the modern eye to be much more a mathematician than Pythagoras or Plato, not at all
inclined to flights of fanciful speculation on the nature of the universe. In fact, he never
mentions the universe at all and suggests no practical applications of the theorems in his
Elements.

Book 7 develops proportion for positive integers as part of a general discussion of ways of
reducing a ratio to lowest terms. The notion of relatively prime numbers is introduced, and
the elementary theory of divisibility is developed as far as finding least common multiples
and greatest common factors. Book 8 resumes the subject of proportion and extends it to
squares and cubes of integers, including the interesting theorem that the mean proportional
of two square integers is an integer (Proposition 11—for example, 25 : 40 :: 40 : 64), and
between any two cubes there are two such mean proportionals (Proposition 12—for exam-
ple, 27 : 45 :: 45 : 75 :: 75 : 125). Book 9 continues this topic; it also contains the famous
theorem that there are infinitely many primes (Proposition 20, in the form of the assertion
that no given finite collection of primes can contain all of them) and ends by giving the only
known method of constructing perfect numbers (Proposition 36), quoted above.

Euclid’s number theory does not contain any explicit statement of the fundamental the-
orem of arithmetic (Knorr, 1976). This theorem, which asserts that every positive integer
can be written in only one way as a product of prime numbers, can easily be deduced from
Book 7, Proposition 24: If two numbers are relatively prime to a third, their product is also
relatively prime to it.

9.4. THE ARITHMETICA OF DIOPHANTUS

Two works of Diophantus have survived in part, a treatise on polygonal numbers and
the work for which he is best known, the Arithmetica. Like many other ancient works,
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these two works of Diophantus survived because of the efforts of a ninth-century Byzantine
mathematician named Leon, who organized a major effort to copy and preserve them. There
is little record of the influence the works of Diophantus may have exerted before this time.
What is of particular interest to us is his study of the arithmetic properties of squares. He
is interested in finding ways to represent a given rational square number as the sum of two
other rational square numbers. The techniques he developed to solve that problem resulted
in the first use of symbolism to represent the kind of abstract thinking required in algebra.

To judge this work, one should know something of its predecessors and its influence.
Unfortunately, information about either of these is difficult to come by. The Greek versions
of the treatise, of which there are 28 manuscripts according to Sesiano (1982, p. 14), all
date to the thirteenth century. Among the predecessors of Diophantus, we can count Heron
of Alexandria and one very obscure Thymaridas, who showed how to solve a particular set
of linear equations, known as the epanthēma (blossom) of Thymaridas.

Because the work of Diophantus is so different from the style of Euclid and his immedi-
ate successors, the origins of his work have been traced to other cultures, notably Egypt and
Mesopotamia. The historian of mathematics Paul Tannery (1843–1904) printed an edition
of Diophantus’ work and included a fragment supposedly written by the eleventh-century
writer Michael Psellus (1018–ca. 1078), which stated that “As for this Egyptian method,
while Diophantus developed it in more detail,. . . .” On this basis, Tannery assigned Diophan-
tus to the third century. Neugebauer (1952, p. 80) distinguished two threads in Hellenistic
mathematics, one in the logical tradition of Euclid, the other having roots in the Babylonian
and Egyptian procedures and says that, “the writings of Heron and Diophantus. . . form part
of this oriental tradition which can be followed into the Middle Ages both in the Arabic
and in the western world.” Neugebauer saw Diophantus as reflecting an earlier type of
mathematics practiced in Greece alongside the Pythagorean mathematics and temporarily
eclipsed by the Euclidean school. As he said (1952, p. 142):

It seems to me characteristic, however, that Archytas of Tarentum could make the statement
that not geometry but arithmetic alone could provide satisfactory proofs. If this was the opinion
of a leading mathematician of the generation just preceding the birth of the axiomatic method,
then it is rather obvious that early Greek mathematics cannot have been very different from the
Heronic Diophantine type.

9.4.1. Algebraic Symbolism

Diophantus began by introducing a symbol for a constant unit
o
M, from monás (Moνάς),

along with a symbol for an unknown number ς, conjectured to be an abbreviation of the first
two letters of the Greek word for number: arithmós (

,
αριθμóς). For the square of an unknown

he used �υ, the first two letters of dýnamis (�ύναμις), meaning power. For its cube he used
Kυ, the first two letters of kýbos (Kύβoς), meaning cube. He then combined these letters
to get fourth (�υ�), fifth (�Kυ), and sixth (KυK) powers. For the reciprocals of these
powers of the unknown he invented names by adjoining the suffix -ton (-τoν) to the names
of the corresponding powers. These various powers of the unknown were called eı́da (

,
είδα),

meaning species. Diophantus’ system for writing down the equivalent of a polynomial in the
unknown consisted of writing down these symbols in order to indicate addition, each term
followed by the corresponding number symbol (for which the Greeks used their alphabet).
Terms to be added were placed first, separated by a pitchfork (�) from those to be subtracted.
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Heath conjectured that this pitchfork symbol is a condensation of the letters lambda and
iota, the first two letters of a Greek root meaning less or leave. Thus what we would call

the expression 2x4 − x3 − 3x2 + 4x + 2 would be written �υ�β̄ςδ̄
o
M β̄ � Kυᾱ�υγ̄ .

Diophantus’ use of symbolism is rather sparing by modern standards. He often uses words
where we would use symbolic manipulation. For this reason, his algebra was described
by the nineteenth-century German orientalist Nesselmann (1811–1881) as a transitional
“syncopated” phase between the earliest “rhetorical” algebra, in which everything is written
out in words, and the modern “symbolic” algebra.

9.4.2. Contents of the Arithmetica

According to the introduction to the Arithmetica, this work consisted originally of 13 books,
but until recently only six were known to have survived. It was assumed that these were
the first six books, on which Hypatia was known to have written a commentary. However,
more books were recently found in an Arabic manuscript that the experts say is a translation
made very early—probably in the ninth century. Sesiano (1982) stated that these books are
in fact the books numbered 4 to 7, and that the books previously numbered 4 to 6 must
come after them.

Diophantus begins with a small number of determinate problems that illustrate how to
think algebraically using the symbolic notation discussed above. Indeterminate problems,
which are number theory because the solutions are required to be rational numbers (the
only kind recognized by Diophantus), begin in Book 2.5 A famous example of this type
is Problem 8 of Book 2: Separate a given square number into two squares. Diophantus
illustrates this problem using the number 16 as an example. His method of solving this
problem is to express the two numbers in terms of a single unknown ς in such a way that
one of the conditions is satisfied automatically. Thus, letting one of the two squares be ς2,
which Diophantus wrote as �υ, he noted that the other will automatically be 16 − ς2. To
get a determinate equation for ς, he assumes that the other number to be squared is 4 less
than an unspecified multiple of ς. The number 4 is chosen because it is the square root of
16. In our terms, it leads to a quadratic equation one of whose roots is zero, so that the
other root can be found by solving a linear equation. As we would write it, assuming that
16 − ς2 = (kς − 4)2, we find that (k2 + 1)ς2 = 8kς, and—canceling ς, since Diophantus
does not operate with 0—we get ς = 8k/(k2 + 1). This formula generates a whole infinite
family of solutions of the equation that we would call x2 + y2 = 16 via the identity

(
8k

k2 + 1

)2

+
(

4(k2 − 1)

k2 + 1

)2

= 16.

You may be asking why it was necessary to use a square number (16) here. Why not separate
any positive rational number, say 5, into a sum of two squares? If you look carefully at the
solution, you will see that Diophantus had to make the constant term drop out of the quadratic
equation, and that could only be done by introducing the square root of the given number.

5Although Diophantus allowed solutions to be what we now call positive rational numbers, the name Diophantine
equation is now used to refer to an indeterminate equation or system in which the solutions are required to be
integers.
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Diophantus’ procedure is slightly less general than what we have just shown, although his
illustrations show that he knows the general procedure and could generate other solutions.
In his illustration he assumes that the other square is (2ς − 4)2. Since this number must
be 16 − ς2, he finds that 4ς2 − 16ς + 16 = 16 − ς2, so that ς = 16

5 . It is clear that this
procedure can be applied very generally, with the coefficient 2 replaced by any positive
integer, showing an infinite number of ways of dividing a given square into two other
squares.

At first sight it appears that number theory really is not involved in this problem, that
it is a matter of pure algebra. This topic, however, naturally leads to other questions that
definitely do involve number theory, that is, the theory of divisibility of integers. The most
obvious one is the problem of finding all possible representations of a positive rational
number as the sum of the squares of two rational numbers. One could then generalize and
ask how many ways a given rational number can be represented as the sum of the cubes or
fourth powers, and so forth, of two rational numbers. Those of a more Pythagorean bent
might ask how many ways a number can be represented as a sum of triangular, pentagonal,
or hexagonal numbers. In fact, many questions like this have been asked. Leonhard Euler
(1707–1783) proved that it was impossible for the sum of fewer than three cubes to equal
a cube and conjectured that it was impossible for the sum of fewer than n nth powers to
equal another nth power. (He was wrong: It is possible for for the sum of four fifth powers
to equal a fifth power.)

9.4.3. Fermat’s Last Theorem

The problem just solved achieved lasting fame when Fermat, who was studying the Arith-
metica, remarked that the analogous problem for cubes and higher powers had no solutions;
that is, one cannot find positive integers x, y, and z satisfying x3 + y3 = z3 or x4 + y4 = z4,
or, in general, xn + yn = zn with n > 2. Fermat stated that he had found a proof of this
fact, but unfortunately did not have room to write it in the margin of the book. Fermat never
published any general proof of this fact, although the special case n = 4 is a consequence
of a method of proof developed by Fermat, known as the method of infinite descent. The
problem became generally known after 1670, when Fermat’s son published an edition of
Diophantus’ work along with Fermat’s notes. It was a tantalizing problem because of its
comprehensibility. Anyone with a high-school education in mathematics can understand
the statement of the problem, and many mathematicians dreamed of solving it when they
were young. Despite the efforts of hundreds of amateurs and prizes offered for the solu-
tion, no correct proof was found for more than 350 years. On June 23, 1993, the British
mathematician Andrew Wiles (b. 1953) announced at a conference held at Cambridge Uni-
versity that he had succeeded in proving a certain conjecture in algebraic geometry known
as the Shimura–Taniyama conjecture, from which Fermat’s conjecture is known to follow.
This was the first claim of a proof by a reputable mathematician using a technique that is
known to be feasible, and the result was tentatively endorsed by other mathematicians of
high reputation. After several months of checking, some doubts arose. Wiles had claimed in
his announcement that certain techniques involving what are called Euler systems could be
extended in a particular way, and this extension proved to be doubtful. In collaboration with
another British mathematician, Richard Taylor, Wiles eventually found an alternative ap-
proach that simplified the proof considerably, and there is now no doubt among the experts
in number theory that the problem has been solved.
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To give another illustration of the same method, we consider the problem following the
one just discussed, that is, Problem 9 of Book II: Separate a given number that is the sum
of two squares into two other squares. (That is, given one representation of a number as a
sum of two squares, find a new representation of the same type.) Diophantus shows how
to do this using the example 13 = 22 + 32. He lets one of the two squares be (ς + 2)2

and the other (2ς − 3)2, resulting in the equation 5ς2 − 8ς = 0. Thus, ς = 8
5 , and indeed

( 18
5

)2 + ( 1
5

)2 = 13. It is easy to see here that Diophantus is deliberately choosing a form
for the solution that will cause the constant term to drop out. This amounts to a general
method, used throughout the first two books, and based on the proportion

(a + Y ) : X = X : (a − Y )

for solving the equation X2 + Y2 = a2.
The method Diophantus used to solve such problems in his first two books was con-

jectured by Maximus Planudes (1255–1305) and has recently been explained in simple
language by Christianidis (1998).

Some of Diophantus’ indeterminate problems reach a high degree of complexity. For
example, Problem 19 of Book 3 asks for four numbers such that if any of the numbers is
added to or subtracted from the square of the sum of the numbers, the result is a square
number. Diophantus gives the solutions as

17, 136, 600

163, 021, 824
,

12, 675, 000

163, 021, 824
,

15, 615, 600

163, 021, 824
,

8, 517, 600

163, 021, 824
.

PROBLEMS AND QUESTIONS

Mathematical Problems

9.1. Use the fact that the greatest common divisor of 26173996849 and 180569389 is
713713 to reduce the fraction 180569389

26173996849 to lowest terms.

9.2. The Euclidean algorithm focuses on the remainders in the division process and has
nothing to say about the quotients. Note that the quotients in the example given above
were (in order of division) 144, 1, 20, and 12. Consider the continued fraction

1

144 + 1
1+ 1

20+ 1
12

.

Evaluate this fraction, and compare it with the result of the preceding exercise. We
shall have further use for the quotients in the Euclidean algorithm when we study the
mathematics of the Hindus.

9.3. Verify that

275 + 845 + 1105 + 1335 = 1445.
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See L. J. Lander and T. R. Parkin, “Counterexample to Euler’s conjecture on sums
of like powers,” Bulletin of the American Mathematical Society, 72 (1966), p. 1079.
Smaller counterexamples to this conjecture have been discovered more recently.

Historical Questions

9.4. What are the main topics investigated in ancient Greek number theory?

9.5. What mathematical ideas were ascribed to the Pythagoreans by ancient commentators?

9.6. What innovation in mathematics arises in the number-theoretic investigations of
Diophantus?

Questions for Reflection

9.7. For what reason would the ancient Greeks have been investigating figurate numbers,
perfect numbers, and the like? Did they have a practical application for these ideas?

9.8. How much of number theory has a practical application nowadays? (If you don’t know
about RSA codes, for example, look them up on-line.)

9.9. Should the work of Diophantus be classified as primarily number theory or primarily
algebra?



CHAPTER 10

Fifth-Century Greek Geometry

It is easy to surmise what problems the pre-Euclidean geometers must have worked on. One
has only to look at the propositions in Euclid’s Elements, which was, as its name implies, an
elementary textbook of geometry and number theory, summarizing in systematic fashion
what had gone before. It was certainly not the most advanced mathematics of its day, since
its basic geometric tools are lines (what we now call line segments), circles, planes, and
spheres. The conic sections, which were known before Euclid, and on which Euclid himself
wrote a treatise, are not mentioned in it. As we have said, later commentators ascribed this
geometry to the Pythagoreans. The historical problem is to trace a line of development from
the basic facts Thales is said to have known to the elaborate systematic treatise of Euclid
three centuries later. For guidance, we have the statements of the commentators, but they
provide only a few points of light. To get a more comprehensive picture, we need to use
our imaginations and conjecture one. It may not be correct, but at least it provides some
coherence to the narrative and can be modified or rejected if it is incompatible with hard
historical facts. The reader is hereby warned that we are about to write such a scenario and
will therefore adopt a skeptical attitude toward it.

10.1. “PYTHAGOREAN” GEOMETRY

Proclus mentions two topics of geometry as being Pythagorean in origin. One is the theorem
that the sum of the angles of a triangle is two right angles (Book 1, Proposition 32). Since
this statement is equivalent to Euclid’s parallel postulate, it is not clear what the discovery
amounted to or how it was made.

10.1.1. Transformation and Application of Areas

The other topic mentioned by Proclus is a portion of Euclid’s Book 6 that is not generally
taught any more, called application of areas.

That topic had to be preceded by the simpler topic of transformation of areas. In his
Nine Symposium Books,1 Plutarch called the transformation of areas “one of the most
geometrical” problems. He thought solving it was a greater achievement than discovering

1The book is commonly known as Convivial Questions. The Greek word sympósion means literally drinking
together.
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Figure 10.1. Left: turning a triangle into a rectangle. Right: turning a rectangle into a square (s2 = ab).

the Pythagorean theorem and said that Pythagoras was led to make a sacrifice when he
solved the problem. The basic idea is to convert a figure having one shape to another shape
while preserving its area, as in Fig. 10.1. To describe the problem in a different way: Given
two geometric figures A and B, construct a third figure C the same size as A and the same
shape as B. One can imagine many reasons why this problem would be attractive. If one
could find, for example, a square equal to any given figure, then comparing sizes would be
simple, merely a matter of converting all areas into squares and comparing the lengths of
their sides. But why stop at that point? Why not consider the general problem of converting
any shape into any other? For polygons this problem was solved very early, and the solution
appears in Proposition 25 of Euclid’s Book 6, which shows how to construct a polygon of
prescribed shape equal in area to another polygon of possibly different shape.

The problem of application of areas is one degree more complicated than simply trans-
forming an area from one shape to another. There are two such problems, both involving
a given straight line segment AB and a planar polygon �. The first problem is to construct
a parallelogram equal to � on part of the line segment AB in such a way that the parallel-
ogram needed to fill up a parallelogram on the entire base, called the defect, will have a
prescribed shape. This is the problem of application with defect, and the solution is given in
Proposition 28 of Book 6. The second application problem is to construct a parallelogram
equal to � on a base that is an extension of the line AB in such a way that the portion of the
parallelogram extending beyond AB (the excess) will have a prescribed shape. This is the
problem of application with excess, and the solution is Proposition 29 of Book 6.

The construction for application with defect is shown in Fig. 10.2. This problem does
not have a solution for all given lines and areas, since the largest parallelogram that can

Figure 10.2. Application with defect. Euclid, Book 6, Proposition 28. Line AB, plane region �, and
parallelogram � are given. Then parallelogram A��T is constructed on part of line AB so as to be
equal to �, while the defect �BP� is similar to �.
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be formed under these conditions is the one whose base is half of the given line (Book 6,
Proposition 26). Assuming that the given polygon � is smaller than this parallelogram,
let AB be the given line, � the given polygonal region, and � the given parallelogram
shape. The dashed line from B makes the same angle with AB that the diagonal of the
parallelogram � makes with its base. The line AM is drawn to make the same angle as the
corresponding sides of �. Then any parallelogram having its sides along AB and AM and
opposite corner � from A on the dashed line will automatically generate a “defect” that is
similar to �. The remaining problem is to choose � so that A��T has the same area as �.
That is achieved by constructing the parallelogram H��O similar to � and equal to the
difference between AEH�, where H is the midpoint of MB and �. Constructing H��O

is the simpler transformation-of-area problem.
Besides these two problems, there is a much simpler problem of pure application, that

is, finding the proper altitude for a parallelogram on the base AB so that the area is �. The
Greek word for application is parabolē. Proclus cites Eudemus in asserting that the solution
of the application problems was an ancient discovery of the Pythagoreans and that they gave
these problems the names ellipse (application with defect) and hyperbola (application with
excess), names that were later transferred to the conic curves by Apollonius. This version
of events was also reported by Pappus. We shall see the reason for the transfer below.

Although most of Euclid’s theorems have obvious interest from the point of view of
anyone curious about the world, the application problems raise a small mystery. Why were
the Pythagoreans interested in them? Were they merely a refinement of the transformation
problems? Why would anyone be interested in applying an area so as to have a defect
or excess of a certain shape? Without restriction on the shape of the defect or excess,
the application problem does not have a unique solution. Were the additional conditions
imposed simply to make the problem determinate? Some historians have speculated that
there was a further motive.

In the particular case when the excess or defect is a square, these problems amount to
finding two unknown lengths given their sum and product (application with defect) or given
their difference and product (application with excess). In modern terms, these two problems
amount to quadratic equations. (Pure application amounts to a linear equation.) Several
prominent historians in the mid-twentieth century endorsed the view that Euclid’s Book 2
was merely a translation into geometric language of the computational techniques found on
the cuneiform tablets. And indeed, both do correspond mathematically to what we nowadays
write as linear and quadratic equations. But neither the cuneiform writers nor Euclid had any
concept corresponding to our word equation. Therefore neither of them was doing algebra
as we understand it, and there is no reason to think that the Greek geometers were translating
Mesopotamian techniques into geometric language. This hypothesis of “geometric algebra”
was severely attacked by Unguru (1975/76), and no longer has many defenders.

Some historians have argued that this “geometric algebra” was a natural response to
the discovery of incommensurable magnitudes, which will be discussed below, indeed
a logically necessary response. On this point, however, many others disagree. Gray, for
example, says that, while the discovery of incommensurables did point out a contradiction
in a naive approach to ratios, “it did not provoke a foundational crisis.” Nor did it force the
Pythagoreans to recast algebra as geometry. In fact, it is premature to speak of equations
or algebra in connection with the Greeks at this point. They had figurate numbers, among
which were square numbers. At the most, we can admit that they may have looked for
the side of a square equal to a certain multiple of another square. Such a problem can
be considered without thinking about equations at all. Gray (1989, p. 16) concludes that
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“[r]ather than turning from algebra to geometry,. . . the Greeks were already committed to
geometry.”

The problem of incommensurables just mentioned was one of three challenges that one
can easily imagine the early geometers having to face, once they set off down the road of
a systematic, logical development of the subject to replace the isolated results achieved
during the earlier period in which the main problem was to get a numerical value for an
area or volume. We shall see that one of these three challenges could be ignored as far as
mathematics itself was concerned, but the other two were genuine stimuli to further work
and proved very fruitful, extending the Euclidean approach, which was based on two- and
three-dimensional figures generated by straight lines and circles, to the limits of its potential.
(After that, except for the revival of some metrical methods that had not formed part of the
Euclidean canon, Greek geometry declined for lack of new material.) Let us now look at
these three problems as they may have arisen. In this chapter, we shall merely state the
problems. The partial solutions found to them will form most of the subject matter of the
next chapter.

10.2. CHALLENGE NO. 1: UNSOLVED PROBLEMS

Supposing that the techniques of transformation and application of areas were known to the
fifth-century geometers, we can easily guess what problems they would have been trying
to solve. There are three natural directions in which the plane geometry of lines and circles
could be extended.

1. Having learned how to convert any polygon to a square of equal area, any geometer
would naturally want to do the same with circles and sectors and segments of circles.
This problem was known as quadrature (squaring) of the circle.

2. Having solved the transformation problems for a plane, one would want to solve the
analogous problems for solid figures—in other words, convert a polyhedron to a cube
of equal volume. Finding the cube would be interpreted as finding the length of its
side. Now, the secret of solving the planar problem was to triangulate a polygon,
construct a square equal to each triangle, then add the squares to get bigger squares
using the Pythagorean theorem. By analogy, the three-dimensional program would
be to cut a polyhedron into tetrahedra, convert any tetrahedron into a cube equal to
it, and then find a way of adding cubes analogous to the Pythagorean theorem for
adding squares. The natural first step of this program (as we imagine it to have been)
was to construct a cube equal to the double of a given cube, the problem of doubling
the cube, just as we conjectured in Chapter 5 that doubling a square may have led to
the Pythagorean theorem.

3. The final extension of plane geometry is the problem of dividing an arc (or angle) into
equal parts. If we suppose that the fifth-century geometers knew how to bisect arcs
(Proposition 9 of Book 1 of the Elements) and how to divide a line into any number
of equal parts (Proposition 9 of Book 6), this asymmetry between their two basic
figures—lines and circles—would very likely have been regarded as a challenge. The
first step in this problem would have been to divide any circular arc into three equal
parts, the problem of trisection of the angle.
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The three problems just listed were mentioned by later commentators as an important
challenge to all geometers. To solve them, geometers had to enlarge their set of basic objects
beyond lines and planes. They were rather conservative in doing so, first invoking familiar
surfaces such as cones and cylinders, which could be generated by moving lines on circles,
and intersecting them with planes so as to get the conic sections that we know as the ellipse,
parabola, and hyperbola. These curves made it possible to solve two of the three problems
(trisecting the angle and doubling the cube). Later, a number of more sophisticated curves
were invented, among them spirals, and the quadratrix. This last curve got its name from
its use in squaring the circle. Although it is not certain that the fifth-century geometers
had a program like the one described above, it is known that all three of these problems
were worked on in antiquity. Solving these problems was certainly a desirable goal, but that
solution could take its time. Mathematical problems only become more interesting when
they remain unsolved for an extended period. Not solving them in no way threatened the
achievements already gained.

10.3. CHALLENGE NO. 2: THE PARADOXES OF ZENO OF ELEA

Although we have some idea of the geometric results proved by the early Greek geometers,
our knowledge of their interpretation of these results is murkier. How did they conceive of
geometric entities such as points, lines, planes, and solids? Were these objects physically
real or merely ideas? What properties did they have? Some light is shed on this question by
the philosophical critics, one of whom has become famous for the paradoxes he invented.

As mentioned, in the Pythagorean philosophy, the universe was said to have been gen-
erated by numbers and motion. That these concepts needed to be sharpened up became
clear from critics of a naive view of geometry. We now know that the basic problem is the
incompatibility between discrete modes of thought and continua. (As we shall see below,
the third challenge—that of incommensurable pairs of lines—arises precisely because lines
are continuous.) It turns out to be more difficult to think about continuous media than one
might imagine.

These paradoxes are ascribed to the philosopher Zeno of Elea. Zeno died around 430 bce,
and we do not have any of his works to rely on, only expositions of them by other writers.
Aristotle, in particular, says that Zeno gave four puzzles about motion, which he called the
Dichotomy (division), the Achilles, the Arrow, and the Stadium. Here is a summary of these
arguments in modern language, based on Book 6 of Aristotle’s Physics.

1. The Dichotomy. Motion is impossible because before an object can arrive at its des-
tination it must first arrive at the middle of its route. Then before it can arrive at the
end, it must reach the midpoint of the second half of the route, and so forth. Thus we
see that the object must do infinitely many things in a finite time in order to move.

2. The Achilles. (This paradox is apparently so named because in Homer’s Iliad the
legendary warrior Achilles chased the Trojan hero Hector around the walls of Troy,
overtook him, and killed him.) If given a head start, the slower runner will never be
overtaken by the faster runner. Before the two runners can be at the same point at the
same instant, the faster runner must first reach the point from which the slower runner
started. But at that instant the slower runner will have reached another point ahead of
the faster. Hence the race can be thought of as beginning again at that instant, with
the slower runner still having a head start. The race will “begin again” in this sense
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infinitely many times, with the slower runner always having a head start. Thus, as in
the dichotomy, infinitely many things must be accomplished in a finite time in order
for the faster runner to overtake the slower.

3. The Arrow. An arrow in flight is at rest at each instant of time. That is, it does not
move from one place to another during that instant. But then it follows that it cannot
traverse any positive distance because successive additions of zero will never result
in anything but zero.

4. The Stadium. (In athletic stadiums in Greece the athletes ran from the goal, around a
halfway post and then back. This paradox seems to have been inspired by imagining
two lines of athletes running in opposite directions and meeting each other.) Consider
two parallel line segments of equal length moving in opposite directions with equal
speeds and a third line that is stationary and located between the two of them. The
speed of each line is measured by the number of points of space it passes over in a
given time. In the time required for a point of each line to pass a point of the other,
these two points apparently pass only half of a point on the stationary line. Since there
is no such thing as half a point, it appears that the speed of each line relative to the
stationary line must be twice what it appears to be.

Even today, we think of a line as “made of” points, but Zeno’s paradoxes seem to show
that space cannot be “made of” points in the same way that a building can be made of
bricks. For assuredly the number of points in a line segment cannot be finite. If it were,
since points are indivisible (atoms in the original Greek sense of the word), the line would
not be infinitely divisible as the dichotomy and Achilles paradoxes showed that it must
be; moreover, the stadium paradox would show that the number of points in a line equals
its double. There must therefore be an infinity of points in a line. But then each of these
points must take up no space; for if each point occupied some space, an infinite number of
them would occupy an infinite length.2 But if points occupy no space, how can the arrow,
whose tip is at a single point at each instant of time, move through a positive quantity of
space? A continuum whose elements are points was needed for geometry, yet it could not
be thought of as being made up of points in the way that discrete collections are made up of
individuals.

This challenge, while it no doubt provided brain-breaking puzzles for mathematicians
for a long time, can nevertheless be ignored by those who have no metaphysical bent
and are concerned only with deriving one statement from another by logical deduction.
Geometers had no acute need to solve the problems posed by Zeno, even though they
pointed up difficulties with the interpretation of mathematical concepts. Like the unsolved
construction problems listed above, leaving them unanswered posed no threat to the formal
creation of geometry.

10.4. CHALLENGE NO. 3: IRRATIONAL NUMBERS AND
INCOMMENSURABLE LINES

The difficulties pointed out by Zeno affected the intuitive side of geometry and its interpreta-
tion. We would call them metaphysical puzzles rather than mathematical puzzles nowadays.

2Keep in mind that a line, to the Greeks, was what we now call a line segment. It was not infinitely long.
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The challenge they posed, which involved elucidating the nature of a continuum, was not
satisfactorily met until the late nineteenth and early twentieth century. (Some say not even
then!) There was, however, a challenge that came from within the formal system of ge-
ometry. To the modern mathematician, this second challenge in dealing with the concept
of a continuum is much more pertinent and interesting than the paradoxes of Zeno. That
challenge is the problem of incommensurables, which led ultimately to the concept of a
real number.

The existence of incommensurables throws doubt on certain oversimplified proofs of
proportion. When two lines or areas are commensurable, one can describe their ratio as,
say, 5 : 7, meaning that there is a common measure such that the first object is five times
this measure and the second is seven times it. A proportion such as a : b :: c : d, then, is
the statement that ratios a : b and c : d are both represented by the same pair of numbers.
Almost certainly, the legendary aphorism of Pythagoras, that “all is number,” refers to this
use of integers to define the ratio of two objects.3 It was therefore problematic when pairs
of lines were discovered that had no common measure, and whose ratio could therefore not
be expressed in this way. As the concept of incommensurable pairs of lines is intimately
bound up with what we now call irrational numbers (and were not considered numbers at
all by the Greeks working in the Euclidean tradition), we shall look at these two phenomena
together and compare them.

The absence of a place-value system of writing numbers forced the Greek mathemati-
cians to create a way around the problem that other societies have dealt with through
rational approximations. Place-value notation provides approximate square roots in practi-
cal form, even when the expansion does not terminate. We already mentioned, in Chapter 5,
a cuneiform tablet from Iraq (YBC 7289 from the Yale Babylonian Collection) showing a
square with its diagonals drawn and the sexagesimal number 1;24,51,10, which gives the
length of the diagonal of a square of side 1 to great precision. This rational sexagesimal
number surely represents the irrational “number”

√
2.

The word number is placed in inverted commas here because the meaning of the square
root of 2 is not easy to define. One quickly gets into a vicious circle when trying to formulate
its definition. The difficulty came in a clash of geometry and arithmetic, the two fundamen-
tal modes of mathematical thinking. From the arithmetical point of view the problem is
minimal. If numbers must be what we now call positive rational numbers, then some of
them are squares and some are not, just as some integers are triangular, square, pentagonal,
and so forth, while others are not. No one would be disturbed by this fact. Since the Greeks
had no place-value system to suggest an infinite process leading to an exact square root,
they might not have speculated deeply on the implications of this arithmetical distinction in
geometry. In other words, they, like their predecessors, had no reason to think about what
we call infinitely precise real numbers. They did, however, speculate on both the numerical
and geometric aspects of the problem, as we shall now see.

Just when the problem of irrationals and incommensurables arose cannot be specified
very exactly. Probably it was in the early fourth century bce, and certainly before 350 bce.
Since the problem has both numerical and geometric aspects, we begin with the numerical
problem.

3Since no writings of Pythagoras or his immediate followers survive, it is not possible to find this aphorism stated
so concisely anywhere. In his Metaphysics, Bekker 985b, Aristotle says that the Pythagoreans “supposed the
elements of numbers to be the elements of all things.”
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10.4.1. The Arithmetical Origin of Irrationals

In Plato’s dialogue Theatetus, the title character reports that a certain Theodorus proved
that the integers 2, 3, 5, and so on, up to 17 have no (rational) square roots, except of course
the obvious integers 1, 4, and 9; and he says that for some reason, Theodorus got stuck at
that point. On that basis the students decided to classify numbers as equilateral and oblong.
The former class consists of the squares of rational numbers, for example 25

9 , and the latter
are all other positive rational numbers, such as 3

2 , which cannot be written as a product of
two equal factors.

One cannot help wondering why Theodorus got stuck at 17 after proving that the numbers
3, 5, 6, 7, 8, 10, 11, 12, 13, 14, and 15 have no square roots. What might the difficulty have
been? The square root of 17 is irrational, and the proof commonly given nowadays to show
the irrationality of

√
3, for example, based on the unique prime factorization of integers,

works just as well for 17 as for any other nonsquare integer. If Theodorus had our proof, he
wouldn’t have gotten stuck doing 17, and he wouldn’t have bothered to do so many special
cases, since the proofs are all the same. Therefore, we must assume that he was using some
other method.

An ingenious conjecture as to Theodorus’ method was provided by the late Wilbur
Knorr (1945–1997) in his book (1975). Knorr suggested that the proof was based on the
elementary distinction between even and odd. To see how such a proof works, suppose that
7 is an equilateral number in the sense mentioned by Theatetus. Then there must exist two
integers m and n such that m2 = 7n2. We can assume that both integers are odd, since if
both are even, we can divide them both by 2, and it is impossible for one of them to be odd
and the other even. (The fact that the square of one of them equals seven times the square
of the other would imply that an odd integer equals an even integer if this were the case.)
Now it is well known that the square of an odd integer is always 1 larger than a multiple of
8. The supposition that the one square is seven times the other then implies that an integer
1 larger than a multiple of 8 equals an integer 7 larger than a multiple of 8, which is clearly
impossible.

This same argument shows that none of the odd numbers 3, 5, 7, 11, 13, and 15 can be
the square of a rational number. With a slight modification, it can also be made to show that
none of the numbers 2, 6, 8, 10, 12, and 14 is the square of a rational number, although no
argument is needed in the case of 8 and 12, since it is already known that

√
2 and

√
3 are

irrational. Notice that the argument fails, as it must, for 9: A number 9 larger than a multiple
of 8 is also 1 larger than a multiple of 8. However, it also breaks down for 17 and for the
same reason: A number 17 larger than a multiple of 8 is also 1 larger than a multiple of 8.
Thus, even though it is true that 17 is not the square of a rational number, the argument just
given, based on what we would call arithmetic modulo 8, cannot be used to prove this fact.
In this way the conjectured method of proof would explain why Theodorus got stuck at 17.

Theodorus thus proved not only that there was no integer whose square is, say, 11 (which
is a simple matter of ruling out the few possible candidates), but also that there was not
even any rational number having this property; that is, 11 is not the square of anything the
Greeks recognized as a number.

10.4.2. The Geometric Origin of Irrationals

A second, “geometric” theory of the origin of irrational numbers comes from geometry
and seems less plausible. If we apply the Euclidean algorithm to the side and diagonal of
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Figure 10.3. Diagonal and side of a regular pentagon. If a unit is chosen that divides the side into
equal parts, it cannot divide the diagonal into equal parts, and vice versa.

the regular pentagon in Fig. 10.3, we find that the diagonal AD and the CD get replaced
by lines equal, respectively, to CD (which equals CF , the bisector of angle ACD, which
in turn equals AF ) and DF , and these are the diagonal and side of a smaller pentagon
since ∠ACD = 2∠FCD. Thus, no matter how many times we apply the procedure of the
Euclidean algorithm, the result will always be a pair consisting of the side and diagonal of a
pentagon. Therefore, in this case the Euclidean algorithm will never produce an equal pair
of lines. We know, however, that it must produce an equal pair if a common measure exists.
We conclude that no common measure can exist for the side and diagonal of a pentagon.
The same is true for the side and diagonal of a square, although the algorithm requires
two applications in order to cycle. The absence of a common measure for the side and
diagonal of a square is the exact geometric equivalent of the arithmetic fact that there is
no rational number whose square is 2. In other words, incommensurable magnitudes and
irrational numbers (as we think of them—again, they were not numbers to the Greeks) are
two different ways of looking at the same phenomenon.

The argument just presented was originally given by von Fritz (1945). Knorr (1975,
pp. 22–36) argued against this approach, however, pointing out that the simple arithmetic
relation d2 = 2s2 satisfied by the diagonal and side of a square can be used in several ways
to show that d and s could not both be integers, no matter what length is chosen as unit.
Knorr preferred a reconstruction closer to the argument given in Plato’s Meno, in which
the problem of doubling a square is discussed. Knorr pointed out that when discussing
irrationals, Plato and Aristotle always invoke the side and diagonal of a square, never the
pentagon or the related problem of dividing a line in mean and extreme ratio, which they
certainly knew about.

10.4.3. Consequences of the Discovery

Whatever the argument used may have been, the Greeks somehow discovered the existence
of incommensurable pairs of line segments before the time of Plato. If indeed Pythagorean
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Figure 10.4. A fundamental theorem in the theory of proportion. Proposition 1 of Book 6 of the
Elements.

metaphysics was what it appears to be, this discovery must have been disturbing: Number,
it seems, is not adequate to explain all of nature. As mentioned in Chapter 8, a legend arose
that the Pythagoreans attempted to keep secret the discovery of this paradox. However,
scholars believe that the discovery of incommensurables came near the end of the fifth
century bce, when the original Pythagorean group was already defunct.

The existence of incommensurables throws doubt on certain oversimplified proofs of
geometric proportion, as we shall now show. This theory of proportion is extremely impor-
tant in geometry if we are to have such theorems as Proposition 2 of Book 12 of Euclid’s
Elements, which says that circles are proportional (in area) to the squares on their diame-
ters. Even the simplest constructions, such as the construction of a square equal in area to
a given rectangle or the application problems mentioned above, may require the concept of
proportionality of lines. Because of the importance of the theory of proportion for geometry,
the discovery of incommensurables made it imperative to give a definition of proportion
without relying on a common measure to define a ratio.

To see why the discovery of incommensurables created a problem, although perhaps
not a scandal, consider the following conjectured early proof of a fundamental result in the
theory of proportion: the proposition that two triangles having equal altitudes have areas
proportional to their bases. This assertion is half of Proposition 1 of Book 6 of Euclid’s
Elements. Let ABC and ACD in Fig. 10.4 be two triangles having the same altitude. Euclid
draws them as having a common side, but that is only for convenience. This positioning
causes no loss in generality because of the proposition that any two triangles of equal altitude
and equal base are equal, proved as Proposition 38 of Book 1.

Suppose that the ratio of the bases BC : CD is 2 : 3, that is, 3BC = 2CD. Extend BD

leftward to H so that BC = BG = GH , producing triangle AHC, which is three times
triangle ABC. Then extend CD rightward to K so that CD = DK, yielding triangle ACK

equal to two times triangle ACD. But then, since GC = 3BC = 2CD = CK, triangles
AGC and ACK are equal. Since AGC = 3ABC and ACK = 2ACD, it follows that ABC :
ACD = 2 : 3. We, like Euclid, have no way of actually drawing an unspecified number of
copies of a line, and so we are forced to illustrate the argument using specific numbers (2
and 3 in the present case) while expecting the reader to understand that the argument is
completely general.



PROBLEMS AND QUESTIONS 113

An alternative proof could be achieved by finding a common measure of BC and CD,
namely 1

2BC = 1
3CD. Then, dividing the two bases into parts of this length, one would

have divided ABC into two triangles and divided ACD into three triangles, and all five of
the smaller triangles would be equal. But both of these arguments fail if no integers m and
n can be found such that mBC = nCD, or (equivalently) no common measure of BC and
CD exists. This proof needs to be shored up, but how is that to be done? We shall see in the
next chapter.

Like Gray (quoted above), Knorr (1975) argued that the discovery of irrationals was not
a major “scandal,” and that it was not responsible for the “geometric algebra” in Book 2
of Euclid. While arguing that incommensurability forced some modifications in the way of
thinking about physical magnitudes, he said (p. 41):

It is thus thoroughly obvious that, far from being in a state of paralysis, fifth- and fourth-century
geometers proceeded with their studies of similar figures as if they were still unaware of the
foundational consequences of the existence of incommensurable lines.

PROBLEMS AND QUESTIONS

Mathematical Problems

10.1. The problem of application with defect discussed above requires constructing a par-
allelogram of a given shape that is equal to the difference of two other parallelograms
of the same shape. Show how to do this using the Pythagorean theorem. (Assume
the given shape is square, if it makes the problem easier. In fact, as we shall see in
Chapter 13, Euclid shows in Book VI of the Elements that the Pythagorean theorem
works just as well for similar parallelograms as it does for squares. It should be noted
that Euclid elegantly shortens this construction, as he so often does.)

10.2. Assuming that there are two square integers whose ratio is 5, derive a contradiction
using the principle that underlies Knorr’s conjecture. (If the integers are relatively
prime, then both must be odd. Use that fact and the fact that the square of any odd
number is one unit larger than a multiple of 8 to derive a contradiction.)

10.3. The ratio of the diagonal of a pentagon to its side has been called the Golden Ratio for

many centuries. It is usually denoted �, and its exact value is 1+√
5

2 . Use the fact that
� = 1 + 1

�
to show that the Euclidean algorithm applied to find a common measure

of � and 1 will go on forever producing a quotient of 1, but never terminate. (Keep
substituting the entire right-hand side of this equation for the � that occurs there in
the denominator.)

Historical Questions

10.4. What achievements do Proclus and Plutarch ascribe to the Pythagoreans?

10.5. Summarize the four Zeno paradoxes, as reported by Aristotle.

10.6. What were the three classical problems of geometry worked on during the fifth and
fourth centuries bce?
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Questions for Reflection

10.7. What motive could the early Greek geometers have had for studying the problems of
transformation and application of areas?

10.8. How do you know that there “exists” a number whose square is 2? In what sense do
we know what this number is?

10.9. How do you resolve the paradoxes of Zeno?



CHAPTER 11

Athenian Mathematics I: The Classical
Problems

The fifth century bce was the high-water mark of Athenian power. The Ionian islands were
constantly menaced and often subjugated by the Persian Empire, which also occasionally
threatened the mainland of Greece. In 490 bce, the Athenians stood alone and fought off
a Persian invasion at the Battle of Marathon, thereby increasing their prestige among the
Greek city–states. Ten years later, when another invasion was imminent, the famous 300
Spartans commanded by Leonidas, along with about a thousand others, held off the Persians
for several days before being overwhelmed by the superior numbers of the Persian army
at Thermopylae. This victory allowed the Persians to invade Greece and sack Athens, but
the Greek naval forces led by the Athenians defeated the Persian navy at Salamis, forcing
the Persians to delay the conquest of the rest of Greece. The following year, they were
defeated by a combined Greek force at Platæa. Once the Persian threat was beaten back,
the Spartans withdrew into isolationism, while the Athenians vigorously promoted a Greek
defense league, with themselves at the head of it. Athens became quite prosperous during
the period of peace. Some of the magnificent buildings whose ruins still inspire the visitor
were built during the time of Pericles’ leadership of the city (461–429). It was during this
time that the philosopher Anaxagoras (ca. 500–428) came to Athens and eventually was
arrested on the charge of denying that the sun was the god Helios. (He taught that it was a hot
stone the size of the Peloponnesus.) While in prison, he allegedly worked on the problem
of squaring the circle.

In 431 bce, war broke out between Sparta and Athens and raged intermittently for the next
quarter-century. Fortune seemed to turn against the Athenians on nearly every occasion, and
finally, in 404 bce, they capitulated. The Spartans had no desire to colonize or rule Athens;
and they quickly restored the Athenian government, which proceeded to take revenge on
the aristocrats who had sided or appeared to side with the Spartans. Among the victims was
the philosopher Socrates (ca. 470–399), one of whose followers was Plato, also a member
of an aristocratic family. After Socrates’ death, Plato journeyed to Sicily, where he is said
to have met the Pythagorean philosopher Philolaus. Returning to Athens, he founded his
famous Academy in 387 bce.

Plato’s main interest, conditioned no doubt by his experience of war and defeat, was in
political questions. He wished to get the very best people to rule. Among the virtues, he
placed a high value on knowledge and wisdom, and through that route he became interested
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in mathematical questions. Some of his students worked on mathematical problems. Because
of this shift in the intellectual center of gravity from the commercial Greek colonies to
Athens, we are going to call the geometry developed during the late fourth century bce and
throughout the third century Athenian mathematics, even though not all of it was done in
Athens. One of its highest achievements, the solution of the problem of incommensurables
by Eudoxus, was the work of a former disciple of Plato who had moved on and established
himself elsewhere as a prominent geometer and astronomer.

Plato’s most famous student, Aristotle (384–322), left the Academy just before the death
of Plato and set up his own school, the Lyceum, over the hill in Athens from the Academy.
His most famous pupil was Alexander (son of Philip of Macedon), later to be known as
Alexander the Great.1 The Macedonians conquered the Greek mainland and expanded their
control over the entire Middle East, crushing the Persian Empire at the Battle of Arbela in
331 bce. After conquering Egypt, Alexander founded a new city in the Nile Delta, naming
it after himself. In that city, his general Ptolemy Soter, who succeeded him as ruler of
that portion of the Macedonian Empire, founded the famous Library, at which the great
mathematicians of the third century bce all studied.

Let us now proceed to examine this work that we are calling Athenian mathematics. In
the present chapter, we shall discuss only the progress made on the three unsolved classical
problems mentioned in the preceding chapter. The all-important work on the theory of
incommensurables, and the logical ordering of the material will be discussed in the next
chapter, which is devoted to the schools of Plato and Aristotle.

The problems of doubling the cube and trisecting the angle were solved, to the extent that
they can be solved, during this period. Even so, new methods of solving them continued to
be sought long afterward; and the quadrature of the circle, a much more difficult problem,
was never solved in a satisfactory way. In order to tell as full a story as possible, we shall
extend our discussion of these three classical problems beyond the period that we have
characterized as Athenian mathematics.

11.1. SQUARING THE CIRCLE

Proclus mentions Hippocrates of Chios as having discovered the quadratures of lunes. This
mathematician (ca. 470–ca. 410 bce), who lived in Athens at the time of the Peloponnesian
War, is said to have worked on all three of the classical problems. A lune is a figure
resembling a crescent moon: the region inside one of two intersecting circles and outside
the other. In the ninth volume of his commentary on Aristotle’s books on physics, the sixth-
century commentator Simplicius discusses several lunes that Hippocrates squared, including
the one depicted in Fig. 11.1. After detailing the criticism by Eudemus of earlier attempts by
the Sophist Antiphon (480–411) to square the circle by polygonal approximation, Simplicius
reports the quadrature shown in (Fig. 11.1), which uses a result that later appeared in Book 12
of Euclid’s Elements. The result needed is that semicircles are proportional to the squares

1Alexander was a man of action, and there is no evidence anywhere in his entire career that Aristotle had had
the slightest influence on him. He was also apparently tutored by Menaechmus (ca. 380–ca. 320), another student
of Plato. The fifth-century ce writer Stobaeus writes that Alexander insisted on getting an abridged course in
geometry, but Menaechmus told him there were no “kingshighways” in geometry and that everyone had to follow
the same road. (Stobaeus, Book 2, Chapt. 31, §115. Proclus tells the same story with Ptolemy Soter in place of
Alexander and Euclid in place of Menaechmus.)
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Figure 11.1. Hippocrates’ quadrature of a lune, acording to Simplicius.

on their diameters. How that fact was established will be taken up in the next chapter. In
the meantime, we note that if r = A� is the radius of the large semicircle A�B�, then
the radius of the smaller semicircle A�E is r√

2
. The segment of the larger semicircle

inside the smaller one is obviously half of the larger semicircle less the triangle A��.
In our terms, the segment has area π

4 r2 − 1
2 r2, while the area of the smaller semicircle is

π
4 r2. Therefore the lune, which is the difference of these two figures, has area equal to the
triangle. Thus, quadrature of some figures bounded by circular arcs is possible, since this
lune is demonstrably equal to a figure bounded by straight lines.

Simplicius’ reference to Book 12 of Euclid’s Elements is anachronistic, since Hippocrates
lived before Euclid; but it was probably well known that similar circular segments are
proportional to the squares on their bases. Even that theorem is not needed here, except in
the case of semicircles, and that special case is easy to derive from the theorem for whole
circles. The method of Hippocrates does not achieve the quadrature of a whole circle; we
can see that his procedure works because the “irrationalities” of the two circles cancel each
other when the segment of the larger circle is removed from the smaller semicircle.

In his essay On Exile, Plutarch reports that the philosopher Anaxagoras worked on the
quadrature of the circle while imprisoned in Athens. Other attempts are reported, one by
Dinostratus (ca. 390–ca. 320 BCE), the brother of Menaechmus. Dinostratus is said to
have used the curve called (later, no doubt) the quadratrix, (squarer), said to have been
invented by Hippias of Elis (ca. 460–ca. 410 bce) for the purpose of trisecting the angle. It
is discussed below in that connection.

11.2. DOUBLING THE CUBE

Although the problem of doubling the cube fits very naturally into what we have imagined
as a purely geometric program—to extend the achievements in transformation of areas into
similar results in the transformation of volumes—some ancient authors gave it a more exotic
origin. In The Utility of Mathematics, Theon of Smyrna discusses a work called Platonicus
that he ascribes to Eratosthenes. In that work, the citizens of Delos (the island that was the
headquarters of the Athenian Empire) consulted an oracle in order to be relieved of a plague,
and the oracle told them to double the size of an altar.2 According to Theon, Eratosthenes
depicted the Delians as having turned for technical advice to Plato, who told them that the
altar was not the point: The gods really wanted the Delians to learn geometry better. In his

2Plagues were apparently common in ancient Greece. One is described at the outset of Homer’s Iliad as being due
to the wrath of Apollo. Another occurs in Sophocles’ Oedipus the King, and another decimated Athens early in
the Peloponnesian War, claiming Pericles as one of its victims.
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Figure 11.2. The problem of two mean proportionals: Given a and d, find b and c.

commentary on Archimedes’ work on the sphere and cylinder, Eutocius gives another story,
also citing Eratosthenes, but he says that Eratosthenes told King Ptolemy in a letter that the
problem arose on the island of Crete when King Minos ordered that a tomb built for his son
be doubled in size.

Whatever the origin of the problem, both Proclus and Eutocius agree that Hippocrates
was the first to reduce it to the problem of two mean proportionals. The fifth-century
geometers knew that the mean proportional between any two square integers is an integer
(for example,

√
16 · 49 = 28) and that between any two cubes such as 8 and 216 there are

two mean proportionals (Euclid, Book 8, Propositions 11 and 12); for example, 8 : 24 ::
24 : 72 :: 72 : 216. If two mean proportionals could be found between the sides of two
cubes—as seems possible, since every volume can be regarded as the cube on some line—
the problem would be solved. It would therefore be natural for Hippocrates to think along
these lines, by analogy with the result on figurate numbers, when comparing two cubes.
Eutocius, however, was somewhat scornful of this reduction, saying that the new problem
was just as difficult as the original one. That claim, however, is not true: One can easily draw
a figure containing two lines and their mean proportional (Fig. 11.2): the two parts of the
diameter on opposite sides of the endpoint of the half-chord of a circle and the half-chord
itself. The only problem is to get two such figures with the half-chord and one part of the
diameter reversing roles between the two figures and the other parts of the diameters equal
to the two given lines, as shown in Fig. 11.2. It is natural to think of using two semicircles
for this purpose and moving the chords to meet these conditions.

In his commentary on the treatise of Archimedes on the sphere and cylinder, Eutocius
gives a number of solutions to this problem, ascribed to various authors, including Plato.
The earliest one that he reports is due to Archytas (ca. 428–350 bce). This solution requires
intersecting a cylinder with a torus and a cone. The three surfaces intersect in a point from
which the two mean proportionals can be determined. A later solution by Menaechmus
may have arisen as a simplification of Archytas’ rather complicated construction. It requires
intersecting two cones, each having a generator parallel to a generator of the other, with
a plane perpendicular to both generators. These intersections form two conic sections, a
parabola and a rectangular hyperbola; where they intersect, they produce the two mean
proportionals, as shown in Fig. 11.7.

If Eutocius is correct, the conic sections first appeared, but not with the names they
now bear, in the fourth century bce. Menaechmus created these sections by cutting a cone
with a plane perpendicular to one of its generators. When that is done, the shape of the
section depends on the apex angle of the cone. If that angle is acute, the section will be
an ellipse; if it is a right angle, the section will be a parabola; if it is obtuse, the section
will be a hyperbola. In the commentary on Archimedes’ treatise on the sphere and cylinder
mentioned above, Eutocius tells how he happened to find a work written in the Doric dialect
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Figure 11.3. The oxytome (ellipse) of Menaechmus, obtained by cutting an acute-angled cone by a
plane perpendicular to a generator.

which seemed to be a work of Archimedes. He mentions in particular that instead of the
word parabola, used since the time of Apollonius, the author used the phrase section of a
right-angled cone; and instead of hyperbola, he used the phrase section of an obtuse-angled
cone. Since Proclus refers to “the conic section triads of Menaechmus,” it is inferred that the
original names of the conic sections were oxytomē (sharp cut), orthotomē (right cut), and
amblytomē (blunt cut), as shown in Figs. 11.3–11.5. However, Menaechmus probably
thought of the cone as the portion of the figure from the vertex to some particular cir-
cular base, since the Greeks did not consider infinitely extended bodies. In particular, he
wouldn’t have thought of the hyperbola as having two nappes, as we now do.

How Apollonius of Perga came to give them their modern names a century later is
described below. At present, we shall look at the consequences of Menaechmus’ approach
and see how it enabled him to solve the problem of two mean proportionals. It is very
difficult for a modern mathematician to describe this work without breaking into modern
algebraic notation, essentially using analytic geometry. It is very natural to do so, because
Menaechmus, if Eutocius reports correctly, comes very close to stating his theorem in
algebraic language. To describe this work in Menachmus’ original language would require
far more space than we have available and would be tedious and confusing. Thus, with
apologies for the inevitable distortion, we shall abbreviate the discussion and use some
algebraic symbolism.

We begin by looking at a general conic section, shown in Fig. 11.6. When a cone is cut
by a plane through its axis, the resulting figure is simply a triangle, called the axial triangle.
The end that we have left open by indicating with arrows the direction of the axis and two
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Figure 11.4. The orthotome (parabola) of Menaechmus, obtained by cutting a right-angled cone by
a plane perpendicular to a generator.

generators in this plane would have been closed off by Menaechmus. If the cone is cut by
a plane perpendicular to its axis, the result is a circle. The conic section is obtained as the
intersection with a plane perpendicular to one of its generators at a given distance (marked u

in the figure) from the apex. The important relation needed is the one between the length of
a horizontal chord (double the length marked v) in the conic section and its height (marked

Figure 11.5. The amblytome (hyperbola) of Menaechmus, obtained by cutting an obtuse-angled cone
by a plane at right angles to a generator.
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Figure 11.6. Sections of a cone. Top left: through the axis. Top right: perpendicular to the axis.
Bottom: perpendicular to the generator OR at a point Q lying at distance u from the vertex O. The
fundamental relation is v2 = h2 + 2uh − w2. The length h has a fixed ratio to w, depending only on
the shape of the triangle OCR.

w) above the generator that has been cut. Using only similar triangles and the fact that a half
chord in a circle is the mean proportional between the segments of the diameter through its
endpoint, Menaechmus derived the fundamental relation that we write as

v2 = h2 + 2uh − w2.

Although we have written this relation as an equation with letters in it, Menaechmus would
have been able to describe what it says in terms of the lines v, u, h, and w, and squares and
rectangles on them. He would have known the value of the ratio h/w, which is determined
by the shape of the triangle ROC. In our terms h = w tan(ϕ/2), where ϕ is the apex angle
of the cone. When conic sections are to be applied, the user has free choice of the apex
angle ϕ and the length u.

The simplest case is that of the parabola, where the apex angle is 90◦ and h = w. In that
case the relation between v and w is

v2 = 2uw.

In the problem of putting two mean proportionals B and � between two lines A and E,
Menaechmus took the u for this parabola to be 1

2 A, so that v2 = Aw.
The hyperbola Menaechmus needed for this problem was a rectangular hyperbola, which

results when the triangle ROC is chosen so that RC
2 = 2OC

2
, and therefore OR

2 = 3OC
2
.

Such a triangle is easily constructed by extending one side of a square to the same length as
the diagonal and joining the endpoint to the opposite corner of the square. In any triangle of
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Figure 11.7. One of Menaechmus’ solutions to the problem of two mean proportionals, as reported
by Eutocius.

this shape the legs are the side and diagonal of a square. In this case, the apex angle of the
cone is about 109.4◦ or 1.910634 radians, and we get h = √

2w. For that case Menaechmus
would have been able to show that

(w +
√

2u)2 − v2 = 2u2,

that is,

v2 = w(w + 2d),

where d ( = √
2u) is the diagonal of a square whose side is u. To solve the problem of two

mean proportionals, Menaechmus took u = √
AE; that is, the mean proportional between

A and E. Menaechmus’ solution is shown in Fig. 11.7.
This solution uses only figures that arise naturally from circles and straight lines, yet

people were not satisfied with it. The objection to it was that the data and the resulting
figure all lie within a plane, but the construction requires the use of cones, which cannot be
contained in the plane.

11.3. TRISECTING THE ANGLE

The practicality of trisecting an angle is immediately evident: It is the first step on the way
to dividing a circular arc into any number of equal pieces. If a right angle can be divided into
n equal pieces, a circle also can be divided into n equal pieces, and hence the regular n-gon
can be constructed. Success in constructing the regular pentagon may have stimulated work
on such a program. It is possible to construct the regular n-gon using only straight lines and
circles for n = 3, 4, 5, 6, 8, 10, but not 7 or 9. The number 7 is awkward, being the only
prime between 5 and 10, and one could expect to have difficulty constructing the regular
heptagon. Surprisingly, however, the regular heptakaidecagon (17-sided polygon) can be
constructed using only compass and straightedge. Since 9 = 3 · 3, it would seem natural
to begin by trying to construct this figure, that is, to construct an angle of 40◦. That would
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Figure 11.8. The quadratrix of Hippias.

be equivalent to constructing an angle of 20◦, hence trisecting the angles of an equilateral
triangle.

Despite the seeming importance of this problem, less has been written about the ancient
attempts to solve it than about the other two problems. For most of the history we are indebted
to two authors. In his commentary on Euclid’s Elements, Proclus mentions the problem and
says that it was solved by Nicomedes using his conchoid and by others using the quadratrices
of Hippias and Nicomedes (280–210). In Book 4 of his Synagōgē (Collection), Pappus says
that the circle was squared using the curve of Dinostratus and Nicomedes. He then proceeds
to describe that curve, which is the one now referred to as the quadratrix of Hippias.3

The quadratrix is described in terms of two independent motions of a point as follows.
The radius of a circle rotates at a uniform rate from the vertical position AB in Fig. 11.8 to the
horizontal position A�, while in exactly the same time a horizontal line moves downward
at a constant speed from the position B� to the position A�. The point of intersection
Z traces the curve BZH , which is the quadratrix. The diameter of the circle is the mean
proportional between its circumference and the line AH . Unfortunately, H is the one point
on the quadratrix that is not determined, since the two intersecting lines coincide when they
both reach A�. This point was noted by Pappus, citing an earlier author named Sporos.
In order to draw the curve, which is mechanical, you first have to know the ratio of the
circumference of a circle to its diameter. But if you knew that, you would already be able to
square the circle. One can easily see, however, that since the angle ZA� is proportional to
the height of Z, this curve—if it can be drawn!—makes it possible to divide an angle into
any number of equal parts.

Pappus also attributed a trisection to Menelaus of Alexandria (70–130 ce). Pappus gave a
classification of geometric construction problems in terms of three categories: planar, solid,
and [curvi]linear. The first category consisted of constructions that used only straight lines
and circles, whereas the second category consisted of those that used conic sections. The
last, catch-all category consisted of problems requiring all manner of more elaborate and less
regular curves, which were harder to visualize than the first two and presumably required
some mechanical device to draw them. We are all familiar with the use of a compass to draw
a perfect circle and the procedure for drawing an ellipse by stretching a thread between two

3Hippias should be thankful for Proclus, without whom he would apparently be completely forgotten, as none of
the other commentators discuss him, except for a mention in passing by Diogenes Laertius in his discussion of
Thales. Allman (1889, pp. 94–95) argued that the Hippias mentioned in connection with the quadratrix is not the
Hippias of Elis (ca. 460–ca. 400 bce) mentioned in the Eudemian summary, and other historians, including the
late Wilbur Knorr, have agreed with him, but most do not.
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Figure 11.9. Pappus’ construction of a neûsis using a rectangular hyperbola.

pins at the foci. A device for drawing hyperbolas with given foci is also easy to design.4

Somewhat surprisingly, it was not until the nineteenth century that a mechanical device (the
Peaucellier linkage, named after Charles-Nicolas Peaucellier, 1832–1914) was invented that
draws a theoretically perfect straight line.

The quadratrix described above, however, cannot be drawn with any such instrument;
it requires coordinating two independent motions with infinite precision, a thing that is
difficult to imagine. Pappus says that some of these more general curves come from locus
problems; he goes on to say that geometers regard it as a major defect when a planar problem
is solved using conics and other curves.

Based on this classification of problems, the first geometers were unable to solve the above-
mentioned problem of [trisecting] the angle, which is by nature a solid problem, through planar
methods. For they were not yet familiar with the conic sections; and for that reason they were
at a loss. But later they trisected the angle through conics, using the convergence described
below.

The word convergence (neûsis) comes from the verb neúein, one of whose meanings
is to incline toward. In this particular case, it refers to the following construction. We are
given a rectangle AB�� and a prescribed length m. It is required to find a point E on ��

such that when AE is drawn and extended to meet the extension of B� at a point Z, the
line EZ will have length m. The construction is shown in Fig. 11.9, where the circular arc
with center at � has radius m. The hyperbola is rectangular, with asymptotes BA and BZ,
so that A� · �� = �H · ZH . This equation implies that �Z : HZ = �A : �A. Thus the
triangles ��H and A�Z are similar, and so AZ is parallel to �H , from which it follows
that EZ = �H = m.

4Imagine two spools with meshing gears on axes beneath the plane of the hyperbola, with a continuous thread
wound around them in opposite directions and passing up over the table through the two foci. As a point on the
thread is pulled, the two interlocked spools will both unwind at the same rate, keeping the difference between the
lengths of thread from the given point to the two foci constant. Hence the point will describe a hyperbola.
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Figure 11.10. Trisection of an arbitrary angle by neûsis construction. Because EH = HZ and both
HK and �� are perpendicular to BZ, it follows that �K = KZ. Hence ZKH is congruent to�KH , and
so ∠H�K = ∠HZK = ∠EA�. But then �H = HZ = A�, and so ∠�AH = ∠�HA = 2∠HZ�.

With the neûsis construction, it becomes a simple matter to trisect an angle, as Pappus
pointed out. Given any acute angle, label its vertex A, choose an arbitrary point � on one
of its sides, and let � be the foot of the perpendicular from � to the other side of the angle.
Complete the rectangle AB��, and carry out the neûsis with m = 2A�. Then let H be the
midpoint of ZE, and join �H , as shown in Fig. 11.10.

11.3.1. A Mechanical Solution: The Conchoid

Finding the point E in the neûsis problem is equivalent to finding the point Z. Either point
allows the line AEZ to be drawn. Now one line that each of these points lies on is known.
If some other curve that Z must lie on could be drawn, the intersection of that curve with
the line B� would determine Z and hence solve the neûsis problem. If we use the condition
that the line ZE must be of length 2A�, we have a locus-type condition for Z, and it is easy
to build a device that will actually draw this locus. What is needed is the T-shaped frame
shown in Fig. 11.11, consisting of two pieces of wood or other material meeting at right
angles. The horizontal part of the T has a groove along which a peg (shown as a hollow
circle in the figure) can slide. The vertical piece has a fixed peg (shown as a solid circle) at

Figure 11.11. A mechanical device for drawing the conchoid of Nicomedes.
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distance A� from its top. Onto this frame a third piece is fitted with a fixed peg (the hollow
circle) at distance m from its end and a groove between the peg and the other end that fits
over the peg on the vertical bar. The frame is then laid down with its horizontal groove over
the line �� and its fixed peg over A. When the moving piece is fitted over the frame so that
its peg slides along the horizontal groove over �� and its groove slides over the peg at A,
its endpoint (where a stylus is located to draw the curve) traces the locus on which Z must
lie. The point Z lies where that locus meets the extension of B�. In practical terms, such
a device can be built, but the rigid pegs must be located at exactly the distance from the
ends determined by the rectangle and the fixed distance given in the neûsis problem. Thus
the device must be modified by moving the pegs to the correct locations for each particular
problem. If oxymoron is permitted, we might say that the practical value of this device is
mostly theoretical. The locus it draws is the conchoid of Nicomedes, mentioned by Pappus
and Proclus. (Nothing is known about Nicomedes beyond the facts that he lived during the
third century BCE and wrote a treatise on conchoid curves.)

Because of the objections reported by Pappus to the use of methods that were more
elaborate than the problems they were intended to solve, the search for planar (ruler-and-
compass) solutions to these problems continued for many centuries. It was not until the
1830s that it was proved that no straightedge-and-compass solution exists for any of them.
(The proof had no effect on the cranks of the world, of course.) The problems continue to
be of interest since that time, and not only to cranks who imagine they have solved them.
Felix Klein, a leading German mathematician and educator in the late nineteenth and early
twentieth centuries, urged that they be studied as a regular part of the curriculum (Beman
and Smith, 1930).

PROBLEMS AND QUESTIONS

Mathematical Problems

11.1. Show why the quantities u, v, w, and h in Fig. 11.6 satisfy the relation v2 =
h2 + 2uh − w2. (Use the second diagram in the figure, which shows that v2 =
RP · PT = (

RC − PC
) · (

RC + PC
) = RC

2 − PC
2
. You will also need the re-

lations (u + h)2 − RC
2 = OC

2
and OC

2 + PC
2 = OP

2 = u2 + w2. You need to
eliminate OC

2
using these last two relations.)

11.2. Referring to Fig. 11.5, show that at the intersection of the parabola and hyperbola,
where x = B and y = �, we have A : B :: B : � and A : B :: � : E.

11.3. Explain why the point H in Fig. 11.6 is not determined by the conditions given in
the definition of the quadratrix.

Historical Questions

11.4. Why did the center of Greek mathematics shift from the commercial cities in the
Ionian Sea to Athens during the fifth century bce?

11.5. Who were the scholars who came to Athens in fifth and fourth centuries bce and
worked on mathematical problems while they were there?
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11.6. Summarize the progress made on each of the three classical problems during the
fourth century bce.

Questions for Reflection

11.7. Try to design a mechanical instrument that will draw a quadratrix for a given circle.
(You will need to assume an ideal thread that is perfectly flexible but incapable of
being stretched in order to do this.)

11.8. Why is a neûsis not a straightedge-and-compass construction?

11.9. Why was it important to Menaechmus’ solution of the problem of two mean pro-
portionals that the plane cutting the cone be at right angles to one of its generators?



CHAPTER 12

Athenian Mathematics II: Plato and
Aristotle

As we have already mentioned, Plato met the Pythagorean Philolaus in Sicily in 390. He
also met the Pythagorean Archytas at Tarentum, where some Pythagoreans had once fled
to escape danger at Croton. Plato returned to Athens and founded the Academy in 387 bce.
There he hoped to train the young men1 for public service and establish good government.
At the behest of Archytas and a Syracusan politician named Dion, brother-in-law of the
ruler Dionysus I, Plato made several trips to Syracuse (Sicily) between 367 and 361 bce
to act as advisor to Dionysus II. However, there was virtual civil war between Dion and
Dionysus, and Plato was arrested and nearly executed. Diogenes Laertius quotes a letter
allegedly from Archytas to Dionysus urging that Plato be released. Plato returned to the
Academy in 360 and remained there for the last 13 years of his life. He died in 347.

12.1. THE INFLUENCE OF PLATO

Archytas’ solution of the problem of two mean proportionals using two half-cylinders
intersecting at right angles was mentioned above. In his Symposium Discourses, Plutarch
claimed that

Plato also lamented that the disciples of Eudoxus, Archytas, and Menaechmus attacked the
duplication of a solid by building tools and machinery hoping to get two ratios through the
irrational, by which it might be possible to succeed, [saying that by doing so they] immediately
ruined and destroyed the good of geometry by turning it back toward the physical and not
directing it upward or striving for the eternal and incorporeal images, in which the divinity is
eternally divine.

Although the sentiment Plutarch ascribes to Plato is consistent with the ideals expressed
in the Republic, Eutocius reports one such mechanical construction as being due to Plato

1In his writing, especially The Republic, Plato argues for equal participation by women in government. There is no
record of any women students at his Academy, however. His principles were far in advance of what the Athenians
would tolerate in practice.

The History of Mathematics: A Brief Course, Third Edition. Roger L. Cooke.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

128



THE INFLUENCE OF PLATO 129

himself. From his upbringing as a member of the Athenian elite and from the influence
of Socrates, Plato had a strong practical streak, concerned with life as it is actually lived.2

Platonic idealism in the purely philosophical sense does not involve idealism in the sense
of unrealistic striving for perfection.

It may have been Archytas and Philolaus who aroused Plato’s interest in mathematics,
an interest that continued for the rest of his life. Mathematics played an important role
in the curriculum of his Academy and in the research conducted there. Lasserre (1964,
p. 17) believes that the most important mathematical work at the Academy began with the
arrival of Theaetetus in Athens around 375 and ended with Eudoxus’ departure for Cnidus
around 350.

The principle that knowledge can involve only eternal, unchanging entities led Plato to
some statements that sound paradoxical. For example, in Book 7 of the Republic he writes:

Thus we must make use of techniques such as geometry when we take up astronomy and ignore
what is in the sky if we really intend to create something intrinsically useful and practical in
the soul.

If Plato’s mathematical concerns seem to be largely geometrical, that is probably because
he became acquainted with mathematics at the time when the challenges discussed above
were still current topics. (Recall the quotation from the Republic in Chapter 8, where he
laments the lack of public support for research into solid geometry.) There is a long-standing
legend that Plato’s Academy bore the following sign above its entrance3:

A�E�METPHTO� MH�EI� EI�IT�

(AGEŌMETRĒTOS MĒDEIS EISITŌ, that is,“Let no one unskilled in geometry enter.”) If
Plato really was more concerned with geometry than with arithmetic, there is an obvious
explanation for his preference: The imperfections of the real world come more from ge-
ometry than arithmetic. For example, it is sometimes asserted that there are no examples
of exact equality in the real world. But in fact, as was pointed out in Chapter 1, there are
many. Those who make the assertion always have in mind continuous magnitudes, such as
lengths or weights, in other words, geometrical concepts. Where arithmetic is concerned,
exact equality is easy to achieve, as shown by the example of equal bank accounts in
Chapter 1. But Plato’s love for geometry should not be overemphasized. In his ideal cur-
riculum, described in the Republic, arithmetic is still regarded as the primary subject.

2In the famous allegory of the cave in Book 7 of the Republic, Plato depicts the unphilosophical person as living
in a cave with feet in chains, seeing only flickering shadows on the wall of the cave, while the philosopher is the
person who has stepped out of the cave into the bright sunshine and wishes to communicate that reality to the
people back in the cave. While he encouraged his followers to “think outside the cave,” his trips to Syracuse show
that he understood the need to make philosophy work inside the cave, where everyday life was going on.
3These words are the earliest version of the legend, which Fowler (1998, pp. 200–201) found could not be traced
back earlier than a scholium attributed to the fourth-century orator Sopatros. The commonest source cited for
this legend is the twelfth-century Byzantine Johannes Tzetzes, in whose Chiliades, VIII, 975, one finds Mηδεὶς

άγεωμέτρητoς είσίτω μoυ τὴν στέγην. “Let no one unskilled in geometry enter my house.”



130 ATHENIAN MATHEMATICS II: PLATO AND ARISTOTLE

12.2. EUDOXAN GEOMETRY

We recall the difficulty occasioned for the theory of proportion by the discovery of in-
commensurables, as illustrated by Fig. 4 of Chapter 10. The solution to this difficulty was
provided by Eudoxus of Cnidus (ca. 407–354 bce), whom Diogenes Laertius describes as
“astronomer, geometer, physician, and lawgiver.” He learned geometry from Archytas and
philosophy from Plato. Diogenes Laertius cites another commentator, named Sotion, who
said that Eudoxus spent two months in Athens and attended lectures by Plato. Because of
his poverty, he could not afford to live in Athens proper. He lived at the waterfront, known
as the Piraeus, supported by a physician named Theomedus, and walked 11 km from there
into Athens. Then, with a subsidy from friends, he went to Egypt and other places and fi-
nally returned, “crammed full of knowledge,” to Athens, “some say, just to annoy Plato for
snubbing him earlier.” Plato was not in Eudoxus’ league as a mathematician; and if Eudoxus
felt that Plato had patronized him in his earlier visit, perhaps because Plato and his other
students were wealthy and Eudoxus was poor, his desire to return and get his own students
back from Plato is quite understandable. He must have made an impression on Plato on
his second visit. In his essay On Socrates’ Daemon, Plutarch reports that when the Delians
consulted Plato about doubling the cube, in addition to advising them to study geometry,
he told them that the problem had already been solved by Eudoxus of Cnidus and Helicon
of Cyzicus. If true, this story suggests that the Delians appealed to Plato after Eudoxus
had left for Cnidus, around 350. In Cnidus, Eudoxus made many astronomical observations
that were cited by the astronomer Hipparchus (ca. 190–ca. 120 bce), and one set of his
astronomical observations has been preserved. Although the evidence is not conclusive, it
seems that while he was in Athens, he contributed two vital pieces to the mosaic that is
Euclid’s Elements.

12.2.1. The Eudoxan Definition of Proportion

The first piece of the Elements probably contributed by Eudoxus was the solution of the
problem of incommensurables. This solution is attributed to him on the basis of two facts:
(1) Proclus’ comment that Euclid “arranged many of the theorems of Eudoxus”; (2) an
anonymous scholium (commentary) on Euclid’s Book 5, which asserts that the book is the
creation “of a certain Eudoxus, [the student] of the teacher Plato” (Allman, 1889, p. 132).

The main principle is very simple: Suppose that D and S are, respectively, the diagonal
and side of a square or pentagon. Even though there are no integers m and n such that
mD = nS, so that the ratio D : S cannot be defined as n : m for any integers, it remains true
that for every pair of integers m and n there is a trichotomy: Either mD < nS or mD = nS or
mD > nS. That fact makes it possible at least to define what is meant by saying that the ratio
of D to S is the same for all similar polygons. We define the proportion D1 : S1 :: D2 : S2
for two different squares to mean that, for any positive integers m and n, whatever relation
holds between mD1 and nS1 also holds between mD2 and nS2. That is, if mD1 > nS1, then
mD2 > nS2, and similarly for the opposite inequality or equality.

As defined by Euclid at the beginning of Book 5, “A relation that two magnitudes of the
same kind have due to their sizes is a ratio.” As a definition, this statement is somewhat
lacking, but we may paraphrase it as follows: “the relative size of one magnitude in terms of
a second magnitude of the same kind is the ratio of the first to the second.” We think of size
as resulting from measurement and relative size as the result of dividing one measurement



EUDOXAN GEOMETRY 131

by another, but Euclid keeps silent on both of these points. Then, “Two magnitudes are said
to have a ratio to each other if they are capable of exceeding each other when multiplied.”
That is, some (positive integer) multiple of each is larger than the other. Thus, the periphery
of a circle and its diameter have a ratio, but the periphery of a circle and the disk it encloses
do not. Although this definition of ratio would be hard to use, fortunately there is no need
to use it. What is needed is equality of ratios, that is, proportion. That definition follows
from the trichotomy just mentioned. Here is the definition given in Book 5 of Euclid, with
the material in brackets added from the discussion just given to clarify the meaning:

Magnitudes are said to be in the same ratio, the first to the second [D1 : S1] and the third to
the fourth [D2 : S2], when, if any equimultiples whatever be taken of the first and third [mD1

and mD2] and any equimultiples whatever of the second and fourth [nS1 and nS2], the former
equimultiples alike exceed, are alike equal to, or are alike less than the latter equimultiples taken
in corresponding order [that is, mD1 > nS1 and mD2 > nS2, or mD1 = nS1 and mD2 = nS2,
or mD1 < nS1 and mD2 < nS2].

Let us now revisit our conjectured early proof of Euclid’s Proposition 1 of Book 6 of
the Elements from Chapter 10, a proof that holds only in the commensurable case. How
much change is required to make this proof cover the incommensurable case? Very little,
as it turns out. Where we have assumed that 3BC = 2CD, it is only necessary to consider
the cases 3BC > 2CD and 3BC < 2CD and show with the same figure that 3ABC >

2ACD and 3ABC < 2ACD, respectively, and that is done by using the trivial corollary of
Proposition 38 of Book 1: If two triangles have equal altitudes and unequal bases, the one
with the larger base is larger. Eudoxus has not only shown how proportion can be defined
so as to apply to incommensurables, he has done so in a way that fits together seamlessly
with earlier proofs that apply only to the commensurable case. If only the fixes for bugs in
modern computer programs were so simple and effective!

12.2.2. The Method of Exhaustion

Eudoxus’ second contribution is of equal importance with the first; it is the proof technique
known as the method of exhaustion. This method is used by both Euclid and Archimedes
to establish theorems about areas and solids bounded by curved lines and surfaces. As in
the case of the definition of proportion for incommensurable magnitudes, the evidence that
Eudoxus deserves the credit for this technique is not conclusive. In his commentary on
Aristotle’s Physics, Simplicius credits the Sophist Antiphon with inscribing a polygon in a
circle, then repeatedly doubling the number of sides in order to square the circle. However,
the perfected method seems to belong to Eudoxus. Archimedes says in the cover letter
accompanying his treatise on the sphere and cylinder that it was Eudoxus who proved that
a pyramid is one-third of a prism on the same base with the same altitude and that a cone is
one-third of the cylinder on the same base with the same altitude. What Archimedes meant
by proof we know: He meant proof that meets Euclidean standards. Such a proof can be
achieved for the cone only by the method of exhaustion. Like the definition of proportion,
the basis of the method of exhaustion is a simple observation: When the number of sides of a
polygon inscribed in a circle is doubled, the excess of the circle over the polygon is reduced
by more than half, as one can easily see from Fig. 12.1. This observation works together
with the theorem that if two magnitudes have a ratio and more than half of the larger is
removed, then more than half of what remains is removed, and this process continues, then
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Figure 12.1. The basis of the method of exhaustion.

at some point what remains will be less than the smaller of the original two magnitudes
(Elements, Book 10, Proposition 1). This principle is usually called Archimedes’ principle
because of the frequent use he made of it. The phrase if two magnitudes have a ratio is
critical, because Euclid’s proof of the principle depends on converting the problem to a
problem about integers.

To be specific, if a > b, since nb > a for some positive integer n, it is only a matter of
showing that a finite sequence a = a1, a2, . . . in which each term is less than half of the
preceding will eventually reach a term ak such that nak is less than a1. Since nb > a = a1,
it follows that ak < b. Since m/2m < 1 for m > 1, we see that in fact k will be less than or
equal to n.

The definition of ratio and proportion allowed Eudoxus/Euclid to establish all the stan-
dard facts about the theory of proportion, including the important fact that similar polygons
are proportional to the squares on their sides (Elements, Book 6, Propositions 19 and 20).
Once that result is achieved, the method of exhaustion makes it possible to establish rigor-
ously that similar curvilinear regions are proportional to the squares on similarly situated
chords. In particular, it made it possible to prove the fundamental fact that was being used
by Hippocrates much earlier: Circles are proportional to the squares on their diameters.
This fact is now stated as Proposition 2 of Book 12 of the Elements, and the proof given by
Euclid is illustrated in Fig. 12.2.

Figure 12.2. Proof that circles are proportional to the squares on their diameters.
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Let AB�� and EZH� be two circles with diameters B� and �Z, and suppose that the
circles are not proportional to the squares on their diameters. Let the ratio B�2 : �Z2 be
the same as AB�� : �, where � is an area larger or smaller than EZH�. Suppose first that
� is smaller than the circle EZH�. Draw the square EZH� inscribed in the circle EZH�.
Since this square is half of the circumscribed square with sides perpendicular and parallel
to the diameter �Z, and the circle is smaller than the circumscribed square, the inscribed
square is more than half of the circle. Now bisect each of the arcs EZ, ZH , H�, and �E

at points K, �, M, and N, and join the polygon EKZ�H�NE. As shown above, doing so
produces a larger polygon, and the excess of the circle over this polygon is less than half of
its excess over the inscribed square. If this process is continued enough times, the excess of
the circle over the polygon will eventually be less than its excess over �, and therefore the
polygon will be larger than �. For definiteness, Euclid assumes that this polygon is the one
reached at the first doubling: EKZ�H�NE. In the first circle AB��, inscribe a polygon
A�BO���P similar to EKZ�H�NE. Now the square on B� is to the square on Z� as
A�BO���P is to EKZ�H�NE. But also the square on B� is to the square on Z� as
the circle AB�� is to �. It follows that A�BO���P is to EKZ�H�NE as the circle
AB�� is to �. Since the circle AB�� is larger than A�BO���P , it follows that � must
be larger than EKZ�H�NE, But by construction, it is smaller, which is impossible. A
similar argument shows that it is impossible for � to be larger than EZH�.

12.2.3. Ratios in Greek Geometry

Ratios as defined by Euclid are always between two magnitudes of the same type. He never
considered what we call density, for example, which is the ratio of a mass to a volume. Being
always between two magnitudes of the same type, ratios are “dimensionless” in our terms
and could be used as numbers, if only they could be added and multiplied. The Greeks,
however, did not think of these operations on ratios as being the same thing they could do
with numbers. In terms of adding, Euclid does say (Book 6, Proposition 24) that if two
proportions have the same second and fourth terms, then their first terms and third terms
can be added (first to first and third to third), that is, if a : b :: c : d and e : b :: f : d, then
(a + e) : b :: (c + f ) : d. But he did not think of the second and fourth terms in a proportion
as denominators, and this was not, as we see it, merely adding fractions with a common
denominator. For multiplication of ratios, Euclid gives three separate definitions. In Book 5,
Definition 9, he defines the duplicate (which we would call the square) of the ratio a : b to be
the ratio a : c if b is the mean proportional between a and c, that is, a : b :: b : c. Similarly,
when there are four terms in proportion, as in the problem of two mean proportionals, so
that a : b :: b : c :: c : d, he calls the ratio a : d the triplicate of a : b. We would call it the
cube of this ratio. Not until Book 6, Definition 5 is there any kind of general definition of
the product of two ratios. Even that definition is not in all manuscripts and may be a later
interpolation. It goes as follows: A ratio is said to be the composite of two ratios when the
sizes in the two ratios produce something when multiplied by themselves.4 This rather vague
definition is made still harder to grasp by the fact that the word for composite (sygkeímena)
is simply a general word for combined. It means literally lying together and is the same
word used when two lines are placed end to end to form a longer line. In that context it

4I am aware that the word “in” here is not a literal translation, since the Greek has the genitive case—the sizes of
the two ratios. But I take of here to mean belonging to, which is one of the meanings of the genitive case.
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corresponds to addition, whereas in the present one it corresponds to multiplication. It can
be understood only by seeing the way that Euclid operates with it. Given four lines a, b, c,
and d, to form the composite ratio a : b.c : d, Euclid first takes any two lines5 x and y such
that a : b :: x : y. He then finds a line z such that y : z :: c : d and defines the composite
ratio a : b.c : d to be the ratio x : z.

There is some arbitrariness in this procedure, since x could be any line. A modern
mathematician looking at this proof would note that Euclid could have shortened the labor
by taking x = a and y = b, then constructing z to have the same ratio to y that d has to c.
The same mathematician would add that Euclid ought to have shown that the final ratio is
the same independently of the choice of x, which he did not do. But one must remember
that the scholarly community around Euclid was much more intimate than in today’s world;
he did not have to write a “self-contained” book. In the present instance a glance at Euclid’s
Data shows that he knew what he was doing. The first proposition in that book says that
“if two magnitudes [of the same kind] A and B are given, then their ratio is given.” In
modern language, any quantity can be replaced by an equal quantity in a ratio without
changing the ratio. The proof is that if A = � and B = �, then A : � :: B : �, and hence
by Proposition 16 of Book 5 of the Elements, A : B :: � : �. The second proposition of the
Data draws the corollary that if a given magnitude has a given ratio to a second magnitude,
then the second magnitude is also given. That is, if two quantities have the same ratio to a
given quantity, then they are equal. From these principles, Euclid could see that the final
ratio x : z is what mathematicians now call “well-defined,” that is, independent of the choice
of x.6 The first use made of this process is in Proposition 23 of Book 6, which asserts that
equiangular parallelograms are in the compound ratio of their (corresponding) sides.

With the departure of Eudoxus for Cnidus, we can bring to a close our discussion of
Plato’s influence on mathematics. If relations between Plato and Eudoxus were less than
intimate, as Diogenes Laertius implies, Eudoxus may have drawn off some of Plato’s stu-
dents whose interests were more scientific (in modern terms) and less philosophical. It is
likely that even Plato realized that his attempt to explain the universe by means of eternal
ideal forms, for the understanding of which mathematics was a useful training tool, would
not work after all. His late dialogue Parmenides gives evidence of a serious rethinking of
this doctrine.

12.3. ARISTOTLE

Plato died in 347 bce, and his place as the preeminent scholar of Athens was taken a decade
after his death by his former pupil Aristotle (384–322 bce). Aristotle became a student at
the Academy at the age of 18 and remained there for 20 years. After the death of Plato he
left Athens, traveled, got married, and in 343 became tutor to the future Macedonian King
Alexander (the Great), who was 13 years old when Aristotle began to teach him and 16
when he became king on the death of his father. In 335 Aristotle set up his own school,

5Actually, m and n need not be lines as long as they “have a ratio,” that is, are geometric objects of the same kind.
The exact nature of x, y, and z is not important, since in applications only the integers by which they are multiplied
play any role in the argument.
6A good exposition of the purpose of Euclid’s Data and its relation to the Elements was given by Il’ina (2002),
elaborating a thesis of I. G. Bashmakova.
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Figure 12.3. Athens in the fourth century bce: the waterfront (Piraeus), Academy, and Lyceum.

located in the Lyceum, over the hill from the Academy (Fig. 3).7 For the next 12 years he
lived and wrote there, producing an enormous volume of speculation on a wide variety of
subjects, scientific, literary, and philosophical. In 322 Alexander died, and the Athenians he
had conquered turned against his friends. Unlike Socrates, Aristotle felt no obligation to be
a martyr to the laws of the polis. He fled to escape the persecution, but died the following
year. Aristotle’s writing style resembles very much that of a modern scholar, except for
the absence of footnotes. Like Plato, in mathematics he seems more like a well-informed
generalist than a specialist.

The drive toward the logical organization of science reached its full extent in the treatises
of Aristotle. He analyzed reason itself and gave a rigorous discussion of formal inference
and the validity of various kinds of arguments in his treatise Prior Analytics, which was
written near the end of his time at the Academy, around 350 bce. One can almost picture
debates at the Academy, with the mathematicians providing examples of their reasoning,
which the logician Aristotle examined and criticized in order to distill his rules for making
inferences. In this treatise Aristotle discusses subjects, predicates, and syllogisms connect-
ing the two, occasionally giving a glimpse of some mathematics that may indicate what the
mathematicians were doing at the time.

In Book 1 of the Prior Analytics, Aristotle describes how to organize the study of a
subject, looking for all the attributes and subjects of both of the terms that are to appear in
a syllogism. The subject–attribute relation is mirrored in modern thought by the notion of
elements belonging to a set. The element is the subject, and the set it belongs to is defined
by attributes that can be predicated of all of its elements and no others. Just as sets can
be elements of other sets, Aristotle said that the same object can be both a subject and a
predicate. He thought, however, that there were some absolute subjects (individual people,
for example) that were not predicates of anything and some absolute predicates (what we

7The names of these two institutions have become a basic part of our intellectual world, masking their origins.
Both are named for their geographical location in Athens. The Academy was a wooded area named in honor of
Akademos, who, according to legend, saved Athens from the wrath of Castor and Pollux by telling them where the
Athenian king Theseus had hidden their sister Helen. The Lyceum was located near the temple of Apollo Lykeios
(“Apollo of the Wolves”).
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Figure 12.4. How do we exclude the possibility that two lines perpendicular to the same line may
intersect each other?

call abstractions, such as beauty) that were never the subject of any proposition.8 Aristotle
says that the postulates appropriate to each subject must come from experience. If we are
thorough enough in stating all the attributes of the fundamental terms in a subject, it will
be possible to prove certain things and state clearly what must be assumed.

In Book 2 he discusses ways in which reasoning can go wrong, including the familiar
fallacy of “begging the question” by assuming what is to be proved. In this context he offers
as an example the people who claim to construct parallel lines. According to him, they are
begging the question, starting from premises that cannot be proved without the assumption
that parallel lines exist. We may infer that there were around him people who did claim to
show how to construct parallel lines, but that he was not convinced. It seems obvious that
two lines perpendicular to the same line are parallel, but surely that fact, so obvious to us,
would also be obvious to Aristotle. Therefore, he must have looked beyond the obvious and
realized that the existence of parallel lines does not follow from the immediate properties of
lines, circles, and angles. Only when this realization dawns is it possible to see the fallacy
in what appears to be common sense. Common sense—that is, human intuition—suggests
what can be proved: If two perpendiculars to the same line meet on one side of the line,
then they must meet on the other side also, as in Fig. 12.4. Indeed, Ptolemy did prove this,
according to Proclus. But Ptolemy then concluded that two lines perpendicular to the same
line cannot meet at all. “But,” Aristotle would have objected, “you have not proved that two
lines cannot meet in two different points.” And he would have been right: The assumptions
that two lines can meet in only one point and that the two sides of a line are different regions
(not connected to each other) are equivalent to assuming that parallel lines exist.

Euclid deals with this issue in the Elements by stating as the last of his assumptions
that “two straight lines do not enclose an area.” Oddly, however, he seems unaware of the
need for this assumption when proving the main lemma (Book 1, Proposition 16) needed
to prove the existence of parallel lines.9 This proposition asserts that an exterior angle of
a triangle is larger than either of the opposite interior angles. Euclid’s proof is based on

8In modern set theory it is necessary to assume that one cannot form an infinite chain of sets a, b, c,. . . such that
b ∈ a, c ∈ b,. . . . That is, at some finite stage in such a chain of element relations, there is an “atom” that has no
elements, what is called the empty set.
9In standard editions of Euclid, there are 14 assumptions, but three of them, concerned with adding equals to
equals, doubling equals, and halving equals, are not found in some manuscripts. Gray (1989, p. 46) notes that the
fourteenth assumption may be an interpolation by the Muslim mathematician al-Nayrizi, (ca. 875–ca. 940) the result
of speculation on the foundations of geometry. That would explain its absence from the proof of Proposition 16.
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Figure 12.5. The exterior angle theorem (Elements, I, 16).

Fig. 12.5, in which a triangle AB� is given with side B� extended to �, forming the exterior
angle A��. He wishes to prove that this angle is larger than the angle at A. To do so, he
bisects A� at E, draws AE, and extends it to Z so that EZ = AE. When Z� is joined, it
is seen that the triangles ABE and �ZE are congruent by the side–angle–side criterion. It
follows that the angle at A equals ∠E�Z, which is smaller than ∠E��, being only a part
of it.

In the proof, Euclid assumes that the points E and Z are on the same side of line B�.
But that is obvious only for triangles small enough to see. It needs to be proved. To be sure,
Euclid could have proved it by arguing that if E and Z were on opposite sides of B�, then
EZ would have to intersect either B� or its extension in some point H , and then the line BH

passing through � and the line BEH would enclose an area. But he did not do that. In fact,
the only place where Euclid invokes the assumption that two lines cannot enclose an area
is in the proof of the side–angle–side criterion for congruence (Book 1, Proposition 4).10

Granting that Aristotle was right about this point, we still must wonder why he considered
the existence of parallel lines to be in need of proof. Why would he have doubts about
something that is so clear on an intuitive level? One possible reason is that parallelism
involves the infinite: Parallel lines will never meet, no matter how far they are extended.
If geometry is interpreted physically (say, by regarding a straight line as the path of a light
ray), we really have no assurance whatever that parallel lines exist—how could anyone
assert with confidence what will happen if two apparently parallel lines are extended to a
length of hundreds of light years?

As Aristotle’s discussion of begging the question continues, further evidence comes to
light that this matter of parallel lines was being debated around 350, and proofs of the
existence of parallel lines (Book 1, Proposition 27 of the Elements) were being proposed,
based on the exterior-angle principle. In pointing out that different false assumptions may
lead to the same wrong conclusion, Aristotle notes in particular that the nonexistence of
parallel lines would follow if an internal angle of a triangle could be greater than an external
angle (not adjacent to it), and also if the angles of a triangle added to more than two right
angles.11 One is almost tempted to say that the mathematicians who analyzed the matter in
this way foresaw the non-Euclidean geometry of Riemann, but of course that could not be.
Those mathematicians were examining what must be assumed in order to get parallel lines
into their geometry. They were not exploring a geometry without parallel lines.

10This proof also uses some terms and some hidden assumptions that are visually obvious but which mathematicians
nowadays insist on making explicit.
11Field and Gray (1987, p. 64) note that this point has been made by many authors since Aristotle.
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It is precisely in the matter of the parallel postulate—equivalent to the angle sum of a
triangle being two right angles—that we see the extent to which geometry was still partly
an intuitive science, not merely a matter of verbal deduction from premises. Nowadays
we take it for granted that formal systems begin with undefined terms and axioms and
proceed to deduce theorems. As far as mathematics is concerned, the undefined terms have
no interpretation. But for centuries they did have interpretation, and Aristotle shows what
it was in a passage from his Physics (Bekker, 200a).

There are closely similar inevitable paths both in mathematics and in the natural world. For if
the three sides [of a triangle] are straight lines, then [the sum of the angles of] the triangle is
two right [angles]; and if the latter holds, so does the former. But if the latter does not hold,
then the lines are not straight.

This passage gives a hint that Aristotle knew about the angles of spherical triangles and
knew that they added up to more than two right angles. Thus, although we can interpret the
word line to mean a great circle on a sphere, Aristotle could not, since a line was not merely
an undefined term for him.

PROBLEMS AND QUESTIONS

Mathematical Problems

12.1. How would you establish that two triangles with equal altitudes and equal bases are
equal (“in area,” as we would say, although Euclid would not)?

12.2. Rephrase Hippocrates’ quadrature of the lune shown in Fig. 1 of Chapter 11 in terms
of proportions between figures and the squares on parts of their boundaries. (In other
words “de-algebraize” the argument given in the text of the preceding chapter.)

12.3. Consider two rectangles R with sides a and b and S with sides c and d. Prove that
the ratio R : S is the composite of the two ratios a : c and b : d. [Hint: Assume given
three quantities x, y, and z such that a : c :: x : y and b : d :: y : z. You need to prove
that R : S :: x : z. To that end, let m and n be any positive integers such that mx > nz.
You now need to prove that mR > nS. In order to do that, choose an integer p so
large that p(mx − nz) > y. Then there is an integer q such that pmx > qy > pnz.
(Why?) It follows from the proportions that pma > qc and qb > pnd. Hence the
rectangle with sides pma and qb is larger than the rectangle with sides qc and pnd.
Show how to conclude from that result that mR > nS.]

Historical Questions

12.4. In what important ways, in addition to the logical arrangement of materials and the
insistence on strict proof, does Greek mathematics differ from the mathematics of
Mesopotamia and Egypt?

12.5. Why did Plato regard the study of mathematics as important for those who were to
be the guardians of his ideal state?
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12.6. Why is the problem of squaring the circle much more difficult than the problem of
doubling the cube or trisecting the angle?

Questions for Reflection

12.7. Why was the problem of incommensurables a genuine difficulty that needed to be
overcome, while the paradoxes of Zeno and the classical construction problems were
not?

12.8. It appears that the Greeks overlooked a simple point that might have led them to
break out of the confining circle of Euclidean methods. If only they had realized that
composite ratios represent multiplication, they would have been freed from the need
for dimensional consistency, since their ratios were dimensionless. They could, for
example, multiply any number of ratios, whereas interpreting the product of two lines
as a rectangle precluded the possibility of any geometric interpretation of product
containing more than three factors. Could they have developed analytic geometry if
they had made this realization? What else would they have needed?

12.9. Granting that if two lines perpendicular to the same transversal line meet on one
side of that line, reflection about the midpoint of the interval between the two points
where the lines meet the transversal shows that they must also meet on the other side.
How do you know that these two points of intersection are not the same point? What
other assumption must you introduce in order to establish that they are different?



CHAPTER 13

Euclid of Alexandria

In many ways, the third century bce looks like the high-water mark of Greek geometry. This
century saw the creation of sublime mathematics in the treatises of Euclid, Archimedes,
and Apollonius. It is very tempting to regard Greek geometry as essentially finished after
Apollonius, to see everything that came before as leading up to these creations and every-
thing that came after as “polishing up.” And indeed, although there were some bright spots
afterward and some interesting innovations, none had the scope or the profundity of the
work done by these three geometers.

The first of the three major figures from this period is Euclid, who is world famous for
his Elements, which we have in essence already discussed. This work is so famous, and
it dominated all teaching in geometry throughout much of the world for so long that the
man and his work have essentially merged. For centuries, people did not say that they were
studying geometry, but instead that they were studying Euclid. This one work has eclipsed
both Euclid’s other books and his biography. He did write other books, two of which still
exist, named the Data and Optics. Other works are ascribed to him by Pappus, including
Phænomena, Loci, Conics, and Porisms. Pappus quotes theorems from some of these works.

Euclid is defined for us as the author of the Elements. Apart from his writings, we know
only that he worked at Alexandria in Egypt after the establishment of the Library there. He
was traditionally thought to have flourished about 300 bce, but, as mentioned in Chapter 8,
Alexander Jones argued in favor of a later date. The quotations from ancient authors sup-
porting the traditional date are of doubtful authenticity, and they may be interpolations by
later editors. In a possibly spurious passage in Book 7 of his Synagōgē (Collection), Pappus
gives a brief description of Euclid as the most modest of men, a man who was precise but
not boastful, like (he implies) Apollonius, whom he disparages.

13.1. THE ELEMENTS

The earliest existing manuscripts of the Elements date to the ninth century ce, nearly
1200 years after the book was originally written. These manuscripts have passed by many
editors, and some passages seem to have been added by hands other than Euclid’s, especially
Theon of Alexandria. Theon was probably not interested in preserving an ancient artifact
unchanged; he was more likely trying to produce a good, usable treatise on geometry. Some
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The Oxyrhynchus fragment. Courtesy of the Penn Museum, image #142655.

manuscripts have 15 books, but the last two have since been declared spurious by the experts,
so that the currently standard edition has 13 books, the last of which looks suspiciously less
formal than the first 12, leading some to doubt that Euclid wrote it. For the few bits of evi-
dence that exist concerning the original text, we once again have the dry Egyptian climate to
thank, which preserved a few fragments of papyrus. The best example comes from an 1896
excavation at Oxyrhynchus, about 100 km upstream from Cairo, which turned up the frag-
ment of Book 2, Proposition 5, by good fortune, a key proposition from that book (see photo).
As mentioned, there are also a few ostraca containing propositions from the Elements.

Leaving aside the question of which parts were actually written by Euclid, we shall give
a summary of the contents, which we have seen coming together in the work of the fifth
and fourth-century mathematicians.

13.1.1. Book 1

The contents of the first book of the Elements are covered in the standard geometry courses
given in high schools. This material involves the elementary geometric constructions of
copying angles and line segments, drawing squares, and the like and the basic properties of
parallelograms, culminating in the Pythagorean theorem (Proposition 47) and its converse
(Proposition 48). In addition, these properties are applied to the problem of transformation
of area, leading to the construction of a parallelogram with a given base angle and having
an area equal to that of any given polygon (Proposition 45). There the matter rests until the
end of Book 2, where it is shown (Proposition 14) how to construct a square equal to any
given polygon.

13.1.2. Book 2

The second book contains geometric constructions needed to solve problems that may
involve quadratic incommensurables without resorting to the Eudoxan theory of proportion.
For example, a fundamental result is Proposition 5: If a straight line is cut into equal and
unequal segments, the rectangle contained by the unequal segments of the whole together
with the square on the straight line between the points of the section is equal to the square
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Figure 13.1. Book 2, Proposition 5: Expression of a rectangle as the difference of two squares.

on the half. This proposition is easily seen using Fig. 13.1, in terms of which it asserts that
(A + B) + D = 2A + C + D; that is, B = A + C. It is used as a “polarization” technique,
in the form A + B = (2A + C + D) − D, where A + B is a rectangle, 2A + C + D is the
square on the average of its length and width, and D is the square on half of the difference
between the length and width.

Here for the first time, the polarization identity and the Pythagorean theorem are com-
bined to express a rectangle as the difference of two squares which in turn is the square on a
known line, thus implicitly showing how to transform a rectangle into a square. As we have
said, the key ingredients were known in ancient Mesopotamia, but not combined in this way.

Geometric Algebra. We have already mentioned the once-popular interpretation of
Book 2 as geometric expressions of what we regard as algebraic identities. It is understand-
able that people were tempted to think of these propositions in this way. The proposition
just stated says uv = (

u+v
2

)2 − (
u−v

2

)2. That fact, interpreted numerically, occurs as a fun-
damental tool in the cuneiform tablets. For if the unequal segments of the line are regarded
as two unknown quantities, then half of the original line segment is their average, and the
straight line between the points (that is, the segment between the midpoint of the whole
segment and the point dividing the whole segment into unequal parts) is what we called
earlier the semidifference. Thus, this proposition says that the square of the average equals
the product plus the square of the semidifference. Recall that that result was fundamental
for solving the important problems of finding two numbers, given their sum and product
or their difference and product. On the other hand, in most cases, even in the cuneiform
tablets, those two numbers were still the length and width of a rectangle. Thus, who can say
whether this proposition was thought of separately from plane geometry? In Euclid, most
of the geometric constructions that depend on this proposition (the problems of application
with defect and excess) do not appear until Book 6. These application problems could have
been solved in Book 2 in the case when the excess or defect is a square. Instead, these
special cases were passed over and the more general results, which depend on the Eudoxan
theory of proportion to cover the incommensurable cases, were included in Book 6.

Book 2 also contains the construction of what came to be known as the Section, that
is, the division of a line in mean and extreme ratio so that the whole is to one part as that
part is to the other. But Euclid is not ready to prove that version yet, since he doesn’t have
the theory of proportion. Instead, he gives what must have been the original form of this
proposition (Proposition 11): Cut a line so that the rectangle on the whole and one of the
parts equals the square on the other part. One way of doing it is shown in Fig. 13.2.

After it is established that four lines are proportional when the rectangle on the means
equals the rectangle on the extremes (Proposition 16, Book 6), it becomes possible to convert
this construction into the construction of the Section (Proposition 30, Book 6).
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Figure 13.2. Line AB is given with midpoint C, and ABDL is a square. The circular arc
�

DE is

centered at C and the semicircle
�

FE is centered at B. Then AE : AB :: AB : BF :: BF : AF . Also,
the rectangle AFNL equals the square FBKM, that is, the rectangle on the whole and the segment
AF equals the square on the complementary segment FB.

13.1.3. Books 3 and 4

The next two books take up topics familiar from high-school geometry: (a) circles, tangents,
and secants and (b) inscribed and circumscribed polygons. Book 4 shows how to inscribe
a regular pentagon in a circle (Proposition 11—this construction requires the construction
given in Proposition 11 of Book 2 and shown in Fig. 13.2) and how to circumscribe a regular
pentagon about a circle (Proposition 12), and then it reverses the figures and shows how to
get the circles given the pentagon (Propositions 13 and 14). After the easy construction of
a regular hexagon (Proposition 15), Euclid finishes off Book 4 with the construction of a
regular pentakaidecagon (15-sided polygon, Proposition 16).

13.1.4. Books 5 and 6

The Eudoxan theory of geometric proportion is expounded in Book 5, which contains the
construction of the mean proportional between two lines (Proposition 13 of Book 5). In
Proposition 16 of Book 6, Euclid proves the all-important result that if four lines (line
segments, as we would say) are in proportion, then the rectangle on the means equals the
rectangle on the extremes. This theory is applied to solve the problems of application with
defect and excess. A special case of the latter, in which it is required to construct a rectangle
on a given line having area equal to the square on the line and with a square excess is the
very famous Section (Proposition 30). Euclid phrases the problem as follows: Divide a line
into mean and extreme ratio. This means to find a point on the line so that the whole line is
to one part as that part is to the second part. The Pythagorean theorem is then generalized
to cover not merely the squares on the sides of a right triangle, but any similar polygons on
those sides (Proposition 31). The book finishes with the well-known statement that central
and inscribed angles in a circle are proportional to the arcs they subtend.

13.1.5. Books 7–9

Euclid’s exposition of Greek number theory in Books 7–9 was discussed in Chapter 9. Here,
since irrationals cannot occur, the notion of proportion is redefined to eliminate the need
for the Eudoxan technique.
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13.1.6. Book 10

The tenth book is evidently placed so as to be an extension of the rational theory of proportion
in the number-theory books to a more detailed study of the situation when incommensurable
lines arise that can be handled with no techniques beyond square roots, what we would
call quadratic irrationals. This book occupies fully one-fourth of the entire length of the
Elements. For its sheer bulk, one would be inclined to consider it the most important of all
the 13 books, yet its 115 propositions are among the least studied of all, principally because
of their technical nature. The irrationals constructed in this book by taking square roots are
needed in the theory developed in Book 13 for inscribing regular solids in a sphere (that is,
finding the lengths of their sides knowing the radius of the sphere). The book begins with the
operating principle of the method of exhaustion, also known as the principle of Archimedes.
That is, if a quantity is continually cut in half, it will eventually become smaller than any
preassigned quantity of the same type. The way to demonstrate incommensurability through
the Euclidean algorithm then follows as Proposition 2: If, when the smaller of two given
quantities is continually subtracted from the larger, that which is left never divides evenly
the one before it, the quantities are incommensurable. We used this method of showing that
the side and diagonal of a regular pentagon are incommensurable in Chapter 9.

13.1.7. Books 11–13

The basic concepts of solid geometry, namely planes, parallelepipeds, and pyramids, are
introduced in Book 11. The theory of proportion for these solid figures and the regular
solids (cube, tetrahedron, octahedron, dodecahedron, icosahedron) is developed in Book 12,
which contains the theorem that circles are proportional to the squares on their diameters
(Proposition 2). This result, as mentioned in Chapter 11, is needed to make Hippocrates’
quadrature of a lune rigorous.

Book 12 continues the development of solid geometry by establishing the usual propor-
tions and volume relations for solid figures; for example, a triangular prism can be divided
by planes into three equal pyramids (Proposition 7), a cone is one-third of a cylinder on
the same base, and similar cones and cylinders are proportional to the cubes of their lin-
ear dimensions, ending with the proof that spheres are proportional to the cubes on their
diameters (Proposition 18). Archimedes (or someone who edited his works) credited these
theorems to Eudoxus.

Book 13, the last book of the Elements, is devoted to the construction of the regular
solids and the relation between their sides, diagonals, and apothems and the radius of the
sphere in which they are inscribed. The last proposition (Proposition 18) sets out the sides
of these regular solids and their ratios to one another. An informal discussion following this
proposition concludes that there can be only five regular solids.

13.2. THE DATA

Euclid’s Elements assume a certain familiarity with the principles of geometric reasoning,
principles that are explained in more detail in the Data. The Greek name of this work
(Dedoména) means [Things That] Have Been Given, just as Data does in Latin. The title
is a good description of the contents, which discuss the conditions that determine various
geometric objects uniquely. The propositions in this book can be interpreted in various
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Figure 13.3. Proposition 81 of Euclid’s Data.

ways. Some can be looked at as uniqueness theorems. For example (Proposition 53), if the
shapes—that is, the angles and ratios of the sides—are given for two polygons, and the ratio
of the areas of the polygons is given, then the ratio of any side of one to any side of the
other is given. Here, being given means being uniquely determined. Uniqueness is needed
in proofs and constructions so that one can be sure that the result will be the same no matter
what choices are made. It is an issue that arises frequently in modern mathematics, where
operations on sets are defined by choosing representatives of the sets; when that is done, it
is necessary to verify that the operation is well-defined, that is, independent of the choice
made. An example of this need has already been cited in the previous chapter in connection
with the definition of a composite ratio. In geometry we frequently say, “Let ABC be a
triangle having the given properties and having such-and-such a property,” such as being
located in a particular position. In such cases we need to be sure that the additional condition
does not restrict the generality of the argument. In still another sense, this same proposition
may guarantee that an explicit construction is possible, thereby removing the necessity of
including it in the exposition of a theorem.

Other propositions assert that certain properties are invariant. For example (Proposi-
tion 81), when four lines A, B, �, and � are given, and the line H is such that � : E = A : H ,
where E is the fourth proportional to A, B, and �, then � : � = B : H . This proposition,
illustrated in Fig. 13.3, is trivial to prove in modern notation. It also follows from Propo-
sition 16 of Book 6 of the Elements, since AE = B� = �H , that is, A : B :: � : E and
Delta : E :: AH . This proposition is a lemma that can be useful in working out locus prob-
lems, which require finding a curve on which a point must lie if it satisfies certain prescribed
conditions. Finally, a modern mathematician might interpret the assertion that an object is
“given” as saying that the object “exists” and can be meaningfully talked about. To Euclid,
that existence would mean that the object was explicitly constructible. (However, note that
in two-dimensional figures, Euclid was inclined to gloss over these details, as in the proof
of Proposition 2 of Book 12, exhibited in Chapter 12.)

PROBLEMS AND QUESTIONS

Mathematical Problems

13.1. Show how the construction of the Section (Fig. 13.3) can be interpreted as a problem
in application with square excess. (See Fig. 13.4.)
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Figure 13.4. The Section as a problem in application with square excess. Rectangle BEGI, which
is applied to the extension of BC, equals square ABCD by Proposition 5 of Book 2. The “excess”
CEGH is a square by the construction of the Section.

13.2. Use an argument similar to the argument in Chapter 9 showing that the side and
diagonal of a pentagon are incommensurable to show that the side and diagonal
of a square are incommensurable. That is, show that the Euclidean algorithm, when
applied to the diagonal and side of a square, requires only two steps to produce the side
and diagonal of a smaller square and hence can never produce an equal pair. [Hint: In
Fig. 13.5, AB = BC, angle ABC is a right angle,AD is the bisector of angle CAB, and
DE is drawn perpendicular to AC. Prove that BD = DE, DE = EC, and AB = AE.
Then show that the Euclidean algorithm starting with the pair (AC, AB) leads first
to the pair (AB, EC) = (BC, BD) and then to the pair (CD, BD) = (CD, DE), and
these last two are the diagonal and side of a square.]

13.3. The problem of constructing a rectangle of prescribed area on part of a given base a

in such a way that the defect is a square is equivalent, when formulated as a problem
about the lengths of the sides, to the problem of finding two numbers given their sum
and product (the two numbers are the lengths of the sides of the rectangle). Stated in
algebraic language, this problem asks for two numbersu andv (interpreted as lengths),
such that u + v = L and uv = A, where L is the given length and A the given area.

Figure 13.5. Diagonal and side of a square.
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Show that this is equivalent to solving the quadratic equation x2 + A = Lx. [Hint:
If u and v are the roots of this equation, then (x − u)(x − v) = 0 when x is a root.]
Since the largest rectangle that can be constructed on part of a line L so as to leave a
square defect has area L2/4 (the square on half of the line), the inequality L2 ≥ 4A

must hold. What does this condition say in terms of the algebra. [Hint: Look at the
quadratic formula for solving the equation x2 − Lx + A = 0.]

Historical Questions

13.4. Was the Elements an exposition of the most advanced mathematics of its time?

13.5. What does Euclid have to say in the Elements about the problems of squaring the
circle, doubling the cube, and trisecting the angle?

13.6. Why does Euclid give two definitions of ratio and proportion, one in Book 6, the
other in Book 7?

Questions for Reflection

13.7. If you were editing the Elements, how would you separate it into major parts. Which
books belong in each?

13.8. Proposition 14 of Book 2 of Euclid shows how to construct a square equal in area
to a rectangle. Since this construction is logically equivalent to constructing the
mean proportional between two line segments, why does Euclid wait until Book 6,
Proposition 13 to give the construction of the mean proportional?

13.9. Reflecting on the “geometric algebra” hypothesis, consider the plausibility of the
following pseudo-syllogism: Mathematician A proved result B. Result B is logically
equivalent to result C. Therefore mathematician A proved result C. Is this valid
reasoning from the point of view of history? From the point of view of heritage?
(Refer to Chapter 1 for an explanation of the difference between the two.)



CHAPTER 14

Archimedes of Syracuse

Archimedes is one of a small number of mathematicians of antiquity of whose works we
know more than a few fragments and of whose life we know more than the approximate
time and place. The man indirectly responsible for his death, the Roman general Marcellus,
is also indirectly responsible for the preservation of some of what we know about him.
Archimedes lived in the Greek city of Syracuse, the name the Greeks seem to have used
for the whole island of Sicily on which the city is located, during the third century bce
and is said by Plutarch to have been “a relative and a friend” of King Hieron II. Since
Sicily lies nearly on a direct line between Carthage and Rome, it became embroiled in the
Second Punic War (218–201 bce). Marcellus took the city of Syracuse after a long siege,
and Archimedes was killed by a Roman soldier in the chaos of the final fall of the city.
In the course of writing a biography of Marcellus, Plutarch included some information on
Archimedes.

According to Plutarch’s biography of Marcellus, the general was very upset that
Archimedes had been killed and had his body buried in a suitably imposing tomb. When a
nation is conquered, it often happens that the conquerors are insufficiently appreciative of its
cultural achievements and the conquered nation is unable to preserve the relics of that culture.
Such was the case with Archimedes. According to Eutocius, a biography of Archimedes
was written by a certain Heracleides, who is mentioned in some of Archimedes’ letters.
However, no copy of this biography is known to exist today. A century after Archimedes’
death, his tomb had fallen into neglect. In his Tusculan Disputations, written in 45 bce, the
famous Roman orator and statesman Cicero recalled his discovery of this tomb in 76 bce.

When I was quaestor I tracked out [Archimedes’] grave, which was unknown to the Syracusans
(as they totally denied its existence), and found it enclosed all round and covered with brambles
and thickets; for I remembered certain doggerel lines inscribed, as I had heard, upon his tomb,
which stated that a sphere along with a cylinder had been set up on the top of his grave. . . Slaves
were sent in with sickles who cleared the ground of obstacles. . . So you see, one of the most
famous cities of Greece. . . would have been ignorant of the tomb of its one most ingenious
citizen, had not a man of Arpinum pointed it out.

During the Middle Ages, the tomb of Archimedes was lost again. In popular tradition,
several tombs were erroneously believed to belong to Archimedes. However, the actual tomb
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may have been rediscovered in 1957, during an excavation.1 Since Syracuse was taken in
212 bce and Archimedes was reported by the twelfth-century Byzantine writer Johannes
Tzetzes to have been 75 years old at the time of his death, his dates are generally given as
287–212.

There are many legends connected with Archimedes, scattered among the various
sources. Plutarch, for instance, says that Archimedes made many mechanical contrivances
but generally despised such work in comparison with pure mathematical thought. Plutarch
also reports three different stories of the death of Archimedes and tells us that Archimedes
wished to have a sphere inscribed in a cylinder carved on his tombstone. The famous story
that Archimedes ran naked through the streets shouting “Eureka!” (“I’ve got it!”) when he
discovered the principle of specific gravity in the baths is reported by the Roman architect
Vitruvius. Proclus gives another well-known anecdote: that Archimedes built a system of
pulleys that enabled him (or King Hieron) single-handedly to pull a ship through the wa-
ter. Finally, Plutarch and Pappus both quote Archimedes as saying in connection with his
discovery of the principle of the lever that if there were another earth, he could move this
one by standing on it (“δóς μoι πoυ̂ στω̂ καὶ κινω̂ τὴν γη̂ν”).

14.1. THE WORKS OF ARCHIMEDES

With Archimedes we encounter the first author of a considerable body of original mathe-
matical research that has been preserved to the present day. He was one of the most versatile,
profound, creative, imaginative, rigorous, and influential mathematicians who ever lived.
Ten of Archimedes’ treatises have come down to the present, along with a Book of Lemmas
that seems to be Archimedean. Some of these works are prefaced by a “cover letter” intended
to explain their contents to the person to whom Archimedes sent them. These correspon-
dents of Archimedes were: Gelon, son of Hieron II and one of the kings of Syracuse during
Archimedes’ life; Dositheus, a student of Archimedes’ student and close friend Conon;
and Eratosthenes. Like the manuscripts of Euclid, all of the Archimedean manuscripts date
from the ninth century or later. These manuscripts have been translated into English and
published by various authors. A complete set of Medieval manuscripts of Archimedes’ work
has been published by Marshall Clagett in the University of Wisconsin series on Medieval
Science. In 1998, a palimpsest2 of Archimedes’ work was sold at auction for $2 million.

The 10 treatises referred to above are the following.

1. On the Equilibrium of Planes, Part I

2. Quadrature of the Parabola

3. On the Equilibrium of Planes, Part II

1This claim was made by Professor Salvatore Ciancio (1965) on the basis of several criteria, including the location
and date of the relics and a gold signet ring found in the crematory urn inside the tomb and bearing the ancient
seal of the city of Alexandria. The sphere and cylinder mentioned by Cicero were not part of the find. The claim
was contradicted at the time by the Curator of Antiquities in Syracuse Prof. Bernabò Brea. Another counterclaim
is made by D. L. Simms in “The trail for Archimedes’ tomb,” Journal of the Warburg and Courtauld Institute, 53
(1990), pp. 281–286 (reference taken from the Worldwide Web). More information can be obtained at the address
http://www.mcs.drexel.edu/˜crorres/Archimedes/contents.html.
2That is, a book in which earlier work has been written and washed off so that new material could be entered in it.
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4. On the Sphere and the Cylinder, Parts I and II

5. On Spirals

6. On Conoids and Spheroids

7. On Floating Bodies

8. Measurement of a Circle

9. The Sand-reckoner

10. The Method

References by Archimedes himself and other mathematicians tell of the existence of
other works by Archimedes, of which no manuscripts are now known to exist. These include
works on the theory of balances and levers, optics, the regular polyhedra, the calendar, and
the construction of mechanical representations of the motion of heavenly bodies.

From this list we can see the versatility of Archimedes. His treatises on the equilibrium
of planes and floating bodies contain principles that are now fundamental in mechanics
and hydrostatics. The works on the quadrature of the parabola, conoids, and spheroids, the
measurement of the circle, and the sphere and cylinder extend the theory of proportion, area,
and volume found in Euclid for polyhedra and polygons to the more complicated figures
bounded by curved lines and surfaces. The work on spirals introduces a new class of curves,
and it develops the theory of length, area, and proportion for them.

Since we do not have space to discuss all of Archimedes’ geometry, we shall confine
the details of our discussion to what may be his greatest achievements: finding a planar
region equal to the surface of a sphere and a polygonal region equal to a segment of a
parabola. In addition, because of its impact on the issues involving proof that we have been
discussing, we shall discuss his Method and show how he used it to discover certain results
on quadrature.

14.2. THE SURFACE OF A SPHERE

Archimedes’ two works on the sphere and cylinder were sent to Dositheus. In the letter
accompanying the first of these, he gives some of the history of the problem. Archimedes
considered his results on the sphere to be rigorously established, but he did have one regret.
He wished he could have published them before Conon’s death, “for he is the one we regard
as most capable of understanding and rendering a proper judgment on them.”

Archimedes sought a plane surface equal to the surface of a sphere by looking at a
“hybrid figure,” which curves in only one direction. (A sphere curves in every direction.)
Specifically, he looked at the lateral surface of a frustum of a cone. In our terms, the area of a
frustum of a cone with upper radius r, lower radius R, and side of slant height h is πh(R + r).
Archimedes, working in the Euclidean tradition, did not use formulas like this. Rather, he
said that the frustum is equal to a disk whose radius is the mean proportional between the
slant height and the sum of the two radii—that is, a disk whose radius is

√
h(R + r). In our

exposition, we shall use this fact in the following form: A rectangle whose length is R + r

and whose width is h equals the square on the radius of a circle equal to the lateral surface
of the frustum. A conical frustum is shown in Fig. 14.1, and the simple way of getting its
area is illustrated in Fig. 14.2. To save tedium, we will not repeat Archimedes’ proof of this
fact, but rather explain it in terms of modern geometry, using formulas.
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r h R

Figure 14.1. Left: Frustum of a cone of slant height h and upper radius r. Right: Same frustum,
turned upside down to exhibit the lower radius R.

When the frustum shown in Fig. 14.1 is cut open and laid flat, it occupies part of the
annulus between two concentric circles of radii r′ and R′, respectively. The portion α of this
annulus occupied by the frustum is directly proportional to the portion of a complete circle
the two boundaries of the frustum occupy. That portion is the same for both circles. The
full circles would have circumference 2πr′ and 2πR′, respectively, whereas the portions of
them corresponding to the boundaries of the frustum have length 2πr and 2πR, respectively,
where r and R are the radii of the boundary circles before the frustum was cut open. In other
words, α = r/r′ = R/R′. Now the area of the full annulus, as we know, is π(R′2 − r′2) =
π(R′ − r′)(R′ + r′) = πh(R′ + r′). Hence the portion of it occupied by the cut-open frustum
is πh(αR′ + αr′) = πh(R + r). In other words, the radius of a circle whose area equals the
lateral area of the frustum is

√
h(R + r), as asserted. Notice that the formula works even

when the “frustum” is a complete cone, that is, when r = 0. The area of a cone of base radius
R and slant height h is πRh. (In the even more extreme case when the cone is flattened into
a disk, we get h = R, and this same formula gives the area of the disk.)

This result can be applied to the figures generated by revolving a circle about a diameter
with a regular 4n-sided polygon inscribed in it. Archimedes illustrated his argument with
n = 4, but we shall illustrate it n = 2, that is, an inscribed octagon. The general idea is
sufficiently clear from that case. Because all the right triangles in Fig. 14.3 are similar, we
have A′B : AB :: BE : AE :: B′E : EF :: CG : FG :: C′G : GH :: DI : HI :: D′I : IA′.

Figure 14.2. The frustum cut open. The angle α is to a complete rotation as the radius of the circular
section at each point is to the slant distance to the apex of the cone. For the top and bottom circles of the
frustum, those slant distances are shown here as r′ and R′. Thus R : R′ :: r : r′ :: α : complete rotation,
where r and R are the radii of the upper and lower base of the frustum.
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Figure 14.3. Finding the surface area of a sphere.

Since these ratios are all equal, we can add the first and second terms of any subset of them
without changing the ratio. In particular, then

A′B : AB :: (BE + B′E + CG + C′G + DI + D′I) :

(AE + EF + FG + GH + HI + IA′).

Since this last term is just AA′ (the diameter of the sphere), we get

A′B : AB ::
(
BE + (B′E + CG) + (C′G + DI) + D′I

)
: AA′.

Since all the chords in this figure are equal to AB, which is the slant height of the cones or
frusta generated when the figure is revolved about the diameter AA′, each of the rectangles
whose sides are AB and BE, AB and B′E + CG, AB and C′G + DI, and AB and D′I
is equal to the square whose side is the radius of a circle equal to corresponding cone or
frustum. (The sums BE + 0, B′E + CG, C′G + DI, and D′I + 0 are the sums of the two
radii of the frusta.)

At this point, we need a small fact that is easy to prove metrically, but more complicated
to state in Euclid’s language: If S1 and S2 are squares whose sides are the radii of disks
D1 and D2 respectively, and S3 is a square such that S3 = S1 + S2, then the side of square
S3 is the radius of a disk D3 such that D3 = D1 + D2. This result is easily proved from
the proportionality of disks and the squares on their radii (Proposition 2 of Book 12 of the
Elements). When combined with the Pythagorean theorem, this result implies that the disk
whose radius is the hypotenuse of a right triangle is the sum of the disks whose radii are
the legs.

Thus, the fact (Elements, Book 6, Proposition 16) that when four lines are in proportion,
the rectangle on the means equals the rectangle on the extremes means that the rectangle
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on AB and the sum BE + (B′E + CG) + (C′G + DI) + D′I equals the rectangle on A′B
and AA′. But the former, as just noted, is equal to the square on the radius of a disk equal
to the sum of all these frusta. This is Proposition 22 of Archimedes’ paper: The rectangle
on AA′ and AB is the square on the radius of a circle equal to the sum of the (cones and)
frusta generated by revolving the figure.

The final step is to appeal to the method of exhaustion. If the side AB is chosen sufficiently
small, A′B can be made as close as we like to the diameter AA′, and the sum of the areas
of the frusta can be made as close as we like to the surface of the sphere. Thus, as we
would now put it, “in the limit” as the number of sides increases without bound, we find
that the radius of a disk equal to the surface of the sphere is AA′, the diameter of the
sphere. (Proposition 33): The surface of any sphere is equal to four times the greatest
circle in it.

This achievement towers above anything found in any of Archimedes’ predecessors. In
order to get it, he had to make certain definitions about the area of a sphere, definitions that
are in full agreement with intuition, but cannot be dispensed with even now. Once those
definitions were made, he proved the result with full Euclidean rigor, leaving out no details.
This argument is the only ancient expression for a plane region equal to the surface of a
sphere that meets Euclidean standards of rigor.

Three remarks should be made on this proof. First, in view of the failure of efforts
to square the circle, it seems that the later Greek mathematicians had two “standard”
plane regions that could be used for comparing curved surfaces: the circle and the square.
Archimedes expressed the surface of a sphere by finding a disk equal to it. Second,
Archimedes could certainly have produced the “metric” version of this proof that is usually
stated nowadays—namely that the area of a sphere of radius r is 4πr2—since in his work on
the measurement of a circle, he showed that a disk equals a right triangle whose legs are the
radius and circumference of the disk, and also gave a numerical approximation to the ratio of
the circumference and the diameter, which we express by the inequalities 3 10

71 < π < 3 1
7 .3

Finally, Archimedes did not discover this theorem by Euclidean methods. He told how he
came to discover it in his Method.

14.3. THE ARCHIMEDES PALIMPSEST

Early in the twentieth century the historian of mathematics J. L. Heiberg, reading in a
bibliographical journal of 1899 the account of the discovery of a tenth-century manuscript
with mathematical content, deduced from a few quotations that the manuscript was a copy
of a work of Archimedes. In 1906 and 1908 he journeyed to Constantinople and established
the text, as far as was possible. Attempts had been made to wash off the mathematical text
during the Middle Ages so that the parchment could be used to write a book of prayers.
The 177 pages of this manuscript contain parts of some of the works just discussed—
it is the only source for the work on floating bodies—and a work called Method. The
existence of such a work had been known because of the writings of commentators on
Archimedes.

3These two results, interpreted in our language, imply that one-dimensional π—the ratio of circumference to
diameter—and two-dimensional π—the ratio of a disk to the square on its radius—are the same number. But,
being irrational, it was not a number to Archimedes.
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Figure 14.4. Volumes of sphere, cone, and cylinder.

14.3.1. The Method

There are quotations from the Method in the Metrica, of Heron of Alexandria, a work that
was discovered in 1903. The Method had been sent to the astronomer Eratosthenes as a
follow-up to a previous letter that had contained the statements of two theorems without
proofs and a challenge to discover the proofs. Both of the theorems involve the volume
and surface of solids of revolution. In contrast to his other work on this subject, however,
Archimedes here makes free use of the principle now commonly known as Cavalieri’s
principle, which asserts that if the horizontal sections of two solids are in the same ratio at
every elevation, then the volumes of those solids are in that same ratio. Archimedes’ Method
is a refinement of this principle, obtained by imagining the sections of a region balanced
about a fulcrum. The reasoning is that if each pair of corresponding sections balance at
distances a and b, then the bodies themselves will balance at these distances, and therefore,
by Archimedes’ principle of the lever, the area or volume of the two bodies must be have
the ratio b : a. Archimedes used this method to prove the following result:

A sphere is four times the cone with base equal to a great circle of the sphere and height
equal to its radius. The cylinder with base equal to a great circle of the sphere and height
equal to the diameter is half again as large as the sphere.

Archimedes’ proof is based on Fig. 14.4. If this figure is revolved about the line CAH , the
circle with center at K generates a sphere, the triangle AEF generates a cone, the rectangle
LGFE generates a cylinder, and each horizontal line such as MN generates a disk. The
point A is the midpoint of CH . Archimedes shows that the area of the disk generated by
revolving QR plus the area of the disk generated by revolving OP has the same ratio to
the area of the disk generated by revolving MN that AS has to AH . It follows from his
work on the equilibrium of planes that if the first two of these disks are hung at H ,4 they

4In looking at Fig. 14.4, you have to imagine that gravity is acting horizontally rather than vertically.
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will balance the third disk about A as a fulcrum. Archimedes concluded that the sphere and
cone together placed with their centers of gravity at H would balance (about the point A)
the cylinder, whose center of gravity is at K.

Therefore,

HA : AK = (cylinder) : (sphere + cone).

But HA = 2AK. Therefore, the cylinder equals twice the sum of the sphere and the cone
AEF . And since it is known that the cylinder is three times the cone AEF , it follows that
the cone AEF is twice the sphere. But since EF = 2BD, cone AEF is eight times cone
ABD, and the sphere is four times the cone ABD.

From this fact, Archimedes easily deduces the famous result allegedly depicted on his
tombstone: The cylinder circumscribed about a sphere equals the volume of the sphere plus
the volume of a right circular cone inscribed in the cylinder.

Having concluded the demonstration, Archimedes reveals that this method enabled him
to find a planar region equal to the surface of a sphere. He writes

For I realized that just as every circle equals a triangle having as its base the circumference of
the circle and altitude equal to the [distance] from the center to the circle [that is, the radius],
in the same way every sphere is equal to a cone having as its base the surface of the sphere and
altitude equal to the [distance] from the center to the sphere.

Thus, we now imagine two cones: One has a base circle equal to the surface of the sphere
and height equal to the radius of the sphere, while the second is circumscribed about the
sphere and hence has base circle equal to the equatorial circle of the sphere and height equal
to twice its radius. Archimedes had established intuitively that the volume of the sphere was
one-third of the former and two-thirds of the latter and, therefore, four-thirds of the cylinder
obtained by taking the bottom half of the latter. But this last cylinder has the same height as
the first, and therefore the volumes of the two are proportional to their bases. That means the
base of the first cylinder (the area of the sphere) is four times the base of the last, which is
the area of the equatorial circle. This is how Archimedes came to discover the result, which
he then proved by the method of exhaustion (with a few reasonable assumptions about the
approximation of areas). The method of exhaustion is very satisfying in settling an argument,
but useless as a way of discovering the result. The Method shows us Archimedes’ route to
that discovery.

14.4. QUADRATURE OF THE PARABOLA

Archimedes used this method of imaginatively “balancing line segments” to show that the
area of a parabolic segment is one-third larger than the largest triangle that can be inscribed
in it. Having done that, he then proceeded to provide a rigorous proof of this fact using the
method of exhaustion.

14.4.1. The Mechanical Quadrature

The mechanical proof is illustrated on the left side of Fig. 14.5, where K is the midpoint of the
side BC of the triangle ABC and AC is the tangent to the parabola at A. Archimedes showed
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Figure 14.5. Left: Mechanical quadrature of a segment of the parabola py = x2. Right: Rigorous
quadrature based on the fact that � ABD is eight times as large as each of � AED and � BDF.

that the line EG whose midpoint is at N will be exactly balanced about a fulcrum at K if
the portion FG of the line is suspended at point M, where AK = KM. He then concluded
that the whole triangle ABC in the position where it is would be exactly balanced by the
parabolic segment hung at M. Since the center of gravity of the triangle lies one-third of the
way from K to A, it follows that �ABC is three times the parabolic segment (which, for
convenience, we shall refer to as S). But it is easily seen that �ABC is four times �ABD,
and hence S is one-third larger than �ABD.

14.4.2. The Rigorous Quadrature

Although Archimedes willingly revealed the intuitive considerations that enabled him to
solve the difficult problem of quadrature of a parabolic segment, he knew that this argument
went beyond the pure methodology of the Euclidean tradition. He therefore followed this
mechanical quadrature with a strictly rigorous proof, which we shall now describe.

Archimedes showed using properties of the parabola which we will not take the time to
discuss, that if two more triangles AED and BFD are inscribed in the two sections cut off
by sides AD and BD of the original triangle (see the right-hand side of Fig. 14.5, then these
two triangles together equal exactly one-fourth of triangle ABD. Since adjoining the two
new triangles removes more than half of the region between the segment and the triangle,
it is clear that repeating this operation will eventually get a finite set of triangles which are
together smaller than the parabolic segment, but differ from it by less than any specified
magnitude.

Continuing in that way, doubling the number of new triangles at each step while reducing
their total area by a factor of 4, he got what we would call an infinite (geometric) series for
the magnitude of the parabolic segment:

�ABD ×
(

1 + 1

4
+ 1

42 + 1

43 + · · ·
)
.
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Since it would not have been acceptable in a proof to speak of the sum of infinitely many
terms, Archimedes merely said that it was clear that the sum of the triangles at any stage
of the operation was obviously not greater than S. That is, S could not be less than, for
example,

�ABD ×
(

1 + 1

4
+ 1

42 + 1

43 + 1

44 + 1

45

)
.

But, on the other hand, given any region U smaller than S, one could take enough triangles
to get a sum of this form larger than U.

Archimedes observed that multiplying the last term by 4/3 at any stage of the oper-
ation would cause the sum of the terms up to that stage to equal 4/3. That is, this fi-
nite sum would collapse (“telescope,” we might say), if the last term were multiplied by
4
3 , since

1

44 + 1

3 × 44 = 1

3 × 43 .

This relation causes the last two terms here to “merge” into 1
3×43 . But then the last two

terms of the altered sum merge similarly into 1
3×42 , and this argument can be repeated until

the whole sum reduces to 4
3 . Thus, he had shown that

�ABD ×
(

1 + 1

4
+ · · · + 1

4n

)
= 4

3
�ABD − 1

3 · 4n
�ABD .

Hence the sum on the left is always less than 4
3�ABD, but given any region U smaller than

4
3�ABD, one could take enough triangles to get a sum of this form larger than U.

It is now clear that S must equal 4
3�ABD. If S were larger than 4

3�ABD, the first
argument shows that we could take enough triangles to get a sum that is larger than 4

3�ABD,
which contradicts the second argument. Exactly the same reasoning applies if we assume
4
3�ABD is larger than S.

Observe that Archimedes has given a proof that is entirely finitistic and has not men-
tioned any infinite series here. He has proved two things: first, if U > S, then U > 4

3�ABC;
second, if U < S, then U < 4

3�ABC. The assumption 4
3�ABC < S would (by the second

result) imply that 4
3�ABC < 4

3�ABC, which is absurd, and since the first result sim-
ilarly rules out the possibility that 4

3�ABC > S, the only remaining possibility is that
4
3�ABC = S. In so doing, he has given exactly the kind of epsilon–delta proof that calcu-
lus students so often find mystifying. Newton once defended his formal rules in calculus
(which we now establish rigorously by using the notion of a limit) by saying that it would
be possible to justify them using the trichotomy of the ancient mathematicians but that
there was no need to undergo such tedium. He must have had this method of exhaustion
in mind.



158 ARCHIMEDES OF SYRACUSE

PROBLEMS AND QUESTIONS

Mathematical Problems

14.1. Use analytic geometry to justify the balancing in Archimedes’ mechanical quadrature
of the parabola. [Hint: Show that EG : FG :: (b − a) : (b − x). Use the expressions
shown for the points E, F , and G. Here the parabola is assumed to have the equation
py = x2, where p is negative, since the parabola opens downward, and we take the
zero value of y to be the highest point on the parabola.]

14.2. Prove that a disk D that equals the sum of disks D1 of radius r1 and D2 of radius r2
necessarily has radius r satisfying r2 = r2

1 + r2
2. This is easy to do using the formula

A = πr2. Try to do it using only the fact that if P1 and P2 are similar polygons with a
pair of corresponding sides equal to r1 and r2, respectively, then P1 : P2 :: D1 : D2.
(Use the result of Proposition 31 of Book 6 of the Elements, which asserts that the
Pythagorean theorem holds for any similar polygons attached to the sides of a right
triangle.)

14.3. Give an alternative proof of Archimedes’ result on the sphere and cylinder by showing

(see Fig. 14.6) that AB
2 + AC

2 = AB
2 + OA

2 = OB
2 = AD

2
. Hence the sum of

the sections of the cone and sphere equals the section of the cylinder.

Historical Questions

14.4. What advances in geometry, beyond the basic results found in the Elements, are due
to Archimedes?

14.5. What achievements of Archimedes show his versatility as a mathematician and sci-
entist?

Figure 14.6. When the square circumscribed about the circle is revolved about its vertical midline
(the line through A and A′), it generates the cylinder circumscribed about the sphere generated by
the circle. The diagonals of the square generate a double-napped cone inscribed in the cylinder. The
cylindrical section equals the sum of the sections of the cone and sphere.
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14.6. How did Archimedes discover that a sphere equals a cone whose base is the surface
area of the sphere and whose height is the radius of the sphere?

Questions for Reflection

14.7. Archimedes has a reputation as the greatest mathematician of antiquity and one of
the three greatest of all time. What criteria can you imagine being applied to justify
this judgment?

14.8. Why, in your opinion, did Archimedes choose to give both a mechanical and a strict
Euclidean proof of his quadrature results?

14.9. It was mentioned above that some scholars now think Euclid was a contemporary of
Archimedes rather than a predecessor. If that is so, how do you account for the fact
that the Elements does not contain any material from Archimedes’ treatises and that
some of Archimedes works seem to refer to the Elements?



CHAPTER 15

Apollonius of Perga

From what we have already seen of Greek geometry, we can understand how the study of
the conic sections came to seem important. From commentators like Pappus, we know of
treatises on the subject by Aristaeus, a contemporary of Euclid who is said to have written
a book on Solid Loci, and by Euclid himself. We have also mentioned that Archimedes
studied the conic sections. The only extensive treatise devoted just to conic sections that
has survived, however, is that of Apollonius. Until recently, there was no adequate and
accessible study of the whole treatise in English. The version most accessible was that of
Heath, who said in his preface that writing his translation involved “the substitution of a
new and uniform notation, the condensation of some propositions, the combination of two
or more into one, some slight re-arrangements of order for the purpose of bringing together
kindred propositions in cases where their separation was rather a matter of accident than
indicative of design, and so on.” He also replaced Apollonius’ purely synthetic arguments
with analytic arguments, based on the algebraic notation we are familiar with. All this
labor has no doubt made Apollonius more readable. On the other hand, Apollonius’ work
is no longer current research; and from the historian’s point of view, this kind of tinkering
with the text only makes it harder to place the work in proper perspective. Nevertheless,
one can fully understand the decision to use symbolic notation, since the mathematical
language in which the original was couched was the cumbersome metric-free “synthetic”
approach of Euclid in which the basic tools are lines and circles, and all relations must
be reduced to proportions proved using something equivalent to the Eudoxan definition.
A 1952 translation by R. Catesby Taliaferro of the first three books was included in the
Great Books of the Western World series; it unfortunately went to the other extreme from
the Heath translation and preserved the full obscurity of Apollonius’ original exposition. A
translation of Books 5–7 (Toomer, 1990) at least made that portion of the work available
to those like the present author, who could not read the Arabic in which the only extant
manuscripts are written. Fortunately, all these gaps have now been filled in a thorough study
of the entire work (Fried and Unguru, 2001).

In contrast to his older contemporary Archimedes, Apollonius remains a rather obscure
figure. His dates can be determined from the commentary written on the Conics by Eutocius.
Eutocius says that Apollonius lived in the time of the king Ptolemy Euergetes and defends
him against a charge by Archimedes’ biographer Heracleides that Apollonius plagiarized
results of Archimedes. Eutocius’ information places Apollonius in the second half of the
third century bce, perhaps a generation or so younger than Archimedes.
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Pappus says that as a young man Apollonius studied at Alexandria, where he made the
acquaintance of a certain Eudemus (probably not the student of Aristotle whose history
of mathematics was used by Proclus). It is probably this Eudemus to whom Apollonius
addresses himself in the preface to Book 1 of his treatise. From Apollonius’ own words
we know that he had been in Alexandria and in Perga, which had a library that rivaled
the one in Alexandria. Eutocius reports an earlier writer, Geminus by name, as saying that
Apollonius was called “the great geometer” by his contemporaries. He was highly esteemed
as a mathematician by later mathematicians, as the quotations from his works by Ptolemy
and Pappus attest. In Book 12 of the Almagest, Ptolemy attributes to Apollonius a geometric
construction for locating the point at which a planet begins to undergo retrograde motion.
From these later mathematicians we know the names of several works by Apollonius and
have some idea of their contents. However, except for a few fragments that exist in Arabic
translation, only two of his works survive to this day, and for them we are indebted to the
Islamic mathematicians who continued to work on the problems that Apollonius considered
important. Our present knowledge of Apollonius’ Cutting Off of a Ratio, which contains
geometric problems solvable by the methods of application with defect and excess, is
based on an Arabic manuscript, no Greek manuscripts having survived. Of the eight books
of Apollonius’ Conics, only seven have survived in Arabic and only four in Greek. The
astronomer Edmund Halley (1656–1743) published a Latin edition of all seven books in
1710. Halley also produced what Fried and Unguru (2001, p. 295) call “a reasonable and
intelligent partial restoration” of Book 8, based on Apollonius’ preface to Book 7, which
he explains contains certain lemmas needed to prove what is in Book 8. As many people
have pointed out, that statement does not necessarily cover the entire contents of Book 8;
hence the use of the word partial by Fried and Unguru.

15.1. HISTORY OF THE CONICS

The evolution of the Conics was reported by Pappus five centuries after they were written
in Book 7 of his Collection.

By supplementing Euclid’s four books on the conics and adding four others Apollonius pro-
duced eight books on the conics. Aristaeus. . . and all those before Apollonius, called the three
conic curves sections of acute-angled, right-angled, and obtuse-angled cones. But since all
three curves can be produced by cutting any of these three cones, as Apollonius seems to have
objected, [noting] that some others before him had discovered that what was called a section
of an acute-angled cone could also be [a section of] a right- or obtuse-angled cone. . . changing
the nomenclature, he named the so-called acute section an ellipse, the right section a parabola,
and the obtuse section a hyperbola.

In a preface addressed to the aforementioned Eudemus, Apollonius lists the important
results of his work: the description of the sections, the properties of the figures relating to
their diameters, axes, and asymptotes, things necessary for analyzing problems to see what
data permit a solution, and the three- and four-line locus. He continues:

The third book contains many remarkable theorems of use for the construction of solid loci
and for distinguishing when problems have a solution, of which the greatest part and the most
beautiful are new. And when we had grasped these, we knew that the three-line and four-line
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locus had not been constructed by Euclid, but only a chance part of it and that not very happily.
For it was not possible for this construction to be completed without the additional things found
by us.

We have space to discuss only the definition and construction of the conic sections and
the four-line locus problem, which Apollonius mentions in the passage just quoted.

15.2. CONTENTS OF THE CONICS

The earlier use of conic sections had been restricted to cutting cones with a plane perpen-
dicular to a generator. As we saw in our earlier discussion, this kind of section is easy to
analyze and convenient in the applications for which it was intended. In fact, only one kind
of hyperbola, the rectangular, is needed for duplicating the cube and trisecting the angle. The
properties of a general section of a general cone were not discussed. Also, it was considered
a demerit that the properties of these plane curves had to be derived from three-dimensional
figures. Apollonius set out to remove these gaps in the theory.

First it was necessary to define a cone as the figure generated by moving a line around
a circle while one of its points, called the apex and lying outside the plane of the circle,
remains fixed. Next, it was necessary to classify all the sections of a cone that happen to be
circles. Obviously, those sections include all sections by planes parallel to the plane of the
generating circle (Book 1, Proposition 4). Surprisingly, there is another class of sections that
are also circles, called subcontrary sections. Once the circles are excluded, the remaining
sections must be parabolas, hyperbolas, and ellipses.

We shall give some details of Apollonius’ construction of the ellipse and then briefly
indicate how the same procedure applies to the other conic sections. Consider the section
of a cone shown in Fig. 15.1, made by a plane cutting all the generators of the cone on
the same side of its apex. This condition is equivalent to saying that the cutting intersects
both sides of the axial triangle (see Fig. 6 of Chapter 11). Apollonius proved that there is
a certain line (EH in the figure), which he called the [up]right side (or perpendicular side
or vertical side), now known by its Latin name latus rectum, such that the square on the
ordinate from any point of the section to its axis equals the rectangle applied to the latus
rectum with width equal to the abscissa and whose defect on the latus rectum is similar
to the rectangle formed by the axis and the latus rectum. He gave a rule, too complicated
to go into here, for constructing the latus rectum. This line characterized the shape of the
curve. Because of its connection with the problem of application with defect, he called the
resulting conic section an ellipse. Similar connections with the problems of application and
application with excess, respectively, arise in Apollonius’ construction of the parabola and
hyperbola. These connections motivated the names he gave to these curves.

In Fig. 15.1, where the latus rectum is the line EH , the locus condition1 is that the square
on the ordinate LM equals the rectangle on EO and EM, that is, LM

2 = EO · EM. The

1The Latin word locus is the equivalent of the Greek word tópos, from which our word topology comes. Both
mean place. The Greek mathematicians had to imagine a cone generated by a line with one of its points fixed
moving around a circle. A locus was thought of as the path followed by a moving point. Modern mathematics has
replaced the concept of a locus by the concept of a set, meaning the points satisfying a certain condition. This
concept is a static one, not the kinematic picture imagined by the Greeks. But it is more realistic, since a set may
be disconnected and hence difficult to picture as the path of a moving point.
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Figure 15.1. Apollonius’ construction of the ellipse with latus rectum p = EH . Given x = EM and
y = LM, these two lines are connected by the relation LM

2 = EM · EO = EH · EM − OH · EM.
Since OH is proportional to EM, this says y2 = px − kx2, where k is the slope of the diagonal of the
rectangle whose sides are the axis EF and the latus rectum EH .

reason for the term ellipse is that the rectangle applied to the latus rectum with area equal
to the square on the ordinate and width equal to the abscissa leaves a defect of prescribed
shape (the shape of the rectangle whose sides are the axis and the latus rectum) on the
remainder of the latus rectum.

In one sense, this locus definition for an ellipse is not far removed from what we now
think of as the equation of the ellipse, but that small gap was unbridgeable in Apollonius’
time. We shall digress briefly to “translate” this language to its modern algebraic equivalent,
again warning the reader that Apollonius was certainly not thinking of the figure this way.
If we write LM = y and EM = x in Fig. 15.1 (so that we are essentially taking rectangular
coordinates with origin at E), we see that Apollonius is claiming that y2 = x · EO. Now,
however, EO = EH − OH , and EH is constant, while OH is directly proportional to EM,
that is, to x. Specifically, the ratio of OH to EM is the same as the ratio of the latus rectum
EH to the axis EF . It follows that an ellipse is uniquely determined by the latus rectum
and its major axis. Thus, if we write OH = kx—a crucial step that Apollonius could not
take, since he did not have the concept of a dimensionless constant of proportionality—and
denote the latus rectum EH by p, we find that Apollonius’ locus condition can be stated
as the equation y2 = px − kx2. Here k is the slope of the dashed line HF . By completing
the square on x, transposing terms, and dividing by the constant term, we can bring this
equation into what we now call the standard form for an ellipse with center at (a, 0):

(x − a)2

a2 + y2

b2 = 1,

where a = p/(2k) and b = p/(2
√

k). In this notation, the latus rectum p is 2b2/a.
Apollonius, however, did not have the concept of an equation nor the symbolic algebraic
notation we now use, and if he had known about these things, he would still have lacked
the letter k used above as a constant of proportionality. These “missing” pieces gave his
work on conics a ponderous character with which most mathematicians today have little pa-
tience. That is why Heath’s translation of the Conics looks more like a textbook of analytic
geometry than an ancient Greek treatise translated into English.

Apollonius’ constructions of the parabola and hyperbola also depend on the latus rectum.
A parabola is completely determined by its latus rectum and the locus condition that the
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Figure 15.2. Left: The parabola with latus rectum p. The condition for a point to be on the locus is
that the square on its ordinate (y) equal the rectangle on its abscissa (x) and the latus rectum (p), that
is y2 = px. Right: A hyperbola with latus rectum p. Here y2 = px + kx2, where the oblique dashed
line has slope −k.

square on the ordinate equals the rectangle on the abscissa and the latus rectum (y2 = px).
In other words, the rectangle on the latus rectum whose width is the abscissa is exactly equal
to the square on the ordinate, with no excess or defect. For a hyperbola, y2 = px + kx2,
so that the hyperbola is determined by the latus rectum p and the constant k, which is the
negative of the slope of the dashed line in the right-hand drawing in Fig. 15.2. In this case,
the rectangle having a side along the latus rectum, width equal to the abscissa, and area equal
to the square on the ordinate has length that exceeds the latus rectum, creating an “excess”
rectangle whose shape is the same for all points on the hyperbola. The now-standard form
for this equation is

(x − a)2

a2 − y2

b2 = 1,

and the latus rectum p is once again 2b2/a.
Apollonius was the first to take account of the fact that a plane whose intersection with

a cone is a hyperbola must cut both nappes of the cone. He regarded the two branches
as two hyperbolas, referring to them as “opposites” and using the term hyperbola for ei-
ther branch. For the hyperbola, Apollonius proved the existence of asymptotes—that is,
a pair of lines through the center that never meet the hyperbola but such that any line
through the center passing into the region containing the hyperbola does meet the hyper-
bola. The word asymptote means literally not falling together—that is, not intersecting. For
the hyperbola shown on the right-hand side of Fig. 15.2, the asymptotes are the two lines
y = p/(2

√
k) ± √

kx.
With these new characterizations of the three conic sections, it becomes possible to

discard the cone itself. Once the latus rectum and the shape of the excess or defect (measured
in our terms by the constant of proportionality that we denoted by k) are given, the locus
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condition defining the curve is determined. It makes no reference to anything outside the
plane of the curve itself. The original cone is like the scaffolding around a building, which
is removed after the construction is complete. With these curves now defined as plane loci,
their properties can then be developed using Euclid’s plane geometry. Apollonius proceeds
to do so.

15.2.1. Properties of the Conic Sections

Books 1 and 2 of the Conics are occupied with finding the proportions among line seg-
ments cut off by chords and tangents in conic sections, the analogs of results on circles
in Books 3 and 4 of the Elements. These constructions involve finding the tangents to the
curves satisfying various supplementary conditions such as being parallel to a given line.
Fried and Unguru (2001, Chapter 7) argue that these analogies probably guided Apollonius
in his choice of material.

15.3. FOCI AND THE THREE- AND FOUR-LINE LOCUS

We are nowadays accustomed to constructing the conic sections using the focus–directrix
property, so that it comes as a surprise that the original expert on the subject does not seem
to recognize the importance of the foci. He never mentions the focus of a parabola, and
for the ellipse and hyperbola he refers to these points only as “the points arising out of the
application.” The “application” he has in mind is explained in Book 3. Propositions 48 and
52 of Book 3 read as follows:

(Proposition 48) If in an ellipse a rectangle equal to the fourth part of the figure is applied from
both sides to the major axis and deficient by a square figure, and from the points resulting from
the application straight lines are drawn to the ellipse, the lines will make equal angles with the
tangent at that point.

(Proposition 52) If in an ellipse a rectangle equal to the fourth part of the figure is applied from
both sides to the major axis and deficient by a square figure, and from the points resulting from
the application straight lines are drawn to the ellipse, the two lines will be equal to the axis.

The “figure” referred to is the rectangle whose sides are the major axis of the ellipse and
the latus rectum. In Fig. 15.3 the points F1 and F2 must be chosen on the major axis AB so

Figure 15.3. Focal properties of an ellipse.
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that the rectangle on AF1 and F1B and the rectangle on AF2 and BF2 both equal one-fourth
of the area of the rectangle formed by the whole axis AB and the latus rectum p.

Proposition 48 expresses the focal property of these two points: A light ray emanating
from one will be reflected to the other. Proposition 52 is the string property that characterizes
the ellipse as the locus of points such that the sum of the distances to the foci is constant.
These are just two of the theorems Apollonius called “strange and beautiful.” Apollonius
makes little use of these properties, however, and does not discuss the use of the string
property to draw an ellipse.

A very influential part of the Conics consists of Propositions 54–56 of Book 3, which
contain the theorems that Apollonius claimed (in his cover letter) would provide a solution
to the three- and four-line locus problems. Both in their own time and because of their
subsequent influence during the seventeenth century (when analytic geometry was being
created), the three- and four-line locus problems have been of great importance for the
development of mathematics. These propositions involve the proportions among pieces of
chords inscribed in a conic section. Three propositions are needed because the hyperbola
requires two separate statements according as the points involved lie on the same or opposite
branches of the hyperbola.

We limit ourselves to stating the four-line locus problem and illustrating it. The data for
the problem are four lines, which for definiteness we suppose to intersect two at a time, and
four given angles, one corresponding to each line. The problem requires the locus of points
P such that if lines are drawn from P to the four lines, each making the corresponding angle
with the given line (for simplicity all shown as right angles in Fig. 15.4), the rectangle on
two of the lines will have a constant ratio to the rectangle on the other two. The solution is
in general a pair of conics.

The origin of this kind of problem may lie in the problem of two mean proportionals,
which was solved by drawing fixed reference lines and finding the loci of points satisfying
a condition resembling the condition here. In that problem, the square on the line drawn
perpendicular to one reference line equals the rectangle on a fixed line and the line drawn
to the other reference line. The commentary on this problem by Pappus, who mentioned
that Apollonius had left a great deal unfinished in this area, inspired Fermat and Descartes
to take up the implied challenge and solve the problem completely. Descartes offered his
success in solving the locus problem to any number of lines as proof of the value of his
analytic method in geometry.

PROBLEMS AND QUESTIONS

Mathematical Problems

15.1. The string property of an ellipse is illustrated in Fig. 15.3. It implies that all broken
lines starting at one focus, going to any point on the ellipse, and then going to the
other focus have the same total length. Taking for granted that an ellipse is a convex
figure, you may assume that the tangent to an ellipse at any point lies entirely outside
the ellipse, except for the point of tangency itself. Use this fact to prove the reflection
property of the ellipse. You will need to establish that if two points D and E are on
the same side of a given line MN, then the shortest path from D to a point Q on the
line and thence to E is the one for which the lines DQ and QE make equal angles
with the line MN. This theorem is illustrated in Fig. 15.5.
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Figure 15.4. The four-line locus. If a point moves so that the product of its distances to two lines
bears a constant ratio to the product of its distances to two other lines, it must move in a conic. In this
illustration, two conics satisfy the condition: one an ellipse, the other a hyperbola.

15.2. Show from Apollonius’ definition of the foci that the product of the distances from
each focus to the ends of the major axis of an ellipse equals the square on half of the
minor axis.

15.3. We have seen that the three- and four-line locus problems have conic sections as
their solutions. State and solve the two-line locus problem. You may use modern
analytic geometry and assume that the two lines are the x axis and the line y = ax.

Figure 15.5. Shortest path meeting a line.
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The locus is the set of points whose distances to these two lines have a given ratio.
What curve is this? (The distance from a point (u, v) to the line whose equation is
ax + by = c is |au+bv−c|√

a2+b2
.)

Historical Questions

15.4. How much of the treatise on conics by Apollonius has been preserved, and in what
form?

15.5. On what basis can we conjecture what was in the missing Book 8 of the Conics?

15.6. Why did Apollonius rename the conic sections?

Questions for Reflection

15.7. As we have seen, Apollonius was aware of the string property of ellipses, yet he
did not mention that this property could be used to draw an ellipse. Do you think
that he did not notice this fact, or did he omit to mention it because he considered it
unimportant, or for some other reason?

15.8. Is the apparent generality of Apollonius’ statement of the three-line locus problem,
in which arbitrary angles can be prescribed at which lines are drawn from the locus
to the fixed lines, really more general than the particular case in which all the angles
are right angles? Observe that the ratio of a line from a point P to line l making
a fixed angle θ with the line l bears a constant ratio to the line segment from P

perpendicular to l. How would a particular locus problem be altered if recast in terms
of the perpendicular distances to the same lines?

15.9. A circle can be regarded as a special case of an ellipse. What is the latus rectum of a
circle? (Consider the expression given for the latus rectum in terms of the semi-axes
of the ellipse.)



CHAPTER 16

Hellenistic and Roman Geometry

No sensible person would attempt to study modern geometry using Euclidean methods.
The difficulty with such an approach is not only that the kind of proof required is a very
long and tedious way of proving even the simplest results. The basic objects underlying
almost all of the geometry of Euclid, Archimedes, and Apollonius were few and simple,
being formed from straight lines, planes, circles, and combinations of them. The conic sec-
tions are already near the limit of tolerable complexity that can be generated from these
tools. The small number of more complicated curves considered in ancient times, such
as the spiral of Archimedes, the quadratrix of Hippias, and the conchoid of Nicomedes
were created by introducing the concept of motion into the basically static geometry of Eu-
clid’s Elements. They were pictured as the path of a point moving under simple conditions
that combined straight-line and circular motion. Curved three-dimensional figures such as
spheres and cones were likewise pictured as the result of translating or revolving lines or
circles. In contrast, the kinds of curves studied in modern mathematics, such as the graphs
of polynomials of degree three and higher or transcendental functions such as the loga-
rithm or the sine, are impossible to analyze using these tools. The Euclidean methodology
set limits to the growth of geometry, and those limits were nearly reached by the end of
the third century bce. Still, a few later mathematicians attempted to go beyond beyond the
achievements of Archimedes and Apollonius, and they produced some good work over the
next few centuries.

16.1. ZENODORUS

The astronomer Zenodorus lived in Athens in the century following Apollonius. Although
his exact dates are not known, he is mentioned by the late third-century mathematician
Diocles in his book On Burning Mirrors1 and by Theon of Alexandria in his commentary
on Ptolemy’s Almagest. According to Theon, Zenodorus wrote On Isoperimetric Figures,
in which he proved four theorems: (1) If two regular polygons have the same perimeter,
the one with the larger number of sides encloses the larger area; (2) a circle encloses a
larger area than any regular polygon whose perimeter equals its circumference; (3) of all
polygons with a given number of sides and perimeter, the regular polygon is the largest;
(4) of all closed surfaces with a given area, the sphere encloses the largest volume. With

1Arabic manuscripts of this work have revealed that Diocles and Zenodorus actually collaborated (Toomer, 1976).

The History of Mathematics: A Brief Course, Third Edition. Roger L. Cooke.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

169



170 HELLENISTIC AND ROMAN GEOMETRY

Figure 16.1. Two theorems of Zenodorus. Top: When two regular polygons have the same perimeter,
the one with the larger number of sides is larger. Bottom: A circle is larger than a regular polygon
whose perimeter equals the circumference of the circle.

the machinery inherited from Euclidean geometry, Zenodorus could not have hoped for any
result more general than these. Let us examine his proof of the first two, as reported by
Theon.

In Fig. 16.1, let AB� and �EZ be two regular polygons having the same perimeter,
with AB� having more sides than �EZ. Let H and � be the centers of these polygons,
and draw the lines from the centers to two adjacent vertices and their midpoints, getting
triangles B�H and EZ� and the perpendicular bisectors of their bases HK and ��. Then,
since the two polygons have the same perimeter but AB� has more sides, BK is shorter than
E�. Mark off M on E� so that M� = BK. Then if P is the common perimeter, we have
E� : P :: ∠E�� : 4 right angles and P : BK :: 4 right angles : ∠BHK. By composition
then (see Subsection 12.2.3 of Chapter 12), E� : BK :: ∠E�� : ∠BHK, and therefore
E� : M� :: ∠E�� : ∠BHK. But, Zenodorus claimed, the ratio E� : M� is larger than
the ratio ∠E�� : ∠M��, asking to postpone the proof until later. Granting that lemma,
he said, the ratio ∠E�� : ∠BHK is larger than the ratio ∠E�� : ∠M��, and therefore
∠BHK is smaller than ∠M��. It then follows that the complementary angles ∠HBK and
∠�M� satisfy the reverse inequality. Hence, copying ∠HBK at M so that one side is
along M�, we find that the other side intersects the extension of �� at a point N beyond
�. Then, since triangles BHK and MN� are congruent by angle–side–angle, it follows
that HK = N� > ��. But the areas of the two polygons are 1

2HK · P and 1
2�� · P , and

therefore AB� is the larger of the two.
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The proof that the ratio E� : M� is larger than the ratio ∠E�� : ∠M�� was given
by Euclid in his Optics, Proposition 8. But Theon does not cite Euclid in his quotation of
Zenodorus. He gives the proof himself, implying that Zenodorus did likewise. The proof is
shown on the top right in Fig. 16.1, where the circular arc �MO has been drawn through
M with � as center. Since the ratio �E�M : sector O�M is larger than the ratio �M�� :
sector M�� (the first triangle is larger than its sector, the second is smaller), it follows,
interchanging means, that �E�M : �M�� > sector O�M : sector M��. But �E�M :
�M�� :: EM : M�, since the two triangles have the same altitude �� measured from
the base line EM�. And sector O�M : sector M�� :: ∠E�M : ∠M��. Therefore, EM :
M� is larger than the ratio ∠E�M : ∠M��, and it then follows that E� : M� is larger
than ∠E�� : ∠M��. (See the explanation of the addition of ratios in Subsection 12.2.3
of Chapter 12.)

Zenodorus’ proof that a circle is larger than a regular polygon whose perimeter equals
the circumference of the circle is shown at the bottom of Fig. 16.1. Given such a polygon
and circle, circumscribe a similar polygon around the circle. Since this polygon is “convex
on the outside,” as Archimedes said in his treatise on the sphere and cylinder, it can be
assumed longer than the circumference. (Both Archimedes and Zenodorus recognized that
this was an assumption that they could not prove; Zenodorus cited Archimedes as having
assumed this result.) That means the circumscribed polygon is larger than the original
polygon since it has a larger perimeter. But then by similarity, HK is larger than ��. Since
a circle equals half of the rectangle whose sides are its circumference and radius (proved by
Archimedes), while a regular polygon is half of the rectangle whose sides are its perimeter
and its apothem,2 it follows that the circle is larger.

16.2. THE PARALLEL POSTULATE

We saw in Chapter 12 that there was a debate about the theory of parallel lines in Plato’s
Academy, as we infer from the writing of Aristotle. This debate was not ended by Eu-
clid’s decision to include a parallel postulate explicitly in the Elements. This foundational
issue was discussed at length by the Stoic philosopher Geminus, whose dates are a subject
of disagreement among experts, but who probably lived sometime between 50 bce and
50 ce. Geminus wrote an encyclopedic work on mathematics, which has been entirely lost,
except for certain passages quoted by Proclus, Eutocius, and others. Proclus said that the
parallel postulate should be completely written out of the list of postulates, since it is really
a theorem. The asymptotes of hyperbolas provided the model on which he reasoned that
converging is not the same thing as intersecting. But still he thought that such behavior
was impossible for straight lines. He claimed that a line that intersected one of two parallel
lines must intersect the other,3 and he reports a proof of Geminus that assumes in many
places that certain lines drawn will intersect, not realizing that by doing so he was already
assuming the parallel postulate.

2An apothem—not to be confused with an apothegm—is the line from the center of a polygon perpendicular to a
side. In this case, the apothem is ��.
3This assertion is an assumption equivalent to the parallel postulate and obviously equivalent to the form of
the postulate commonly used nowadays, known as Playfair’s axiom, after the Scottish geometer John Playfair
(1748–1819): Through a given point not on a line, only one parallel can be drawn to the line.
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Proclus also reports an attempt by Ptolemy to prove the postulate by arguing that a
pair of lines could not be parallel on one side of a transversal “rather than” on the other
side. (Proclus did not approve of this argument.) But the assumption that parallel lines are
symmetric under reflection through a common transversal that is perpendicular to one of
them is a Euclidean theorem that does not extend to non-Euclidean geometry. These early
attempts to prove the parallel postulate began the process of unearthing more and more
plausible alternatives to the postulate, but of course did not lead to a proof of it.

16.3. HERON

We have already noted some of the restrictions that Euclid imposed on plane geometry,
one of them being that lines are not associated with numbers. After Apollonius, however,
the metric aspects of geometry began to resurface in the work of later writers. One of
these writers was Heron (ca. 10–ca. 75), who wrote on mechanics. He probably lived in
Alexandria. Pappus discusses his work in Book 8 of his Collection. Heron’s geometry is
much more concerned with measurement than was the geometry of Euclid. The change of
interest in the direction of measurement and numerical procedures signaled by his Metrica
is shown vividly by his repeated use (130 times, to be exact) of the word area (embadón),
a word never once used by Euclid, Archimedes, or Apollonius.4 There is a difference in
point of view between saying that two plane figures are equal and saying that they have the
same area. The first statement is geometrical and is the stronger of the two. The second is
purely numerical and does not necessarily imply the first. Heron discusses ways of finding
the areas of triangles from their sides. After giving several examples of triangles that are
either integer-sided right triangles or can be decomposed into such triangles by an altitude,
such as the triangle with sides of length 13, 14, 15, which is divided into a 5–12–13 triangle
and a 9–12–15 triangle by the altitude to the side of length 14, he gives “a direct method by
which the area of a triangle can be found without first finding its altitude.” He gave as an
example a triangle whose sides were 7, 8, and 9 units. His prescription was: Add 9 and 8
and 7, getting 24. Take half of this, getting 12. Subtract 7 units from this, leaving 5. Then
subtract 8 from 12, leaving 4. Finally, subtract 9, leaving 3. Multiply 12 by 5, getting 60.
Multiply this by 4, getting 240. Multiply this by 3, getting 720. Take the square root of this,
and that will be the area of the triangle. He went on to explain that since 720 is not a square,
it will be necessary to approximate, starting from the nearest square number, 729.

This result seems anomalous in Greek geometry, since Heron is talking about multiplying
an area by an area. That is probably why he emphasizes that his results are numerical
rather than geometric. His proof is based on Fig. 16.2, in which one superfluous line has
been omitted to streamline it. In the following proof, some rewording has been done to
accommodate this minor modification of the figure. This figure shows an arbitrary triangle
AB� with its inscribed circle, and the radii of that circle to the points of contact H�,

4Reporting (in his commentary on Ptolemy’s Almagest) on Archimedes’ Measurement of a Circle, however,
Theon of Alexandria did use this word to describe what Archimedes did; but that usage was anachronistic. In
his work on the sphere, for example, Archimedes referred to its surface (epipháneia), not its area. On the other
hand, Dijksterhuis (1956, pp. 412–413) reports the Arabic mathematician al-Biruni as having said that “Heron’s
formula” is really due to Archimedes. Considering the contrast in style between the proof and the applications, it
does appear plausible that Heron learned the proof from Archimedes. Heath (1921, Vol. 2, p. 322) endorses this
assertion unequivocally.
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Figure 16.2. Proof of Heron’s method of computing the area of a triangle from the lengths of its
sides.

HE, and HZ drawn. These three radii are all congruent, and each is perpendicular to the
corresponding side. Denote their common length by r. The lines HA, HB, and H� from the
center of the inscribed circle to the vertex are the bisectors of the angles. We have marked
one of each congruent pair at each vertex as α, β, and γ . It is then clear that α + β + γ is
half the sum of the angles of the triangle, that is, it is equal to a right angle.

Because of the way the triangle is partitioned into three triangles A�H , ABH , and
B�H , we can see that its area is 1

2HZ · A� + 1
2HE · B� + 1

2H� · AB, which is easily

seen to be r AB+B�+�A
2 = r
, where 
 is half the perimeter of the triangle. There are many

ways different ways of expressing 
 as a sum of lines, among them 
 = B� + AZ =
AB + E� = A� + BE. We shall use all three of these expressions below.

Heron claims that the area is numerically
√


(
 − AB)(
 − A�)(
 − B�), which,
using these three expressions for 
, we can write as

√

 · E� · BE · AZ.

To see why this expression represents the area of the triangle, draw lines B� and H�

from B and H perpendicular, respectively, to B� and H� and intersecting at the point
�. The quadrilateral �BH� is cyclic—that is, can be inscribed in a circle. This fact holds
because the two right triangles �B� and �H� have �� as a common hypotenuse. Since the
hypotenuse of a right triangle is a diameter of the circumscribed circle, that circumscribed
circle is the same for both. Then, since ∠H�B and ∠B�H are both inscribed in the same

arc
�

BH , it follows that angle B�H = γ . Similarly, since ∠H�� and ∠HB� are both

inscribed in the same arc
�

H�, we have ∠H�� = β. Adding, we find that ∠B�� = β + γ ,
and therefore the complementary angle B�� equals α. Finally, since both HE and B�

are perpendicular to B�, we have ∠�HE = ∠B�H = γ . We therefore have two pairs of
similar right triangles: ��B� and �AZH , and �B�K and �EHK.
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From these two similar triangles, we obtain the fundamental results that B�

B�
= AZ

HZ
and

B�

BK
= HE

KE
= HZ

KE
. By composition, B�

BK
= AZ

KE
, that is, B� · KE = BK · AZ. Also, since

HE is the altitude to the hypotenuse of the right triangle KH�, we have HE
2 = KE · E�.

These last two relations are the key to proving the result.
It is now possible to obtain the required expression for the area by plodding through the

following sequence of equalities, each of which follows trivially from the one above.

BE · AZ = BK · AZ + KE · AZ ,

BE · AZ = KE · B� + KE · AZ ,

BE · AZ = KE · 
 ,

E� · BE · AZ = E� · KE · 
 ,

= HE
2 · 
 ,


 · E� · BE · AZ = HE
2 · 
2 .√


(
 − AB)(
 − A�)(
 − B�) = HE · 
 .

The result is therefore proved.

16.4. ROMAN CIVIL ENGINEERING

Dilke (1985, pp. 88–90) describes the use of geometry in Roman civil engineering as
follows. The center of a Roman village would be at the intersection of two perpendicular
roads, a (usually) north–south road called the kardo maximus (literally, the main hinge) and
an east–west road called decumanus maximus, the main tenth. Lots were laid out in blocks
(insulæ) called hundredths (centuriæ), each block being assigned a pair of numbers, telling
how many units it was dextra decumani (right of the decumanus, that is, north5) or sinistra
decumani (left of the decumanus, that is, south) and how many units it was ultra kardinem
(beyond the kardo, that is, west) or citra kardinem (within the kardo, that is, east).

A collection of Roman writings on surveying was collected, translated into German, and
published in Berlin in the middle of the nineteenth century. This two-volume work bears
the title Corpus Agrimensorum Romanorum, the word agrimensor (field measurer) being
the Latin name for a surveyor, as already noted in Chapter 7. A medieval town laid out in
accordance with the scheme just described is shown in that work. Looking at it, one cannot
help thinking of a rectangular coordinate system, regarding the kardo and decumanus, with
the coordinatization of the centuriæ, as prefigurations of our concept of coordinate axes.
The spherical equivalent was used by Ptolemy, as we shall see in the next chapter, and his
latitude and longitude did influence the development of analytic geometry.

Among the agrimensores was one named M. Iunius Nipsus, a second-century surveyor,
who, according to Dilke (1985, p. 99), gives the following directions for measuring the
width of a river (Fig. 16.3).

5This orientation presumes the map user is looking west along the decumanus maximus. Often, the town forum
would be located at the intersection of the two main roads.
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Portion of a Roman town, from the Corpus Agrimensorum Romanorum, Hans Butzmann, ed.,
W. Sijthoff, Leyden, 1970 (Cod. Guelf. 36.23 Aug 2o. fol. 63v). Copyright © Herzog August
Bibliothek Wolfenbüttel.

You mark the point C on the opposite bank from B (a part of the procedure Nipsus
neglects to mention until later), continue the straight line CB to some convenient point A,
lay down the crossroads sign at A, and then move along the direction perpendicular to AC

until you reach a point G, where you erect a pole, then continue on to D so that GD = AG.
You then move away from D along the direction perpendicular to AD until you see G and
C in a straight line from the point H . Since the triangles AGC and DGH are congruent (by
angle–side–angle), it follows that CB = CA − AB = HD − AB.

For this procedure to work in practice, it is necessary to have an accessible and level
piece of land covering the lines shown as AD and DH . If the river is large, such a stretch
of land may not exist, since the river banks are likely to be hilly. In its neglect of similar
triangles, this method seems a large step backward in applied geometry.

Figure 16.3. Nipsus’ method of computing the width of a river.
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PROBLEMS AND QUESTIONS

Mathematical Problems

16.1. Find the area of a triangle whose sides are 24 cm, 37 cm, and 43 cm.

16.2. Express the area of a regular n-gon in terms of its perimeter P , using trigonometry.
What happens to this area as n tends to infinity?

16.3. Suppose that four squares A, B, C, and D are in proportion, that is, A : B :: C : D.
Let their sides be respectively a, b, c, and d. Prove that the sides are also in proportion,
that is, a : b :: c : d, using the Eudoxan definition of proportion. [Hint: Let m and n

be any two integers. You need to show that if ma > nb, then mc > nd. Assuming
ma > nb, prove that m2A > n2B. Why does m2A > n2B imply m2C > n2D, and
why does this last inequality imply mc > nd?]

Historical Questions

16.4. What new directions did Greek geometry explore after the treatises of Archimedes
and Apollonius?

16.5. What isoperimetric inequalities were stated and proved by Zenodorus?

16.6. What relation did Heron establish between the lengths of the three sides of a triangle
and its area?

Questions for Reflection

16.7. Which of the two writers discussed above, Heron and Zenodorus, worked more in
the spirit of Euclid’s Elements?

16.8. How did Heron regard the ratio of two lines? Did he handle it as Eudoxus recom-
mended?

16.9. Why did the elaborate system of Euclidean geometry apparently play no role in the
magnificent engineering feats (roads, aqueducts, and the like) of the Romans?



CHAPTER 17

Ptolemy’s Geography and Astronomy

The path away from the metric-free geometry of Euclid, Archimedes, and Apollonius was
opened by Heron, Ptolemy, and other geometers who lived during the early centuries of the
Roman Empire. Ptolemy’s Almagest is an elegant arithmetization of some basic Euclidean
geometry applied to astronomy. As in the work of Heron, proportions provided the key to
arithmetizing triangles and circles in a way that made a computational geometric model of
the motions of the heavenly bodies feasible. In the Almagest, computations using a table
of chords are combined with rigorous geometric demonstration of the relations involved.
Ptolemy (ca. 85–ca. 165), whose very name shows his Alexandrian origins even though he
lived in Rome, shows that he is well acquainted with the geometry and astronomy of his day.
But he studied the earth as well as the sky, and his contribution to geography is also a large
one, and also geometric, although less computational than his astronomy. We shall begin
with the geography, for which an annotated translation exists (Berggren and Jones, 2000).

17.1. GEOGRAPHY

Ptolemy was one of the first scholars to look at the problem of representing large portions
of the earth’s surface on a flat map. His data, understandably very inaccurate from the
modern point of view, came from his predecessors, including the astronomers Eratosthenes
(276–194) and Hipparchus (190–120) and the geographers Strabo (ca. 64 bce–24 ce) and
Marinus of Tyre (70–130), whom he followed in using the now-familiar lines of latitude
and longitude. These lines have the advantage of being perpendicular to one another, but the
disadvantage that the parallels of latitude are of different sizes. Hence a degree of longitude
stands for different east–west distances at different latitudes.

As an empirical science, geography depends intimately on these two coordinates, whose
empirical foundations are very different. Latitude is relatively easy to determine. If you
look at any known star when it is directly above your local north–south line, you can
measure its altitude above the southernmost point on the horizon. Then if you add 90◦ and
subtract the known declination of that star on the celestial sphere, the difference will be
your geographical latitude.1 Longitude is much more difficult to determine, since the same
stars will pass overhead at the same local time on a given day at all points having the same
latitude. To determine longitude, it is necessary to single out one meridian, called the prime

1For the definitions of declination and local altitude, see Section 17.2 below.
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meridian, for use as the origin. By universal convention, that meridian is the one through
Greenwich, England. You can work out your longitude east or west of Greenwich provided
you know what time it is in Greenwich at any moment of your choosing. The difference
between your local solar time and the local solar time at Greenwich is your longitude.
(Each hour of time difference represents 15 degrees of longitude.) In these days of global
positioning systems, terrestrial longitudes are known precisely, and there is no reason to
doubt the data. But in the days before the instant communication of radio, and in the absence
of a clock that would keep perfect time while being transported over a considerable portion
of the earth’s surface, longitude was very difficult to determine. What was needed was an
event that could be observed from all over the earth simultaneously, to be followed by a
comparison of the local times at which they occur. One such event occurred at the time
of the Battle of Arbela, which was mentioned in Chapter 11. According to Pliny the Elder
(23–79) in his Natural History, Book 2, Chapter 72)2:

We are told that at the time of the famous victory of Alexander the Great, at Arbela, the moon
was eclipsed at the second hour of the night, while, in Sicily, the moon was rising at the same
hour.

This would mean that Sicily is about 30◦ west of Arbela, and in fact Sicily straddles the
meridian at 14◦ E while Arbela is at 44◦ E.

Such events are rare, and comparisons of them are hard to coordinate. The search con-
tinued for a large celestial clock. The phases of the moon would seem to be an obvious one,
which everyone on the same side of the earth can observe at once. However, they change too
slowly to allow precise measurement. When he discovered four moons of Jupiter, Galileo
realized that their configuration, which changed fairly rapidly, could be used as the clock he
wanted. Once again, however, measurements could not be made with sufficient precision to
be of any use. Not until a durable and accurate spring-wound clock was created could this
problem be effectively solved. Ptolemy was forced to rely on travel times over east–west
routes to determine relative longitudes.

Ptolemy assigned latitudes to the inhabited spots that he knew about by computing the
length of daylight on the longest day of the year. This computational procedure is described
in Book 2, Chapter 6 of the Almagest, where Ptolemy describes the latitudes at which the
longest day lasts 12 1

4 hours, 12 1
2 hours, and so on up to 18 hours, then at half-hour intervals

up to 20 hours, and finally at 1-hour intervals up to 24. Although he knew theoretically what
the Arctic Circle is, he didn’t know of anyone living north of it, and took the northernmost
location on the maps in his Geography to be Thoúlē, described by the historian Polybius
around 150 bce as an island six days sail north of Britain that had been discovered by the
merchant–explorer Pytheas (380–310) of Masillia (Marseille) some two centuries earlier.3

It has been suggested that Thoúlē is the Shetland Islands (part of Scotland since 1471),
located between 60◦ and 61◦ north; that is just a few degrees south of the Arctic Circle,
which is at 66◦ 30′. It is also sometimes said to be Iceland, which is on the Arctic Circle,
but west of Britain as well as north. Whatever it was, Ptolemy assigned it a latitude of 63◦,
although he said in the Almagest that some “Scythians” (Scandinavians and Slavs) lived
still farther north at 64 1

2
◦
. Ptolemy did know of people living south of the equator and

2Arbela is modern Erbil, Iraq, but the battle took place some 80 km distant from it. At that battle in 331 bce,
Alexander defeated the Persian King Darius and effectively put an end to the Persian Empire.
3The Latin idiom ultima Thule means roughly the last extremity.
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took account of places as far south as Agisymba (Ethiopia) and the promontory of Prasum
(perhaps Cabo Delgado in Mozambique, which is 14◦ south). Ptolemy placed it 12◦ 30′
south of the Equator. The extreme southern limit of his map was the circle 16◦ 25′ south of
the equator, which he called “anti-Meróē,” since Meróē (a city on the Nile River in southern
Egypt) was 16◦ 25′ north.

Since he knew only the geography of what is now Europe, Africa, and Asia, he did not
need 360◦ of longitude. He took his westernmost point to be the Blessed Islands (possibly the
Canary Islands, at 17◦ west). That was his prime meridian, and he measured longitude out
to 180◦ eastward from there, to the Sēres,4 the Chinese (Sı́nai), and “Kattı́gara.” According
to Dilke (1985, p. 81), “Kattı́gara” may refer to Hanoi. Actually, the east–west span from
the Canary Islands to Shanghai (about 123◦ east) is only 140◦ of longitude. Ptolemy’s
inaccuracy is due partly to unreliable reports of distances over trade routes and partly to
his decision to accept 500 stades, about 92.5 km—a stade is generally taken to have been
185 m—as the length of a degree of latitude. The true distance is about 600 stades, or 111
km.5 We are not concerned with the units in Ptolemy’s geography, however, only with its
mathematical aspects.

The problem Ptolemy faced was to draw a flat map of the earth’s surface spanning 180◦
of longitude and about 80◦ degrees of latitude, from 16◦ 25′ south to 63◦ north. Ptolemy
described three methods of doing this, the first of which we shall now discuss. The latitude
and longitude coordinates of the inhabited world (oikuménē) known to Ptolemy represent
a rectangle whose width is 5

9 of its length. Ptolemy did not represent parallels of latitude
as straight lines; he drew them as arcs of concentric circles while keeping the meridians of
longitude as straight lines emanating from the common center, representing the North Pole.
Thus, he mapped this portion of the earth into the portion of a sector of a disk bounded
by two radii and the arcs they cut off on two circles concentric with the disk. As shown in
Fig. 17.1, the first problem was to decide which radii and which circles are to form these
boundaries. Ptolemy recognized that it would be impossible in such a map to place all the
parallels of latitude at the correct distances from one another and still get their lengths in
proportion. He decided to keep his northernmost parallel, through Thoúlē, in proportion
to the parallel through the equator. That meant these two arcs should have a ratio of about
9:20—more precisely, cos(63◦) in our terms, which is 0.45399. Since there would be 63
equal divisions between that parallel and the equator, he needed the upper radius x to satisfy
x : (x + 63) :: 9 : 20. Solving this proportion is not hard, and one finds that x = 52, to the
nearest integer. The next task was to decide on the angular opening. For this principle he
decided, like Marinus of Tyre, to get the parallel of latitude through Rhodes in the correct
proportion. Since Rhodes is at 36◦ latitude, the length of half of the parallel of latitude
through it amounts to about 4

5 of the 180◦ arc of a great circle, which is about 145◦. Since
the radius of Rhodes must be 79 (27 great-circle degrees more than the radius of Thoúlē), he
needed the opening angle of the sectors θ to satisfy θ : 180◦ :: 146 : 79π, so that θ ≈ 106◦.
After that, he inserted meridians of longitude every one-third of an hour of longitude (5◦)
fanning out from the North Pole to the Equator.

4The Sēres were a Hindu people known to the Greeks from the silk trade.
5One measurement of the length of a degree available to Ptolemy was that of Eratosthenes, who used shadow
lengths at the summer solstice in Syene and Alexandria, Egypt to conclude (correctly) that Alexandria is about
7◦ north of Syene. (It is actually about 3◦ west as well.) Eratosthenes gave the distance between the two cities as
5000 stades. The actual distance is about 730 km. These figures are inconsistent with the length of a stade given
above and the number of stades in a degree, but Ptolemy had other sources to reconcile with Eratosthenes.
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Figure 17.1. Ptolemy’s first method of mapping.

Continuing to draw the parallels of latitude in the same way for points south of the
Equator would lead to serious distortion, since the circles in the sector continue to increase
as the distance south of the north pole increases, while the actual parallels on the earth begin
to decrease at that point. The simplest solution to that problem was to let the southernmost
parallel at 16◦ 25′ south have its actual length, then join the meridians through that parallel
by straight lines to the points where they intersect the equator. Once that decision was made,
he was ready to draw the map on a rectangular sheet of paper. He gave instructions for how
to do that: Begin with a rectangle that is approximately twice as long as it is wide, draw the
perpendicular bisector of the horizontal (long) sides, and extend it above the upper edge so
that the portion above that edge and the whole bisector are in the ratio 34◦ : 131◦, 25′. In
that way, the 106◦ arc through Thoúlē will begin and end just slightly above the upper edge
of the rectangle, while the lowest point of the map will be at the foot of the bisector, being
about 80 units below the lowest point on the parallel of Thoúlē, as indicated by the dashed
line in Fig. 17.1.

Although at first sight, this way of mapping seems to resemble a conical projection, it is
not that, since it preserves north–south distances. It does a tolerably good job of mapping
the parts of the world for which Ptolemy had reliable data.

17.2. ASTRONOMY

Ptolemy’s astronomy, for which there are good sources in English (Toomer 1984a,b, Jones
1990) was much more geometrical than his geography. It established metrical relations
among chords and arcs of circles by means of which it was possible to give latitude and
longitude coordinates (what are now called declination and right ascension, respectively) for
all the stars and planets (including the sun and moon among the latter). These coordinates
were imposed on what is called the celestial sphere, which is a representation of all the
stars as if they were stuck on a sphere whose center was at the center of the earth. It is
shown in Fig. 17.2. The circle labeled ecliptic in that figure is the path that the sun follows
as it moves through the fixed stars, making one circuit per year. It crosses the celestial
equator moving from south to north on March 20 (rarely, on March 21). That intersection
of the ecliptic and equator is called the vernal equinox. It provides a natural prime meridian
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Figure 17.2. The celestial sphere.

on the celestial sphere, from which right ascension can be measured. (There is no such
natural prime meridian on the earth, and the one actually used—through Greenwich—is a
human convention.) Since it was impossible in Ptolemy’s day to tell the distances to the
fixed stars, what we call the radial coordinate in three-dimensional spherical coordinates
was irrelevant. Using this celestial sphere, with the vernal equinox serving as origin, one
could assign permanent locations to all the fixed stars, leaving only seven celestial bodies
known to Ptolemy (sun, moon, Mercury, Venus, Mars, Jupiter, and Saturn) as “wandering”
stars whose coordinates were constantly changing among the fixed stars. The problem for
geocentric astronomy was to express that wandering as a combination of simple circular
motions.

As with his geography, Ptolemy benefited from data assembled over a long period of time,
namely observations of the positions of various planets, times of eclipses, and other celestial
phenomena, made at various places in the Mediterranean world, including Mesopotamia,
over the preceding 800 years. To fit all these data to observation, he used a system known
as epicycles and/or eccentrics. An epicycle is a uniform motion about the center of a circle
that is itself moving uniformly around a second circle, called the deferent. An eccentric is a
uniform motion in a circle, but observed from a point not at the center of the circle. Either
of these devices can be used to account for the observed variable speeds of a heavenly body
around the celestial sphere.

17.2.1. Epicycles and Eccentrics

The fact that a uniform motion along a circle viewed from an eccentric point is exactly
the same as a uniform motion along an epicycle combined with a uniform motion of the
epicycle can be seen in Fig. 17.3, in which the center of a small circle (the epicycle) moves
along the larger circle (the deferent) in such a way that the angle through which a point
on the epicycle has rotated clockwise relative to the line joining the center of the epicycle
to the center of the deferent equals the angle through which the center of the epicycle has
moved counterclockwise along the deferent, measured from a fixed diameter of the deferent.
Because OAB′C′ is a parallelogram, the angle B′AB that an observer at A measures between
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Figure 17.3. Equivalence of epicycles and eccentrics.

the original line AC and the line AB′ to the center of the epicycle is exactly the same as
the angle that an observer at the center O of the deferent measures between the original
line AC and the line to the point C′ on the epicycle. Ptolemy demonstrated this equivalence
in Section 3 of Book 3. He also considered the possibility that the sun could rotate on its
epicycle in the same direction that the epicycle moves around the earth, pointing out that
in that case, the most rapid motion would be at apogee (when the sun is farthest from the
earth) and the slowest at perigee (when the sun is closest to the earth). In fact, the most
rapid motion is at perigee (or perihelion, as we call it, using the heliocentric system). That
occurs within a day or two of January 3 each year.6

With either model, eccentric or epicyclic with the same angular velocity, no retrograde
motion will be observed. The advantage of the epicycle is that retrograde motion can be
accounted for by taking the angular velocity on the epicycle greater than that of the epicycle
on the deferent. If, for example, the velocity of the planet on the epicycle is twice that of the
epicycle on the deferent, retrograde motion will be observed if the radius of the epicycle is
more than half the radius of the deferent.

17.2.2. The Motion of the Sun

Since we do not have space to discuss the complexities of the Almagest, we shall confine
our discussion to a brief sketch of the sun’s motion. In this case, the epicycle in Fig. 17.3
can be thought of as showing the approximate positions C and C′ of the sun starting in
early July (at C) and then at a somewhat later time, around mid-September (at C′). In the
eccentric hypothesis, the sun is at B and B′ respectively at those times and moving at a
uniform rate along the deferent, but the observer (on the earth) is located at A. Whether we
imagine an observer at O (the center of the deferent) observing the point C on the epicycle,
or an observer at A (displaced from the center of the deferent) observing the point B on the

6Perihelion for the center of gravity of the earth–moon system occurs on January 3; but because the two bodies
rotate about a common center of gravity, that is not necessarily the day when the center of the earth is at perihelion.
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deferent, makes no difference, since both will observe exactly the same amount of rotation
at any given time, namely the angle C′OC or the angle B′AB.7

To summarize: The mean position of the sun (B) moves at a constant rate around the
deferent, and the deviation from the mean is accounted for either by saying that the earth
isn’t at the center of the deferent, or that the sun is revolving around its mean position on the
epicycle, again at a uniform rate. Either assumption allows the actual motion to be uniform
while its appearance to terrestrial observers is not uniform.

The single-epicycle, or eccentric, model is well suited for a comparatively simple motion
such as that of the sun. The path of the sun among the stars is the ecliptic, which for our
purposes is regarded as a fixed circle. Its motion along this path, however, is not at a uniform
angular rate. It moves most slowly when passing through the constellation Gemini, which
astronomers and astrologers refer to as the House of Cancer. (When the houses of the Zodiac
were originally established, the House and the constellation of the same name coincided.
Because of precession of the equinoxes, they are now about one month out of phase.) The
summer solstice in Hellenistic times was in the constellation Cancer, so that the slowest
motion of the sun occurred before the solstice, in late May. Nowadays the apogee (aphelion
in the heliocentric system) is reached in early July, shortly after the summer solstice (the
northernmost point on the ecliptic). Hipparchus placed the apogee about 24◦ before the
summer solstice. Using this information and the fact that (in his day), spring was 94 1

2 days
long while summer was 92 1

2 days long, Ptolemy managed to fit the sun’s motion by using
an epicycle and deferent whose radii were in the ratio of 1 : 24. This ratio, briefly improved
upon by Copernicus before Kepler banished circles altogether in favor of ellipses, gave
good agreement with observation. Using that scheme and fitting the data to the appropriate
dates in 2010, one can obtain the following table of right ascensions of the sun at 30-day
intervals throughout the year. The third column of the table gives the values computed by
modern astronomy, and the last column shows the amount by which “Ptolemy’s” (actually,
our) predicted values fall short of the modern values, which is always less than 4′ of arc, or
one degree.8

Date Ptolemy Modern Difference
January 19 20 5′ 36′′ 20 6′ 53′′ 1′17′′

February 18 22 7′ 54′′ 22 8′ 16′′ 22′′
March 20 0 0′ 4′′ 0 0′ 4′′ 0
April 19 1 49′ 51′′ 1 50′ 0 9′′
May 19 3 44′ 54′′ 3 45′ 41′′ 47′′
June 18 5 46′ 58′′ 5 48′ 39′′ 1′ 41′′
July 18 7 49′ 29′′ 7 52′ 1′′ 2′ 31′′

August 17 9 45′ 0′′ 9 48′ 4′′ 3′ 4′′
September 16 11 33′ 43′′ 11 37′ 6′′ 3′ 23′′

October 16 13 22′ 33′′ 13 26′ 7′′ 3′ 34′′
November 15 15 20′ 2′′ 15 23′ 29′′ 3′ 14′′
December 15 17 29′ 38′′ 17 32′ 21′′ 2′ 43′′

7It is impossible to observe the distances to the stars with the unaided eye, so that the only things we can actually
measure are the angles between our lines of sight to two different stars. Thus, the distances (radii of the epicycles)
can be anything they have to be to account for the angles we actually observe.
8A minute in this context is a minute of time—one-sixtieth of an hour, and an hour is 15 degrees.
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17.3. THE ALMAGEST

There is insufficient space here to describe Ptolemy’s entire treatise, and in any case our
primary concern is with its mathematical innovations. To make geometric astronomy work,
Ptolemy developed a subject that resembles what we now call spherical trigonometry,
extending earlier work by Hellenistic mathematicians such as Menelaus of Alexandria.

17.3.1. Trigonometry

The word trigonometry means triangle measurement, but angles are generally measured in
terms of the amount of rotation they represent, that is, in terms of the ratio of the length
of the arc they subtend to the circumference of the circle containing the arc. That is the
context in which Ptolemy developed the subject. It is essentially the study of the quantitative
relations between chords and arcs in a circle.

In a system that is still basically the standard one, Ptolemy divides the circumference into
360 equal parts, and measures angles in terms of those parts, that is, in degrees (sometimes
half-degrees). The basic problem of trigonometry, from this point of view, is to determine
the length of the chord subtended by a given arc and vice versa. To this end, following the
Babylonian sexagesimal system, Ptolemy uses 1

60 of the radius of the circle as the unit of
length for chords in a given circle. The effect of this technique is that when two circles
intersect, their common chord must be expressed in two different ways, in terms of the
two radii. This procedure leads to constant scaling of lengths, and is apt to provoke an
impatient reaction from the modern reader. Cumbersome though it was, however, it worked
and enabled Ptolemy to give an accurate quantitative description of celestial motions.

17.3.2. Ptolemy’s Table of Chords

The computation of the table of chords used by Ptolemy is an interesting exercise in numer-
ical methods. The natural approach would be to start with a central angle whose chord is
known (say, 60◦, for which the chord equals the radius of the circle), then use half-angle for-
mulas to compute the chord of 30◦, 15◦, 7◦ 30′, and so on, until the desired tabular difference
is achieved, after which one would build up the table in these intervals using the addition
formulas for the trigonometric functions.9 Ptolemy’s approach is like this, but he does the
computations very elegantly, using what is now called Ptolemy’s theorem: In a quadrilat-
eral inscribed in a circle, the rectangle on the diagonals equals the sum of the rectangles
on the two pairs of opposite sides. To prove this theorem, draw a line BE from the vertex B

to the diagonal AC such that ∠ABE = ∠DBC, as in Fig. 17.4. Hence ∠EBC = ∠ABD.
Therefore, since angles BAC and BDC are both inscribed in the same arc, triangles ABE

and DBC are similar. For the same reason, triangles EBC and ABD are similar. It follows
that AB · CD + BC · AD = AE · BD + EC · BD = AC · BD.

Ptolemy’s theorem makes it possible to express the chord on the difference of two arcs
in terms of the chords on the individual arcs. Given three points on a circle, say A, B, and
C, take point D diametrically opposite one of the points, say A (see Fig. 17.5). If the chords

9In fact the algorithm by which hand calculators evaluate the trigonometric functions works roughly along these
lines. Certain values are hard-wired into the calculator and others are computed by application of the addition
formulas.
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Figure 17.4. Ptolemy’s theorem.

AC and AB are given, draw the diameter AD and the chords BC, DB, and CD. The chord
AD is known, being the diameter of the circle (hence equal to 120 of Ptolemy’s units). Then
DB and DC can be computed using the Pythagorean theorem from the diameter and the
given chords, since an angle inscribed in a semicircle is a right angle. Hence in the inscribed
quadrilateral ABCD both diagonals and all sides except BC are known, and so BC can be
computed.

Ptolemy used this theorem to construct a table of chords of angles at half-degree intervals.
He began with a regular decagon inscribed in a circle. The central angles subtended by
the sides of this decagon are each equal to 36◦. Because of the compass-and-straightedge

construction of this figure, its side can be expressed as
√

5−1
2 r, where r is the radius, which is

60 standard units according to Ptolemy. Instead of repeatedly bisecting this angle, however,
Ptolemy adopted an indirect strategy to find the chord of a smaller angle without having to
extract so many square roots. He used the fact that the side of the regular pentagon inscribed
in a circle (the chord of 72◦) is known from Euclid’s Elements, Book 13, Proposition 10 to
be the hypotenuse of the right triangle whose legs are the radius of the circle and the side
of the inscribed regular decagon. Thus this chord is
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Figure 17.5. The chord of 12◦.
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which, given that r = 60, is 70.5342302751. . . . In Ptolemy’s sexagesimal notation, this
number is given to the nearest second as 70; 32, 3. Since the chord of 60◦ is obviously
r, which is 60 standard units, one can then use Ptolemy’s theorem to compute the chord
of 72◦ − 60◦ = 12◦. In order to apply this theorem, we first need to get the chords on the
arcs of 120◦ and 108◦ supplementary to these two angles, as shown in Fig. 17.5. By the
Pythagorean theorem, we get

chord 120◦ =
√

4r2 − r2 =
√

3r ;

chord 108◦ =
√

4r2 − 5 − √
5

2
r2 =

√
3 + √

5

2
r .

Thus, the chord of 12◦ is

(
√

15 − 3
√

5

8
−

√
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5

8

)
r ,

and given that r = 60, this becomes approximately 12.5434155922. . . . Ptolemy gave it as
12; 32, 36.

We have given this computation in language that is more symbolic than Ptolemy’s. He
always wrote 60 where we have written r, and he had no symbol for the square root. He
would first write down the square whose root is to be taken, as a number rather than an
expression, and then write down the square root, again as a number.

Ptolemy then showed how to compute the chord of half an angle if the chord of the angle
is known. In this way he was able to compute successively the chords of 6◦, then 3◦, then
1◦ 30′, and finally 0◦ 45′. He found that, to three sexagesimal places, the chord of 1◦ 30′
is 1; 34, 25 and the chord of 0◦ 45′ is 0; 47, 8. The ingenious idea of starting from a 72◦
angle, rather than the more natural 60◦ angle, allowed Ptolemy to reach angles less than 1◦
while minimizing the roundoff error caused by approximating square roots.

Ptolemy’s construction of his table misses the important angle of 1◦. This gap is not
accidental. All the angles whose chords can be found by his strategy can be constructed
with compass and straightedge, but a 1◦ angle is not constructible with these instruments
alone. To estimate the chord of 1◦, Ptolemy combined the two chords on each side of 1◦,
namely 1◦ 30′ and 0◦ 45′ with a useful approximation theorem: The ratio of the larger of
two chords to the smaller is less than the ratio of the arcs they subtend. We have already
encountered a theorem similar to this, but not quite identical, in connection with the work of
Zenodorus on the isoperimetric problem. (Compare Fig. 16.1 of Chapter 16 with Fig. 17.6
of the present chapter.)

In other words, the ratio of a larger chord to its arc is less than the ratio of a smaller
chord to its arc. In still other words, the ratio of chord to arc decreases as the arc increases.
In our own language, using radian measure for angles, the chord of an arc of length rθ is
2r sin(θ/2). This theorem says that the ratio sin ϕ

ϕ
decreases as ϕ increases. Because of this

proposition, the chord of 1◦ is smaller than four-thirds of the chord of 0◦ 45′, and larger than
two-thirds of the chord of 1◦ 30′. If we treat Ptolemy’s two approximations as exact, we find
that the chord of 1◦ is less than 1; 2, 50, 40 and larger than 1; 2, 50. Ptolemy truncated
the first of these to 1; 2, 50. He then wrote (what is logically absurd) that “the chord of 1◦
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Figure 17.6. A fundamental inequality from Ptolemy’s Almagest.

has been shown to be both greater and less than the same amount.” But we know what he
means.

Thus Ptolemy had established that the chord of 1◦ is approximately 1; 2, 50 units when
the radius is 60 units. Then, using his half-angle formula, he found the chord of 0◦ 30′ to be
0; 31, 25, after which he was able to construct the table of chords for angles at half-degree
intervals.

The table of chords makes it possible to solve right triangles, in particular, to find the
angles in such a triangle when given the ratio of two of its sides. In astronomy, however,
one is always using angular coordinates on a sphere, since both the sides and angles of
a spherical triangle are given as angles. It would be clumsy always to have to introduce
plane triangles in order to find the parts of spherical triangles, and so Ptolemy included
certain relations among the parts of spherical triangles as lemmas. These are not the laws
of cosines and sines now used in spherical trigonometry, but rather two theorems that had
been published half a century earlier in a work called Sphaerike by Menelaus of Alexandria.
With these relations it is possible to solve such problems as finding which portion of the
ecliptic rises simultaneously with a given portion of the celestial equator.

With this mathematical equipment and a wealth of observational data, Ptolemy was
able to apply the theoretical methods invented by earlier astronomers. The 12 books of the
Almagest became the standard astronomical treatise in the Middle East and Europe until
the sixteenth century. The details are too complicated to summarize, and we shall have to
leave the reader with just the sample given above for the motion of the sun over a single
year.

PROBLEMS AND QUESTIONS

Mathematical Problems

17.1. Use Fig. 17.6 to show that the ratio of a larger chord to a smaller is less than the

ratio of the arcs they subtend, that is, show that B� : AB is less than
�

B�:
�

AB, where
�Z is the perpendicular bisector of A�. (Hint: B� bisects angle AB�.) Carry out
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Figure 17.7. Ptolemy’s theorem.

the analysis carefully and get accurate upper and lower bounds for the chord of 1◦.
Convert this result to decimal notation, and compare with the actual chord of 1◦
which you can find from a calculator. (It is 120 sin

( 1
2

◦)
.)

17.2. In modern language, the chord of an arc α can be expressed as d sin
(

α
2

)
, where d

is the diameter of the circle. Referring to Fig. 17.7, show that Ptolemy’s theorem is
logically equivalent to the following relation, for any three arcs α, β, and γ of total
length less than the full circumference.

sin
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2

)
· sin
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2

)
+ sin
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)
= sin
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)
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17.3. Compute the chord of 6◦ in two different ways: (1) by expressing 6◦ as the differ-
ence of a 36◦ arc and a 30◦ arc, whose chords are known to be 30(

√
5 − 1) and

30
√

2(
√

3 − 1); (2) by expressing it as the chord of the difference of 12◦ and 6◦.

Historical Questions

17.4. How did the ancients determine geographical latitude?

17.5. Why was geographic longitude more difficult to determine than latitude?

17.6. Out of what mathematical and observational data did Ptolemy construct his astro-
nomical treatise?

Questions for Reflection

17.7. Does the success of Ptolemy’s Almagest vindicate Plato’s conviction that the key to
understanding the material world was to connect it with an ideal world of abstractions
(ideas or forms) that are perceived with the mind rather than the senses?

17.8. In Ptolemy’s system, the occasional retrograde motion of, say Mars, is explained by
its motion on the epicycles, whose deferents are at or near the center of the earth. Now,
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retrograde motion of the outer planets—westward rather than eastward on (or near)
the ecliptic—is observed in the time interval from just before to just after a planet
is in opposition to the sun, that is, 180◦ opposite the sun on the celestial sphere.
The fitting of epicycles for any planet must therefore take account of the position of
the sun, which itself never undergoes retrograde motion. Surely, one would think,
these considerations suggest that the planets are more closely tied to the sun than
to the earth, and heliocentric astronomy would be much simpler than geocentric.
And in fact, Ptolemy considered this hypothesis, which had been proposed by the
astronomer Aristarchus of Samos (ca. 310–ca. 230), but he rejected it on physical
grounds. Why did it take another 1500 years for this hypothesis to be revived and
become the cornerstone of modern astronomy?

17.9. Ptolemy used a wheel submerged in water up to its axle in order to determine the
refraction of light in passing from air into. Based on his observations he gave the
following table of the angles of refraction for angles of incidence of 10◦, 20◦,. . . ,
80◦. (These are the angles the ray makes with the vertical as it enters the water. The
angles of refraction are the angles the ray makes with the vertical after entering the
water.) The third column gives the values computed from Snell’s Law. Since the ratio
of the velocities is about 4 : 3 for light in air and light in water, Snell’s law says
that sin(ϕ) = 3 sin(θ)/4, where is θ is the angle of incidence and ϕ is the angle of
refraction.

Angle of Incidence Angle of Refraction Snell’s Law

10◦ 8◦ 7.48◦

20◦ 15 1
2
◦

14.86◦

30◦ 22 1
2
◦

22.02◦

40◦ 29◦ 28.82◦

50◦ 35◦ 35.07◦

60◦ 40 1
2
◦

40.51◦

70◦ 45 1
2
◦

44.81◦

80◦ 50◦ 47.61◦

Since physical scientists, and Ptolemy in particular, are known to have manipulated
their data to fit a theory, does this table indicate any such manipulation?



CHAPTER 18

Pappus and the Later Commentators

The last few centuries of mathematics in the Greek tradition showed clear evidence of
decline in geometry. Except for Pappus and a few others, most geometric work done during
this period was commentary on earlier work. On the other hand, as we saw in Chapter 9,
algebra arose in a form that we can recognize, in the works of Diophantus, although it was
more closely connected to number theory than to geometry.

18.1. THE COLLECTION OF PAPPUS

Almost nothing is known about the life of Pappus. The tenth-century encyclopedia known
as the Suda says the following about him:

Pappus, of Alexandria, philosopher, lived about the time of the Emperor Theodosius the Elder
[who ruled from 379 to 395], when Theon [of Alexandria] the Philosopher, who wrote the
Canon of Ptolemy, also flourished.

However, a table written by Theon himself mentions the emperor Diocletian, who ruled
from 284 to 305, and says of his reign, “Pappus wrote during that time.”

The Suda is an unreliable source. (We shall see below that it says Hypatia was the wife
of Isodoros, who was, like Hypatia, a neo-Platonist philosopher, probably one of the last.
He could not have been her husband, since he lived nearly a century later.) Thus, we give a
higher credibility to Theon. But there is circumstantial evidence that he also got it wrong,
since Pappus wrote a commentary on Ptolemy’s Almagest and in it revealed that he had
observed an eclipse of the sun on October 18, 320. He is therefore somewhat later than
Theon thought and earlier than the author of the Suda thought. His most probable dates are
from around 290 to 350, and his main work, the Collection (�υναγωγή = Synagōgē) was
written in the early-to-mid fourth century.

Heath describes this work as follows:

Obviously written with the object of reviving the classical Greek geometry, it covers practi-
cally the whole field. It is, however, a handbook or guide to Greek geometry rather than an
encyclopædia; it was intended, that is, to be read with the original works (where still extant)
rather than to enable them to be dispensed with.

In fact, it was too late to revive classical Greek geometry. Its potential had already been
exhausted long before, and the only way for geometry to make further progress was to adopt

The History of Mathematics: A Brief Course, Third Edition. Roger L. Cooke.
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Figure 18.1. Pappus’ generalization of the Pythagorean theorem.

new methods. Those methods were not to show up in the West until the time of Fermat,
Pascal, and Descartes, some 1300 years later. With that as preface, let us look into the
Collection.

18.1.1. Generalization of the Pythagorean Theorem

Book 4 of the Collection contains a famous generalization of the Pythagorean theorem:
Given any triangle AB	 and any parallelograms B	ZH and AB
E constructed on two
sides, it is possible to construct (with straightedge and compass) a parallelogram A	M�

on the third side equal in area to the sum of the other two (see Fig. 18.1).

18.1.2. The Isoperimetric Problem

In Book 5 Pappus states almost verbatim the argument that Theon of Alexandria, quoting
Zenodorus, gave for the proof of the isoperimetric inequality. Pappus embroiders the theorem
with a beautiful literary device, however. He speaks poetically of the divine mission of the
bees to bring from heaven the wonderful nectar known as honey and says that in keeping
with this mission they must make their honeycombs without any cracks through which
honey could be lost. Being endowed with a divine sense of symmetry as well, the bees
had to choose among the regular shapes that could fulfill this condition—that is, triangles,
squares, and hexagons. They chose the hexagon because a hexagonal prism required the
least material to enclose a given volume, out of all the possible prisms whose base would
tile the plane.1

18.1.3. Analysis, Locus Problems, and Pappus’ Theorem

Book 7 of the Collection is a treasure trove of fascinating information about Greek geometry
for several reasons. First, Pappus describes the kinds of techniques used to carry on the

1If one is looking for mathematical explanations of this shape, it would be simpler to start with the assumption
that the body of a bee is approximately a cylinder, so that the cells should be approximately cylinders. Now one
cylinder can be tightly packed with six adjacent cylinders of the same size. If the cylinders are flexible and there
is uniform pressure on them, they will flatten into hexagonal prisms.
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research that was current at the time. He lists a number of books of this analysis and
tells who wrote them and what their contents were, in general terms, thereby providing
valuable historical information. What he means by analysis, as opposed to synthesis, is
a kind of algebraic reasoning in geometry. As he puts it, when a construction is to be
made or a relation is to be proved, one imagines the problem to have been solved and
then deduces consequences connecting the result with known principles, after which the
process is reversed and a proof can be synthesized. This process amounts to thinking about
objects determined implicitly in terms of properties that they must have, but not explicitly
identified; when applied to numbers—that is, starting with properties that a number must
have and deducing its explicit value from those properties—that process is algebra.

A second point of interest in Book 7 is a discussion of locus problems, such as those
in Apollonius’ Conics. This discussion exerted a strong influence on the development of
geometry in seventeenth-century France, as we noted in Chapter 15 and will discuss further
in Chapter 32. Several propositions from Euclid’s Data, which was discussed in Section 13.2
of Chapter 13, inspired Pappus to create a very general proposition about plane loci. Refer-
ring to the points of intersection of a set of lines, he writes:

To subsume all these discoveries in a single proposition, we have written the following. If three
points are fixed on one line. . . and all the others except one are confined to given lines, then
that last one is also confined to a given line. This is asserted only for four lines, no more than
two of which intersect in the same point. It is not known whether this assertion holds for every
collection of lines.

This theorem is illustrated in Fig. 18.2, using analytic geometry. To discover this theorem
without invoking the power of algebra was an impressive feat. Pappus could not have
known that he had provided the essential principle by which a famous theorem of projective
geometry known as Desargues’ theorem was to be proved 1400 years later. (See Chapter 31.)
Desargues knew the work of Pappus, but may not have made the connection with this

Figure 18.2. Pappus’ general locus theorem. The points A, B, and C are fixed at (0, 0), (90, 0), and
(150, 0). Point E is confined to the line −2x + 3y = 120, F is confined to the line −3x + 4y = 60,
and E, F , and C are required to be collinear. Then the point D is determined as the intersec-
tion of the extensions of the lines AE and BF . The conditions imply that D must lie on the line
−86x + 133y = 6120.
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theorem. The connection was pointed out by van der Waerden (1963, p. 287), who suggests
how the theorem may have been proved originally, without analytic geometry.

Pappus discusses the three- and four-line locus for which the mathematical machinery
is found in Book 3 of Apollonius’ Conics. For these cases the locus is always one of the
three conic sections. Pappus mentions that the two-line locus is a planar problem; that is,
the solution is a line or circle. He says that a point satisfying the conditions of the locus to
five or six lines is confined to a definite curve (a curve “given in position” as the Greeks said),
but that this curve is “not yet familiar and is merely called a curve.” The curve is defined by
the condition that the rectangular parallelepiped spanned by the lines drawn from a point
to three fixed lines bears a fixed ratio to the corresponding parallelepiped spanned by the
lines drawn to three other fixed lines. In our terms, this locus is a cubic curve.

Still a third point of interest is connected with the extension of these locus problems.
Pappus considers the locus to more than six lines and says that a point satisfying the
corresponding conditions is confined to a definite curve. This step was important, since it
proposed the possibility that a curve could be determined by certain conditions without
being explicitly constructible. Moreover, it forced Pappus to go beyond the usual geometric
interpretation of products of lines as rectangles. Noting that “nothing is subtended by more
than three dimensions,” he continues:

It is true that some of our recent predecessors have agreed among themselves to interpret such
things, but they have not made a meaningful clear definition in saying that what is subtended
by certain things is multiplied by the square on one line or the rectangle on others. But these
things can be stated and proved using composite ratios.

It appears that Pappus was on the very threshold of the creation of the modern con-
cept of a real number as a ratio of lines. Why did he not cross that threshold? One rea-
son may have been that he was held back by the cumbersome Euclidean definition of a
composite ratio, discussed in Section 12.2 of Chapter 12. But there was a further reason:
He wasn’t interested in foundational questions. He made no attempt to prove or justify
the parallel postulate, for example. And that brings us to the fourth attraction of Book 7.
In that book Pappus investigated some very interesting problems, which he preferred to
foundational questions. After concluding his discussion of the locus problems, he implies
that he is merely reporting what other people, who are interested in them, have claimed.
“But,” he says,

after proving results that are much stronger and promise many applications,. . . to show that I do
not come boasting and empty-handed. . . I offer my readers the following: The ratio of rotated
bodies is the composite of the ratio of the areas rotated and the ratio of straight lines drawn
similarly [at the same angle] from their centers of gravity to the axes of rotation. And the ratio
of incompletely rotated bodies is the composite of the ratio of the areas rotated and the ratio
of the arcs described by their centers of gravity.

The statement of these theorems shows that Pappus is working in the metric-free tradition
of Euclid. He does not use the word volume at any point, much less say what the volume
of any particular solid of revolution is. Instead, he refers only to the ratios of such solids,
just as Euclid would have done. To elaborate on this language, if a plane figure A having
point P as center of gravity is rotated about a line l, generating a solid X, and a plane figure
B having point Q as center of gravity is rotated about a line m, generating a solid Y , and if
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Figure 18.3. Pappus’ theorem for two rectangles revolved about an edge. Each of them generates a
cylinder whose height equals the side lying on the axis of rotation and whose base has radius equal
to the other side. The lines PR and QS are proportional to the perpendicular distances from P and
Q to l and m, respectively, so that making them oblique to the axes of rotation does not add any real
generality.

line segments PR and QS are drawn from P and Q respectively to points R on l and S on
m, making the same angle at R and S, then X : Y :: A : B.PR : QS. The simple case when
A and B are rectangles and the axes of rotation l and m are edges of A and B respectively
is shown in Fig. 18.3.

From Propositions 32 and 34 of Book 11 of the Elements, it was known that paral-
lelepipeds having equal bases are proportional to their altitudes and parallelipeds having
equal altitudes are proportional to their bases. It is not difficult then to show that the ratio of
two parallelepipeds is the composite of the ratios of their bases and altitudes. To do so, let U
and V be parallelepipeds having bases A and B, respectively, and altitudes h and k. We wish
to show that U : V :: A : B.h : k. In accordance with Euclid’s definition of the composite
ratio, we need three quantities a, b, and c, all of the same kind, such that A : B :: a : b and
h : k :: b : c. By definition A : B.h : k is a : c.

We thus need to show that U : V :: a : c in the notation just introduced. To do so, suppose
m and n are any two positive integers such that ma > nc. By Archimedes’ principle,2 there
is some positive integer r such that r(ma − nc) > b, and hence some integer s such that
rma > sb > rnc. Since A : B :: a : b, it follows that rmA > sB; and similarly (because
h : k :: b : c) we have sh > rnk. Therefore the parallelepiped having base rmA and alti-
tude sh is larger than the parallelepiped having base sB and altitude rnk. However, since
parallelepipeds having the same base are proportional to their altitudes and vice versa, the
former of these is exactly rms times as large as P and the latter is rns times as large as Q.
Canceling rs in this statement, we conclude that mP is larger than nQ, which is precisely
what the Eudoxan definition of proportion demands. (Of course, the same argument needs
to be repeated with the inequality reversed and then repeated again with the inequality re-
placed by equality in order to satisfy all three of the conditions of the Eudoxan definition
of proportion, but that is an easy exercise for the reader.)

Pappus’ theorem is easy to prove for rectangles revolved about one of their sides. If the
rectangle has sides a and b and is revolved about the side of length a, it generates a cylinder

2This principle says that for any two geometric or physical quantities of the same kind, some integer multiple of
each is larger than the other. In modern language: Infinitesimals do not exist. The principle is assumed in Euclid’s
definition of a ratio.
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whose base has radius b and whose altitude is a. It is well known that such a cylinder is
proportional to a parallelepiped with square base of side b and altitude a. Now the distance r

from the axis to the center of gravity in this case is b
2 , so that the cylinder is also proportional

to a rectangular parallelepiped having a base of sides b and r and altitude a. However, that
parallelepiped can also be regarded as having a rectangular base of sides a and b and altitude
r. Since we have shown above that parallelepipeds are proportional to the composite ratio of
their bases and altitudes, it follows that this cylinder is proportional to the composite of the
rectangle of sides a and b and the line r, as asserted. Thus, if we have two such rectangles
R1 and R2 with sides a1, b1 = 2r1 and a2, b2 = 2r2, generating cylinders C1 and C2, we
can say that C1 : C2 :: R1 : R2.r1 : r2. It is then not difficult to get the same theorem for two
rectangles, one of which is rotated about any line parallel to one of its sides. You simply
“fill in” the space between the rectangle and the axis of rotation with another rectangle
so as to make a larger rectangle of the same height. If the original rectangle is a × b and
the filled-in portion is a × c, then the two together will be a × (b + c). The centroid of the
original will be at distance c + b/2 from the axis, while the centroid of the one touching the
axis of rotation will be at distance c/2 from that axis. The centroid of the two together will
be at distance (b + c)/2 from the axis. Applying the original theorem to the two together,
we find that the large cylinder is proportional to a parallelepiped with base a × (b + c) and
altitude (b + c)/2, while the cylinder generated by the portion of the rectangle touching the
axis of rotation is proportional to a parallelepiped with base that is a × c and altitude c/2.
Hence the cylindrical annulus generated by the original rectangle, which is a parallelepiped
that has base a × b and altitude c + b/2, is proportional to the difference of these two. The
rest of the proof is now easy and is left as an exercise, which the reader may do in modern
notation.

What is called Pappus’ theorem in calculus books—and was known for centuries as
Guldin’s formula—gives a numerical value for the volume generated by revolving a plane
region, namely the product of the area and the circumference of the circle traversed by its
centroid during the revolution. In this modern form the theorem was first stated in 1609
by the Swiss astronomer/mathematician Paul Guldin (1577–1643), a Jesuit priest, and pub-
lished between 1635 and 1640 in the second volume of his four-volume work Centrobaryca
seu de centro gravitatis trium specierum quantitatis continuae (The Barycenter, or on the
Center of Gravity of the Three Kinds of Continuous Magnitude). It appears to be established
that Guldin had not read Pappus and made the discovery independently. He also gave an
inadequate proof of the result, and the first actual proof is due to Bonaventura Cavalieri
(1598–1647).

The second result stated by Pappus is an immediate application of the Eudoxan theory
of proportion, since the volume generated is obviously in direct proportion to the angle of
rotation, as are the arcs traversed by individual points.

In this discussion, we have emphasized that Pappus did not write his results in our modern
language of formulas for areas and volumes. Would he have understood them if they had
been stated to him? Putting the question another way, how close was he to our point of
view? Two concepts that he used now strike us as unnecessary complications. The first
was the Euclidean style of avoiding the choice of unit lengths, areas, and volumes. This
approach required Pappus to talk about the ratio of two solids rather than the volume of a
single solid. He could only say, for example, that solids of revolution are proportional to
the composite ratio of the planar regions that are revolved to form them and lines from their
centers of gravity to the axes of rotation. That means, to us, that the volume of such a solid
is a constant times the product of the area of the planar region and the length of the line, the
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same constant for all solids of revolution. In fact, if the angle formed by the line from the
center of gravity of the planar region to the axis of rotation is θ, the constant is 2π sin(θ). The
other complicated concept is that of a composite ratio. We have now seen two examples
of the application of this concept (the argument just given, and Problem 12.3), and it is
clear that if two ratios are regarded as numbers, then the composite ratio corresponds to the
product of those two numbers. Did Pappus know either of these things? It is very likely that
he did, in a sense, although he may not have thought of the situation in quite those terms.
As Cuomo (2000, § 5.1) emphasizes, after giving Euclidean-style arguments to prove his
propositions, Pappus illustrated many of them with numerical examples. If he had proved
this theorem and illustrated it as he did some others, we would have a clearer idea of the
extent to which he anticipated the modern refinement of his theorem. But in any case, he was
still confined to the notion of a ratio as being a relationship between two objects of the same
kind, and he did not think of it as dividing the measure of one of them by the measure of
the other. The quantity we obtain by dividing the distance traveled by the time of travel to
get the average speed of travel would not have been a ratio to any ancient Greek, and their
discussions of motion were not like those of modern physics.

18.2. THE LATER COMMENTATORS: THEON AND HYPATIA

We referred to the later commentators in Chapter 8 as the sources of much of what we know
about the history of Greek mathematics. In the present section, we shall say a few words
about two of them, namely the fourth-century commentator Theon of Alexandria and his
daughter Hypatia, the only woman mathematician of ancient times about whose life a little
is known.

18.2.1. Theon of Alexandria

Theon of Alexandria can be dated from the fact that he himself reported that he had observed
a solar eclipse on June 16, 364. He continued to write until at least the year 372.

As mentioned above, the tenth-century encyclopedia known as the Suda says that Theon
lived in the time of the Emperor Theodosius I (379–395). These dates are therefore consis-
tent. It also states that he worked at the Museum at Alexandria (which contained the Library
mentioned earlier), as one of its last members apparently, since it did not survive long after
his time.

Theon wrote commentaries on many works, including the Almagest and the works of
Euclid. Until a little over a century ago, his edition of Euclid’s Elements, on which his
daughter Hypatia may have collaborated, was the only known Greek text of the Elements. An
earlier edition was discovered in the Vatican in the late nineteenth century. From it, historians
can see what original contributions were made by Theon and Hypatia. In particular, we see
confirmation of what we said earlier: The editors of ancient works were more interested in
improving the work than in preserving it intact. O’Connor and Robertson, writing at the
MacTutor website,3 relate that Theon elaborated arguments that were obscure in the earlier
manuscripts, adding propositions of his own to clarify them, standardized the notation for

3http://www-history.mcs.st-and.ac.uk/Biographies/Theon.html
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certain concepts, and “corrected errors,” which were not always errors but sometimes mere
misunderstandings on the part of Theon.

18.2.2. Hypatia of Alexandria

Very few women mathematicians are known by name from early times. However, Closs
(1992, p. 12) mentions a Maya ceramic with a picture of a female scribe/mathematician.
From ancient Greece and the Hellenistic culture, two or perhaps three such women are
known by name. In his Lives of Eminent Philosophers, Diogenes Laertius says that

Pythagoras had a wife named Theano. She was the daughter of Brontinus of Croton, although
some say that she was Brontinus’ wife and Pythagoras’ pupil. He also had a daughter named
Damo, as Lysis mentions in a letter to Hipparchus. In this letter he speaks of Pythagoras as
follows: ‘And many say that you [Hipparchus] give public lectures on philosophy, as Pythagoras
once did. He entrusted his Commentaries to Damo, his daughter, and told her not divulge them
to anyone not of their household. And she refused to part with them, even though she could
have sold them for a considerable amount of money. . . .’

Since it was said that the Pythagoreans admitted women to their councils, it seems
possible that Pythagoras’ wife and daughter may have engaged in mathematical research.
However, nothing at all is known about any works they may have produced. All that we
know about them is contained in the paragraph from Diogenes Laertius just quoted.

There are two primary sources for information about the life of Hypatia. One is a passage
in a seven-book history of the Christian Church written by Socrates Scholasticus, who was
a contemporary of Hypatia but lived in Constantinople; the other is an article in the Suda.
In addition, several letters of Synesius, bishop of Ptolemais (in what is now Libya), who was
a student of Hypatia, were written to her or mention her, always in terms of high respect.
In one letter he requests her, being in the “big city,” to procure him a scientific instrument
(hygrometer) not available in the less urbanized area where he lived. In another he asks her
judgment on whether to publish two books that he had written, saying

If you decree that I ought to publish my book, I will dedicate it to orators and philosophers
together. The first it will please, and to the other it will be useful, provided of course that it is
not rejected by you, who are really able to pass judgment. If it does not seem to you worthy
of Greek ears, if, like Aristotle, you prize truth more than friendship, a close and profound
darkness will overshadow it, and mankind will never hear it mentioned. [Fitzgerald, 1926]

The account of Hypatia’s life written by Socrates Scholasticus occupies Chapter 15 of
Book 7 of his Ecclesiastical History. Socrates Scholasticus describes Hypatia as the pre-
eminent philosopher of Alexandria in her own time and a pillar of Alexandrian society, who
entertained the elite of the city in her home. Among that elite was the Roman procurator
Orestes. There was conflict at the time among Christians, Jews, and pagans in Alexandria;
Cyril, the bishop of Alexandria, was apparently in conflict with Orestes. According to
Socrates, a rumor was spread that Hypatia prevented Orestes from being reconciled with
Cyril. This rumor caused some of the more volatile members of the Christian community
to seize Hypatia and murder her in March of 415.
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The Suda devotes a long article to Hypatia, repeating in essence what was related by
Socrates Scholasticus. It says, however, that Hypatia was the wife of the philosopher
Isodoros, which is definitely not the case, since Isodoros lived near the end of the fifth
century. (He was perhaps the last neo-Platonist in Alexandria.) The Suda assigns the blame
for her death to Cyril himself.

Yet another eight centuries passed, and Edward Gibbon came to write the story in his
Decline and Fall of the Roman Empire (Chapter XLVII). In Gibbon’s version, Cyril’s re-
sponsibility for the death of Hypatia is reported as fact, and the murder itself is described
with certain gory details for which there is no factual basis.

As for her mathematical works, we have already mentioned that she may have been the
editor of some of the books of Arithmetica written by Diophantus. From other commentators,
it is known that, in addition to her lectures on philosophy, she wrote commentaries on the
works of earlier mathematicians.

A fictionalized version of Hypatia’s life can be found in a nineteenth-century novel by
Charles Kingsley, bearing the title Hypatia, or New Foes with an Old Face. What facts are
known were organized into an article by Michael Deakin (1994) and a study of her life by
Maria Dzielska (1995).

PROBLEMS AND QUESTIONS

Mathematical Problems

18.1. Prove Pappus’ generalization of the Pythagorean theorem, shown in Fig. 18.1, assum-
ing any parallelogram AB
E whatsoever and any parallelogram B	ZH whatsoever
have been constructed on sides AB and B	. Extend the outer sides of these two
parallelograms to �, draw the line �B, and extend it to meet A	 at K. Draw 	M

and A� parallel to �K, meeting ZH and E
 in M and � respectively. It is easy to
see that �M	B and ��AB are parallelograms and that therefore A� = B� = 	M.
Hence if �M is drawn, meeting BK in N, we shall also have KN = B�. Then prove
that A	M� = AB
E + B	ZH .

18.2. Explain why Pappus’ generalization of the Pythagorean theorem is not merely a
trivial consequence of Proposition 31 of Book 6 of the Elements, which states that
any similar polygons, similarly situated on the three sides of a right triangle, satisfy
the same relation as squares; that is, the sum of the two figures on the legs equals the
figure on the hypotenuse.

18.3. Prove Guldin’s formula for the union of two regions, given that it is true for each of
them. If the centroid of an area A lies at distance r from the axis, and the centroid
of another area B disjoint from it lies at distance s from that axis (both areas being
on the same side of the axis), then the centroid of the union of the two areas lies
at distance ρ = Ar+Bs

A+B
from the axis. (By Archimedes’ principle of the lever, this is

the distance from the axis to the point at which weights proportional to A and B in
the given locations will balance, since it differs from r by |r − ρ| = B

A+B
|r − s| and

from s by |s − ρ| = A
A+B

|r − s|, distances that are inversely proportional to A and
B.) For any plane area that can be approximated from within and without by a union
of rectangles, the method of exhaustion then yields the Guldin formula.
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Historical Questions

18.4. Describe some mathematical results that are found in Pappus’ Collection.

18.5. For what contributions to mathematics is Theon of Alexandria remembered?

18.6. What position in Alexandrian society did Hypatia have?

Questions for Reflection

18.7. By no means all the conceivable theorems of metric-free plane geometry are found
in the works of the authors we have discussed. One that arose in the nineteenth
century—known as the Steiner–Lehmus theorem after Jacob Steiner (1796–1863),
who proved it, and D. C. L. Lehmus (1780–1863), who posed it—asserts that if two
angle bisectors of a triangle are equal, then the triangle is isosceles.4 There are many
such results, including, for example, the 1899 discovery by Frank Morley (1860–
1937) that the trisectors of the angles of a triangle intersect inside the triangle in
three points that are the vertices of an equilateral triangle. Do such results mean that
in fact Greek geometry didn’t decline at all, that it is still alive and well?

18.8. Sketch out a historical-fiction scenario in which the ancient mathematicians discover
analytic geometry through the locus problems discussed by Pappus. To do so, they
would have to learn how to interpret a ratio of lines as what we call a real number.
Explain how they could have interpreted multiplication and division of such ratios.

18.9. What is meant by saying that Greek geometry was in decline after the time of
Apollonius? What did this decline amount to, and how could geometry have been
revived?

4This theorem makes a very nice puzzle for the amateur geometer. High-school students sometimes produce very
clever proofs of it, but it is deceptively difficult to prove.





PART IV

INDIA, CHINA, AND JAPAN
500 BCE–1700 CE

In the six chapters that constitute this part, we shall survey a long period of development of
mathematics in three cultures that grew up independent of the mathematics that flourished
around the Mediterranean Sea. A different “flavor,” more numerically oriented and strongly
algebraic, will be seen in all three places. This numerical orientation will be especially
noted in geometry, where the approach is not the axiomatic, metric-free Euclidean sys-
tem. Nonobvious relations among geometric figures are demonstrated using congruence,
dissection, and the Pythagorean theorem.

The usual disclaimer applies in this part. It is a very small sample of what could be said;
and for more details, the reader should consult the references cited in the corresponding
chapters.

Contents of Part IV

1. Chapter 19 (Overview of Mathematics in India) contains a survey of some major
achievements and outstanding mathematicians in India (including modern Pakistan)
from the earliest times to the twentieth century. By looking at the prefaces to some of
the great treatises, we gain some idea of the motivation for creating this knowledge.
Again, the names mentioned are only a few of a large number that are worthy of
mention.

2. Chapter 20 (From the Vedas to Aryabhata I) discusses the mathematics of the Hindu
Vedas beginning around 500 bce and the work of Aryabhata I (476–550).

3. Chapter 21 (Brahmagupta, the Kuttaka, and Bhaskara II) discusses the work of two
more outstanding mathematicians from the seventh through twelfth centuries ce:
Brahmagupta (598–670), and Bhaskara II (1114–1184). We end the story at that
point, even though mathematics continued to flourish in India with no break at the
end of the twelfth century, even anticipating some parts of the calculus.

4. Chapter 22 (Survey of Chinese Mathematics) is devoted to the Chinese development of
arithmetic, algebra, and geometry to meet practical administrative needs. The treatises
involved include the ancient Zhou Bi Suan Jing (Arithmetical Classic of the Zhou),
which probably dates from a time earlier than 200 bce, and the Han-Dynasty (200
bce–200 ce) document Jiu Zhang Suanshu (Nine-Chapter Mathematical Treatise),
which can be regarded as the fundamental text on classical Chinese mathematics.
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5. Chapter 23 (Later Chinese Algebra and Geometry) discusses the study of higher-
order equations by Chinese mathematicians and the advanced geometry of Liu Hui
(220–280), Zu Chongzhi (420–501), and Zu Geng (ca. 450–ca. 520).

6. Chapter 24 (Traditional Japanese Mathematics) discusses the mathematics of Japan as
it was developed from the Chinese classic works and elaborated during the Tokugawa
Era from 1600 through 1867. This subject, called wasan (Japanese-style compu-
tation), is contemporaneous with a phenomenon that is apparently unique to Japan,
namely, the hanging of votive plaques at Shinto and Buddhist shrines with worked-out
mathematical problems on them. These plaques are called sangaku (computational
framed pictures).



CHAPTER 19

Overview of Mathematics in India

From archaeological excavations at Mohenjo Daro and Harappa on the Indus River in
Pakistan it is known that an early civilization existed in this region for about a millen-
nium starting in 2500 bce. This civilization may have been an amalgam of several different
cultures, since anthropologists recognize five different physical types among the human
remains. Many of the artifacts that were produced by this culture have been found in
Mesopotamia, evidence of trade between the two civilizations. As a framework for the
mathematical history we shall be studying in this chapter and the two following, we shall
periodize this history as follows.

1. The Aryan Civilization. The early civilization of these five groups of people dis-
appeared around 1500 bce, and its existence was not known in the modern world until
1925. The cause of its extinction is believed to be an invasion from the northwest by
a sixth group of people, who spoke a language closely akin to early Greek. Because
of their language, these people are referred to as Aryans, a term that acquired a
sinister racial meaning in the early twentieth century. (Used in this sense, it was a
blemish on a popular brief history of mathematics by W. W. Rouse Ball.) The Aryans
gradually expanded and formed a civilization of small kingdoms, which lasted about
a millennium.

2. Sanskrit Literature. The language of the Aryans became a literary language known as
Sanskrit, in which great classics of literature and science have been written. Sanskrit
thus played a role in southern Asia analogous to that of Greek in the Mediterranean
world and Chinese in much of eastern Asia.1 That is, it provided a means of commu-
nication among scholars whose native languages were not mutually comprehensible
and a basis for a common literature in which cultural values could be preserved and
transmitted. During the millennium of Aryan dominance, the spoken language of the
people gradually diverged from written Sanskrit. Modern descendants of Sanskrit are
Hindi, Gujarati, Bengali, and others. Sanskrit is the language of the Mahabharata
and the Ramayana, two epic poems whose themes bear some resemblance to the

1India also exerted a huge cultural influence on southeast Asia, through the Buddhist and Hindu religions and in
architecture and science. Moreover, both cultural contact and commercial contact between India and China have
a long history.
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Homeric epics, and of the Upanishads, which contain much of the moral teaching of
Hinduism.

Among the most ancient works of literature in the world are the Hindu Vedas. The
word means knowledge and is related to the English word wit. The composition of the
Vedas began around 900 bce, and additions continued to be made to them for several
centuries. Some of these Vedas contain information about mathematics.

3. Hindu Religious Reformers. Near the end of the Aryan civilization, in the second half
of the sixth century bce, two figures of historical importance arise. One of these was
Gautama Buddha (563–479), heir to a kingdom near the Himalaya Mountains, whose
spiritual journey through life led to the principles of Buddhism. The other, named
Mahavira (599–527), is less well known but has some importance for the history of
mathematics. Like his contemporary Buddha, he began a reform movement within
Hinduism. This movement, known as Jainism, still has several million adherents in
India. It is based on a metaphysic that takes very seriously what is known in some
Western ethical systems as the chain of being. Living creatures are ranked according
to their awareness. Those having five senses are the highest, and those having only
one sense are the lowest.

4. Islam in India. The rapid Muslim expansion from the Arabian desert in the seventh
century brought Muslim invaders to India by the early eighth century. The southern
valley of the Indus River became a province of the huge Umayyad Empire, but the rest
of India preserved its independence, as it did 300 years later when another Muslim
people, the Turks and Afghans, invaded. Still, the contact was enough to bring certain
Hindu works, including the Hindu numerals, to the great center of Muslim culture
in Baghdad. The complete and destructive conquest of India by the Muslims under
Timur the Lame came at the end of the fourteenth century. Timur did not remain in
India but sought new conquests; eventually he was defeated by the Ming dynasty
in China. India was desolated by his attack and was conquered a century later by
Akbar the Lion, the first of the Mogul emperors and a descendant of both Genghis
Khan and Timur the Lame. The Mogul Empire lasted nearly three centuries and was a
time of prosperity and cultural resurgence. One positive effect of this second Muslim
expansion was a further exchange of knowledge between the Hindu and Muslim
worlds. Interestingly, the official administrative language used for Muslim India was
neither Arabic nor an Indian language; it was Persian.

5. British Rule. During the seventeenth and eighteenth centuries British and French
trading companies were in competition for the lucrative trade with the Mogul
Empire. British victories during the Seven Years War (1756–1763) left Britain
in complete control of this trade. Coming at the time of Mogul decline due to
internal strife among the Muslims and continued resistance on the part of the
Hindus, this trade opened the door for the British to make India part of their
empire. British colonial rule lasted nearly 200 years, coming to an end only after World
War II. British rule made it possible for European scholars to become acquainted with
Hindu classics of literature and science. Many Sanskrit works were translated into
English in the early nineteenth century and became part of the world’s science and
literature.

6. Independent India. Some 65 years have now passed since India became an indepen-
dent nation. This period has been one of great cultural and economic resurgence in
India, and mathematics has benefited fully from this resurgence.
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Within this general framework, we can distinguish three periods in the development of
mathematics in the Indian subcontinent. The first period begins around 900 bce with individ-
ual mathematical results forming part of the Vedas. The second begins with treatises called
siddhantas, concerned mostly with astronomy but containing explanations of mathematical
results, which appear in the second century ce. These treatises led to continuous progress
for 1500 years, during which time much of algebra, trigonometry, and certain infinite se-
ries that now form part of calculus were discovered, a century or more before Europeans
developed calculus. In the third stage, which began during the two centuries of British rule,
this Hindu mathematics came to be known in the West, and Indian mathematicians began
to work and write in the modern style of mathematics that is now universal. In the present
chapter, we shall discuss this mathematical development in general terms, concentrating on
a few of the major works and authors and their motivation, with mathematical details to
follow in the succeeding chapters.

19.1. THE SULVA SUTRAS

In the period from 800 to 500 bce a set of verses of geometric and arithmetic content were
written and became part of the Vedas. These verses are known as the Sulva Sutras or Sulba
Sutras.2 The name means Cord Rules and probably reflects the use of a stretched rope or
cord as a way of measuring length, as in Egypt. The root sulv originally meant to measure
or to rule, although it also has the meaning of a cord or rope; sutra means thread or cord,
a common measuring instrument. In the case of the Vedas the objects being measured with
the cords were altars. The maintenance of altar fires was a duty for pious Hindus; and
because Hinduism is polytheistic, it was necessary to consider how elaborate and large
the fire dedicated to each deity was to be. This religious problem led to some interesting
problems in arithmetic and geometry.

Two scholars who studied primarily the Sanskrit language and literature made important
contributions to mathematics. Pingala, who lived around 200 bce, wrote a treatise known
as the Chandahsutra, containing one very important mathematical result, which, however,
was stated so cryptically that one must rely on a commentary written 1200 years later to
know what it meant. Later, a fifth-century scholar named Panini standardized the Sanskrit
language, burdening it with some 4000 grammatical rules that make it many times more
difficult to learn than any other Indo-European language. In the course of doing so, he made
extensive use of combinatorics and the kind of abstract reasoning that we associate with
algebra. These subjects set the most ancient Hindu mathematics apart from that of other
nations.

2The Sulva Sutras are discussed in many places. The reader is cautioned against books discussing “Vedic math-
ematics,” however—for example, Maharaja (1965), which presents elaborate modern mathematical arguments
tenuously connected to the Vedas and alleges that analytic geometry in its modern form, which associates an
equation with a curve, was known to the Vedic authors 2500 years ago. Communication problems occur even in
generally reliable sources, such as the book of Srinivasiengar (1967), which is the source of many of the facts
reported in this chapter and the next. (Everything in these two chapters comes from some secondary source, usually
the books of Srinivasiengar, Plofker, Colebrooke, or Clark.) Srinivasiengar asserts (p. 6) that the unit of length
known as the vyayam was “about 96 inches,” and “possibly this represented the height of the average man in those
days.” This highly improbable statement results from the imprecision in the term height. According to Plofker
(2009, p. 18), there was a unit called man height, but it meant the height a man could reach into the air standing
on the ground. Even with that clarification, 96 inches seems improbable.
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19.2. BUDDHIST AND JAIN MATHEMATICS

As with any religion that encourages quiet contemplation and the renunciation of sensual
pleasure, Jainism often leads its followers to study mathematics, which provides a different
kind of pleasure, one appealing to the mind. There have always been some mathematicians
among the followers of Jainism, right down to modern times, including one in the ninth
century bearing the same name as the founder of Jainism. This other Mahavira speculated
on arithmetic operations that yield infinite or infinitesimal results, a topic of interest to Jains
in connection with cosmology and physics (Plofker 2009, pp. 58, 163). The early work of
Jain mathematicians is notable for algebra (the Sthananga Sutra, from the second century
bce), for its concentration on topics that are unique to early Hindu mathematics, such as
combinatorics (the Bhagabati Sutra, from around 300 bce), and for speculation on infinite
numbers (the Anuyoga Dwara Sutra, probably from the first century bce). The Jains were
the first to use the square root of 10 as an approximation to the ratio of a circle to its diameter,
that is, the number we call π (Plofker 2009, p. 59). Like the Jains, Buddhist monks were
very fond of large numbers, and their influence was felt when Buddhism spread to China
in the sixth century ce.

19.3. THE BAKSHALI MANUSCRIPT

A birchbark manuscript unearthed in 1881 in the village of Bakshali, near Peshawar, Pakistan
is believed by some scholars to date from the seventh century ce, although Sarkor (1982)
believes it cannot be later than the end of the third century, since it refers to coins named
dı̄nāra and dramma, which are undoubtedly references to the Greek coins known as the
denarius and the drachma, introduced into India by Alexander the Great. These coins had
disappeared from use in India by the end of the third century. Plofker, however (2009,
p. 157) places it somewhere in the period 700–1200. The Bakshali manuscript contains
some interesting algebra that will be discussed in Chapter 20.

19.4. THE SIDDHANTAS

During the second, third, and fourth centuries ce, Hindu scientists compiled treatises on
astronomy known as siddhantas. The word siddhanta means a system.3 One of these trea-
tises, the Surya Siddhanta (System of the Sun), from the late fourth century, has survived
intact. Another from approximately the same time, the Paulisha Siddhanta, was frequently
referred to by the Muslim scholar al-Biruni (973–1048). The name of this treatise seems to
have been bestowed by al-Biruni, who says that the treatise was written by an Alexandrian
astrologer named Paul.

19.5. HINDU–ARABIC NUMERALS

The decimal system of numeration, in which 10 symbols are used and the value of a symbol
depends on its physical location relative to the other symbols in the representation of a

3A colleague of the author suggested that this word may be cognate with the Greek idōn (neuter plural idónta),
the aorist participle of the verb meaning see, which can be translated as “after seeing. . . ”.
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number, came to the modern world from India by way of the medieval Muslim civilization.
These symbols have undergone some changes in their migration from ancient India to the
modern world, as shown in the photo. The idea of using a symbol for an empty place was the
final capstone on the creation of a system of counting and calculation that is in all essential
aspects the one still in use. This step must have been taken well over 1500 years ago in
India. There is some evidence, not conclusive, that symbols for an empty place were used
earlier, but no such symbol occurs in the work of Arbyabhata I. On the other hand, such
a symbol, called in Sanskrit sunya (empty), occurs in the work of Brahmagupta a century
after Arybhata.

15th Century 16th Century (Dürer)

11th Century (Apices)

West Arabic (Gobar)

Sanskrit-Devanagari (Indian)

Indian (Gwalior)

Brahmi

East Arabic

Evolution of the Hindu–Arabic numerals from India to modern Europe. Copyright © Vandenhoeck &
Ruprecht, from the book by Karl Menninger, Zahlwort und Ziffer, 3rd ed., Göttingen, 1979.

19.6. ARYABHATA I

With the writing of treatises on mathematics and astronomy, we at last come to some records
of the motives that led people to create Hindu mathematics, or at least to write expositions of
it. A mathematician named Aryabhata (476–550), the first of two mathematicians bearing
that name, lived in the late fifth and early sixth centuries at Kusumapura (now Pataliputra,
a village near the city of Patna) and wrote a book called the Aryabhatiya. This work had
been lost for centuries when it was recovered by the Indian scholar Bhau Daji (1822–1874)
in 1864. Scholars had known of its existence through the writings of commentators and had
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been looking for it. Writing in 1817, the English scholar Henry Thomas Colebrooke (1765–
1837), who translated other Sanskrit mathematical works into English, reported, “A long
and diligent research of various parts of India has, however, failed of recovering any part of
the. . . Algebra and other works of Aryabhata.” Ten years after its discovery the Aryabhatiya
was published at Leyden and attracted the interest of European and American scholars. It
consists of 123 stanzas of verse, divided into four sections, of which the first, third, and
fourth are concerned with astronomy and the measurement of time.

Like all mathematicians, Aryabhata I was motivated by intellectual interest. This interest,
however, was closely connected with his Hindu piety. He begins the Aryabhatiya with the
following tribute to the Hindu deity:

Having paid reverence to Brahman, who is one but many, the true deity, the Supreme Spirit,
Aryabhata sets forth three things: mathematics, the reckoning of time, and the sphere. [Clark,
1930, p. 1]

The translator adds phrases to explain that Brahman is one as the sole creator of the universe,
but is many via a multitude of manifestations.

Aryabhata then continues his introduction with a list of the astronomical observations
that he will be accounting for and concludes with a promise of the reward awaiting the one
who learns what he has to teach:

Whoever knows this Dasagitika Sutra which describes the movements of the earth and the
planets in the sphere of the asterisms passes through the paths of the planets and asterisms and
goes to the higher Brahman. [Clark, 1930, p. 20]

As one can see, students in Aryabhata’s culture had an extra reason to study mathemat-
ics and astronomy, beyond the concerns of practical life and the pleasures of intellectual
edification. Learning mathematics and astronomy helped to advance the soul through the
cycle of reincarnations that Hindus believed in.

After setting out his teaching on the three subjects, Aryabhata concludes with a final
word of praise for the Hindu deity and invokes divine endorsement of his labors:

By the grace of God the precious sunken jewel of true knowledge has been rescued by me,
by means of the boat of my own knowledge, from the ocean which consists of true and false
knowledge. He who disparages this universally true science of astronomy, which formerly was
revealed by Svayambhu4 and is now described by me in this Aryabhatiya, loses his good deeds
and his long life. [Clark, 1930, p. 81]

19.7. BRAHMAGUPTA

The establishment of research centers for astronomy and mathematics at Kusumapura and
Ujjain, near the geographical center of modern India, produced a succession of good mathe-
maticians and mathematical works for many centuries after Aryabhata I. Half a century after
the death of Aryabhata I, another Hindu mathematician, Brahmagupta (598–670), was born

4According to the Matsya Purana, the sixteenth purana of the Hindu scriptures, Svayambhu was a self-generated
deity who infused the universe with the potential to generate life.
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in the city of Sind, now in Pakistan. He was primarily an astronomer, but his astronomical
treatise, the Brahmasphutasiddhanta (literally The Corrected Brahma Siddhanta), contains
several chapters on computation (ganita). The Hindu interest in astronomy and mathematics
continued unbroken for several centuries, producing important work on trigonometry in the
tenth century.

19.8. BHASKARA II

Approximately 500 years after Brahmagupta, in the twelfth century, the mathematician
Bhaskara (1114–1185), the second of that name, was born on the site of the modern city of
Bijapur, in southwestern India. He is the author of the Siddhanta Siromani, in four parts,
a treatise on algebra and geometric astronomy. Only the first of these parts, known as the
Lilavati, and the second, known as the Vija Ganita,5 concern us here. Bhaskara says that
his work is a compendium of knowledge, a sort of textbook of astronomy and mathematics.
The name Lilavati was common among Hindu women. Many of the problems are written
in the form of puzzles addressed to this Lilavati.

Bhaskara II apparently wrote the Lilavati as a textbook to form part of what we would
call a liberal education. His introduction reads as follows:

Having bowed to the deity, whose head is like an elephant’s [Ganesh], whose feet are adored
by gods; who, when called to mind, relieves his votaries from embarrassment; and bestows
happiness on his worshippers; I propound this easy process of computation, delightful by
its elegance, perspicuous with words concise, soft and correct, and pleasing to the learned.
[Colebrooke, 1817, p. 1]

As a final advertisement at the end of his book, Bhaskara extols the pleasure to be derived
from learning its contents:

Joy and happiness is indeed ever increasing in this world for those who have Lilavati clasped
to their throats, decorated as the members are with neat reduction of fractions, multiplication,
and involution, pure and perfect as are the solutions, and tasteful as is the speech which is
exemplified. [Colebrooke, 1817, p. 127]

The Vija Ganita consists of nine chapters, in the last of which Bhaskara tells something
about himself and his motivation for writing the book:

On earth was one named Maheswara, who followed the eminent path of a holy teacher among the
learned. His son Bhaskara, having from him derived the bud of knowledge, has composed this
brief treatise of elemental computation. As the treatises of algebra [vija ganita] by Brahmagupta,
Shidhara and Padmanabha are too diffusive, he has compressed the substance of them in a well-
reasoned compendium for the gratification of learners. . . to augment wisdom and strengthen
confidence. Read, do read, mathematician, this abridgement, elegant in style, easily understood

5This Sanskrit word means literally seed computation, the word seed being used in the algebraic sense of root.
It is compounded from the Sanskrit root vij- or bij-, which means seed. As we have stated many times, the basic
idea of algebra is to name explicitly one or more numbers (the “seed”) given certain implicit descriptions of them
(metaphorically, “flowers” that they produce), usually the result of operating on them in various ways. The word
is usually translated as algebra.



210 OVERVIEW OF MATHEMATICS IN INDIA

by youth, comprising the whole essence of computation, and containing the demonstration of
its principles, replete with excellence and void of defect. [Colebrooke, 1817, pp. 275–276]

The mathematician “Shidhara” is probably Sridhara (870–930). Information on a math-
ematician named Padmanabha does not appear to be available.

19.9. MUSLIM INDIA

Indian mathematical culture reflects the religious division between the Muslim and Hindu
communities to some extent. The Muslim conquest brought Arabic and Persian books on
mathematics to India. Some of these works were translated from ancient Greek, and among
them was Euclid’s Elements. These translations of later editions of Euclid contained certain
obscurities and became the subject of commentaries by Indian scholars. Akbar the Lion
decreed a school curriculum for Muslims that included three-fourths of what was known
in the West as the quadrivium. Akbar’s curriculum included arithmetic, geometry, and
astronomy, leaving out only music.6 Details of this Indian Euclidean tradition are given in
the paper by De Young (1995).

19.10. INDIAN MATHEMATICS IN THE COLONIAL PERIOD AND AFTER

One of the first effects of British rule in India was to acquaint European scholars with the
treasures of Hindu mathematics described above. A century passed before the British colo-
nial rulers began to establish European-style universities in India. According to Varadarajan
(1983), these universities were aimed at producing government officials, not scholars. As a
result, one of the greatest mathematical geniuses of all time, Srinivasa Ramanujan (1887–
1920), was not appreciated and had to appeal to mathematicians in Britain to gain a position
that would allow him to develop his talent. The necessary conditions for producing great
mathematics were present in abundance, however, and the establishment of the Tata Institute
in Bombay (now Mumbai) and the Indian Statistical Institute in Calcutta were important
steps in this direction. After Indian independence was achieved, the first prime minister,
Jawaharlal Nehru (1889–1964), made it a goal to achieve prominence in science. This effort
has been successful in many areas, including mathematics. The names of Komaravolu Chan-
drasekharan (b. 1920), Harish-Chandra (1923–1983), and others have become celebrated
the world over for their contributions to widely diverse areas of mathematics.

19.10.1. Srinivasa Ramanujan

The topic of power series is one in which Indian mathematicians had anticipated some of
the discoveries in seventeenth- and eighteenth-century Europe. It was a facility with this
technique that distinguished Ramanujan, who taught himself mathematics after having been
refused admission to universities in India. After publishing a few papers, starting in 1911,

6The quadrivium is said to have been proposed by Archytas, who apparently communicated it to Plato when the
latter was in Sicily to consult with the ruler of Syracuse; Plato incorporated it in his writings on education, as
discussed in Chapter 12.
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he was able to obtain a stipend to study at the University of Madras. In 1913 he took the
bold step of communicating some of his results to G. H. Hardy (1877–1947). Hardy was
so impressed by Ramanujan’s ability that he arranged for Ramanujan to come to England.
Thus began a collaboration that resulted in seven joint papers with Hardy, while Ramanujan
alone was the author of some 30 others. He rediscovered many important formulas and made
many conjectures about functions such as the hypergeometric function that are represented
by power series.

Unfortunately, Ramanujan was in frail health, and the English climate did not agree with
him. Nor was it easy for him to maintain his devout Hindu practices so far from his normal In-
dian diet. He returned to India in 1919, but succumbed to illness the following year. Ramanu-
jan’s notebooks have been a subject of continuing interest to mathematicians. Hardy passed
them on to G. N. Watson (1886–1965), who published a number of “theorems stated by
Ramanujan.” The full set of notebooks was published in the mid-1980s (see Berndt, 1985).

QUESTIONS

Historical Questions

19.1. What application motivates the mathematics included in the Sulva Sutras?

19.2. What mathematical subjects studied by Indian mathematicians long ago have no
counterpart in the other cultures studied up to this point?

19.3. Which physical science is most closely connected with mathematics in the Hindu
documents?

19.4. What justifications for the study of mathematics do the Hindu authors Aryabhata I
and Bhaskara II mention?

Questions for Reflection

19.5. What differences do you notice in the “style” of mathematics in Greece and India?
Consider in particular the importance of logic, the metaphysical views of the nature
of such things as lines, circles, and the like, and the interpretation of the infinite.

19.6. One reflection of Mesopotamian influence in India is the division of the circle into
360 degrees. Does having this system in common indicate that the Hindus received
their knowledge of trigonometry from the Greeks?

19.7. Archimedes wrote a work called the Sand-reckoner to prove that the universe (as
the Greeks pictured it) could be filled with a finite number of grains of sand. The
necessity of doing so shows that the Greeks had the same psychological difficulties
that all people have in distinguishing clearly between “infinite” and “very large.” In
the following passage from a Jain work, a related issue is addressed, namely what is
the largest nameable number?

Consider a trough whose diameter is of the size of the earth. Fill it up with white
mustard seeds counting them one after another. Similarly, fill up with mustard seeds
other troughs of the sizes of the various lands and seas. Still it is difficult to reach the
highest enumerable number.
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Should the infinite be thought of as in some sense “approximated” by a very large
finite quantity, or is it qualitatively different? Is it possible to create a meaningful
arithmetic in which there is a largest integer?

19.8. Are there any clues in the cultural context of Indian mathematics that help to explain
why it was the only ancient civilization to develop a system of numeration that was
based on both the number 10 and place value, so that only 10 symbols were needed
to write it?



CHAPTER 20

From the Vedas to Aryabhata I

A unique feature of arithmetic in ancient India, pointed out by Plofker (2009, pp. 14–15),
is the existence of names for very large powers of 10, going beyond any conceivable
practical social or commercial need. One early poem, the Valmiki Ramayana, from about
500 bce, explains the numeration system in the course of recounting the size of an army.
The description uses special words for 107, 1012, 1017, and many other denominations,
all the way up to 1055. An important part of the place-value notation we now use is the
zero symbol for an empty place, which may have been invented in India before 200 bce.
[Plofker (2009, p. 16) notes that while the concept of an empty place can be found in early
documents, there is no clear “paper trail” to the first mathematical documents where it is
known to occur, and (Plofker 2009, p. 48) it may not have been part of the early place-value
decimal system, which was being used by the third century ce.]

20.1. PROBLEMS FROM THE SULVA SUTRAS

We now examine some mathematical problems posed in the Vedas. These problems were
sometimes connected with the construction of altars. Our source for most of this material
is the book of Srinivasiengar (1967).

20.1.1. Arithmetic

Some of the arithmetic content of the Sulva Sutras consists of rules for finding Pythagorean
triples of integers, such as (3, 4, 5), (5, 12, 13), (8, 15, 17), and (12, 35, 37). It is not certain
what practical use these arithmetic rules had. The best conjecture is that they were part of
religious ritual. A Hindu home was required to have three fires burning at three different
altars. The three altars were to be of different shapes, but all three were to have the same
area. These conditions led to certain Diophantine-type problems, a particular case of which
is the generation of Pythagorean triples, so as to make one square integer equal to the sum
of two others.

One class of mathematical problems associated with altar building involves an altar of
prescribed area having several layers. In one problem from the Bodhayana Sutra the altar is
to have five layers of bricks, each layer containing 21 bricks. Now one cannot simply divide
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Figure 20.1. Construction of a brick altar with the same number of bricks and the same area in each
of five layers.

a pile of 105 identical bricks into five layers and pile them up. Such a structure would not
be stable. It is necessary to stagger the edges of the bricks. Thus, so that the outside of the
altar will not be jagged, it is necessary to have at least two different sizes of bricks. The
problem is to decide how many different sizes of bricks will be needed and how to arrange
them. Assuming an area of one square unit—actually the unit is one square vyayam, a little
over 6 square meters—the author suggests using three kinds of square bricks, of areas 1

36 ,
1

16 , and 1
9 square unit. The first, third, and fifth layers are to have 9 of the first kind and 12 of

the second. The second and fourth layers get 16 of the first kind and 5 of the third. One way
to arrange these layers so as to stagger the gaps in successive layers is shown in Fig. 20.1.

20.1.2. Geometry

The geometric content of the Sulva Sutras encompasses some of the transformation-of-area
constructions such as we have seen in Euclid’s Elements. The Pythagorean theorem is given,
along with constructions for finding the side of a square equal to a rectangle, or the sum or
difference of two other squares. The quadrature of a rectangle resembles the one found in
Proposition 5 of Book 2 of Euclid rather than Euclid’s construction of the mean proportional
in Book 6, which is equivalent to it.

The Pythagorean theorem is not given a name, but is stated as the fact that “the diagonal
of a rectangle produces both [areas] which its length and breadth produce separately.” It is
interesting that the problem of doubling a square, which might have led to the discovery of
this theorem, produces a figure in the shape of one of the altars discussed in the Vedas. Is it
merely a coincidence that the problem of doubling the cube was said by the Greeks to have
been inspired by an attempt to double the size of an altar?

The Hindu method of constructing of a square equal to a given rectangle (see Fig. 20.2)
is as follows. Let ABCD be the given rectangle, with AD longer than AB. Mark point E

on AD so that AE = AB, and mark F on BC so that BF = AB. Draw EF , obtaining the
square ABFE. Let G be the midpoint of ED and let H be the midpoint of FC. Draw GH

and extend it to K so that GK = AG. Extend AB to L so that AL = GK = AG. Draw
KL, obtaining the square ALKG. Extend EF to meet LK at M. Then the rectangle ABCD

equals the square ALKG minus the square HKMF , since the rectangle CDGH equals the
rectangle BLMF . Next choose P on BH so that PL = KL. (This point can be located by
drawing a circle with L as center and LK as radius, as shown in Fig. 20.2.) Draw the line
from P perpendicular to LK meeting LK at Q. Then the square on LQ is the square on LP
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Figure 20.2. Quadrature of the rectangle in the Sulva Sutras.

minus the square on PQ. But since PQ = HK and LP = LK, it follows that the square on
LQ is precisely equal to the rectangle ABCD.

To construct a square equal to a multiple of a given square, say seven times as large
as a square of side a, the Katyayana Sutra says to construct an isosceles triangle of
base 6a and two sides equal to 4a. The altitude, which is the perpendicular bisector of
the base, will have length a

√
42 − 32 = √

7a, and hence will be the side of a square 7 times
the original square.

The requirement of three altars of equal areas but different shapes would explain the in-
terest in transformation of areas. Among other transformation of area problems, the authors
of the Vedas considered the relative sizes of squares and circles. The Bodhayana Sutra states
the problem of constructing a circle equal to a given square. The following approximate
construction is given as the solution.

Let ABCD be the square (see Fig. 20.3). From the center O of the square draw a circle
with radius equal to OC. Let L be the midpoint of side BC, and let the radius through L

meet the circle in the point E. Choose a point P on LE one-third of the way from L to
E. The point P will lie on the circle with center at O equal to the square ABCD. In other

Figure 20.3. Rounding a square.
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words, the radius of a circle equal to a given square is one-third the radius of the circle
circumscribed about the square, plus two-thirds the radius of the circle inscribed in it. In
contrast to the polygonal transformations just discussed, which were exact, this result is
only approximate. In our terms, this construction gives a value for two-dimensional π of
18(3 − 2

√
2), which is about 3.088.

20.1.3. Square Roots

The geometry of rectangles and right triangles leads naturally to the problem of handling
numerical square roots, and accordingly the Sulva Sutras discuss a way of approximating
them. The Apastamba, Bodhayana, and Katyayana Sulva Sutras (Plofker, 2009, p. 21) give
the expression

1 + 1

3
+ 1

3 · 4
− 1

3 · 4 · 34

for the diagonal of a square of side 1 (that is,
√

2). If this series represents successive approx-
imations to

√
2, these approximations are 1, 4

3 , 17
12 , 577

408 . The Mesopotamian approximation
conjectured in Chapter 3 gives 1, 2, 3

2 , 4
3 , 17

12 , 24
17 ,. . . . One conjecture as to the origin of the

present approximation is that it comes from the approximate equation

√
a2 + r ≈ a + r

2a
− (r/2a)2

2
[
a + r/2a

] ,

with a = 4
3 and r = 2

9 . This approximation may be the source of similar rule given by the
twelfth-century Moroccan mathematician Abu Bakr al-Hassar.

In the early seventh century, the mathematician Bhaskara I (ca. 600–ca. 680) expressed
the opinion that the ratio of the circumference of a circle to its diameter cannot be exactly
expressed. In Greek terms, the two are incommensurable; in our terms, π is irrational. By
the late fourteenth century, the mathematician Madhava (ca. 1350–ca. 1425) gave a rule
that expresses this ratio as an infinite series:

4
(

1 − 1

3
+ 1

5
− 1

7
+ · · ·

)
.

This same series was given some 300 years later by Leibniz (Plofker, 2009, pp. 140, 224).
In the treatment of what we call irrational numbers, we see an instance in which the

Greek insistence on logical correctness was a hindrance. The Greeks did not regard
√

2 as
a number, since they could not express it exactly as a ratio and they knew that they could
not. The Hindus may or may not have known of the impossibility of a rational expression
for this number (they certainly knew that they did not have any rational expression for it);
but, undeterred by the incompleteness of their knowledge, they proceeded to make what
use they could of this number. This same “reckless” spirit served them well in the use of
infinity and the invention of zero and negative numbers. They saw the usefulness of such
numbers and either chose to live with or did not notice certain difficulties of a metaphysical
character.
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20.1.4. Jain Mathematics: The Infinite

Like Greek mathematics, Hindu mathematics has a prominent metaphysical component.
This metaphysical aspect manifests itself in various ways—for example, in handling the
infinite. Where the Greeks had regarded all reasoning as finite and accepted only a potential
infinity, as shown by the method of exhaustion, the Hindus accepted an actual infinity and
classified different kinds of infinities. This part of Hindu mathematics is particularly no-
ticeable with the Jains. They classified numbers as enumerable, unenumerable, and infinite,
and space as one-dimensional, two-dimensional, three-dimensional, and infinitely infinite.
The first unenumerable number is the most unusual of these concepts. It is a finite number,
but one can never describe it explicitly. The idea is to progress through the finite numbers
2, 3, 4, . . . in one’s imagination until the “first unenumerable” number is reached. We can
define it implicitly as the first positive integer that cannot be named. Does this mean the
first number that no one ever will name (in the whole of human history), or the first number
that in principle could not be named? The reader is invited to speculate.

20.1.5. Jain Mathematics: Combinatorics

The metaphysics of the Hindus, and especially the Jains, based on a classification of sentient
beings according to the number of senses possessed, led them to a mathematical topic not
discussed by the Greeks. The Hindus called it vikalpa, and we know it as combinatorics. The
Sanskrit word kalpa has many meanings, among which are possible, feasible, and ordered.
The prefix vi- corresponds roughly to the English prefix dis-, so that vikalpa may mean
distribution in the sense of arrangement. The occurrence of the word in the present context
probably derives from the Kalpa Sutras, a set of Jain verses.

Given that there are five senses and animals are to be classified according to the senses
they possess, how many different classes will there be? A typical question might be, How
many groups of three can be formed from a set of five elements? We know the answer, as
did the early Jain mathematicians. In the Bhagabati Sutra, written about 300 bce, the author
asks how many philosophical systems can be formed by taking a certain number of doctrines
from a given list of basic doctrines. After giving the answers for 2, 3, 4, etc., the author says
that enumerable, unenumerable, and infinite numbers of things can be discussed, and, “as
the number of combinations are formed, all of them must be worked out.”

The general process for computing combinatorial coefficients was known to the Hindus
at an early date. Combinatorial questions seemed to arise everywhere for the Hindus, not
only in the examples just given but also in a much earlier work on medicine that poses
the problem of the number of different flavors that can be made by choosing subsets of
six basic flavors (bitter, sour, salty, astringent, sweet, hot). The author gives the answer as
6 + 15 + 20 + 15 + 6 + 1, that is, 63. We recognize here the combinatorial coefficients
that give the subsets of various sizes that can be formed from six elements. The author did
not count the possibility of no flavor at all.

Combinatorics also arose with the Hindus in the study of literature in the third century
bce, when Pingala gave a rule for finding the number of different words that could be formed
from a given number of letters. This rule was written very obscurely, but a commentator
named Halayudha in the tenth century ce explained it as follows. First draw a square. Below
it and starting from the middle of the lower side, draw two squares. Then draw three squares
below these, and so on. Write the number 1 in the middle of the top square and inside the
first and last squares of each row. Inside every other square the number to be written is the
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Figure 20.4. The Meru Prastara.

sum of the numbers in the two squares above it and overlapping it. This description of what
we know as Pascal’s triangle was thus given in India 300 years before it was published in
China and 700 years before Pascal. Moreover, it purports to be only a clarification of a rule
invented 1200 years earlier! Its Sanskrit name is Meru Prastara (Fig. 20.4), which means
the Mount Meru staircase.1 The inspiration for the study of this figure was quite different
in China and India. In China, it came about in connection with the extraction of roots and
the solution of equations, whereas in India the inspiration was directly from the area of
combinatorics.

According to Srinivasiengar (1967, p. 25), by the year 300 bce Jain mathematicians
understood certain cases of the laws of exponents. They could make sense of an expression
like am/2n

, interpreting it as extracting the square root n times and then raising the result
to the power m. The notation used was of course not ours. The power 3

4 , for example,
was described as “the cube of the second square root.” That the laws of exponents were
understood for these special values is attested by such statements as “the second square
root multiplied by the third square root, or the cube of the third square root,” indicating an

understanding of the equality
√√

a ×
√√√

a =
(√√√

a
)3

, which we would write in

exponential notation as

a1/4a1/8 = a3/8 .

20.1.6. The Bakshali Manuscript

Some symbolic algebra can be found in the Bakshali manuscript. The symbol �
� is used to

denote an unknown quantity. One of the problems in the manuscript is written as follows,
using modern number symbols and a transliteration of the Sanskrit into the Latin alphabet:

�
�

1

5

1
yu mū

�
�

1
sa

�
�

1

7+
1

mū
�
�

1
.

This symbolism can be translated as follows: “A certain thing is increased by 5 and the
square root is taken, giving [another] thing; and the thing is decreased by 7 and the square

1In Hindu mythology, Mount Meru plays a role similar to that of Mount Olympus in Greek mythology. One
Sanskrit dictionary gives this mathematical phrase as a separate entry.
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root is taken, giving [yet another] thing.” In other words, we are looking for a number x

such that x + 5 and x − 7 are both perfect squares. This problem is remarkably like certain
problems in Diophantus. For example, Problem 11 of Book 2 of Diophantus’ Arithmetica
is to add the same number to two given numbers so as to make each of them a square. If
the two given numbers are 5 and −7, this is exactly the problem stated here; Diophantus,
however, did not use negative numbers.

The Bakshali manuscript also contains problems in linear equations, of the sort that
has had a long history in elementary mathematics texts. For example, three persons pos-
sess seven thoroughbred horses, nine draft horses, and 10 camels, respectively. Each gives
one animal to each of the others. The three are then equally wealthy. Find the (relative)
prices of the three animals. Before leaping blindly into the set of two linear equations in
three unknowns that this problem prescribes, we should take time to note that the prob-
lem can be solved by imagining the experiment actually performed. Suppose that these
donations have been made and the three people are now equally wealthy. They will remain
equally wealthy if each gives away one thoroughbred horse, one draft horse, and one camel.
It follows that four thoroughbred horses, six draft horses, and seven camels are all of equal
value. The problem has thereby been solved, and no actual algebra has been performed.
Srinivasiengar (1967, p. 39) gives the solution using symbols for the unknown values of the
animals, but does not assert that the solution is given this way in the manuscript itself.

20.2. ARYABHATA I: GEOMETRY AND TRIGONOMETRY

Chapter 2 of Aryabhata’s Aryabhatiya (Clark, 1930, pp. 21–50) is called Ganitapada (Math-
ematics). In Stanza 6 of this chapter, Aryabhata gives the correct rule for area of a triangle,
but declares that the volume of a tetrahedron is half the product of the altitude and the area
of the base. He says in Stanza 7 that the area of a circle is half the diameter times half the
circumference, which is correct, and shows that he knew that one- and two-dimensional π

were the same number. But he goes on to say that the volume of a sphere is the area of a great
circle times its own square root. This would be correct only if three-dimensional π equaled
16
9 , very far from the truth! Plofker (2009, p. 126) discusses a suggested reinterpretation of

this rule as applying to the surface area of the sphere rather than its volume and concludes
that it will not do. In a way, this inaccurate result is surprising, since Aryabhata knew a very
good approximation to one-dimensional π. In Stanza 10 he writes:

Add 4 to 100, multiply by 8, and add 62,000. The result is approximately the circumference of
a circle of which the diameter is 20,000.

This procedure gives a value of one-dimensional π equal to 3.1416, which exceeds the
true value by less than 0.01%.

Aryabhata also knew a method of surveying by sighting along the tops of two poles
of equal height called gnomons. This same method was practiced in China. Whether this
common method is a case of transmission or independent discovery is not clear. The rule
given is illustrated by Fig. 20.5.

The distance between the ends of the two shadows multiplied by the length of the shadow and
divided by the difference in length of the two shadows give the koti. The koti multiplied by the
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Figure 20.5. Aryabhata’s method of surveying.

length of the gnomon and divided by the length of the shadow gives the length of the bhuja.
[Clark, 1930, p. 32]

20.2.1. Trigonometry

The inclusion of this method of surveying in the Aryabhatiya presents us with a small
puzzle. As a method of surveying, it is not efficient. It would seem to make more sense to
measure angles rather than using only right angles and measuring more lines. But angles
are really not involved here. It is possible to have a clear picture of two mutually perpen-
dicular lines without thinking “right angle.” The notion of angles in general as a species
of mathematical objects—the figures formed by intersecting lines, which can be measured,
added, and subtracted—appears to be a Greek innovation in the sixth and fifth centuries
bce, and it seems to occur only in plane geometry, not spherical, where arcs are used in-
stead. Its origins may be in stonemasonry and carpentry, where regular polygons have to be
fitted together. Astronomy probably also made some contribution. Since Aryabhata I was
one of the pioneers of this trigonometry and was primarily an astronomer, it seems slightly
inconsistent that he recommended this method of surveying. Perhaps the explanation is that
measuring the sky and measuring the earth belong to different categories.

The earliest form of trigonometry was a table of correspondences between arcs and
their chords. We know exactly how such a table was originally constructed, since we have
already looked at Ptolemy’s treatise on astronomy, written around 150 ce. Although this
table fulfilled its purpose in astronomy, the chord is a cumbersome tool to use in studying
plane geometry. For example, it was well known that in any triangle, the angle opposite the
larger of two sides will be larger than the angle opposite the smaller side. But what is the
exact, quantitative relation between the two sides and the two angles? The ratio of the sides
has no simple relationship to the ratio of the angles or to the chords those angles subtend as
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Figure 20.6. The “bowstring” diagram. The sine of the arc
�

AR is the line AB. The tabular value of
the sine is the number of minutes in an arc of the same length as AB.

central angles in a circle. But the sides are directly proportional to the chords of twice those
central angles. In fact, as we have seen, Ptolemy was constantly working with the chord
of twice an angle when he applied Menelaus’ theorem to solve spherical triangles. But he
never used half of the chord of a doubled angle.

It was the Hindu astronomers who discovered that trigonometry is simpler if you use
half of the chord of a doubled angle. Those half-chords are now called sines. In Fig. 20.6

the arc
�

AR can be measured by either line AB or AR. Ptolemy chose AR and was led to the
complications already mentioned. The Hindus preferred AB. We shall see that the Chinese
word (xian) for the hypotenuse of a right triangle means bowstring. The Hindus used the
Sanskrit term for a bowstring (jya or jiva) to mean the sine. The reason for the colorful
language is obvious from Fig. 20.6.

To all appearances, then, trigonometry began to assume its modern form among the
Hindus some 1500 years ago. A few reservations are needed, however. First, for the Hindu
mathematicians the sine was not, as it is to us, a ratio. It was a length, and that physical
dimension had to be taken into account in all computations. Second, the only Hindu concept
corresponding approximately to our trigonometric functions were those of sine and cosine.
The tangent, secant, cotangent, and cosecant were not included until much later. Third, the
use of trigonometry was restricted to astronomy. As already pointed out, surveying, which
is the other natural place to use trigonometry, did not depend on angle measurement.

Aryabhata used the sine function developed in the Surya Siddhanta, giving a table for
computing its values at intervals of 225′ (3◦ 45′) of arc from 0◦ to 90◦ degrees and expressing
these values in units of 1′ of arc, rounded to the nearest integer, so that the sine of 90◦, which
is the radius of the circle, is 3438. In our terms, that number is, to the nearest integer, the
number of minutes in one radian of arc, since the length of a one-radian arc is equal to
the radius. The value is rounded up from 3437.75, however, and the use of that value in
computations will yield better agreement with Aryabhata’s table. His sine of a given angle
is 3438 times the number that we would call its sine.
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Thus, the number 3438 is an artifact of the units chosen for the arcs and their sines. Since
the unit of length for a sine is 1′, the fact that the arc is closely approximated by the chord
for small angles means that sin(θ) ≈ θ for small arcs θ. This approximation holds within the
limits of precision of the table up to 6◦ of arc when the arcs are also expressed in minutes,
as Aryabhata does.

The 3 3
4
◦

interval between entries suggests that the tables were computed independently
of Ptolemy’s work. If the Hindu astronomers had read Ptolemy, their tables of sines could
easily have been constructed from his table of chords, and with more precision than is
actually found. Almost certainly, this interval was reached by starting with an angle of 30◦,
whose sine was known to be half of the radius, then applying the formula for the sine of
half an angle to get successively the sines of 15◦, 7◦ 30′, and finally 3◦ 45′, which is 225′.
Arybhata’s table is actually a list of the differences of 24 successive sines at intervals of
225 minutes. Since one minute of arc is a very small quantity relative to the radius, these
24 values of the sine provide sufficient precision for the observational technology available
at the time. Notice, however, that to calculate the sine of half of an angle θ one would have
to carry out a computation equivalent to evaluating the cumbersome formula

sin
θ

2
=

√
3437.75 −

√
3437.752 − sin2 θ

2
.

It is therefore understandable that Aryabhata did not refine his table further. Aryabhata’s
list of sine differences is the following:

225, 224, 222, 219, 215, 210, 205, 199, 191, 183, 174,

164, 154, 143, 131, 119, 106, 93, 79, 65, 51, 37, 22, 7.

A comparison with a computer-generated table for the same differences reveals that
Aryabhata’s table is accurate, except that the sixth entry should be 211 instead of 210 and
the eighth should be 198 instead of 199. But an error of only half of one percent is not
critical, given the limited precision of Aryabhata’s observations. It has been believed that
this table of sine differences was computed by a recursive procedure, which can be described
in our terms as follows (Clark, 1930, p. 29). Starting with d1 = 225,

dn+1 = dn − d1 + · · · + dn

d1
,

where each term is rounded to the nearest integer after being calculated from this formula.
Plofker (2009, p. 128), however, says that this interpretation of the text of the Aryabhatiya
did not appear in any commentary until the fifteenth century; it is therefore not certain that
this procedure is exactly what he meant. Moreover, a computer following this recursive
instruction will generate a table that diverges from the one shown (see Problem 20.2).

Figure 20.7 shows a table of sine values that can be constructed on the basis of this table
of differences. The first two columns give the arcs and their sines as implied by Aryabhata’s
table of differences. The third column converts Aryabhata’s minutes to degrees and minutes.
The fourth column gives the ratio of Aryabhata’s sine to the radius (3438), which is what
is nowadays called the sine. The last column gives the modern value of this sine and shows
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Figure 20.7. Aryabhata’s table of sines (first two columns) and their modern equivalents (last three
columns).

that it agrees up to three decimal places with the value in the fourth column. For use in the
next chapter, we note that the sum of all of Aryabhata’s sines is 54, 233′.

Aryabhata applied the sine function to determine the altitude of the sun at a given hour of
the day. The procedure is illustrated in Fig. 20.8 for an observer located at O in the northern
hemisphere on a day in spring or summer. This figure shows a portion of the celestial sphere.
The arc RETSWV is the portion of the great circle in which the observer’s horizontal plane
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Figure 20.8. Finding the sun’s elevation at a given hour.
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intersects the sphere. The sun will rise for this observer at the point R and set at the point
V . The arc is slightly larger than a semicircle, since we are assuming a day in spring or
summer. The chord RV runs from east to west. The sun will move along the small circle
RHV at a uniform rate, and the plane of this circle is parallel to the equatorial circle EMW .
(At the equinox, the day-circle RV coincides with the equatorial circle EW .) Aryabhata
gave the correct formula for finding the radius of this day-circle in terms of the elevation of
the sun above the celestial equator and the radius of the celestial sphere. That radius is the
sine of the co-declination of the sun. Although Aryabhata had the concept of co-latitude,
which served him in places where we would use the cosine function, for some reason he did
not use the analogous concept of co-declination. As a result, he had to subtract the square
of the sine of the declination from the square of the radius of the celestial sphere and then
take the square root.

The point Z is the observer’s zenith, M is the point on the celestial equator that is due

south to the observer, and S is the point due south on the horizon, so that the arc
�

ZM is the

observer’s terrestrial latitude, and the two arcs
�

ZN and
�

MS are both equal to the observer’s
co-latitude. The point H is the location of the sun at a given time, MF and HG are the
projections of M and H respectively on the horizontal plane, and K is the projection of H

on the chord RV . Finally, the great-circle arc HT , which runs through Z, is the altitude of
the sun. The problem is to determine its sine HG in terms of lengths that can be measured.

Because their sides are parallel lines, the triangles MOF and HKG are similar, so that
MO : HK = MF : HG. Hence we get

HG = HK · MF

MO
.

In this relation, MF is the sine of MS, that is, the sine of the observer’s co-latitude, and
MO is the radius of the celestial sphere. The line HK is, in a loose sense, the sine of the

arc
�

RH , which is proportional to the time elapsed since sunrise. It is perpendicular to the
chord RV and would be a genuine sine if RV were the diameter of its circle. As it is, that
relation holds only at the equinoxes. It is not certain whether Aryabhata meant his formula
to apply only on the equinox, or whether he intended to use the word sine in this slightly
inaccurate sense. Because the radius of the sun’s small circle is never less than 90% of the
radius of the celestial sphere, probably no observable inaccuracy results from taking HK

to be a sine. In any case, that is the way Aryabhata phrased the matter:

The sine of the sun at any given point from the horizon on its day-circle multiplied by the sine
of the co-latitude and divided by the radius is the [sine of the altitude of the sun] when any
given part of the day has elapsed or remains. [Clark, 1930, p. 72]

20.2.2. The Kuttaka

Verses 32 and 33 of the Aryabhatiya contain a method known as the kuttaka (pulverizer)
for solving problems related the “Chinese remainder theorem,” which will be discussed in
Chapter 22. Since the process was described more clearly by Brahmagupta, we reserve our
discussion of it for the next chapter.
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PROBLEMS AND QUESTIONS

Mathematical Problems

20.1. Show that Aryabhata’s list of sine differences can be interpreted in our language as
the table whose nth entry is

3437.75

[
sin

(nπ

48

)
− sin

( (n − 1)π

48

)]
.

Here the angles are written in radian measure. Use a computer to generate this table
for n = 1, . . . , 24, and compare the result with Aryabhata’s table.

20.2. If the recursive procedure said to have been used by Aryabhata is followed faithfully
(as a computer can do), the result is the following sequence.

225, 224, 222, 219, 215, 210, 204, 198, 190, 181, 172,

162, 151, 140, 128, 115, 102, 88, 74, 60, 46, 31, 16, 1.

Compare this list with Aryabhata’s list, and note the systematic divergence. These
differences should be approximately 225 times the cosine of the appropriate angle.
That is, dn ≈ 225 · cos

(
225(n + 0.5) minutes

)
. What does that fact suggest about the

source of the systematic errors in the recursive procedure described by Aryabhata?

20.3. Use Aryabhata’s rule to compute the altitude of the sun above the horizon in London
(latitude 51◦ 32′) at 10:00 am (local solar time) on the vernal equinox. Assume that
the sun rises at 6:00 am on that day and sets at 6:00 pm.

Historical Questions

20.4. Describe three kinds of geometric problems considered in the Sulva Sutras.

20.5. How does the trigonometry used by Aryabhata I differ from what had been developed
by Ptolemy four centuries earlier?

20.6. Which geometric formulas given by Aryabhata I are accurate from the point of view
of Euclidean geometry, and which are inaccurate?

Questions for Reflection

20.7. Consider the problem posed by the Jain concept of the first unenumerable number.
If this number is defined as the first number that no one ever will name, then in some
sense it certainly exists (why?). But it will never be explicitly known to anyone,
since, by definition, explicitly knowing a number means being able to name it. If it is
defined as the first number that cannot even theoretically be named, another problem
arises. Are there finite integers that cannot even theoretically be named? If there are,
in what sense do they “exist”?
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20.8. Compare the conjecture given in the text as to the origin of the approximation for
√

2
with the following, due to a later commentator of 1500 ce. Assume that each side of the
square is 12 units long. Then the diagonal has length 12

√
2 = √

288 = √
172 − 1 ≈

17 − 1
34 [since

√
1 − x ≈ 1 − (x/2)]. It follows that

√
2 ≈ 17

3·4 − 1
3·4·34 = 1 + 1

3 +
1

3·4 − 1
3·4·34 . Which explanation seems more probable to you? Does either imply the

other?

20.9. Besides the sine function, we also use the tangent and secant and their cofunctions.
What is the origin of the words tangent and secant (in Latin), and why are they
applied to the objects of trigonometry?



CHAPTER 21

Brahmagupta, the Kuttaka,
and Bhaskara II

The present chapter is devoted to two mathematicians who lived 500 years apart. Of the two,
the earlier (Brahmagupta) appears to be by far the more profound and original. Yet the second
(Bhaskara II) is also well worth reading—as indeed are many later Hindu mathematicians,
like the fifteenth-century Jyesthadeva, whose work we do not have space to discuss.

21.1. BRAHMAGUPTA’S PLANE AND SOLID GEOMETRY

Brahmagupta devotes five sections of Chapter 12 of the Brahmasphutasiddhanta to geo-
metric results (Colebrooke, 1817, pp. 295–318). Like Aryabhata, he has a practical bent.
In giving the common area formulas for triangles and quadrilaterals, he first gives a way of
getting a “rough” value for the area: Take the product of the averages of the two pairs of
opposite sides. (For this purpose a triangle counts as a quadrilateral having one side equal to
zero.) In the days when calculation had to be done by hand, this was a quick approximation
that worked well for quadrilaterals and triangles that are nearly rectangular (that is, tall,
thin isosceles triangles). He also gave a formula that he says is exact, and this formula is a
theorem commonly known as Brahmagupta’s theorem: Half the sum of the sides set down
four times and severally lessened by the sides, being multiplied together, the square root of
the product is the area. In our terms this rule says that the area of a quadrilateral of sides a,
b, c, and d is

√
(s − a)(s − b)(s − c)(s − d), where s is half of the sum of the lengths of the

sides. The case when d = 0, which is a triangle, is what we call Heron’s formula and was
discussed in Chapter 16. Brahmagupta did not mention the restriction that the quadrilateral
must be a cyclic quadrilateral, that is, it must be inscribed in a circle.

Like Aryabhata, Brahmagupta knew that what we are calling one- and two-dimensional
π were the same number. In Stanza 40, he says that when the diameter and the square of
the radius respectively are multiplied by 3, the results are the “practical” circumference and
area. In other words, π = 3 is a “practical” value. He also gives the “neat” (“exact”) value
as

√
10. Since

√
10 = 3.1623, this value is not an improvement on Aryabhata’s 3.1416 in

terms of accuracy. If one had to work with π2, it might be more convenient. But π2 occurs
in very few contexts in mathematics, and none at all in elementary mathematics.
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Section 5 of Chapter 12 of the Brahmasphutasiddhanta gives a rule for finding the volume
of a frustum of a rectangular pyramid. In keeping with his approach of giving approximate
rules, Brahmagupta says to take the product of the averages of the sides of the top and
bottom in the two directions, then multiply by the depth. He calls this result the “practical
measure” of the volume, and he knew that this simple rule gave a volume that was too
small. To see why, imagine a frustum of height h with an a × b rectangle at the top and a
proportional rectangle ta × tb at the bottom. The rule just stated would make this volume

equal to abh
4 (1 + t)2. Since the true volume is abh

3 (t2 + t + 1), the difference is t2−2t+1
4(t2+t+1)

times the true volume. So, just as with his rule for triangles, if the pyramid has a very steep
slope, so that t is close to 1, this value is reasonably accurate.

For his second approximation, which he called the “rough” volume, he took the
average of the areas of the top and bottom and multiplied by the depth.1 He also knew
that this procedure gave a volume that was too large. In terms of the hypothetical frustum
just introduced, it gives a volume of abh

2 (t2 + 1), which is larger than the actual volume by
t2−2t+1

2(t2+t+1)
of that volume. The actual volume lies between the “practical” volume and the

“rough” volume, but where? From the explanation just given, it follows that the actual vol-
ume is obtained as a mixture of two parts “practical” and one part “rough.” Brahmagupta’s
corrective procedure to give the “neat” (exact) volume was: Subtract the practical from
the rough, divide the difference by three, and then add the quotient to the practical value.
Although this rule seems rather roundabout, it is equivalent to the correct formula. It has
some resemblance to the procedure given in the Sulva Sutras for constructing a circle equal
to a square, which was discussed in Chapter 20.

21.2. BRAHMAGUPTA’S NUMBER THEORY AND ALGEBRA

Brahmagupta’s algebra is done entirely in words. For example (p. 279 of the Colebrooke
translation), his recipe for the cube of a binomial is as follows:

The cube of the last term is to be set down; and, at the first remove from it, thrice the square
of the last multiplied by the preceding; then thrice the square of the preceding term taken into
that last one; and finally the cube of the preceding term. The sum is the cube.

In our terms, (a + b)3 = b3 + 3b2a + 3ba2 + a3. This rule is used for finding successive
approximations to the cube root, just as it was in China, as we shall see in the next two
chapters. Similarly, in Section 4 (p. 346 of the Colebrooke translation), he tells how to solve
a quadratic equation of the form ax2 + bx = c:

Take the absolute number [the constant term c] from the side opposite to that from which the
square and simple unknown are to be subtracted. To the absolute number multiplied by four
times the [coefficient of the] square, add the square of the [coefficient of the] middle term; the
square root of the same, less the [coefficient of the] middle term, being divided by twice the
[coefficient of the] square is the [value of the] middle term.

1This is the same procedure followed in the cuneiform tablet BM 85194, discussed above in Section 5.3 of
Chapter 5.
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Here the “middle term” is the unknown, and this statement is a very involved description
of what we write as the quadratic formula:

x =
√

4ac + b2 − b

2a
when ax2 + bx = c.

Except for extracting cube roots of numbers, Brahmagupta does not consider equations
of degree higher than 2.

Brahmagupta gave rules for handling sums of arithmetic progressions. (Aryabhata I
had also done this.) He made systematic use of zero and negative numbers, giving the
correct rules for manipulating them in the eighteenth chapter of the Brahmasphutasiddhanta.
Brahmagupta devotes considerable space to the pulverizer (kuttaka) method of solving
linear Diophantine equations, which was mentioned in the preceding chapter. Since this
method is worth taking the time to master, we shall discuss it below. Before presenting it,
however, we shall first discuss some of his other work in number theory and algebra.

21.2.1. Pythagorean Triples

Brahmagupta gave a method of creating Pythagorean triples of integers. In Chapter 12 of
the Brahmasphutasiddhanta (p. 306 of the Colebrooke translation) he gives the rule that the
sum of the squares of two unlike quantities are the sides of an isosceles triangle; twice the
product of the same two quantities is the perpendicular; and twice the difference of their
squares is the base. This rule amounts to the formula (a2 + b2)2 = (2ab)2 + (a2 − b2)2,
but it is stated as if the right triangle has been doubled by gluing another copy to the side
of length 2ab, thereby producing an isosceles triangle with base 2(a2 − b2), altitude 2ab,
and legs each a2 + b2. The relation stated is a purely geometric relation, showing (in our
terms) that the sides and altitude of an isosceles triangle of any shape can be generated by
choosing the two lengths a and b suitably. (In our terms, the equations 2(a2 − b2) = u and
2ab = v can be solved for a and b given any positive numbers u and v.)

21.2.2. Pell’s Equation

Brahmagupta also considered generalizations of the problem of Pythagorean triples to a
more general equation called2 Pell’s equation and written Dx2 − y2 + 1 = 0. He gives a
recipe for generating a new equation of this form and its solutions from a given solution.
The recipe proceeds by starting with two rows of three entries, which we shall illustrate for
the case D = 8, which has the solution x = 1, y = 3. We write

1 3 1

1 3 1

2Erroneously so-called, according to Dickson (1920, p. 341), who asserts that Fermat had studied the equation
earlier than John Pell (1611–1685). However, the MacTutor website at the University of St Andrews gives evidence
that Euler’s attribution of this equation to Pell was accurate. Everybody agrees that the solutions of the equation
were worked out by Joseph-Louis Lagrange (1736–1813), not Pell.
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The first column contains x, called the lesser solution, the second contains y, called the
greater solution, and the third column contains the additive term 1. From these two rows a
new row is created whose first entry is the sum of the cross-multiplied first two columns,
that is 1 · 3 + 3 · 1 = 6. The second entry is the product of the second entries plus 8 times
the product of the first entries, that is 3 · 3 + 8 · 1 · 1 = 17, and the third entry is the product
of the third entries. Hence we get a new row 6 17 1, and indeed 8 · 62 + 1 = 289 = 172. In
our terms, this says that if 8x2 + 1 = y2 and 8u2 + 1 = v2, then 8(xv + yu)2 + 1 = (8xu +
yv)2. More generally, Brahmagupta’s rule says that if ax2 + d = y2 and au2 + c = v2, then

a(xv + yu)2 + cd = (axu + yv)2.

It is easy to verify that this rule is correct using modern algebraic notation. In his book
(Weil, 1984), the number theorist André Weil (1906–1998) referred to the relation just
written and the more general relation (x2 + Ny2)(z2 + Nt2) = (xz ± Nyt)2 + N(xt ∓ yz)2

as “Brahmagupta’s identity” (his quotation marks).
However this relation was discovered, the motivation for studying it can be plausibly

ascribed to a desire to approximate irrational square roots with rational numbers. Brah-
magupta’s rule with c = d = 1 gives a way of generating larger and larger solutions of
the same Diophantine equation ax2 + 1 = y2. If you have two solutions (x, y) and (u, v)
of this equation, which need not be different, then you have two approximations y/x and
v/u for

√
a whose squares are, respectively, 1/x2 and 1/u2 larger than a. The new solution

generated will have a square that is only 1/(xv + yu)2 larger than a. This aspect of the
problem of Pell’s equation turns out to have a close connection with its complete solution
in the eighteenth century.

21.3. THE KUTTAKA

Brahmagupta gave a clearer explanation than Aryabhata had done of a method of solving
what we call linear Diophantine equations, that is, equations of the form ax = by + c, where
a, b, and c are given integers, and x and y unknown integers to be found. He applied this
technique to computations involving astronomy and the calendar. We shall illustrate the
method with such a computation, not one taken from Brahamgupta’s work, but entirely in
the spirit of that work.

It is well known that 19 solar years are almost exactly equal to 235 lunar months. Given
that the moon was full on January 30, 2010, what is the next year in which it will be full on
February 5? If we choose one 235th of a solar year as a unit of time T , so that T ≈ 1.55
days, or 37 hours, 18 minutes, then one year is 235T and according to the fundamental
relation, one month is 19T . Since our unit of time T is about a day and a half, the period
from January 30 to February 5, which is six days, amounts to 4T , approximately. Thus
we would like to find an integer number of years y and an integer number of months x

such that

19xT = 235yT + 4T.

That is, we want x lunar months to exceed y solar years by 4T . Canceling T , we see that
we need to solve 19x = 235y + 4. There are infinitely many solutions if there are any at
all, since if (x0, y0) is a solution, so is (x0 + 235k, y0 + 19k) for any integer k whatever.
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Conversely, any two solutions (x0, y0) and (x1, y1) will differ by (235k, 19k) for some k.
Thus the problem is to find one solution. One way to do this is by trial and error: Just look
at multiples of 235 until you find one that leaves a remainder of 15 when divided by 19
(since 15 + 4 = 19). Thus you begin with

235 = 19 × 12 + 7,

2 × 235 = 19 × 24 + 14,

3 × 235 = 19 × 37 + 2.

Continuing in this way, you eventually get to 13 × 235 = 19 × 160 + 15 = 19 × 161 − 4 ,

so that 19 × 161 = 13 × 235 + 4. Thus, we can take x = 161, y = 13. In particular, the
year will be 2010 + 13 = 2023. (This is correct!) This method of finding a year on which
the Moon will be full on a particular date is remarkably accurate, considering that the time
period T is actually about 37 hours, and hence not exactly a day and a half. When it goes
wrong in a short-term prediction, the moon will be full a day later or earlier in the predicted
year.

Thus, the solution of linear Diophantine equations is not difficult. The only disadvantage
to the method used above is the tedious trial-and-error procedure of getting one solution. That
is where the method called the kuttaka (pulverizer) comes in. This technique shortens the
labor of finding the first solution by a considerable amount, especially when the coefficients
a, b, and c are large. Here are the steps you follow:

1. First, be sure the equation is written ax = by + c, where a and b are positive, and
b > a. In other words, the constant term c needs to be on the same side of the equation
as the larger coefficient, and the two coefficients must have the same sign. If they don’t,
replace y by a new variable z = −y, and then they will have the same sign. You can
then multiply the equation by −1 if necessary to get them both positive. The constant
term c may be positive or negative. (This “normalizing” is not absolutely essential,
but experience shows that one has to be very careful when executing the kuttaka.
The experienced user can handle variants in the method, but the beginner had better
follow rigid rules.)

2. Second, perform the Euclidean algorithm procedure to find the greatest common
divisor d of a and b. If it is larger than 1, then the expression ax − by can only be a
multiple of that greatest common divisor, so if c is not a multiple of it, there are no
solutions, and you are finished.

3. If d divides c, take all of the quotients—except the last one, which yields a remainder
of 0—and write them in a column. To illustrate with the equation 19x = 235y + 4,
which we considered above, we have the column

12

2

1

2
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4. Next, augment that column with two more numbers at the bottom. The first one is
c/d if the number of quotients is even and −c/d if it is odd. In our case, we have an
even number of quotients, and so we adjoin 4 at the bottom. The second additional
number, which forms the bottom row of the array, is always 0. Thus we get the
following column:

12

2

1

2

4

0

5. Now operate on this column, at each stage modifying the bottom entry and the entry
two rows above it, as follows: The entry two rows above the bottom gets replaced
by its product with the number below it, plus the number below that. Thus in this
example, the first thing to do is to replace the 2 in the third row (counting the bottom
row as row 1) by 2 × 4 + 0 = 8. The second part of the procedure is to erase the
bottom number. Repeating this procedure until there are only two rows left yields

12

2

1

2

4

0

→

12

2

1

8

4

→

12

2

12

8

→
12

32

12
→

396

32

We should now have a solution, and indeed we do: x = 396, y = 32. It is not the
smallest solution, however. We get a smaller one by subtracting 235 from x and 19
from y, yielding x = 161, y = 13.

This procedure needs to be practiced on some simple equations, such as 3x = 23y + 1
and 17x = 11y − 5, before the details will fall into place. The number of errors that can
creep into this procedure is rather large. If the answer you get doesn’t check when you put
the values of x and y back into the equation, look for the following possible mistakes:

1. a and b must both be positive and their greatest common divisor d must also divide
c if the equation is to have any solutions.

2. When the equation is written ax = by + c, you must have b > a.

3. Do not include the last quotient from the Euclidean algorithm in the column.

4. Adjoin c/d to the column of quotients (ignore the remainders in this algorithm), if
you have an even number of quotients. (If c/d is negative, leave it negative in this
case.) If the number of quotients is odd, adjoin −c/d. (If c/d is negative, make it
positive in this case.)
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These are the commonest sources of errors when carrying out this procedure. But of
course, you also have to do the divisions with remainder carefully, avoiding computational
errors.

21.4. ALGEBRA IN THE WORKS OF BHASKARA II

The Lilavati of Bhaskara II contains a collection of problems in algebra, which are some-
times stated as though they were intended purely for amusement. For example,

One pair out of a flock of geese remained sporting in the water, and saw seven times the half of
the square-root of the flock proceeding to the shore, tired of the diversion. Tell me, dear girl,
the number of the flock.

Like countless other unrealistic algebra problems that have appeared in textbooks over
the centuries, this story is a way of posing to the student a specific quadratic equation,
namely 7

2

√
x + 2 = x, whose solution is x = 16.

21.4.1. The Vija Ganita (Algebra)

As mentioned in Chapter 19, Bhaskara II advertised his Algebra as an object of intellectual
contemplation. We may agree that it fits this description. The problems, however, are just as
fanciful as in the Lilavati. For example, the rule for solving quadratic equations is applied
in the Vija Ganita (p. 212 of the Colebrooke translation) to find the number of arrows x

that Arjuna (hero of the Mahabharata) had in his quiver, given that he shot them all, using
1
2 x to deflect the arrows of his antagonist, 4

√
x to kill his antagonist’s horse, six to kill

the antagonist himself, three to demolish his antagonist’s weapons and shield, and one to
decapitate him. In other words, x = 1

2x + 4
√

x + 10.

21.4.2. Combinatorics

Bhaskara gives a thorough treatment of permutations and combinations, which already had
a long history in India. He describes combinatorial formulas such as

(
7

3

)

= 7 · 6 · 5

1 · 2 · 3
= 35

by saying

Let the figures from one upward, differing by one, put in the inverse order, be divided by the
same in the direct order; and let the subsequent be multiplied by the preceding and the next
following by the foregoing. The several results are the changes by ones, twos, threes, etc.

He illustrates this principle by asking how many possible combinations of stressed and
unstressed syllables there are in a six-syllable verse. His solution is as follows:
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The figures from 1 to 6 are set down, and the statement of them, in direct and inverse order is

6 5 4 3 2 1

1 2 3 4 5 6

The results are: changes with one long syllable, 6; with two 15; with three, 20; with four, 15,
with five, 6; with all long, 1.

Bhaskara assures the reader that the same method can be used to find the permutations
of all varieties of meter. He then goes on to develop some variants of this problem, for
example,

A number has 5 digits and the sum of the digits is 13. If zero is not a digit, find the total number
of possible numbers.

To solve this problem, you have to consider the possibility of two distinct digits (for
example, 91111, 52222, 13333, 55111, 22333), three distinct digits (for example 82111,
73111) and count all the possible rearrangements of the digits.

Bhaskara reports that the initial syllables of the names for colors “have been selected by
venerable teachers for names of values of unknown quantities, for the purpose of reckon-
ing therewith.” He proceeds to give the rules for manipulating expressions involving such
quantities; for example, the rule that we would write as (−x − 1) + (2x − 8) = x − 9 is
written

ya 1̇ ru 1̇,

ya 2 ru 8̇,

Sum ya 1 ru 9̇,

where the dots indicate negative quantities. The syllable ya is the first syllable of the word
for black, and ru is the first syllable of the word for species.

Bhaskara gives the rule that we express as the quadratic formula for solving a quadratic
equation by radicals, then goes on to give a criterion for a quadratic equation to have two
(positive) roots. He also says (pp. 207–208 of the Colebrooke translation) that “if the solution
cannot be found in this way, as in the case of cubic or quartic equations, it must be found
by the solver’s own ingenuity.” That ingenuity includes some work that would nowadays be
regarded as highly inventive, not to say suspect; for example (p. 214), Bhaskara’s solution
of the equation

(
0
(
x + 1

2x
))2 + 2

(
0
(
x + 1

2x
))

0
= 15.

Bhaskara warns that multiplying by zero does not make the product zero, since further
operations are to be performed. Then he simply cancels the zeros, saying that, since the
multiplier and divisor are both zero, the expression is unaltered. The result is the equation we
would write as 9

4x2 + 3x = 15. Bhaskara clears the denominator and writes the equivalent
of 9x2 + 12x = 60. Even if the multiplication by zero is interpreted as multiplication by
a nonzero expression that is tending to zero, as a modern mathematician would like to
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do, this cancelation is not allowed, since the first term in the numerator is a higher-order
infinitesimal than the second. Bhaskara is handling 0 here as if it were 1. Granting that
operation, he does correctly deduce, by completing the square (adding 4 to each side), that
x = 2.

Bhaskara says in the Vija Ganita that a nonzero number divided by zero gives an infinite
quotient.

This fraction
[

3
0

]
, of which the denominator is cipher, is termed an infinite quantity. In this

quantity consisting of that which has cipher for its divisor, there is no alteration, though many
be inserted or extracted; as no change takes place in the infinite and immutable GOD [Vishnu],
at the period of the destruction or creation of worlds, though numerous orders of beings are
absorbed or put forth.

By the time of Bhaskara, the distinction between a rational and an irrational square
root was well known. The Sanskrit word for an irrational root is carani, according to
the commentator Krishna (Plofker, 2009, p. 145), who defines it as a number, “the root
of which is required but cannot be found without residue.” Bhaskara gives rules such as√

8 + √
2 = √

18 and
√

8 − √
2 = √

2.

21.5. GEOMETRY IN THE WORKS OF BHASKARA II

In his work Siddhanta Siromani (Crest Jewel of the Siddhantas), written in 1150, Bhaskara
tackled the extremely difficult problem of finding the area of a sphere. As we have seen
(Section 7.2 of Chapter 7), the Egyptians had deduced correctly that the area of a hemisphere
is twice the area of its circular base, and (Section 14.2 of Chapter 14) Archimedes had proved
rigorously that the surface of a sphere is four times the equatorial disk it contains. In order to
achieve that result, Archimedes had to make use of the method of exhaustion, which can be
seen as an anticipation of integral calculus. Something similar can be said about Bhaskara’s
approach, which was numerical and based on Aryabhata’s trigonometry, in contrast to the
metric-free approach used by Archimedes. The discussion we are about to give is based on
the exposition of this result given by Plofker (2009, pp. 196–201).

As was stated in the previous chapter, in constructing his table of sine differences,
Aryabhata I chose 225′ of arc as the constant difference, dividing the arc of one quadrant of
a circle of radius 3438′ into 24 equal pieces. Bhaskara II started from that point, dividing
a complete great circle of a sphere—which we can think of as the equator—into 96 equal
pieces. Each of these pieces is regarded as one unit of length. He then imagined the lines
of longitude drawn through these 96 points running from pole to pole, thereby partitioning
the sphere into 96 mutually congruent sectors. In each sector, he then imagined the circles
of latitude drawn, dividing each quadrant of a line of longitude into 24 equal arcs between
the pole and the equator, 48 between the two poles. Thus the surface of the sphere was
partitioned into 96 × 48 = 4608 regions, 192 of which (those having a vertex at one of
the poles) are curvilinear triangles, and the other 4416 of which are curvilinear trapezoids.
A set of 20 of these trapezoids lying just above the equator is shown in Fig. 21.1. Since
they are very small, one can imagine that they actually are planar triangles and trapezoids.
For a typical trapezoid whose upper and lower edges are at co-latitudes (k − 1) × 225′ and
k × 225′—these are the distances along a line of longitude from the pole—the lengths of
these edges are proportional to the radii of those circles of latitude. In terms of the unit
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Figure 21.1. Bhaskara’s “polygonal” method of getting the area of a sphere.

of length (1′) chosen by Aryabhata, the radius r of the circle at co-latitude k × 225′ is
sin(k × 225′); that is, it is given in the second column of the table of sines displayed in
the previous chapter. The length of the arc of that circle inside the sector is 225′. However,
these are minutes of arc on the circle of latitude, not on the sphere. A minute of arc on a
circle of radius r is r

R
minutes of arc on a great-circle of a sphere of radius R. Thus, the

portion of the circle of latitude of radius r inside each sector has length 225r
R

minutes of
spherical arc, where R = 3438. Since Bhaskara’s unit of length is 225 of Aryabhata’s units,
we need to divide by 225. Altogether then, the length of that arc inside a given sector at
co-latitude k × 225′ is sin(k×225′)

R
. The area of each trapezoid (again, treated as if it were

a plane trapezoid) is numerically equal to the average of these lengths for the upper and
lower edges, since each trapezoid has altitude equal to one unit. All we have to do then is
sum up the areas of the 4416 trapezoids and the 192 triangles in order to find the area of the
sphere. This is done most easily by finding the area of a half-sector and doubling it. To find
the area of each triangle or trapezoid between the pole and the equator in a given sector,
one has only to take the average of the lengths of the opposite sides (counting the “side” at
the pole as having length 0), multiply by the altitude, and then add up the results. Thus, we
need to find

1

3438
×

(
0 + sin(225′)

2
+ sin(225′) + sin(2 × 225′)

2

+ sin(2 × 225′) + sin(3 × 225′)
2

+ · · · + sin(23 × 225′) + sin(24 × 225′)
2

)
.

Bhaskara saw how this sum could be rewritten to eliminate the 2 in each denominator,
except for the very last term. He evaluated it by adding up all of the sines in the table and
then subtracting half of the last one. This was a simple exercise in arithmetic, and we noted
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in the previous chapter that the sines in the table add up to 54, 233. Therefore, the area of
a half-sector is numerically

(54233 − 1719)

3438
= 52514

3438
= 15.27457.

(The number 1719 is half of the sine of a 90◦ arc.) A full sector is then twice this amount,
or 30.54916. Bhaskara observed that this is, within the limits of precision, precisely the
diameter of the sphere, since 96

π
≈ 30.5577. Thus, it seems that if a sphere is partitioned

into sectors of unit opening, the area of each sector in square units is numerically equal
to the length of the diameter. Since the total area of the sphere is 96 times the area of this
sector—that is, it is this area times the number of units of length in the circumference,
Bhaskara concluded (correctly) that the area of a sphere [in square units] is equal to its
diameter times its circumference. Bhaskara would have had to construct a finer table of
sines in order to test the result with a smaller unit of length (by partitioning the sphere into
more than 4608 regions). As a practical matter, since the actual diameter is about 0.01 units
larger than the value he used, while he had the circumference correct, he would have gotten
a numerical value for the area that is too small by 1%. In our terms, his unit of area was
π2R2

4n2 , and the numerical approximation that he used for the area was

cnπR2,

where

cn =
√

2π

n

(
sin

( (n−1)π
4n

)

sin
(

π
4n

) + 1

2

)
.

The accurate value of cn would be 4. Bhaskara’s procedure amounts to taking n = 24. By
direct computation, we get c24 ≈ 3.96023, which is, as already noted, 1% too small.

That Bhaskara understood the principle of infinitesimal approximation is shown by
another of his results, in which he says that the difference between two successive sines
in the table, that is, sin((k + 1) × 225′) − sin(k × 225′), is 225 cos(k × 225′)/R (where
R = 3438). This result seems to prefigure the infinitesimal relation that calculus books
write as

�
(

sin(x)
) ≈ d

(
sin(x)

) = cos(x) dx.

PROBLEMS AND QUESTIONS

Mathematical Problems

21.1. Given the Pell equation y2 − 11x2 = 1, which has solutions x = 3, y = 10 and
x = 60, y = 199, construct a third solution and use it to get an approximation to√

11.

21.2. Solve Bhaskara’s problem of finding the number of positive integers having five
nonzero digits whose sum is 13.



238 BRAHMAGUPTA, THE KUTTAKA, AND BHASKARA II

21.3. Use the kuttaka to solve the equation 24x = 57y + 15. Find the smallest positive
integers x and y that satisfy this equation.

Historical Questions

21.4. How accurate are the rules given by Brahmagupta for computing areas and volumes?

21.5. What topics in number theory not discussed by Euclid and Nicomachus can be found
in the works of Hindu mathematicians?

21.6. How did Bhaskara II treat division by zero?

Questions for Reflection

21.7. How practical was it to use the kuttaka to compute the dates of future conjunctions
of the heavenly bodies (for example, eclipses)? Does this technique yield accurate
and reliable results? What might go wrong in a given practical application?

21.8. What justification does Bhaskara II offer for the problems in the Lilavati? Does he
live up to his advertising?

21.9. Compare the trigonometries developed by Ptolemy and the Hindu mathematicians
with each other and with trigonometry as we know it today. What significant differ-
ences are there between any two of them?



CHAPTER 22

Early Classics of Chinese Mathematics

The name China refers to a region unified under a central government but whose exact
geographic extent has varied considerably over the 4000 years of its history. To frame our
discussion, we shall sometimes refer to the following dynasties:

1. The Shang Dynasty (sixteenth to eleventh centuries bce). The Shang rulers controlled
the northern part of what is now China and had an extensive commercial empire.

2. The Zhou Dynasty (eleventh to eighth centuries bce). The Shang Dynasty was con-
quered by people from the northwest known as the Zhou. The great Chinese philoso-
phers known in the West as Confucius, Mencius, and Lao-Tzu lived and taught during
the several centuries of disorder that came after the decay of this dynasty.

3. The Period of Warring States (403–221 bce) and the Qin Dynasty (221–206 bce).
Warfare was nearly continuous in the fourth and third centuries BCE, but in the second
half of the third century the northwestern border state of Qin gradually defeated all
of its rivals and became the supreme power under the first Qin emperor. The name
China is derived from the Qin.

4. The Han Dynasty (206 bce–220 ce). The empire was conquered shortly after the
death of the Qin emperor by people known as the Han, who expanded their con-
trol far to the south, into present-day Viet Nam, and established a colonial rule in
the Korean peninsula. Contact with India during this dynasty brought Buddhism to
China for the first time. According to Mikami (1913, pp. 57–58), mathematical and
astronomical works from India were brought to China and studied. Certain topics,
such as combinatorics, are common to both Indian and Chinese treatises, but “there
is nothing positive that serves as an evidence of any actual Indian influence upon the
Chinese mathematics.”

5. The Tang Dynasty (seventh and eighth centuries). The Tang Dynasty was a period of
high scholarship, in which, for example, block printing was invented.

6. The Song Dynasty (960–1279). The period of disorder after the fall of the Tang Dy-
nasty ended with the accession of the first Song emperor. Confucianism underwent a
resurgence in this period, supplementing its moral teaching with metaphysical spec-
ulation. Scientific treatises on chemistry, zoology, and botany were written, and the
Chinese made great advances in algebra.
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7. The Mongol conquest and the closing of China. The Song Dynasty was ended in the
thirteenth century by the Mongol conquest under the descendants of Genghis Khan,
whose grandson Kublai Khan was the first emperor of the dynasty known in China as
the Yuan. As the Mongols were Muslims, this conquest brought China into contact
with the intellectual achievements of the Muslim world. Knowledge flowed both
ways, and the sophisticated Chinese methods of root extraction seem to be reflected
in the works of later Muslim scholars, such as the fifteenth-century mathematician
al-Kashi. The vast Mongol Empire facilitated East–West contacts, and it was during
this period that Marco Polo (1254–1324) made his famous voyage to the Orient.

8. The Ming Dynasty (fourteenth to seventeenth centuries). While the Mongol conquest
of Russia lasted 240 years, the Mongols were driven out of China in less than a century
by the first Ming emperor. During the Ming Dynasty, Chinese trade and scholarship
recovered rapidly. The effect of the conquest, however, was to encourage Chinese
isolationism, which became the official policy of the later Ming emperors during
the period of European expansion. The first significant European contact came in the
year 1582, when the Italian Jesuit priest Matteo Ricci (1552–1610) arrived in China.
The Jesuits were particularly interested in bringing Western science to China to aid
in converting the Chinese to Christianity. They persisted in these efforts despite the
opposition of the emperor. The Ming Dynasty ended in the mid-seventeenth century
with conquest by the Manchus.

9. The Ching (Manchu) Dynasty (1644–1911). After two centuries of relative prosperity
the Ching Dynasty suffered from the depredations of foreign powers eager to control
its trade. Perhaps the worst example was the Opium War of 1839–1842, fought by
the British in order to gain control of the opium trade. From that time on, Manchu
rule declined. In 1900, the Boxer Rebellion against the Western occupation was
crushed and the Chinese were forced to pay heavy reparations. In 1911 the government
disintegrated entirely, and a republic was declared.

10. The twentieth century. The establishment of a republic in China did not quell the social
unrest, and there were serious uprisings for several decades. China suffered badly from
World War II, which began with a Japanese invasion in the 1930s. Although China
was declared one of the major powers when the United Nations was formed in 1946,
the Communist revolution of 1949 drove its leader Chiang Kai-Shek to the island of
Taiwan. China is now engaged in extensive cultural and commercial exchanges with
countries all over the world and hosted the International Congress of Mathematicians
in 2002. Its mathematicians have made outstanding contributions to the advancement
of mathematics, and Chinese students are welcomed at universities in nearly every
country.

22.1. WORKS AND AUTHORS

Mathematics became a recognized and respected area of intellectual endeavor in China more
than 2000 years ago. That its origins are at least that old is established by the existence of
books on mathematics, at least one of which was probably written before the order of the
Emperor Shih Huang-Ti in 213 bce that all books be burned.1 A few books survived or

1The Emperor was not hostile to learning, since he did not forbid the writing of books. Apparently, he just wanted
to be remembered as the emperor in whose reign everything began.
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were reconstituted after the brief reign of Shih Huang-Ti, among them the mathematical
classic just alluded to. This work and three later ones now exist in English translation, with
commentaries to provide the proper context for readers who are unfamiliar with the history
and language of China. Under the Tang dynasty, a standardized educational system came
into place for the training of civil servants, based on literary and scientific classics, and
the works listed below became part of a mathematical curriculum known as the Suan Jing
Shishu (Ten Canonical Mathematical Classics—there are actually 12 of them). Throughout
this long period, mathematics was cultivated together with astronomy both as an art form
and for practical application in the problem of obtaining an accurate lunisolar calendar. In
addition, many problems of commercial arithmetic and civil administration appear in the
classic works.

22.1.1. The Zhou Bi Suan Jing

The early treatise alluded to above, the Zhou Bi Suan Jing, has been known in English as
the Arithmetic Classic of the Gnomon and the Circular Paths of Heaven. A recent study
and English translation has been carried out by Christopher Cullen of the University of
London (1996). According to Cullen, the title Zhou Bi could be rendered as Gnomon of
the Zhou. The phrase suan jing occurs in the titles of several early mathematical works; it
means mathematical treatise or mathematical manual. According to a tradition, the Zhou Bi
Suan Jing was written during the Western Zhou dynasty, which overthrew the earlier Shang
dynasty around 1025 bce and lasted until 771 bce. Experts now believe, however, that
the present text was put together during the Western Han dynasty, during the first century
bce, and that the commentator Zhao Shuang, who wrote the version we now have, lived
during the third century ce, after the fall of the Han dynasty. However, the astronomical
information in the book could only have been obtained over many centuries of observation
and therefore must be much earlier than the writing of the treatise.

As the traditional title shows, the work is concerned with astronomy and surveying. The
study of astronomy was probably regarded as socially useful in two ways: (1) It helped to
regulate the calendar, a matter of great importance when rituals were to be performed; (2) it
provided a method of divination (astrology), also of importance both for the individual and
for the state. Surveying is of use in any society where it is necessary to erect large structures
such as dams and bridges and where land is often flooded, requiring people to abandon their
land holdings and reclaim them later.

These applications make mathematics useful in practice. However, the preface, written
by the commentator Zhao Shuang, gives a different version of the motive for compiling
this knowledge. Apparently a student of traditional Chinese philosophy, he had realized
that it was impossible to understand fully all the mysteries of the changing universe. He
reports that he had looked into this treatise while convalescing from an illness and had been
so impressed by the acuity of the knowledge it contained that he decided to popularize it
by writing commentaries to help the reader over the hard parts, saying, “Perhaps in time,
gentlemen with a taste for wide learning may turn their attention to this work” (Cullen, 1996,
p. 171). Here we see mathematics being praised simply because it confers understanding
where ignorance would otherwise be; it is regarded as one of the liberal arts, to be studied
by a leisured class of gentlemen scholars, people fortunate enough to be free of the daily
grind of physical labor that was the lot of the majority of people in all countries until very
recent times.
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22.1.2. The Jiu Zhang Suan Shu

Another ancient Chinese treatise, the Jiu Zhang Suan Shu, meaning Nine Chapters on
the Mathematical Art,2 has been partly translated into English, with commentary, by Lam
(1994). A corrected and commented edition was published in Chinese in 1992, assembled
by Guo (1992). This work has been called the classic Chinese mathematical treatise, since
commentaries were written on it for centuries, and it had a large influence on the development
of mathematics in Korea and Japan. It reflects the state of mathematics in China in the later
Han dynasty, around the year 100 ce. The nine chapters that give this monograph its name
contain 246 applied problems of a sort useful in teaching how to handle arithmetic and
elementary algebra and how to apply them in commercial and administrative work. In that
respect, it offers many parallels with the Rhind papyrus. The nine chapters have no prefaces
in which the author explains their purpose, and so we must assume that the purpose was
the obvious one of training people engaged in surveying, administration, and trade. Some
of the problems are practical, explaining how to find areas, convert units of length and area,
and deal with fractions and proportions. Yet when we analyze the algebraic parts of this
work, we shall see that it contains impractical puzzle-type problems leading to systems of
linear equations and resembling problems that have filled up algebra books for centuries.
Such problems are apparently intended to train the mind in algebraic thinking.

22.1.3. The Sun Zi Suan Jing

Another early treatise, the Sun Zi Suan Jing or Mathematical Classic of Sun Zi, was written
several centuries after the Jiu Zhang Suan Shu. This work begins with a preface praising the
universality of mathematics for its role in governing the lives of all creatures and placing it
in the context of Chinese philosophy and among the six fundamental arts (decorum, music,
archery, charioteership, calligraphy, and mathematics).

The preface makes it clear that mathematics is appreciated both as a practical skill in
life and as an intellectual endeavor. The practicality comes in the use of compasses and
gnomons for surveying and in the use of arithmetic for computing weights and measures.
The intellectual skill, however, is emphasized. Mathematics is valued because it trains the
mind. “If one neglects its study, one will not be able to achieve excellence and thoroughness”
(Lam and Ang, 1992, p. 151).

As in the quotation from the commentary on the Zhou Bi Suan Jing, we find that an aura
of mystery and “elitism” surrounds mathematics. It is to be pursued by a dedicated group of
initiates, who expect to be respected for learning its mysteries, as theologians were during
the Middle Ages in the West. At the same time, mathematics has a practical value that is
also respected.

22.1.4. Liu Hui. The Hai Dao Suan Jing

The fall of the Han Dynasty in the early third century gave rise to three separate kingdoms in
the area now known as China. The north-central kingdom is known as the Kingdom of Wei.
There, in the late third century ce, a mathematician named Liu Hui (ca. 220–280) wrote
a commentary on the final chapter of the Jiu Zhang Suan Shu. This chapter is devoted to

2Martzloff (1994) translates this title as Computational Prescriptions in Nine Chapters.
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the theorem we know as the Pythagorean theorem, and Liu Hui’s book, the Hai Dao Suan
Jing (Sea Island Mathematical Classic), shows how to use pairs of similar right triangles
to measure inacessible distances. The name of the work comes from the first problem in it,
which is to find the height of a mountain on an offshore island and the distance to the base
of the mountain. The work consists of nine problems in surveying that can be solved by
the algebraic techniques practiced in China at the time. A translation of these problems, a
history of the text itself, and commentary on the mathematical techniques can be found in
the paper by Ang and Swetz (1986).

22.1.5. Zu Chongzhi and Zu Geng

According to Li and Du (1987, pp. 80–82), fifth-century China produced two outstanding
mathematicians, father and son. Zu Chongzhi (429–501) and his son Zu Geng (ca. 450–520)
were geometers who used a method resembling what is now called Cavalieri’s principle for
calculating volumes bounded by curved surfaces. The elder Zu was also a numerical analyst,
who wrote a book on approximation entitled Zhui Shu (Method of Interpolation), which
became for a while part of the classical curriculum. However, this book was apparently
regarded as too difficult for nonspecialists, and it was dropped from the curriculum and
lost. Zu Geng continued working in the same area as his father and had a son who also
became a mathematician.

22.1.6. Yang Hui

We now leave a considerable (700-year) gap in the story of Chinese mathematics and come
to Yang Hui (ca. 1238–1298), the author of a number of mathematical texts. According to
Li and Du (1987, pp. 110, 115), one of these was Xiangjie Jiuzhang Suan Fa (Detailed
Analysis of the Mathematical Rules in the Jiu Zhang Suan Shu), a work of 12 chapters,
one on each of the nine chapters of the Jiu Zhang Suan Shu, plus three more containing
other methods and more advanced analysis. In 1274 and 1275 he wrote two other works,
which were later collected in a single work called the Yang Hui Suan Fa (Yang Hui’s
Computational Methods). In these works he discussed not only mathematics but also its
pedagogy, advocating real understanding over rote learning.

22.1.7. Cheng Dawei

In the later Ming dynasty, a governmental administrator named Cheng Dawei (1533–1606)
applied his mind to the solution of problems using the abacus. In 1592 he wrote a book
entitled Suan Fa Tong Zong (General Source of Computational Methods), containing nearly
600 problems on a huge variety of topics, including magic squares and even more arcane
subjects.

22.2. CHINA’S ENCOUNTER WITH WESTERN MATHEMATICS

Jesuit missionaries who entered China during the late sixteenth century brought with them
some mathematical works, including Euclid’s Elements, the first six books of which the
missionary Matteo Ricci and the Chinese scholar Xu Guangchi (1562–1633) translated into
Chinese (Li and Du, 1987, p. 193). The version of Euclid that they used, a Latin translation by
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the German Jesuit Christopher Clavius (1538–1612) bearing the title Euclidis elementorum
libri XV (The Fifteen Books of Euclid’s Elements), is still extant, preserved in the Beijing
Library. This book aroused interest in China because it was the basis of Western astronomy
and therefore offered a new approach to the calendar and to the prediction of eclipses.
According to Mikami (1913, p. 114), the Western methods made a correct prediction of a
solar eclipse in 1629, which traditional Chinese methods got wrong. It was this accurate
prediction that attracted the attention of Chinese mathematicians to Euclid’s book, rather
than the elaborate logical structure which is its most prominent distinguishing characteristic.
Martzloff (1993) studied a commented (1700) edition of Euclid by the mathematician Du
Zhigeng and noted that it was considerably abridged, omitting many proofs of propositions
that are visually or topologically obvious. As Martzloff says, although Du Zhigeng retained
the logical form of Euclid—that is, the definitions, axioms, postulates, and propositions—he
neglected proofs, either omitting them entirely or giving only a fraction of a proof, “a fraction
not necessarily containing the part of the Euclidean argument relevant to a given proposition
and devoted to the mathematical proof in the proper sense of the term.” Du Zhigeng also
attempted to synthesize the traditional Chinese classics, such as the Jiu Zhang Suan Shu and
the Suan Fa Tong Zong, with works imported from Europe, such as Archimedes’ treatise
on the measurement of the circle. Thus in China, Western mathematics supplemented, but
did not replace, the mathematics that already existed.

The first Manchu Emperor Kang Xi (1654–1722) was fascinated by science and insisted
on being taught by two French Jesuits, Jean-François Gerbillon (1654–1707) and Joachim
Bouvet (1656–1730), who were in China in the late 1680s. This was the time of the Sun
King, Louis XIV, who was vying with Spain and Portugal for influence in the Orient. The
two Jesuits were required to be at the palace from before dawn until long after sunset and
to give lessons to the Emperor for four hours in the middle of each day (Li and Du, 1987,
pp. 217–218).

Given the increasing contacts between East and West in the nineteenth century, some
merging of ideas was inevitable. During the 1850s the mathematician Li Shanlan (1811–
1882), described by Martzloff (1982) as “one of the last representatives of Chinese tradi-
tional mathematics,” translated a number of contemporary works into Chinese, including an
1851 calculus textbook of the American astronomer–mathematician Elias Loomis (1811–
1889) and an algebra text by Augustus De Morgan (1806–1871). Li Shanlan had a power
over formulas that reminds one in many ways of the twentieth-century Indian genius Srini-
vasa Ramanujan. One of his combinatorial formulas, stated without proof in 1867, was
finally proved through the ingenuity of the prominent Hungarian mathematician Paul Turán
(1910–1976). By the early twentieth century, Chinese mathematical schools had marked
out their own territory, specializing in standard areas of mathematics such as analytic func-
tion theory. Despite the difficulties of war, revolution, and a period of isolation during
the 1960s, transmission of mathematical literature between China and the West continued
and greatly expanded through exchanges of students and faculty from the 1980s onward.
Kazdan (1986) gives an interesting snapshot of the situation in China at the beginning of
this period of expansion.

22.3. THE CHINESE NUMBER SYSTEM

In contrast to the Egyptians, who computed with ink on papyrus, the ancient Chinese, starting
in the time of the Shang Dynasty, used rods representing numerals to carry out computations.
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Figure 22.1. The Shang numerals.

Chinese documents from the second century bce mention the use of counting rods, and a
set of such rods from the first century bce was discovered in 1970. The rods can be arranged
to form the Shang numerals (Fig. 22.1) and thereby represent decimal digits. They were
used in conjunction with a counting board, which is a board ruled into squares so that each
column (or row, depending on the direction of writing) represents a particular item. In pure
computations, the successive rows in the board indexed powers of 10. These rods could be
stacked to represent any digit from 1 to 9. Since they were placed on a board in rows and
columns, the empty places are logically equivalent to a use of 0, but not psychologically
equivalent. The use of a circle for zero in China is not found before the thirteenth century. On
the other hand, according to Lam and Ang (1987, p. 102), the concept of negative numbers
(fu), represented by black rods instead of the usual red ones for positive numbers (cheng),
was also present as early as the fourth century bce.

It is difficult to distinguish between, say, 22 (|| ||) and 4 (||||) if the rods are placed too
close together. To avoid that difficulty, the Chinese rotated the rods in alternate rows through
a right angle, in effect using a positional system based on 100 rather than 10. Since this
book is being published in a language that is read from left to right, then from top to bottom,
we shall alternate columns rather than rows. In our exposition of the system the number
22 becomes || and 4 remains ||||. The Shang numerals are shown in Fig. 22.1, the top
row being used to represent digits multiplied by an even power of 10 and the bottom row
representing digits multiplied by an odd power of 10.

22.3.1. Fractions and Roots

The Sun Zi Suan Jing gives a procedure for reducing fractions that is equivalent to
the familiar Euclidean algorithm for finding the greatest common divisor of two integers.
The rule is to subtract the smaller number from the larger until the difference is smaller
than the originally smaller number. Then begin subtracting the difference from the smaller
number. Continue this procedure until two equal numbers are obtained. That number can
then be divided out of both numerator and denominator.

With this procedure for reducing fractions to lowest terms, a complete and simple theory
of computation with fractions is feasible. Such a theory is given in the Sun Zi Suan Jing,
including the standard procedure for converting a mixed number to an improper fraction
and the procedures for adding, subtracting, multiplying, and dividing fractions. Thus, the
Chinese had complete control over the system of rational numbers, including, as we shall
see below, the negative rational numbers.

At an early date the Chinese dealt with roots of integers, numbers like
√

355, which
we now know to be irrational; and they found mixed numbers as approximations when
the integer is not a perfect square. In the case of

√
355, the approximation would have

been given as 18 31
36 . (The denominator is always twice the integer part, as a result of the
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approximation used. As with the Hindus and others, the basic principle is that
√

a + r ≈√
a(1 + r/2a) = √

a + r/2
√

a.)

22.4. ALGEBRA

Sooner or later, constantly solving problems of more and more complexity in order to find
unknown quantities leads to the systematization of ways of imagining operations performed
on a “generic” number (unknown). When the point arises at which an unknown or unspec-
ified number is described by some of its properties rather than explicitly named, we may
say that algebra has arisen. There is a kind of twilight zone between arithmetic and algebra,
in which certain problems are solved imaginatively without using symbols for unknowns,
but later are seen to be easily solvable by the systematic methods of algebra. An example
of such a problem is the one from the Bakshali manuscript discussed in Chapter 20 asking
for the relative prices of draft horses, thoroughbred horses, and camels.

A good example from China is Problem 15 of Chapter 3 of the Sun Zi Suan Jing, which
asks how many carts and how many people are involved, given that there are two empty
carts (and all the others are full) when people are assigned three to a cart, but nine people
have to walk if only two are placed in each cart. We would naturally make this a problem
in two linear equations in two unknowns: If x is the number of people and y the number of
carts, then

x = 3(y − 2),

x = 2y + 9.

However, that would be using algebra, and Sun Zi does not quite do that in this case. His
solution is as follows:

Put down 2 carts, multiply by 3 to give 6, add 9, which is the number of persons who have to
walk, to obtain 15 carts. To find the number of persons, multiply the number of carts by 2 and
add 9, which is the number of persons who have to walk.

Probably the reasoning in the first sentence here is pictorial. Imagine each cart filled with
three people. When loaded in this way, the carts would accommodate all the “real” people
in the problem, plus six “fictitious” people, since we are given that two carts would be
empty if the others each carried three people. Let us imagine, then, that six fictitious people
are added to the passengers, one in each of six carts, each of which therefore contains two
real people and one fictitious person, while each of the others contains three real people.
Now imagine one person removed from each cart, preferably a fictitious person if possible.
The number of people removed would obviously be equal to the number of carts. The six
fictitious people would then be removed, along with the nine real people who have to walk
when there are only two people in each cart. It follows that there must be 15 carts. Finding
the number of people (39) is straightforward once the number of carts is known.

The nature of divisibility for integers is also studied in the Sun Zi Suan Jing, which
contains the essence of the result still known today as the Chinese remainder theorem. The
problem asks for a number that leaves a remainder of 2 when divided by 3, a remainder of
3 when divided by 5, and a remainder of 2 when divided by 7. The fact that any number
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of such congruences can be solved simultaneously if the divisors are all pairwise relatively
prime is the content of what we know now as the Chinese remainder theorem. According to
Dickson (1920, p. 57), this name arose when the mathematically literate British missionary
Alexander Wylie (1815–1887) wrote an article on it in the English-language newspaper
North China Herald in 1852. By that time the result was already known in Europe, having
been discovered by Gauss and published in his Disquisitiones arithmeticæ (Art. 36) in 1836.

Sun Zi’s answer to this problem shows that he knew a general method of proceeding. He
says, “Since the remainder on division by 3 is 2, take 140. The remainder on division by 5
is 3, so take 63. The remainder on division by 7 is 2, so take 30. Add these numbers, getting
233. From this subtract 210, getting the answer as 23.” In other words, he took the smallest
multiple of 5 · 7 that leaves a remainder of 2 when divided by 3, then the smallest multiple
of 3 · 7 that leaves a remainder of 3 when divided by 5, and then the smallest multiple of
3 · 5 that leaves a remainder of 2 when divided by 7. The sum of these numbers was bound
to satisfy all three congruences, and then he could add or subtract an arbitrary multiple
of 3 · 5 · 7.

22.5. CONTENTS OF THE JIU ZHANG SUAN SHU

This classic work assumes that the methods of calculation explained in the Sun Zi Suan
Jing are known and applies them to problems very similar to those discussed in the Rhind
papyrus. In fact, Problems 5, 7, 10, and 15 from the Chapter 1 of the Jiu Zhang Suan Shu
are reprinted at the beginning of Chapter 2 of the Sun Zi Suan Jing. As its title implies, the
book is divided into nine chapters. These nine chapters contain a total of 246 problems. The
first eight of these chapters discuss calculation and problems that we would now solve using
linear algebra. The last chapter is a study of right triangles and will be discussed below.
First, we summarize the contents of some of the earlier parts.

The first chapter, whose title is “Rectangular Fields,” discusses how to express the areas
of fields given their sides. Problem 1, for example, asks for the area of a rectangular field
that is 15 bu by 16 bu.3 The answer, we see immediately, is 240 “square bu.” However, the
Chinese original does not distinguish between linear and square units. The answer is given
as “1 mu.” The Sun Zi Suan Jing explains that as a unit of length, 1 mu equals 240 bu. This
ambiguity is puzzling, since a mu is both a length equal to 240 bu and the area of a rectangle
whose dimensions are 1 bu by 240 bu. It would seem more natural for us if 1 mu of area were
represented by a square of side 1 mu. If these units were described consistently, a square
of side 1 linear mu would have an area equal to 240 “areal” mu. That there really is such a
consistency appears in Problems 3 and 4, in which the sides are given in li. Since 1 li equals
300 bu (that is, 1.25 mu), to convert the area into mu one must multiply the lengths of the
sides in li and then multiply by 1.252 · 240 = 375. Thus, one gets first “square mu” in the
sense that we would understand it, and this numerical value for the area is then multiplied
by the standard unit shape of 1 × 240 bu. The instructions say to multiply by precisely that
number, and the answer is represented as a rectangle 1 bu by 375 bu.

Chapter 2 (“Millet and Rice”) of the Jiu Zhang Suan Shu contains problems very similar
to the pesu problems from the Rhind papyrus. The proportions of millet and various kinds

3One bu is 600,000 hu, a hu being the diameter of a silk thread as it emerges from a silkworm. From other sources,
it appears that 1 bu is about 1.5 meters.
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of rice and other grains are given as empirical data at the beginning of the chapter. Problems
of the sort studied in this chapter occur frequently in all commercial transactions in all
times. In the United States, for example, a concept analogous to pesu is the unit price (the
number of dollars the merchant will obtain by selling 1 unit of the commodity in question).
This number is frequently printed on the shelves of grocery stores to enable shoppers to
compare the relative cost of purchasing different brands. Thus, the practicality of this kind of
calculation is obvious. The 46 problems in Chapter 2, and also the 20 problems in Chapter 3
(“Proportional Distribution”) of the Jiu Zhang Suan Shu are of this type, including some
extensions of the Rule of Three. For example, Problem 20 of Chapter 3 asks for the interest
due on a loan of 750 qian repaid after 9 days if a loan of 1000 qian earns 30 qian interest
each month (a month being 30 days). The result is obtained by forming the product 750
qian times 30 qian times 9 days and then dividing by the product 1000 qian times 30 days,
yielding 6 3

4 qian. Here the product of the monthly interest on a loan of 1 qian and the
number of days the loan is outstanding, divided by 30, forms the analog of the pesu for the
loan; it is the number of qian of interest produced by each qian loaned.

Chapter 6 (“Fair Transportation”) is concerned with the very important problem of fair
allocation of the burdens of citizenship. The Chinese idea of fairness, like that in many other
places, including modern America, involves direct proportion. For example, Problem 1
considers a case of collecting taxes in a given location from four counties lying at different
distances from the collection center and having different numbers of households. To solve
this problem, a constant of proportionality is assigned to each county equal to the number
of its households divided by its distance from the collection center. The amount of tax (in
millet) each county is to provide is its constant divided by the sum of all the constants of
proportionality and multiplied by the total amount of tax to be collected. The number of
carts (of a total prescribed number) to be provided by each county is determined the same
way. The data in the problem are as follows.

County Number of Households Distance to Collection Center
A 10,000 8 days
B 9,500 10 days
C 12,350 13 days
D 12,200 20 days

A total of 250,000 hu of millet were to be collected as tax, using 10,000 carts. The pro-
portional parts for the four counties were therefore 10, 000 ÷ 8 = 1250, 9500 ÷ 10 = 950,
12, 350 ÷ 13 = 950, and 12, 200 ÷ 20 = 610, which the author reduced to 125, 95, 95,
and 61. These numbers total 376. It therefore followed that county A should provide
125
376 · 250, 000 hu, that is, approximately 83,111.7 hu of millet and 125

376 · 10, 000, or 3324
carts. The author rounded off the tax to three significant digits, giving it as 83,100 hu.

Along with these administrative problems, the 28 problems of Chapter 6 also contain
some problems that have acquired an established place in algebra texts throughout the world
and will be continue to be worked by students as long as there are teachers to require it. For
example, Problem 26 considers a pond used for irrigation and fed by pipes from five different
sources. Given that these five canals, each “working” alone, can fill the pond in 1

3 , 1, 2 1
2 , 3,

and 5 days, the problem asks how long all five “working” together will require to fill it. The
author realized that the secret is to add the rates at which the pipes “work” (the reciprocals
of the times they require individually to fill the pond) and then take the reciprocal of this
sum, and this instruction is given. The answer is 1/(3 + 1 + 2/5 + 1/3 + 1/5) = 15/74.
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22.6. EARLY CHINESE GEOMETRY

Three early Chinese documents contain some geometry, always connected with the com-
putation of areas and volumes. We shall discuss the geometry in them in chronological
order.

22.6.1. The Zhou Bi Suan Jing

As mentioned above, the earliest Chinese mathematical document still in existence, the
Zhou Bi Suan Jing, is concerned with astronomy and the applications of mathematics to
the study of the heavens. The title refers to the use of the sundial or gnomon in astronomy.
This is the physical model that led the Chinese to discover the Pythagorean theorem. Here
is a paraphrase of the discussion:

Cut a rectangle whose width is 3 units and whose length is 4 (units) along its diagonal. After
drawing a square on this diagonal, cover it with half-rectangles identical to the piece of the
original rectangle that lies outside the square, so as to form a square of side 7. [See Fig. 22.2.]
Then the four outer half-rectangles, each of width 3 and length 4, equal two of the original
rectangles and hence have area 24. When this amount is subtracted from the square of area 49,
the difference, which is the area of the square on the diagonal, is seen to be 25. The length of
the diagonal is therefore 5.

Although the proof is given only for the easily computable case of the 3–4–5 right
triangle, it is obvious that the geometric method is perfectly general, lacking only abstract
symbols for unspecified numbers. In our terms, the author has proved that the length of
the diagonal of a rectangle whose width is a and whose length is b is the square root of
(a + b)2 − 2ab. Note that this form of the theorem is not the “a2 + b2 = c2” that we are
familiar with. The diagram is shown in Fig. 22.2 for the special case of a 3–4–5 triangle.

According to Li and Du (1987, p. 29), the vertical bar on a sundial was called gu in
Chinese, and its shadow on the sundial was called gou; for that reason the Pythagorean
theorem was known as the gougu theorem. Cullen (1996, p. 77) says that gu means thigh
and gou means hook. All authorities agree that the hypotenuse was called xian (bowstring),

Figure 22.2. Chinese illustration of the Pythagorean theorem.
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Figure 22.3. The double-difference method of surveying.

which was also Aryabhata’s name for it. The Zhou Bi Suan Jing says that the Emperor Yu
was able to bring order into the realm because he knew how to use this theorem to compute
distances. Zhao Shuang credited the Emperor Yu with saving his people from floods and
other great calamities, saying that in order to do so he had to survey the shapes of mountains
and rivers. Apparently the Emperor had drainage canals dug to channel floods out of the
valleys and into the Yangtze and Yellow Rivers.

The third-century commentary on the Zhou Bi Suan Jing by Zhao Shuang explains a close
variant of the method of surveying discussed in connection with the work of Aryabhata I in
Chapter 20. The Chinese variant of the method is illustrated in Fig. 22.3, which assumes that
the height H of an inaccessible object is to be determined. To determine H , it is necessary
to put two poles of a known height h vertically into the ground in line with the object at a
known distance D apart. The height h and the distance D are theoretically arbitrary, but the
larger they are, the more accurate the results will be. After the poles are set up, the lengths
of the shadows they would cast if the sun were at the inaccessible object are measured as
s1 and s2. Thus the lengths s1, s2, h, and D are all known. A little trigonometry and algebra
will show that

H = h + Dh

s2 − s1
.

We have given the result as a formula, but as a set of instructions it is very easy to state in
words: The required height is found by multiplying the height of the poles by the distance
between them, dividing by the difference of the shadow lengths, and adding the height of
the poles.

This method was expounded in more detail in a commentary on the Jiu Zhang Suan Shu
written by Liu Hui in 263 ce. This commentary, along with the rest of the material on right
triangles in the Jiu Zhang Suan Shu, eventually became a separate treatise, the Hai Dao Suan
Jing (Sea Island Mathematical Manual; see Ang and Swetz, 1986). Liu Hui mentioned that
this method of surveying could be found in the Zhou Bi Suan Jing and called it the double
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difference method (chong cha). The name apparently arises because the difference H − h

is obtained by dividing Dh by the difference s2 − s1.
We have described the lengths s1 and s2 as shadow lengths here because that is the problem

used by Zhao Shuang to illustrate the method of surveying. He attempts to calculate the
height of the sun, given that at the summer solstice a stake 8 chi high casts a shadow 6
chi long and that the shadow length decreases by 1 fen for every 100 li that the stake is
moved south, casting no shadow at all when moved 60,000 li to the south. This model
assumes a flat earth, under which the shadow length is proportional to the distance from the
pole to the foot of the perpendicular from the sun to the plane of the earth. Even granting
this assumption, as we know, the sun is so distant from the earth that no lengthening or
shortening of shadows would be observed. To any observable precision the sun’s rays are
parallel at all points on the earth’s surface. The small change in shadow length that we
observe is due to the curvature of the earth. But let us continue, accepting Zhao Shuang’s
assumptions.

To explain the solution of this problem, we first observe that two pieces of data are
irrelevant to the problem. It does not matter how long a shadow is, since only the difference
s1 − s2 occurs in the computational procedure. Likewise, the statement that the shadow
disappears at a certain location (which, by the way, lies at an impossible distance away—
the earth is not that big!) is irrelevant. The data here are D = 1000 li, s2 − s1 = 1 fen, h = 8
chi. One chi is about 25 centimeters, one fen is about 2.5 cm, and one li is 1800 chi, that
is, about 450 meters. Our first job is to express everything in consistent units, say li. Thus,
D = 1000, s2 − s1 = 1

180,000 , and h = 8
1800 .

Because the pole height h is obviously insignificant in comparison with the height of the
sun, we can neglect the first term in the formula we gave above, and we write

H = Dh

s2 − s1
.

When we insert the appropriate values, we find, as did Zhao Shuang, that the sun is 80,000
li high, about 36,000 kilometers. Later Chinese commentators recognized that this figure
was inaccurate, and in the eighth century an expedition to survey accurately a north–south
line found the actual lengthening of the shadow to be 4 fen per thousand li. Notice that the
statement of the problem seems to reveal careless editing over the years, since two methods
of computing the height are implied here. If the two irrelevant pieces of information provided
are taken into account, one can immediately use the similar triangles to infer the height of
80,000 li. This fact suggests that the original text was modified by later commentators, but
that not all the parts that became irrelevant as a result of the modifications were removed.

22.6.2. The Jiu Zhang Suan Shu

The Jiu Zhang Suan Shu contains all the standard formulas for the areas of squares, rect-
angles, triangles, and trapezoids, along with the recognition of a relation between the
circumference and the area of a circle, which we could interpret as a connection between
the one-dimensional π and the two-dimensional π. The geometric formulas given in this
treatise are more extensive than those of the Rhind papyrus; for example, there are ap-
proximate formulas for the volume of segment of a sphere and the area of a segment of a
circle. It is perhaps not fair to compare the two documents, since the Rhind papyrus was
written nearly two millennia earlier. The implied value of one-dimensional π, however, is
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π = 3. It is surprising to find this value so late, since it is known that the value 3.15147
had been obtained in China by the first century. According to Li and Du (1987, p. 68), Liu
Hui refined it to 3.14 + 64/62500 = 3.141024 by approximating the area of a 192-sided
polygon.4 That is, he started with a hexagon and doubled the number of sides five times.

Problems 31 and 32 ask for the area of a circular field of a given diameter and circumfer-
ence.5 The method is to multiply half of the circumference by half of the diameter, which is
exactly right in terms of Euclidean geometry; equivalently, the reader is told that one may
multiply the two dimensions and divide by 4. In the actual data for problems, the diameter
given is exactly one-third of the given circumference; in other words, the value assumed
for one-dimensional π is 3. The assumption of that value leads to two other procedures
for calculating the area: squaring the diameter, then multiplying by 3 and dividing by 4, or
squaring the circumference and dividing by 12. An elaboration of this problem occurs in
Problems 37 and 38, in which the area of an annulus (the region outside the smaller of two
concentric circles and inside the larger) is given in terms of its width and the circumferences
of the two circles.

The authors knew also how to find the volume of a pyramid. Problem 15 of Chapter 5
asks for the volume of a pyramid whose base is a rectangle 5 chi by 7 chi and whose
height is 8 chi. The answer is given (correctly) as 93 1

3 (cubic) chi. For a frustum of a
pyramid having rectangular bases the recipe is to add twice the length of the upper base
to the lower base and multiply by the width of the upper base to get one term. A second
term is obtained symmetrically as twice the length of the lower base plus the length of the
upper base, multiplied by the width of the lower base. These two terms are then added and
multiplied by the altitude, after which one divides by 6. If the bases are a × b and c × d (the
sides of length a and c being parallel) and the height is h, this yields what we would write
(correctly) as

V = h

6

[
(2a + c)b + (2c + a)d

]
.

This result is more general than the rule given in the Moscow papyrus discussed in
Section 7.2 of Chapter 7, which is given for a frustum with square bases.

The Pythagorean Theorem The last of the nine chapters of the Jiu Zhang Suan Shu
contains 24 problems on the gougu theorem. After a few “warm-up” problems in which two
of the three sides of a right triangle are given and the third is to be computed, the problems
become more complicated. Problem 11, for example, gives a rectangular door whose height
exceeds its width by 6 chi, 8 cun and has a diagonal of 1 zhang. One zhang is 10 chi and 1
chi is 10 cun (apparently a variant rendering of fen). The recipe given is correct: Take half
the difference of the height and width, square it, double, subtract from the square of the
diagonal, then take the square root of half of the result. That process yields the average of
the height and width, and given their semidifference of 3 chi, 4 cun, one can easily get both
the width and the height.

4Lam and Ang (1986) give the value as 3.14 + 169/625 = 3.142704.
5All references to problem numbers and nomenclature in this section are based on the article of Lam (1994).
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22.6.3. The Sun Zi Suan Jing

The Sun Zi Suan Jing contains a few problems in measurement that are unusual enough to
merit some discussion. An inverse area problem occurs in Problem 20, in which a circle
is said to have area 35,000 square bu, and its circumference is required. Since the area is
taken as one-twelfth of the square of the circumference, the author multiplies by 12, then
takes the square root, getting 648 96

1296 bu.

PROBLEMS AND QUESTIONS

Mathematical Problems

22.1. Compare the pond-filling problem (Problem 26 of Chapter 6) of the Jiu Zhang Suan
Shu (discussed above) with the following problem from Greenleaf (1876, p. 125): A
cistern has three pipes; the first will fill it in 10 hours, the second in 15 hours, and
the third in 16 hours. What time will it take them all to fill it? Solve this problem. Is
there any real difference between the two problems?

22.2. What happens to the estimate of the sun’s altitude (36,000 km) given by Zhao Shuang
if the “corrected” figure for shadow lengthening (4 fen per 1000 li) is used in place
of the figure of 1 fen per 1000 li?

22.3. The gougu section of the Jiu Zhang Suan Shu contains the following problem: Under
a tree 20 feet high and 3 in circumference there grows a vine, which winds seven
times the stem of the tree and just reaches its top. How long is the vine?

Solve this problem. [Hint: Picture the tree as a cylinder. Imagine it has been cut
down and rolled along the ground in the direction perpendicular to its axis in order
to unwind the vine onto the ground. What would it the trace of the tree and the vine
on the ground look like?]

Historical Questions

22.4. What uses were claimed for mathematics in the early Chinese classics?

22.5. What kinds of problems are studied in the nine chapters of the Jiu Zhang Suan Shu?

22.6. How is the Pythagorean theorem treated in the Zhou Bi Suan Jing?

Questions for Reflection

22.7. The fair taxation problem from the Jiu Zhang Suan Shu considered above treats
distances and population with equal weight. That is, if the population of one county
is double that of another, but that county is twice as far from the collection center,
the two counties will have exactly the same tax assessment in grain and carts. Will
this impose an equal burden on the taxpayers of the two counties? Is there a direct
proportionality between distance and population that makes them interchangeable
from the point of view of the taxpayers involved? Is the growing of extra grain to pay
the tax fairly compensated by a shorter journey?
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22.8. The Jiu Zhang Suan Shu implies that the diameter of a sphere is proportional to the
cube root of its volume. Since this fact is equivalent to saying that the volume is
proportional to the cube of the diameter, should we infer that the author knew both
proportions? More generally, if an author knows (or has proved) “fact A,” and fact A
implies fact B, is it accurate to say that the author knew or proved fact B?

22.9. How is the remainder problem of Sun Zi related to the kuttaka method of Brah-
magupta. [Hint: The statement that x leaves a remainder of (say) 5 when divided by
(say) 38 can be interpreted as saying there is an integer y such that x = 38y + 5. If
you also want x to leave a remainder of (say) 4 when divided by (say) 15, you can
write the equation x = 15z + 4. Eliminating x, you find 15z + 4 = 38y + 5, that is,
15z = 38y + 1. How do you find all solutions of this Diophantine equation?]



CHAPTER 23

Later Chinese Algebra and Geometry

We begin our examination of Chinese algebra by taking a brief look at number theory in
China. Unlike the Greeks, Chinese mathematicians were not interested in figurate numbers.
Still, there was in China an interest in the use of numbers for divination. According to Li
and Du (1987, pp. 95–97), the magic square

4 9 2
3 5 7
8 1 6

appears in the treatise Shushu Jiyi (Memoir on Some Traditions of the Mathematical Art) by
the sixth-century mathematician Zhen Luan. In this figure each row, column, and diagonal
totals 15. In the early tenth century, during the Song Dynasty, a connection was made
between this magic square and a figure called the Luo-chu-shu (book that came out of the
River Lo) found in an appendix to the Book of Changes. The Book of Changes states that
a tortoise crawled out of the River Lo and delivered to the Emperor Yu the diagram in
Fig. 23.1. Because of this connection, the diagram came to be called the Luo-shu (Luo
book). The purely numerical aspects of the magic square are enhanced by representing
the even (female, ying) numbers as solid disks and the odd (male, yang) numbers as open
circles. Like so much of number theory, the theory of magic squares has continued to attract
attention from specialists, despite being devoid of applications. The interest has come from
combinatoricists, for whom Latin squares1 are a topic of continuing research.

23.1. ALGEBRA

The development of algebra in China began early and continued for many centuries. The aim
was to find numerical approximate solutions to equations, and the Chinese mathematicians
were not intimidated by equations of high degree.

1A Latin square is a square array of symbols in which each symbol occurs precisely once in each row and precisely
once in each column.

The History of Mathematics: A Brief Course, Third Edition. Roger L. Cooke.
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Figure 23.1. The Luo-shu.

23.1.1. Systems of Linear Equations

Systems of linear equations occur in the Jiu Zhang Suan Shu (Mikami, 1913, pp. 18–22; Li
and Du, 1987, pp. 46–49). Here is one example of the technique.

There are three kinds [of wheat]. The grains contained in two, three and four bundles, respec-
tively, of these three classes [of wheat], are not sufficient to make a whole measure. If, however,
we add to them one bundle of the second, third, and first classes, respectively, then the grains
would become one full measure in each case. How many measures of grain does then each one
bundle of the different classes contain?

The following counting-board arrangement is given for this problem.

1 2 1st class
3 1 2nd class

4 1 3rd class
1 1 1 measures

Here the three columns of numbers from right to left represent the three samples of
wheat. Thus the right-hand column represents 2 bundles of the first class of wheat, to which
one bundle of the second class has been added. The bottom row gives the result in each
case: 1 measure of wheat. The word problem might be clearer if the final result is thought of
as the result of threshing the raw wheat to produce pure grain. Without seriously distorting
the procedure followed by the author, we can write down this counting board as a matrix
and solve the resulting system of three equations in three unknowns. The author gives the
solution: A bundle of the first type of wheat contains 9

25 measure, a bundle of the second
contains 7

25 measure, and a bundle of the third contains 4
25 measure.

23.1.2. Quadratic Equations

The last chapter of the Jiu Zhang Suan Shu, which involves right triangles, contains problems
that lead to linear and quadratic equations. For example (Mikami, 1913, p. 24), there are
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Figure 23.2. A quadratic equation problem from the Jiu Zhang Suan Shu.

several problems involving a town enclosed by a square wall with a gate in the center of
each side. In some cases the problem asks at what distance (x) from the south gate a tree a
given distance east of the east gate will first be visible. The data are the side s of the square
and the distance d of the tree from the gate. For that kind of data, the problem is the linear
equation 2x/s = s/(2d). When the side of the town (s) is the unknown, a quadratic equation
results. In one case, it is asserted that the tree is 20 paces north of the north gate and is just
visible to a person who walks 14 paces south of the south gate, then 1775 paces west. This
problem proposes the quadratic equation s2 + 34s = 71000 to be solved for the unknown
side s. (See Fig. 23.2, which is drawn to scale to show how unrealistic the problem really is.)
Since the Chinese technique of solving equations numerically is practically independent
of degree, we shall not bother to discuss the techniques for solving quadratic equations
separately.

23.1.3. Cubic Equations

Cubic equations first appear in Chinese mathematics (Li and Du, 1987, p. 100; Mikami,
1913, p. 53) in the seventh-century work Xugu Suanjing (Continuation of Ancient Mathe-
matics) by Wang Xiaotong (ca. 580–ca. 640). This work contains some intricate problems
associated with right triangles. For example, compute the length of a leg of a right triangle
given that the product of the other leg and the hypotenuse is 1337 1

20 and the difference
between the hypotenuse and the leg is 1 1

10 . (Mikami gives 1
10 as the difference, which is

incompatible with the answer given by Wang Xiaotong. I do not know if the mistake is due
to Mikami or is in the original.) This problem is easy to state for a general product P and
difference D. Wang Xiaotong gives a general description of the result of eliminating the
hypotenuse and the other leg that amounts to the equation

x3 + 5D

2
x2 + 2D2x = P2

2D
− D3

2
.

In the present case (using the corrected data) the equation is

x3 + 11

4
x2 + 121

50
x − 812591

59

125
= 0 .

Wang Xiaotong then gives the root (correctly) as 92 2
5 “according to the rule of the

cubic root extraction.” Li and Du (1987, pp. 118–119) report that the eleventh-century
mathematician Jia Xian developed a method for extracting the cube root that generalizes
from the case of the equation x3 = N to the general cubic equation, and even to an equation
of arbitrarily high degree, at least in theory, as we shall now see.
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23.1.4. A Digression on the Numerical Solution of Equations

The Chinese mathematicians of 800 years ago invented a method of finding numerical
approximations of a root of an equation, similar to a method that was rediscovered inde-
pendently in the nineteenth century in Europe and is commonly called Horner’s method, in
honor of the British school teacher William Horner (1786–1837).2 The first appearance of
the method is in the work of the thirteenth-century mathematician Qin Jiushao, who applied
it in his 1247 treatise Sushu Jiu Zhang (Arithmetic in Nine Chapters, not to be confused
with the Jiu Zhang Suan Shu).

We illustrate with the case of the cubic equation. Suppose in attempting to solve the
cubic equation px3 + qx2 + rx + s = 0 we have found an initial approximation a for the
root. (Typically, this is done by getting the first digit or the integer part of the root.) We then
“reduce” the equation by setting x = y + a and rewriting it. What will the coefficients be
when the equation is written in terms of y? The answer is immediate; the new equation is

py3 + 3pay2 + 3pa2y + pa3

+ qy2 + 2qay + qa2

+ ry + ra

+ s = 0 .

We see that we need to make the following conversion of the coefficients:

p

q

r

s

−→

p

3pa + q

3pa2 + 2qa + r

pa3 + qa2 + ra + s

Here is a method of making this reduction that is well adapted for use on a counting
board.

1. Step 1: By inspection, find a first approximation to a root. (Simply evaluate the
polynomial at, say 1, 10, 100, and so on, finding out where it changes sign from
negative to positive or vice versa. If it is negative at 10 and positive at 100, for
example, then evaluate it at 20, 30, 40, and so on, until you find again where it
changes sign. If it is negative at 30 and positive at 40, for example, then you can take
30 as the first approximation. )

2. Step 2: Lay out a template in the form of a 4 × 5 matrix (for cubic equations), in
which (1) all the entries in the top row are the same, namely the leading coefficient,

2Besides being known to the Chinese mathematicians 600 years before Horner, this procedure was used by Sharaf
al-Tusi (ca. 1135–1213) and was discovered by the Italian mathematician Paolo Ruffini (1765–1822) a few years
before Horner published it. In fairness to Horner, it must be said that he applied the method not only to polynomials,
but to infinite series representations. To him it was a theorem in calculus, not algebra.
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(2) the first column is the coefficients, in order, and (3) the lower right triangle consists
of zeros. Thus, we get the matrix

p p p p p

q 0

r 0 0

s 0 0 0

3. Step 3: Fill in the rest of the entries working from left to right and top to bottom (in
either order). In each unoccupied place, put the product of the current approximation
a and the entry directly above, plus the entry directly to the left. Thus, we could begin
by filling in either the second row or the second column:

p p p p p

q pa + q 2pa + q 3pa + q 0

r 0 0

s 0 0 0

or

p p p p p

q pa + q 0

r pa2 + qa + r 0 0

s pa3 + qa2 + ra + s 0 0 0

When we finish, we have the following matrix, and the coefficients are read, in order,
off the diagonal running from the top right to the bottom of the second column:

p p p p p

q pa + q 2pa + q 3pa + q 0

r pa2 + qa + r 3pa2 + 2qa + r 0 0

s pa3 + qa2 + ra + s 0 0 0

Thus, as we see, the new equation for y is

py3 + (3pa + q)y2 + (3pa2 + 2qa + r)y + (pa3 + qa2 + ra + s) = 0.

The zeros used to form the template for the algorithm have a very important use
when the solution is being obtained one digit at a time. It is useful to have a solution
between 0 and 10 at each stage, and one way to ensure that, after the integer part of
the solution (say a) has been obtained, is to multiply the fractional part y by 10. Then
one need only seek the integer part of z = 10y. Since z satisfies

pz3 + 10(3pa + q)z2 + 100(3pa2 + 2qa + r)z + 1000(pa3 + qa2 + ra + s) = 0,

and the entries in the matrix will often be integers, one can simply adjoin the zeros
to the coefficients when forming the new equation, which necessarily has a solution
between 0 and 10.
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Wang Xiaotong’s reference to the use of cube root extraction for solving his equation
seems to suggest that this method was known as early as the seventh century. The earliest
recorded instance of it, however, seems to be in the treatise of Qin Jiushao, who illustrated
it by solving the quartic equation

−x4 + 763200x2 − 40642560000 = 0 .

The method of solution gives proof that the Chinese did not think in terms of a quadratic
formula. If they had, this equation would have been solved for x2 using that formula and
then x could have been found by taking the square root of any positive root. But Qin Jiushao
applied the fourth-degree analog of the method described above to get the solution x = 840.
(He missed the smaller solution x = 240.)

The method needs to be illustrated with an example. Let us take the equation 0.027x3 −
3.3x − 20 = 0. When x = 10, the left-hand side equals − 26, and when x = 20, it equals
130, so we take a = 10 as a first approximation. We then fill out the “transition” matrix:

0.027 0.027 0.027 0.027 0.027

0 0

−3.3 0 0

−20 0 0 0

−→

0.027 0.027 0.027 0.027 0.027

0 0.27 0.54 0.81 0

−3.3 0 0

−20 0 0 0

−→

−→

0.027 0.027 0.027 0.027 0.027

0 0.27 0.54 0.81 0

−3.3 −0.6 4.8 0 0

−20 0 0 0

−→

0.027 0.027 0.027 0.027 0.027

0 0.27 0.54 0.81 0

−3.3 −0.6 4.8 0 0

−20 −26 0 0 0

The next term y in our approximation to the roots therefore satisfies the equation
0.027y3 + 0.81y2 + 4.8y − 26 = 0, and it is guaranteed to be between 0 and 10, since
x = y + 10 was found to lie between 10 and 20. In fact, when y = 3, the left-hand side is
− 3.581, and when y = 4, it is 3.088, so that the next digit is 3. We now repeat the process.

0.027 0.027 0.027 0.027 0.027

0.81 0

4.8 0 0

−26 0 0 0

−→

0.027 0.027 0.027 0.027 0.027

0.81 0.891 0

4.8 7.473 0 0

−26 −3.581 0 0 0

−→

−→

0.027 0.027 0.027 0.027 0.027

0.81 0.891 0.972 0

4.8 7.473 10.399 0 0

−26 −3.581 0 0 0

−→

−→

0.027 0.027 0.027 0.027 0.027

0.81 0.891 0.972 1.053 0

4.8 7.473 10.389 0 0

−26 −3.581 0 0 0
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We did the operations column-wise this time, just to show that it makes no difference whether
we do it by rows or by columns. Since the next digit will be to the right of the decimal point,
it makes sense to multiply the equation by 1000 to get a one-digit solution between 0 and
10. If the next correction is w, it will lie between 0 and 1, and 10w will lie between 0 and
10. If z = 10w, then 0.027z3 + 10(1.053)z2 + 100(10.389)z − 1000(3.581) = 0, as can be
seen by multiplying the equation satisfied by w by 1000, then substituting z for 10w, z2 for
100w2, and z3 for 1000w3. We thus have 0.027z3 + 10.53z2 + 1038.9z − 3581 = 0, and z

is guaranteed to be between 0 and 10. If we had not replaced w by z, we would have had to
deal with fractions in making our guesses equal to 0.1, 0.2, 0.3, and so on. Once again, we
find that when z = 3, the left-hand side is − 368.801, and when z = 4, it is 744.808. Thus,
the next digit is also 3. We now have the approximation x = 13.3. Continuing the process
would reveal that x = 13.333 · · · = 13 1

3 .
A word of explanation is needed about the lower triangle of zeros in this method. They can

be useful in getting the successive digits to the right of the decimal point if the coefficients
of the original equation are all integers. Then, the equation for the next digit can be written
down directly by adjoining these zeros to the coefficients one would otherwise read off.

The efficiency of this method in finding approximate roots allowed the Chinese to attack
equations involving large coefficients and high degrees. Qin Jiushao (Libbrecht, 1973, pp.
134–136) considered the following problem: Three li north of the wall of a circular town
there is a tree. A traveler walking east from the southern gate of the town first sees the tree
after walking 9 li. What are the diameter and circumference of the town?

This problem appears to be deliberately concocted so as to lead to an equation of high
degree. (The diameter of the town could surely be measured directly from inside, so that
it is highly unlikely that anyone would ever need to solve such a problem for a prac-
tical purpose.) Representing the diameter of the town as x2, Qin Jiushao obtained the
equation3

x10 + 15x8 + 72x6 − 864x4 − 11664x2 − 34992 = 0 .

One has to be very unlucky to get such a high-degree equation. Even a simplistic approach
using similar triangles leads only to a quartic equation. It is easy to see (Fig. 23.2) that if
the diameter of the town rather than its square root is taken as the unknown, and the radius
is drawn to the point of tangency, trigonometry will yield a quartic equation. If the radius
is taken as the unknown, the similar right triangles in Fig. 23.3 lead to the quartic equation
4r4 + 12r3 + 9r2 − 486r − 729 = 0, and since this equation has r = − 3

2 as a solution, we
can divide the left-hand side by 2r + 3, getting the cubic equation 2r3 + 3r2 − 243 = 0.
But, of course, the object of this game was probably to practice the art of algebra, not to
get the simplest possible equation, no matter how virtuous it may seem to do so in other
contexts. In any case, the historian’s job is not that of a commentator trying to improve a
text. It is to try to understand what the original author was thinking. Probably the elevated
degree is the result of having to circumvent the use of similar triangles by relying entirely
on the Pythagorean theorem. (Even with that assumption, however, it is quite easy to get a
quartic equation for the diameter.)

3Even mathematicians working within the Chinese tradition seem to have been puzzled by the needless elevation
of the degree of the equation (Libbrecht, 1973, p. 136).
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Figure 23.3. A quartic equation problem.

23.2. LATER CHINESE GEOMETRY

Chinese mathematics was greatly enriched from the third through the sixth centuries by
a series of brilliant geometers, whose achievements deserve to be remembered alongside
those of Euclid, Archimedes, and Apollonius. We have space to discuss only three of these.

23.2.1. Liu Hui

We begin with the third-century mathematician Liu Hui (ca. 220–ca. 280), author of the
Hai Dao Suan Jing mentioned in the previous chapter. Liu Hui had a remarkable ability
to visualize figures in three dimensions. In his commentary on the Jiu Zhang Suan Shu
he asserted that the circumference of a circle of diameter 100 is 314. In solid geometry,
he provided dissections of many geometric figures into pieces that could be reassembled
to demonstrate their relative sizes beyond any doubt. As a result, real confidence could be
placed in the measurement formulas that he provided. He gave correct procedures, based on
such dissections, for finding the volumes enclosed by many different kinds of polyhedra.
But his greatest achievement is his work on the volume of the sphere.

The Jiu Zhang Suan Shu made what appears to be a very reasonable claim: that the ratio
of the volume enclosed by a sphere to the volume enclosed by the circumscribed cylinder
can be obtained by slicing the sphere and cylinder along the axis of the cylinder and taking
the ratio of the area enclosed by the circular cross section of the sphere to the area enclosed
by the square cross section of the cylinder. In other words, it would seem that the ratio is
π : 4. This conjecture seems plausible, since every such section produces exactly the same
figure. It fails, however, because of the principle behind Guldin’s theorem: The volume of a
solid of revolution equals the area revolved about the axis times the distance traveled by the
centroid of the area. The half of the square that is being revolved to generate the cylinder
has a centroid that is farther away from the axis than the centroid of the semicircle inside it,
whose revolution produces the sphere; hence when the two areas are multiplied by the two
distances, the ratio gets changed. When a circle inscribed in a square is rotated, the ratio of
the volumes generated is 2 : 3, while that of the original areas is π : 4. Liu Hui noticed that
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Figure 23.4. The double square umbrella.

the sections of the figure parallel to the base of the cylinder do not all have the same ratios.
The sections of the cylinder are all disks of the same size, while the sections of the sphere
shrink as the section moves from the equator to the poles. From that observation, he could
see that one could not expect the ratio of the cylinder to the inscribed sphere to be the same
as that of the square to the inscribed circle.

He also formed a solid by intersecting two cylinders circumscribed about the sphere
whose axes are at right angles to each other, thus producing a figure he called a double square
umbrella, which is now known as a bicylinder or Steinmetz solid4 (see Hogendijk, 2002).
A representation of the double square umbrella, generated using Mathematica graphics, is
shown in Fig. 23.4. Its volume does have the same ratio to the sphere that the square has to
its inscribed circle, that is, 4 : π. This proportionality between the double square umbrella
and the sphere is easy to see intuitively, since every horizontal slice of this figure by a plane
parallel to the plane of the axes of the two circumscribed cylinders intersects the double
square umbrella in a square and intersects the sphere in the circle inscribed in that square.
Liu Hui inferred that the volume enclosed by the double umbrella would have this ratio
to the volume enclosed by the sphere. This inference is correct and is an example of what
is called Cavalieri’s principle: Two solids such that the section of one by each horizontal
plane bears a fixed ratio to the section of the other by the same plane have volumes in
that same ratio. This principle had been used by Archimedes five centuries earlier. In the
introduction to his Method, Archimedes used this very example and asserted (correctly)
that the volume of the bicylinder is two-thirds of the volume of the cube in which they are

4Named after the German-American mathematician and electrical engineer Charles Proteus Steinmetz (1865–
1923).
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inscribed.5 But Liu Hui’s use of it (see Lam and Shen, 1985) was obviously independent
of Archimedes. It amounts to a limiting case of the dissections that Liu Hui did so well.
The solid is cut into infinitely thin slices, each of which is then dissected and reassembled
as the corresponding section of a different solid. This realization was a major step toward
an accurate measurement of the volume of a sphere. Unfortunately, it was not granted to
Liu Hui to complete the journey. He maintained a consistent agnosticism on the problem of
computing the volume of a sphere, saying, “Not daring to guess, I wait for a capable man
to solve it.”

23.2.2. Zu Chongzhi

That “capable man” required a few centuries to appear, and he turned out to be two men.
“He” was Zu Chongzhi (429–500) and his son Zu Geng (450–520). Zu Chongzhi was a
very capable geometer and astronomer who said that if the diameter of a circle is 1, then
the circumference lies between 3.1415926 and 3.1415927. From these bounds, probably
using the Chinese version of the Euclidean algorithm, the method of mutual subtraction, he
stated that the circumference of a circle of diameter 7 is (approximately) 22 and that of a
circle of diameter 113 is (approximately) 355.6 These estimates are very good, far too good
to be the result of any inspired or hopeful guess. Of course, we don’t have to imagine that
Zu Chongzhi actually drew the polygons. It suffices to know how to compute the perimeter,
and that is a simple recursive process: If sn is the length of the side of a polygon of n sides
inscribed in a circle of unit radius, then

s2
2n = 2 −

√
4 − s2

n .

Hence each doubling of the number of sides makes it necessary to compute a square root,
and the approximation of these square roots must be carried out to many decimal places in
order to get enough guard digits to keep the errors from accumulating when you multiply
this length by the number of sides. In principle, however, given enough patience, one could
compute any number of digits of π this way.

One of Zu Chongzhi’s outstanding achievements, in collaboration with his son Zu Geng,
was finding the volume enclosed by Liu Hui’s double square umbrella. As Fu (1991) points
out, this volume was not approachable by the direct method of dissection and recombination
that Liu Hui had used so successfully.7 An indirect approach was needed. The trick turned
out to be to enclose the double square umbrella in a cube and look at the volume inside the
cube and outside the double square umbrella. Suppose that the sphere has radius R. The
double square umbrella can then be enclosed in a cube of side 2R. Consider a horizontal
section of the enclosing cube at height h above the middle plane of that cube. In the double
umbrella this section is a square of side 2

√
R2 − h2 and area 4(R2 − h2), as shown in

5Hogendijk (2002) argues that Archimedes also knew the surface area of the bicylinder.
6The approximation π ≈ 22

7 was given earlier by He Chengtian (370–447), and of course much earlier by

Archimedes. A more sophisticated approach by Zhao Youqin (b. 1271) that gives 355
113 was discussed by Volkov

(1997).
7Lam and Shen (1985, p. 223), however, say that Liu Hui did consider the idea of setting the double umbrella
inside the cube and trying to find the volume between the two. Of course, that volume also is not accessible through
direct, finite dissection.
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Figure 23.5. Sections of the cube, double square umbrella, and sphere. Left: Horizontal section at
height h above the midplane. Right: Vertical section through the center parallel to a side of the cube.

Fig. 23.5. Therefore the area of the section outside the double umbrella and inside the cube
is 4h2.

It was no small achievement to look at the region in question. It was an even keener
insight on the part of the family Zu to realize that this cross-sectional area is equal to the
area of the cross section of an upside-down pyramid with a square base of side 2R and height
R. Hence the volume of the portion of the cube outside the double umbrella in the upper
half of the cube equals the volume of a pyramid with square base of side 2R and height
R. But thanks to earlier work contained in Liu Hui’s commentaries on the Jiu Zhang Suan
Shu, Zu Chongzhi knew that this volume was (4R3)/3. It therefore follows, after doubling
to include the portion below the middle plane, that the region inside the cube but outside the
double umbrella has volume (8R3)/3, and hence that the double umbrella itself has volume
8R3 − (8R3)/3 = (16R3)/3.

Since, as Liu Hui had shown, the volume of the sphere is π/4 times the volume of the
double square umbrella, it follows that the sphere has volume (π/4) · (16R3)/3, or (4πR3)/3.

PROBLEMS AND QUESTIONS

Mathematical Problems

23.1. Verify the solution of the problem involving three bundles of wheat, for which the
solution was given above.

23.2. Use the method of the text to get the next two digits of an approximation to a root of
the equation 32x3 − 24x2 − 60x + 7 = 0, given that there is a root between 1 and 2.
In other words, use a = 1 as a first approximation. (Remember, since you are crossing
the decimal point, to carry along the extra zeros each time, as was done above.)

23.3. Find all the solutions of the cubic equation 2r3 + 3r2 = 243 without doing any nu-
merical approximation. [Hint: If there is a rational solution r = m/n, then m must
divide 243 and n must divide 2.]
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Historical Questions

23.4. How did Liu Hui demonstrate his geometric theorems?

23.5. What kind of algebraic problems did the Chinese solve that were different from those
we have discussed from other cultures?

23.6. Why were the Chinese mathematicians undeterred by the prospect of solving equa-
tions of degree 4 and higher?

Questions for Reflection

23.7. Compare the use of thin slices of a solid figure for computing areas and volumes, as
illustrated by Archimedes’ Method, Bhaskara’s computation of the area of a sphere,
and Zu Chongzhi’s computation of the volume of a sphere. What differences among
the three do you notice?

23.8. The algebra developed by the Muslims and Europeans focused on expressing the
solution of an equation as an algebraic expression involving the coefficients. The
Chinese method, as we have seen, emphasizes finding numerical approximations to
the roots. What are the advantages and disadvantages of each approach?

23.9. Since the geometric problems of finding the size of a town from measurements taken
in a ludicrously indirect manner cannot have been the motive for studying cubic
equations, what was the actual motive? Why was the geometry introduced at all?



CHAPTER 24

Traditional Japanese Mathematics

Japan adopted the Chinese system of writing, and along with it a huge amount of vocabulary.
The establishment of Buddhism in Japan in the sixth century increased the rate of cultural
importation from China and even from India. The courses of university instruction in math-
ematics in Japan were based on reading (in Chinese) the classics discussed in Chapter 22. In
relation to Japan, the Koreans played a role as transmitters, passing on Chinese learning and
inventions. This transmission process began in 553–554 when two Korean scholars, Wang
Lian-tung and Wang Puson, journeyed to Japan. For many centuries both the Koreans and
the Japanese worked within the system of Chinese mathematics. The earliest records of new
and original work in these countries date from the seventeenth century. By that time, math-
ematical activity was exploding in Europe, and Europeans had begun their long voyages of
exploration and colonization. There was only a comparatively brief window of time during
which indigenous mathematics independent of Western influence could grow up in Japan.

In the following synopsis, Japanese names are given with the family name first. A word of
explanation is needed about the names, however. Most Chinese symbols (kanji in Japanese)
have at least two readings in Japanese. For example, the symbol read as CHŪ (middle) in
the Japanese word for China (CHŪGOKU, the “Middle Kingdom”) is also read as naka in
the surname Tanaka (“Middlefield”). These variant readings often cause trouble in names
from the past, so that one cannot always be sure how a name was pronounced. As Mikami
(p. viii) says, “We read Seki Kōwa, although his personal name Kōwa should have been
read Takakazu.” One symbol in that name is now read as KŌ, but apparently was once
also read as taka. These are the so-called ON (Chinese) and kun (Japanese) readings of the
same symbol. The kun reading of this symbol does not seem to exist any longer; it means,
incidentally, filial piety.1 A list of the names of some prominent mathematicians and their
kanji rendering can be found at the end of the article by Martzloff (1990).

24.1. CHINESE INFLUENCE AND CALCULATING DEVICES

All the Japanese records now extant date from the time after Japan had adopted the
Chinese writing system. Japanese mathematicians were for a time content to read the

1When Japanese words are rendered in the Latin alphabet, it is customary to capitalize the ON pronunciations and
write the kun in lowercase. The words wasan and sangaku that we shall be introducing are both ON readings, but
we shall omit the capitalization.

The History of Mathematics: A Brief Course, Third Edition. Roger L. Cooke.
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Chinese classics. In 701 the emperor Monbu established a university system in which
the mathematical part of the curriculum consisted of the Chinese Ten Classics. Some of
these are no longer known, but the Zhou Bi Suan Jing, Sun Zi Suan Jing, Jiu Zhang Suan
Shu, and Hai Dao Suan Jing, discussed in the two preceding chapters, were among them.
Japan was disunited for many centuries after this early encounter with Chinese culture, and
the mathematics that later grew up was the result of a reintroduction in the sixteenth and
seventeenth centuries. Evidence of Chinese influence is seen in the mechanical methods
of calculation used for centuries—counting rods, counting boards, and the abacus, which
played an especially important role in Japan.

The abacus (suan pan) was invented in China, probably in the fourteenth century, when
methods of computing with counting rods had become so efficient that the rods themselves
were a hindrance to the performance of the computation. From China the invention passed
to Korea, where it was known as the sanbob. Because it did not prove useful in Korean
business, it did not become widespread there. It passed on to Japan, where it is known as the
soroban. The Japanese made two technical improvements in the abacus: (1) They replaced
the round beads by beads with sharp edges, which are easier to manipulate; and (2) they
eliminated the superfluous second 5-bead on each string.

24.2. JAPANESE MATHEMATICIANS AND THEIR WORKS

A nineteenth-century Japanese historian reported that in the late sixteenth century, the
ruling lord Hideyoshi sent the scholar Mōri Shigeyoshi (dates unknown, also known as
Mōri Kambei) to China to learn mathematics. According to the story, the Chinese ignored
the emissary because he was not of noble birth. When he returned to Japan and reported this
fact, Hideyoshi conferred noble status on him and sent him back. Unfortunately, his second
visit to China coincided with Hideyoshi’s unsuccessful attempt to invade Korea, which made
his emissary unwelcome in China. Mōri Shigeyoshi did not return to Japan until after the
death of Hideyoshi. When he did return (in the early seventeenth century), he brought the
abacus with him. Whether this story is true or not, it is a fact that Mōri Shigeyoshi was one of
the most influential early Japanese mathematicians. He wrote several treatises, all of which
have been lost, but his work led to a great flowering of mathematical activity in seventeenth-
century Japan through the work of his students. This mathematics was known as wasan, and
written using Chinese characters. The word wasan is written with two Chinese characters.
The first is WA, a character used to denote Japanese-style work in arts, crafts, and cuisine;
it means literally harmony. The second is SAN, meaning calculation, the same Chinese
symbol that represents suan in the many Chinese classics mentioned above.2 Murata (1994,
p. 105) notes that the primary concern in wasan was to obtain elegant results, even when
those results required very complicated calculations, and that “many Wasanists were men
of fine arts rather than men of mathematics in the European sense.”

One unusual feature of mathematics during the Tokugawa Era from 1600 to 1868 was
the choice of outlets in which to publish. Rather than writing letters to other scholars, or
publishing in journals, as was common in Europe at this period, Japanese mathematicians
would write books with problems in them to challenge other mathematicians. A phenomenon
unique to Japanese mathematics is the tradition of sangaku (computational framed pictures),

2The modern Japanese word for mathematics is SŪGAKU, meaning literally number theory.
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which were hung at Buddhist and Shintō shrines as votive plaques containing geometric
problems leading to equations of higher degree. We shall discuss one of these in more detail
below.

According to Murata, the stimulus for the development of wasan came largely from
two Chinese classics: the Suan Fa Tong Zong by Cheng Dawei, published in 1592, and
the older treatise Suan Shu Chimeng (Introduction to Mathematical Studies) by Zhu
Shijie (ca. 1260–ca. 1320), published in 1299. The latter was particularly important, since
it came with no explanatory notes and a rebellion in China had made communication with
Chinese scholars difficult. By the time this treatise was understood, the Japanese mathe-
maticians had progressed beyond its contents.

24.2.1. Yoshida Koyu

Mōri Shigeyoshi trained three outstanding students during his lifetime, of whom we shall
discuss only the first. This student was Yoshida Koyu (Yoshida Mitsuyoshi, 1598–1672).
Being handicapped in his studies at first by his weakness in Chinese, Yoshida Koyu devoted
extra effort to this language in order to read the Suan Fa Tong Zong. Having read this book,
Yoshida Koyu made rapid progress in mathematics and soon excelled even Mōri Shigeyoshi
himself. Eventually, he was called to the court of a nobleman as a tutor in mathematics. In
1627 Yoshida Koyu wrote a textbook in Japanese, the Jinkō-ki (Treatise on Large and Small
Numbers), based on the Suan Fa Tong Zong. This work helped to popularize the abacus in
Japan. It concluded with a list of challenge questions and thereby stimulated further work.
These problems were solved in a later treatise, which, in turn, posed new mathematical
problems to be solved; this was the beginning of a tradition of posing and solving problems
that lasted for 150 years.

24.2.2. Seki Kōwa and Takebe Kenkō

One figure in seventeenth-century Japanese mathematics stands far above all others, a genius
who is frequently compared with Archimedes, Newton, and Gauss.3 His name was Seki
Kōwa (Takakazu)—the wa is the same symbol found in wasan—and he was born around
1640, making him a contemporary of Newton and Leibniz. The stories told of him resemble
stories told about other mathematical geniuses. For example, one of his biographers says that
at the age of five, Seki Kōwa pointed out errors in a computation that was being discussed
by his elders. A similar story is told about Gauss. Being the child of a samurai father and
adopted by a noble family, Seki Kōwa had access to books. He was mostly self-educated in
mathematics, having paid little attention to those who tried to instruct him; in this respect he
resembles Newton. Like Newton, he served as an advisor on high finance to the government,
becoming examiner of accounts to the lord of Koshu. Unlike Newton, however, he was a
popular teacher and physically vigorous. He became a shogunate samurai and master of
ceremonies in the household of the Shogun. He died at the age of 66, leaving no direct
heirs. His tomb in the Buddhist cemetery in Tokyo was rebuilt 80 years after his death

3His biography suggests that the real comparison should be with Pythagoras, since he assembled a devoted
following, and his followers were inclined to attribute results to him even when his direct influence could not be
established. Newton and Gauss were not “people persons,” and Gauss hated teaching. But Seki Kōwa had a close
relationship with his students.
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by mathematicians of his school. His pedagogical activity earned him the title of Sansei,
meaning Arithmetical Sage, a title that was carved on his tomb. Although he published very
little during his lifetime, his work became known through his teaching activity, and he is
said to have left copious notebooks.

Seki Kōwa made profound contributions to several areas of mathematics, in some cases
anticipating results that were being obtained independently in Europe about this time. Ac-
cording to Mikami (p. 160), he kept his technique a secret from the world at large, but
apparently he confided it to his pupil Takebe Kenkō (Takebe Katahiro, 1664–1739). Some
scholars say that Takebe Kenkō refused to divulge the secret, saying, “I fear that one whose
knowledge is so limited as mine would tend to misrepresent its significance.” However,
other scholars claim that Takebe Kenkō did write an exposition of the latter method and that
it amounts to the principles of cancelation and transposition. These two scholars, together
with Takebe Kenkō’s brother, compiled a 20-volume encyclopedia, the Taisei Sankyō (Great
Mathematical Treatise), containing all the mathematics known in their day.

Takebe Kenkō also wrote a book that is unique in its time and place, bearing the title
Tetsujutsu Sankyō (roughly, The Art of Doing Mathematics, published in 1722), in which
he speculated on the metaphysics of mathematical concepts and the kind of psychology
needed to solve different types of mathematical problems (Murata, 1994, pp. 107–108).

In Japan, knowledge of the achievements of Western mathematicians became widespread
in the late nineteenth century, while the flow of knowledge in the opposite direction has taken
longer. A book entitled The Theory of Determinants in the Historical Order of Development,
which is a catalog of papers on the subject with commentaries, was published by the South
African mathematician Thomas Muir (1844–1934) in 1905. Although this book consists of
four volumes totaling some 2000 pages, it does not mention Seki Kōwa, the true discoverer
of determinants!

24.2.3. The Modern Era in Japan

In the seventeenth century, the Tokugawa shoguns adopted a policy of exclusion vis-à-vis the
West, one that could be enforced in an island kingdom such as Japan. Commercial contacts
with the Dutch, however, resulted in some cultural penetration, and Western mathematical
advances came to be known little by little in Japan. By the time Japan was opened to the
West in the mid-nineteenth century, Japanese mathematicians were already aware of many
European topics of investigation. In joining the community of nations for trade and politics,
Japan also joined it intellectually. In the early nineteenth century, Japanese mathematicians
were writing about such questions as the rectification of the ellipse, a subject of interest in
Europe at the same period. By the end of the nineteenth century, there were several Japanese
mathematical journals publishing (in European languages) mathematical work comparable
to what was being done in Europe at the same period, and a few European scholars were
already reading these journals to see what advances were being made by the Japanese. In
the twentieth century the number of Japanese works being read in the West multiplied, and
Japanese mathematicians such as Gorō Shimura (b. 1930), Shōshichi Kobayashi (b. 1932),
and many others have been among the leaders in nearly every field of mathematics.

24.3. JAPANESE GEOMETRY AND ALGEBRA

During the seventeenth and eighteenth centuries there was a tradition of geometric challenge
problems in Japan. The geometric problems usually involved combinations of simple figures
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Figure 24.1. Sawaguchi Kazuyuki’s first problem.

whose areas or volumes were known but which were arranged in such a way that finding their
parts became an intricate problem in algebra. The word algebra needs to be emphasized here.
The challenge in these problems was only superficially geometric; it was largely algebraic.
The challenge was much greater to the Japanese mathematicians of the time than it is to
us, since they did not have what we know as trigonometry. (They did have a rudimentary
trigonometry, but they solved most problems using just the Pythagorean theorem.) We begin
our discussion of this era by mentioning a few of the challenge problems. Afterward, we
shall briefly discuss the infinitesimal methods used to solve the problems of measuring arcs,
areas, and volumes in spheres.

One impetus to the development of mathematics in Japan came with the arrival of the
Chinese “celestial element method” (tian yuan shu). This name was given to the unknown
in an equation by Li Ye (1192–1279, also known as Li Zhi) in his 1248 treatise Ceyuan
Haijing (Sea Mirror of Circle Measurements, see Mikami, 1913, p. 81).4 This term passed
to Korea as ch’onwonsul and thence to Japan as tengen jutsu, which also means “celestial
element method.” This Chinese algebra became part of the standard Japanese curriculum
before the seventeenth century.

Fifteen problems were published by Sawaguchi Kazuyuki (dates unknown) in his 1670
work Kokon Sampō-ki (Ancient and Modern Mathematics). As an example of the complexity
of these problems, consider the first of them. In this problem there are three circles, each
externally tangent to the other two and internally tangent to a fourth circle, as in Fig. 24.1. The
diameters of two of the enclosed circles are equal and the third enclosed circle has a diameter
five units larger. The area inside the enclosing circle and outside the three smaller circles
is 120 square units. The problem is to compute the diameters of all four circles. Without a
computer algebra system, most people, even nowadays, would not wish to attempt to solve
this problem. As Fig. 24.1 shows, the problem leads to the simultaneous equations

r1 + 5
2 = r2 ,

2πr2
1 + πr2

2 + 120 = πr2
3 ,

4r2
2r3 + 2r1r2r3 + r1r

3
2 + r1r

2
3 = 4r2r

2
3 ,

4According to Libbrecht (1973, pp. 345–346), the same word had been used in a rather different and obscure sense
by Qin Jiushao a year earlier in his Shu Shu Jiu Zhang.
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where r1, r2, and r3 are the radii of the circles. The last of these relations results from
applying the Pythagorean theorem first to the triangle LMN to get LM and then to KLM.

This problem was solved by Seki Kōwa (Smith and Mikami, 1914, pp. 96–97). In case
Seki Kōwa’s prowess in setting up and solving equations was not clear from his solution of
this problem, we note that he also solved the fourteenth of these problems, the “quadrilateral
problem” (see below), which allegedly led to an equation of degree 1458. Although the
procedure was a mechanical one, using counting boards, prodigious concentration must
have been required to execute it. What a chess player Seki Kōwa could have been! As
Mikami (1913, p. 160) remarks, “Perseverance and hard study were a part of the spirit that
characterized Japanese mathematics of the old times.”

24.3.1. Determinants

Seki Kōwa is given the credit for inventing one of the central ideas of modern mathematics:
determinants. He introduced this subject in 1683 in Kai Fukudai no Hō (Method of Solving
Fukudai Problems).5 Nowadays, determinants are usually introduced in connection with
linear equations, but Seki Kōwa developed them in relation to equations of higher degree
as well. The method is explained as follows.

Suppose that we are trying to solve two simultaneous quadratic equations

ax2 + bx + c = 0,

a′x2 + b′x + c′ = 0.

When we eliminate x2, we find the linear equation

(a′b − ab′)x + (a′c − ac′) = 0.

Similarly, if we eliminate the constant term from the original equations and then divide
by x, we find

(ac′ − a′c)x + (bc′ − b′c) = 0.

Thus from two quadratic equations we have derived two linear equations. Seki Kōwa
called this process tatamu (folding).

We have written out expressions for the simple 2 × 2 determinants here. For example,
∣∣
∣∣
∣

a c

a′ c′

∣
∣∣
∣∣
= ac′ − a′c ;

but, as everyone knows, the full expanded expressions for determinants are cumbersome
even for the 3 × 3 case. It is therefore important to know ways of simplifying such de-
terminants, using the structural properties we now call the multilinear property and the
alternating property. Seki Kōwa knew how to make use of the multilinear property to take
out a common factor from a given row. He not only formulated the concept of a determinant

5The word fukudai seems to be related to fukugen suru, meaning reconstruct or restore. According to Smith and
Mikami (1914, p. 124), Seki Kōwa’s school offered five levels of diploma, the third of which was called the fukudai
menkyo (fukudai license) because it involved knowledge of determinants.
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but also knew many of their properties, including how to determine which terms are positive
and which are negative in the expansion of a determinant. It is interesting that determinants
were introduced in Europe around the same time (1693, by Leibniz), but in a comparatively
limited context.6 As Smith and Mikami (1914, p. 125) say,

It is evident that Seki was not only the discoverer but that he had a much broader idea than that
of his great German contemporary.

Determinants are not the only topic on which Seki was on a par with the European
mathematicians of his time. In one of his works, the Katsuyō Sampō (Compendium of
the Major Computational Rules) published posthumously in 1712 (the year before the
publication of James Bernoulli’s Ars conjectandi), Seki gave a table of what are now called
Bernoulli numbers. (See Smith and Mikami, 1914, p. 108.)

24.3.2. The Challenge Problems

As mentioned above, in 1627 Yoshida Koyu (1598–1672) wrote the Jinkō-ki, concluding it
with a list of challenge questions. Here are some of those questions:

1. There is a log of precious wood 18 feet long whose bases are 5 feet and 2 1
2 feet in

circumference. Into what lengths should it be cut to trisect the volume?

2. There have been excavated 560 measures of earth, which are to be used for the base
of a building. The base is to be 3 measures square and the building is to be 9 measures
high. Required, the size of the upper base.

3. There is a mound of earth in the shape of a frustum of a circular cone. The circumfer-
ences of the bases are 40 measures and 120 measures and the mound is 6 measures
high. If 1200 measures of earth are taken evenly off the top, what will be the height?

4. A circular piece of land 100 [linear] measures in diameter is to be divided among
three persons so that they shall receive 2900, 2500, and 2500 [square] measures,
respectively. Required, the lengths of the chords and the altitudes of the segments.

Seki Kōwa solved a geometric problem that would challenge even the best algebraist
today. It was the fourteenth in a list of challenge problems posed by Sawaguchi Kazuyuki:
There is a quadrilateral whose sides and diagonals are u, v, w, x, y, and z [as shown in
Fig. 24.2].

It is given that

z3 − u3 = 271,

u3 − v3 = 217,

v3 − y3 = 60.8,

y3 − w3 = 326.2,

w3 − x3 = 61.

Required, to find the values of u, v, w, x, y, z.

6A recent paper whose author has not yet given permission for citation gives strong evidence that much of matrix
theory as we now know it was common throughout Eurasia during the Medieval period, and that in fact the West
may actually have learned about determinants from China.
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Figure 24.2. Sawaguchi Kazuyuki’s quadrilateral problem.

The fact that the six quantities are the sides and diagonals of a quadrilateral provides one
equation that they must satisfy, namely:

u4w2 + x2
(
v4 + w2y2 − v2(w2 − x2 + y2)

) − (
y2(w2 + x2 − y2) + v2(−w2 + x2 + y2)

)
z2

+ y2z4 − u2
(
v2(w2 + x2 − y2) + w2(−w2 + x2 + y2) + (w2 − x2 + y2)z2

) = 0 .

This equation, together with the five given conditions, provides a complete set of equa-
tions for the six quantities. However, Seki Kōwa’s explanation, which is only a sketch, does
not mention this sixth equation, so it may be that what he solved was the indeterminate
problem given by the other five equations. That, however, would be rather strange, since
then the quadrilateral would play no role whatsoever in the problem. Whatever the case,
it is known that such equations were solved numerically by the Chinese using a counting
board.

The quadrilateral problem of Sawaguchi Kazuyuki led to an equation of degree 1458,
solved by Seki Kōwa (who was Sawaguchi Kazuyuki’s teacher). Again we emphasize that
this problem—like many of the problems in the sangaku plaques and like many problems
studied by mathematicians from Mesopotamia to India—seems to be inspired by the desire
to do some complicated algebra rather than by any pressing geometric need.

24.3.3. Beginnings of the Calculus in Japan

By the end of the seventeenth century the wasanists were beginning to use techniques that
resemble the infinitesimal methods being used in Europe about this time. Of course, in one
sense Zu Chongzhi had used some principles of calculus 1000 years earlier in his application
of Cavalieri’s principle to find the volume of a sphere. The intuitive basis of the principle is
that equals added to equals yield equal sums, and a solid can be thought of as the sum of its
horizontal sections. It isn’t really, of course. No finite sum of areas and no limit of such a
sum can ever have positive volume. Students in calculus courses learn to compute volumes
using approximating sums that are very thin prisms, but not infinitely thin.

In Japan these techniques were first applied in the area called yenri (circle theory),7 a topic
that had been studied extensively in China. The idea of approximating by shells or disks,

7The symbol for circle (yen) is also the symbol for the Japanese unit of currency; in Japan, it is actually pronounced
“en.”
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Isomura Kittoku’s computation of the volume of a sphere. Copyright © Stock Montage.

now a basic part of courses in calculus, can be seen in the 1684 edition of the Ketsugi-shō
(Combination Book), first published in 1660 by Isomura Kittoku (dates unknown).

Isomura Kittoku explained the method as follows (Mikami, 1913, p. 204):

If we cut a sphere of diameter 1 foot into 10,000 slices, the thickness of each slice is 0.0001
feet, which will be something like that of a very thin paper. Finding in this way the volume of
each of them, we sum up the results, 10,000 in number, when we get 523.6 measures [that is, a
volume of 0.5236 cubic feet]. Besides, it is true, there are small incommensurable parts, which
are neglected.

Since the volume of this sphere is π/6 ≈ 0.5235987756, this technique is quite accurate.
All that is required to get it is the formula for the area of a circle, plus the Pythagorean
theorem to determine the square of the radius of each slice. Except for the numerical
value of π, all this can be done in integer arithmetic, with no error, provided the radius
is an integer. The technique of obtaining extraordinary precision and using it to perform
numerical experiments that provide the basis for inductive reasoning is very close to the
technique used by Bhaskara II (see Chapter 21) to compute the surface area of a sphere. It
also appears in a remarkable infinite series attributed to Takebe Kenkō, as we shall now see.

Takebe Kenkō’s method of rectifying the circle was based on a relation, which he ap-
parently discovered in 1722, between the square of half of an arc, the height h of the arc,8

and the diameter d of the circle. Here is his own description of this discovery, as explained
by Smith and Mikami (pp. 1914, 147–149). He began with height h = 0.000001 = 10−6

and d = 10, finding the square of the arc geometrically with accuracy to 53 decimal places.
The value of the square of this arc is

0.00001 00000 00333 33335 11111 12253 96833 52381 01394 90188 203 + .

8This height is called the sagitta (arrow) by lens grinders, a name first bestowed on it in India. It is now called the
versed sine in mathematics. In our terms, it is 1 − cos θ times the radius.
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According to Smith and Mikami (1914, p. 148), the value given by Takebe Kenkō was

0.00000 00000 33333 35111 11225 39690 66667 28234 77694 79595 875 + .

But this value does not fit with the procedure followed by Takebe Kenkō; it does not even
yield the correct first approximation. The figure given by Smith and Mikami appears to
represent the value obtained by Takebe Kenkō after the first approximation was subtracted,
but with the result multiplied by the square of the diameter.9 In appreciating Takebe Kenkō’s
method, the first problem to be solved is the source of this extremely accurate measurement
of the circle. According to Smith and Mikami (1914, p. 148), Takebe Kenkō said that the
computation was given in two other works, both of which are now lost.

The first clue that strikes us in this connection is the seemingly strange choice of the
square of the arc rather than the arc itself. Why would it be easier to compute the square of
the arc than the arc itself? An answer readily comes to mind: Half of the arc is approximated
by its chord, and the chord is one side of a convenient right triangle. In fact, the chord of half
of an arc is the mean proportional between the diameter of the circle and the height of the
full arc, so that in this case it is

√
dh =

√
10−5. When we square it, we get just dh = 10−5,

which acts as Takebe Kenkō’s first approximation. That result suggests that the length of the
arc was reached by repeatedly bisecting the arc, taking the chord as an approximation. This
hypothesis gains plausibility, since it is known that this technique had been used earlier to
approximate π. Since a2 = 4(a/2)2, it was only necessary to find the square of half the arc,
then multiply by 4. The ratio of the chord to the diameter is even easier to handle, especially
since Takebe Kenkō has taken the diameter to be 10. If x is the square of this ratio for a given
chord, the square of ratio for the chord of half of the arc is

(
1 − √

1 − x
)
/2. In other words,

the iterative process x �→ (
1 − √

1 − x
)
/2 makes the bisection easy. If we were dealing

with the arc instead of its square, each step in that process would involve two square roots
instead of one. Even as it is, Takebe Kenkō must have been a calculating genius to iterate
this process enough times to get 53 decimal places of accuracy without making any errors.
The result of 50 applications yields a ratio which, multiplied by 100 · 450, is

0.00001 00000 00333 33335 11111 12253 96833 52381 01131 94822 94294 362 + .

This number of iterations gives 38 decimal places of accuracy. Even with this plausible
method of procedure, it still strains credibility that Takebe Kenkō achieved the claimed
precision. However, let us pass on to the rest of his method.

After the first approximation hd is subtracted, the new error is 10−12 times 0.3333333. . . ,
which suggests that the next correction should be 10−12/3. But this is exactly h2/3, in other
words h/(3d) times the first term. When it is subtracted from the previously corrected value,
the new error is

10−19 · 0.17777 77892 06350 01904 76806 15685 4870 + .

9Even so, there is one 3 missing at the beginning and, after it is restored, the accuracy is “only” 33 decimal
places. That precision, however, would have been all that Takebe Kenkō needed to compute the four corrections
he claimed to have computed.



SANGAKU 277

The long string of 7’s here suggests that this number is 10−19 times 1
10 + 7

90 = 16
90 = 8

45 ,
which is (8h)/(15d) times the previous correction. By continuing for a few more terms,
Takebe Kenkō was able to observe a pattern: The corrections are obtained by multiply-
ing successively by h/(3d), (8h)/(15d), (9h)/(14d), (32h)/(45d), (25h)/(33d), . . . . Some
sensitivity to the factorization of integers is necessary to see the recursive operation: mul-
tiplication by (h/d)[2n2/(n + 1)(2n + 1)]. Putting these corrections together as an infinite
series leads to the expression

a2

4
= dh

[
1 +

∞∑

n=1

22n+1(n!)2

(2n + 2)!
·
(

h

d

)n]

when the full arc has length a.
In using this numerical approach, Takebe Kenkō had reached his conclusion inductively.

This induction was based on a faith (which turns out to be justified) that the successive
approximations are rational numbers that satisfy a fairly simple recursive formula. As you
probably know, the power series for the sine, cosine, exponential, and logarithm have this
happy property, but the series for the tangent, for example, does not.

This series solves the problem of rectification of the circle and hence all problems that
depend on knowing the value of π. In modern terms the series given by Takebe Kenkō
represents the function

(

d arcsin

(√
h

d

))2

.

Takebe Kenkō’s discovery of this result in 1722 falls between the discovery of the power
series for the arcsine function by Newton in 1676 and its publication by Euler in 1737. For
an arc of 60◦, we have d = 2r and h = r(1 − √

3/2); and with these values, ten terms of
the series will approximate π2/36 to 15 decimal places (when r = 1).

24.4. SANGAKU

The shoguns of the Tokugawa Era (1600–1868) concentrated their foreign policy on relations
with China and held Western visitors at arms length, with the result that Japan was nearly
closed to the Western world for 250 years. During this time a form of mathematics known
as sangaku (literally, framed computations) arose. As mentioned above, the sangaku were
votive tablets containing mathematical problems posted at Buddhist and Shintō shrines as
a challenge to others and an expression of piety. A comprehensive exhibition of sangaku
from many parts of Japan was organized in 2005 at the Nagoya Museum of Science, and a
book with full color illustrations from that exhibit was published. (See Fukagawa, 2005.)

In 1806, Ehara Masanori (dates unknown) hung a colorful picture of the diagram sketched
in Fig. 24.3 at the Atsuta Shintō shrine in Owari Province10 It was subsequently lost, but
not before the Owari scholar Kitagawa Mōko (1763–1839) made a pilgrimage to the shrine

10Since 1868, Owari has formed the western part of Ai Chi Prefecture. It includes the city of Nagoya, where the
Atsuta shrine is located.
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Figure 24.3. A sangaku problem.

and solved the problem. From his description of the problem and his solution, the people at
the shrine were able to reconstruct the replica of the original document shown in Fig. 24.4.

Here is the problem as reconstructed: In Fig. 24.3, the triangle ABC is isosceles. The
line BD has been drawn meeting the bisector CE of ∠C at right angles. Obviously then,
CD = BC, and the triangles CDE and CBE are congruent. Therefore their inscribed circles
are also congruent. The remarkable thing about this particular triangle is that the circle
inscribed in triangle BDA is also congruent to the other two circles. The problem asks for
the common radius of the three circles (in terms of the line CE).

This problem is discussed in the book by Fukagawa and Rothman (2008). The problem
is stated on pages 194–196, and the solution by Kitagawa Mōko is given on pages 212–216.

Figure 24.4. A disk cut into sectors and opened up.
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24.4.1. Analysis

It should be observed first of all that there is precisely one base angle for the isosceles
triangle such that these three circles are all the same size, and it is somewhere between 60◦
and 90◦. The third circle degenerates to a point when the base angles are π

3 (the triangle

is equilateral), while the radius of the other two circles is BC√
3+

√
7+4

√
3

. On the other hand,

when the base angles become π
2 (the triangle degenerates to an infinite strip), the radius

of the upper circle is BC
2 while that of the two lower triangles is 1

2BC(
√

2 − 1). Thus,
the upper circle grows to be bigger than the two lower circles as the base angles increase.
Hence, there is precisely one angle for which this condition can be met (and it is between 73◦
and 74◦).

PROBLEMS AND QUESTIONS

Mathematical Problems

24.1. Given the very broad hint that z = 10, u = 9, v = 8, w = 5, and x = 4, solve the
quadrilateral problem to get an exact expression for y, and exact expressions for
which the data of the problem (the numbers 60.8 and 326.2) are approximations.

24.2. Early on, Japanese mathematicians believed the area of the sphere to be one-fourth the
square of the circumference, that is, π2r2 rather than the true value 4πr2. This value
was stated in the first (1660) edition of Isomura Kittoku’s Ketsugi-Sho and corrected
in a later edition. Smith and Mikami (1914, p. 75) suggest a way in which this belief
might have appeared plausible. To explain it, we first need to see an example in which
the same line of reasoning really does work.

By imagining a circle sliced like a pie into a very large number of very thin pieces,
one can imagine it cut open and all the pieces laid out next to one another, as shown
in Fig. 24.4. Because these pieces are very thin, their bases are such small arcs of the
circle that each base resembles a straight line. Neglecting a very tiny error, we can
say that if there are n pieces, the base of each piece is a straight line of length 2πr/n.
The sectors are then essentially triangles of height r (because of their thinness) and
hence area (1/2) · (2πr2)/n. Since there are n of them, the total area is πr2. This
heuristic argument (exactly what Archimedes stated in the letter accompanying his
paper on the surface of the sphere) gives the correct result. In fact, this very figure
appears in a Japanese work from 1698 (Smith and Mikami, 1914 p. 131).

Now imagine a hemispherical bowl covering the pie. If the slices are extended
upward so as to slice the bowl into equally thin segments, and those sectors are then
straightened out and arranged like the sectors of the pie, they also will have bases
equal to 2πr

n
, but their height will be one-fourth of the circumference, in other words,

πr/2, giving a total area for the hemisphere of (1/2) · π2r2. Since the area is 2πr2,
this would imply that π = 4. How much error would there be in taking π = 4?

24.3. Problem 41 of Isomura Kittoku (Smith and Mikami, 1914, p. 68) is given as the
following: There is a log 18 feet long, whose ends have diameters 1 foot and 2.6 feet.
It is wound spirally with 75 feet of string, the coils being 2.5 feet apart. How many
coils are there?
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This problem seems to be overdetermined, since the length of the log and the dis-
tance between the coils would already determine the number of coils. The maximum
number would be 7.2, but the total length of them would be only a little over 40
feet. Omitting the assumption that the coils are 2.5 feet apart, solve the problem that
remains.

Historical Questions

24.4. When and how did mathematical research arise in Japan, and how did mathematicians
learn their subject?

24.5. What areas of mathematics became specialties in Japan, and what innovations arose
there?

24.6. What is sangaku?

Questions for Reflection

24.7. What is wrong with the reasoning above that leads to the conclusion that the area of
a sphere is one-fourth the square of the circumference?

24.8. What is the justification for the statement by the historian of mathematics T. Murata
that Japanese mathematics (wasan) was not a science but an art?

24.9. Why might Seki Kōwa and other Japanese mathematicians have wanted to keep their
methods secret, and why did their students, such as Takebe Kenkō, honor that wish?



PART V

ISLAMIC MATHEMATICS, 800–1500

The next three chapters constitute a sampling of mathematical advances from a civilization
that flourished over a huge region from Spain to India during the period known in Europe
as the Middle Ages.

Contents of Part V

1. Chapter 25 (Overview of Islamic Mathematics) establishes the cultural and historical
context of the subject and introduces the major figures and their works to be discussed
in the two chapters that follows.

2. Chapter 26 (Islamic Number Theory and Algebra) discusses number theory and
algebra from al-Khwarizmi and Thabit ibn-Qurra through Omar Khayyam.

3. Chapter 27 (Islamic Geometry) is devoted to Islamic advances in geometry.
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CHAPTER 25

Overview of Islamic Mathematics

As mentioned in the introduction to this part of the present history, the most important
advances in science and mathematics in the West from 700 to 1300 ce came in the lands
under Muslim rule.

25.1. A BRIEF SKETCH OF THE ISLAMIC CIVILIZATION

Starting as a small and persecuted sect in the early seventh century, by mid-century the
Muslims had expanded by conquest as far as Persia. They then turned West and conquered
Egypt, all of the Mediterranean coast of Africa, and the island of Sicily.

25.1.1. The Umayyads

A palace revolution among the Islamic leaders led to the triumph of the first dynasty, the
Umayyad (sometimes spelled Ommiad) in the year 660. Under the Umayyads, Muslim
expansion continued around the Mediterranean coast and eastward as far as India. This
expansion was checked by the Byzantine Empire at the Battle of Constantinople in 717.
In the West a Muslim general named Tarik led an army into Spain, giving his name to
the mountain at the southern tip of Spain—Jabal Tarik, known in English as Gibraltar. The
Muslim expansion in the West was halted by the Franks under Charles Martel at the Battle of
Tours in 732. In 750 another revolution resulted in the overthrow of the Umayyad Dynasty
and its replacement in the East by the Abbasid Dynasty. The Umayyads remained in power
in Spain, however, a region known during this time as the Caliphate of Cordoba.

From the early ninth century on, scholars working under the rule of the caliphs formed a
unique tradition within the story of mathematics, sharing a common literature of mathemat-
ical classics, communicating with one another, and working to extend the achievements of
their predecessors. Their achievements were considerable, and Europeans from the eleventh
century on were eager to learn about them and apply them. Because the origin of Islam lies
in the Arabic-speaking world, and its holy text is written in Arabic, most of the documents
produced within this tradition were written in Arabic by scholars for whom the Arabic
language was either native or learned at school. Some non-Arabic writers, especially in
the early years, adopted Arabic names. As with Mesopotamian and Greek mathematics,
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there is some inaccuracy in any name one might choose to refer to this tradition. Should
it be called Arabic mathematics because of the language most commonly used to write it,
or Islamic mathematics because Islam is the most obvious feature that most of the writers
had in common? Whichever name the reader prefers, the important thing is to grasp what
the name signifies—that is, the specific sets of questions and problems the mathematicians
studied and the approaches they had for solving them.

25.1.2. The Abbasids

Al-Mansur, the second of the Abbasid caliphs, built the capital of the new dynasty, the city
of Baghdad, on the Tigris River. Both the Abbasids and the Umayyads cultivated science
and the arts, and mathematics made advances in both the Eastern and Western parts of
the Islamic world. The story of Islamic mathematics begins in the city of Baghdad in the
reign of two caliphs. The first of these was Harun al-Raschid (786–809), a contemporary
of Charlemagne. The second is the son of Harun al-Raschid, al-Mamun (813–833), whose
court life provided the setting of the Thousand and One Nights.

25.1.3. The Turkish and Mongol Conquests

Near the end of the tenth century a group of Turkish nomads called Seljuks migrated from
Asia into the Abbasid territory and converted to Islam. Gradually the Seljuks began to
seize territory from the Abbasids, and in 1055 they occupied Baghdad. It was their advance
into Palestine that provoked the First Crusade in 1096. The Crusades, which established a
Christian-ruled enclave in Palestine, were another source of continuing disruption through-
out the twelfth century and even later. The Seljuks left the Abbasids as the nominal rulers
of the empire, but in the thirteenth century both Abbasids and Seljuks were conquered by
the same Mongols who had earlier overrun Russia and China. The Mongol conquest of Iraq
was particularly devastating, since it resulted in the destruction of the irrigation system that
had supported the economy of the area for thousands of years. As in China, the Mongol
rule was short-lived and was succeeded by another conquest, this time by the Ottoman
Turks, who also conquered Constantinople in 1453 and remained a threat to Europe until
the nineteenth century. While it lasted, the vast Mongol Empire transmitted mathematical
works and ideas over prodigious distances. In particular, astronomical treatises came into
China from Persia, along with Arabic numerals (Li and Du, 1987, pp. 171–174).

25.1.4. The Islamic Influence on Science

The portion of the Islamic empire around the Mediterranean Sea was secure from invasion
for three hundred years in the East and six hundred in Spain. During this period, Islamic
mathematicians assimilated the science and mathematics of their predecessors and made
their own unique additions and modifications to what they inherited. For many centuries they
read the works of Archimedes, Apollonius, and Euclid and advanced beyond the work of
these illustrious Greek mathematicians. The Greek mathematicians, however, were not the
only influence on them. From earliest times the Caliph was in diplomatic contact with India,
and one of Harun Al-Raschid’s contributions was to obtain translations from Sanskrit into
Arabic of the works of Aryabhata, Brahmagupta, and others. Some of the translators took
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the occasion to write their own mathematical works, and so began the Islamic contribution
to mathematics.1

In addition to the Arabic translations that preserved many Greek works of which the
originals have been lost, the modern world has inherited a considerable amount of scientific
and mathematical literature in Arabic. This language has given us many words relating to
science, such as alcohol, alchemy, almanac, zenith, and the mysterious names of the stars
such as Altair, Aldebaran, Algol, and Betelgeuse. In Spain, the libraries were incomparably
richer than those in northern Europe until well past the year 1000, and many scholars from
the Christian countries of Europe came there to translate Arabic works into Latin.2

Thus, from the end of the eighth century through the period referred to as Medieval in
European history, the Umayyad and Abbasid Caliphates, centered in what is now Spain and
Iraq respectively, produced an artistically and scientifically advanced culture, with works on
mathematics, physics, chemistry, and medicine written in Arabic, the common language of
scholars throughout the Muslim world. Persian, Hebrew, and other languages were also used
by scholars working in this predominantly Muslim culture. The label Islamic mathematics
that we are going to use has one important disadvantage, since we certainly have no wish
to imply that mathematical results valid in one religion are not valid in another. Yet the
alternative, Arabic mathematics, also does not seem to fit as well as the corresponding label
Greek mathematics, in which the majority of the major authors had Greek as their native
language.

25.2. ISLAMIC SCIENCE IN GENERAL

The religion of Islam calls for prayers facing Mecca at specified times of the day. That alone
would be sufficient motive for studying astronomy and geography. Since the Muslim cal-
endar is lunar rather than lunisolar, religious feasts and fasts are easy to keep track of. Since
Islam forbids representation of the human form in paintings, mosques are always decorated
with abstract geometric patterns (see Özdural, 2000). The study of this ornamental geom-
etry has interesting connections with the theory of transformation groups. Unfortunately,
we do not have space to pursue this interesting topic, nor the equally fascinating subject
of the astrolabe, which was highly developed as an almanac and surveying tool by Muslim
scholars.

25.2.1. Hindu and Hellenistic Influences

According to Colebrooke (1817, pp. lxiv–lxv), in the year 773 ce, al-Mansur, the second
caliph of the Abbasid Dynasty, who ruled from 754 to 775, received at his court a Hindu
scholar bearing a book on astronomy referred to in Arabic as Sind-hind (most likely, Sid-
dhanta). Al-Mansur had this book translated into Arabic. No copies survive. It was once
conjectured that this book was the Brahmasphutasiddhanta mentioned in Chapter 21, but

1Plofker, (2009, p. 258), however, cautions against assuming that algebra among the Muslims had its roots in these
Sanskrit works, pointing out that the works written in Arabic do not use negative numbers.
2Constantinople, which had preserved its independence, continued a mathematical tradition until the fifteenth
century, and it also was an important source of ancient works for the Europeans. Unfortunately, we do not have
space to discuss the details of that recovery effort.
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Plofker (2009, p. 256) cites two papers of Pingree (1968, 1970) in rejecting this conjecture.
This book was used for some decades, and an abridgement was made in the early ninth
century, during the reign of al-Mamun (caliph from 813 to 833), by Muhammad ibn Musa
al-Khwarizmi (ca. 780–850), who also wrote his own treatise on astronomy based on the
Hindu work and the work of Ptolemy. Al-Mamun founded a “House of Wisdom” (Bait
al-Hikma) in Baghdad, the capital of his empire. This institution was much like the Library
at Alexandria, a place of scholarship, analogous to a modern research institute.

In the early days of this scientific culture, one of the concerns of the scholars was to find
and translate into Arabic as many scientific works as possible. The effort made by Islamic
rulers, administrators, and merchants to acquire and translate Hindu and Hellenistic texts
was prodigious. The works had first to be located, a job requiring much travel and expense.
Next, they needed to be understood and adequately translated; that work required a great
deal of labor and time, often involving many people. The world is much indebted to the
scholars who undertook this work, for two reasons. First, some of the original works have
been lost, and only their Arabic translations survive.3 Second, the translators, inspired by
the work they were translating, wrote original works of their own. The mechanism of this
two-part process has been described by Berggren (1990, p. 35):

Muslim scientists and patrons were the main actors in the acquisition of Hellenistic science
inasmuch as it was they who initiated the process, who bore the costs, whose scholarly interests
dictated the choice of material to be translated and on whom fell the burden of finding an
intellectual home for the newly acquired material within the Islamic dār al-‘ilm (“abode of
learning”).

The acquisitions were extensive, and we have space for only a partial enumeration of
them. Some of the major ones were listed by Berggren (2002). They include Euclid’s
Elements, Data, and Phænomena, Ptolemy’s Syntaxis (which became the Almagest as a
result) and his Geography, many of Archimedes’ works and commentaries on them, and
Apollonius’ Conics.

The development process as it affected the Conics of Apollonius was described by
Berggren (1990, pp. 27–28). This work was used to analyze the astrolabe in the ninth century
and to trisect the angle and construct a regular heptagon in the tenth century. It continued
to be used down through the thirteenth century in the theory of optics, for solving cubic
equations and to study the rainbow. To the two categories that we have called acquisition
and development, Berggren adds the process of editing the texts to systematize them, and
he emphasizes the very important role of mathematical philosophy or criticism engaged
in by Muslim mathematicians. They speculated on and debated Euclid’s parallel postulate,
for example, thereby continuing a discussion that began among the ancient Greeks and
continued for 2000 years until it was finally settled in the nineteenth century.

The scale of the Muslim scientific schools is amazing when looked at in comparison
with the populations and the general level of economic development of the time. Here is an
excerpt from a letter of the Persian mathematician al-Kashi (d. 1429) to his father, describing

3Toomer (1984b) points out that in the case of Ptolemy’s Optics the Arabic translation has also been lost, and
only a Latin translation from the Arabic survives. As Toomer notes, some of the most interesting works were
not available in Spain and Sicily, where medieval scholars went to translate Arabic and Hebrew manuscripts into
Latin.
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the life of Samarkand, in Uzbekistan, where the great astronomer Ulugh Beg (1374–1449),
grandson of the conqueror Timur the Lame, had established his observatory (Bagheri, 1997,
p. 243):

His Royal Majesty had donated a charitable gift. . . amounting to thirty thousand. . . dinars, of
which ten thousand had been ordered to be given to students. [The names of the recipients]
were written down; [thus] ten thousand-odd students steadily engaged in learning and teaching,
and qualifying for a financial aid, were listed. . . Among them there are five hundred persons
who have begun [to study] mathematics. His Royal Majesty the World-Conqueror, may God
perpetuate his reign, has been engaged in this art. . . for the last twelve years.

25.3. SOME MUSLIM MATHEMATICIANS AND THEIR WORKS

We now survey some of the more important mathematicians who lived and worked under
the rule of the caliphs.

25.3.1. Muhammad ibn Musa al-Khwarizmi

This scholar, who lived from approximately 790 to 850, translated a number of Greek
works into Arabic but is best remembered for his Hisab al-Jabr w’al-Mugabalah (Book
of Completion and Reduction). The word completion (or restoration) here (al-jabr) is the
source of the modern word algebra. It refers to the operation of keeping an equation in
balance by adding or subtracting the same terms on both sides of an equation, as in the
process of completing the square. The word reduction refers to the cancelation of a common
factor from the two sides of an equation. The author came to be called simply al-Khwarizmi,
which may be the name of his home town (although this is not certain); this name gave us
another important term in modern mathematics, algorithm.

The integration of intellectual interests with religious piety that we saw in the case of
the Hindus is a trait also possessed by the Muslims. Al-Khwarizmi introduces his algebra
book with a hymn of praise of Allah and then dedicates his book to al-Mamun:

That fondness for science, by which God has distinguished the Imam al-Mamun, the Com-
mander of the Faithful. . . , that affability and condescension which he shows to the learned,
that promptitude with which he protects and supports them in the elucidation of obscurities
and in the removal of difficulties—has encouraged me to compose a short work on Calculating
by (the rules of) Completion and Reduction, confining it to what is easiest and most useful in
arithmetic, such as men constantly require in cases of inheritance, legacies, partition, law-suits,
and trade, and in all their dealings with one another, or where the measuring of lands, the dig-
ging of canals, geometrical computation, and other objects of various sorts. . . My confidence
rests with God, in this as in every thing, and in Him I put my trust. . . May His blessing descend
upon all the prophets and heavenly messengers. [Rosen, 1831, pp. 3–4]

25.3.2. Thabit ibn-Qurra

The Sabian (star-worshipping) sect centered in the town of Harran in what is now Turkey
produced an outstanding mathematician/astronomer in the person of Thabit ibn-Qurra (826–
901). Being trilingual (besides his native Syriac, he spoke Arabic and Greek), he was invited
to Baghdad to study mathematics. His mathematical and linguistic skills procured him work
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translating Greek treatises into Arabic, including Euclid’s Elements. He was a pioneer in the
application of arithmetic operations to ratios of geometric quantities, which is the essence of
the idea of a real number. The same idea occurred to René Descartes (1596–1650) and was
published in his famous work on analytic geometry. It is likely that Descartes drew some
inspiration from the works of the fourteenth-century Bishop of Lisieux Nicole d’Oresme
(1323–1382); Oresme, in turn, is likely to have read translations from the Arabic. Hence
it is possible that our modern concept of a real number owes something to the genius of
Thabit ibn-Qurra. He also wrote on mechanics, geometry, and number theory.

25.3.3. Abu Kamil

Although nothing is known of the life of Abu Kamil (ca. 850–930), he is the author of
certain books on algebra, geometry, and number theory that influenced both Islamic and
European mathematics. Many of his problems were reproduced in the work of Leonardo of
Pisa (Fibonacci, 1170–1250).

25.3.4. Al-Battani

Another Sabian from Harran, Abu Abdallah Muhammad al-Battani, known in Latin transla-
tion as Albategnius, seems to have abandoned the Sabian beliefs of his parents and converted
to Islam. That, at least, is what has been inferred from his Muslim name. Since he himself
reported making astronomical observations in the year 877, he must have been born some
time during the 850s. He died around 929. He worked in al-Raqqa in what is now Syria,
on the Euphrates River. His best-known work is the Kitab al-Zij (Book of Astronomy). The
word zij apparently comes from Persian, where it means a certain strand in a rug.

The first three of the 57 chapters of al-Battani’s book contain a development of trigonom-
etry using sines, one that has been claimed to be independent of the work of Aryabhata I.
Obviously, however, he must have known something about Aryabhata’s works, or else he
would have invented an Arabic name for the sine, instead of borrowing the Sanskrit j-y-b
that will be discussed in Chapter 27.

25.3.5. Abu’l Wafa

Muhammad Abu’l Wafa (940–998) was born in Khorasan (now in Iran) and died in Baghdad.
He was an astronomer–mathematician who translated Greek works and commented on them.
In addition he wrote a number of works on practical arithmetic and geometry. According
to R¯ashid (1994), his book of practical arithmetic for scribes and merchants begins with
the claim that it “comprises all that an experienced or novice, subordinate or chief in
arithmetic needs to know” in relation to taxes, business transactions, civil administration,
measurements, and “all other practices. . . which are useful to them in their daily life.”

25.3.6. Ibn al-Haytham

Abu Ali al-Hasan ibn al-Haytham (965–1039), known in the West as Alhazen, was a natural
philosopher who worked in the tradition of Aristotle. He continued the speculation on
the parallel postulate, offering a proof of it that was, of course, flawed. He is famous for
Alhazen’s problem in optics, which is to determine the point on a reflecting spherical surface
at which a light ray from one given point P will be reflected to a second given point Q.
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25.3.7. Al-Biruni

Abu Arrayhan al-Biruni (973–1048), was an astronomer, geographer, and mathematician
who as a young man worked out the mathematics of maps of the earth. Civil wars in the
area where he lived (Uzbekistan and Afghanistan) made him into a wanderer, and he came
into contact with astronomers in Persia and Iraq. He was a prolific writer. According to the
Dictionary of Scientific Biography, he wrote what would now be well over 10,000 pages of
texts during his lifetime, on geography, geometry, arithmetic, and astronomy.

25.3.8. Omar Khayyam

The Persian mathematician Omar Khayyam, also known as Umar al-Khayyam, was born in
1044 and died in 1123. He is thought to be the same person who wrote the famous skeptical
and hedonistic poem known as the Rubaiyat (Quatrains), but not all scholars agree that the
two are the same. Since he lived in the turbulent time of the invasion of the Seljuk Turks, his
life was not easy, and he could not devote himself wholeheartedly to scholarship. Even so,
he advanced algebra beyond the linear and quadratic equations discussed in al-Khwarizmi’s
book and speculated on the foundations of geometry. He explained his motivation for doing
mathematics in the preface to his Algebra. Like the Japanese wasanists, he was inspired by
questions left open by his predecessors. As with al-Khwarizmi, this intellectual curiosity is
linked with piety and with gratitude to the patron who supported his work:

In the name of God, gracious and merciful! Praise be to God, Lord of all Worlds, a happy end
to those who are pious, and ill-will to none but the merciless. May blessings repose upon the
prophets, especially upon Mohammed and all his holy descendants.

One of the branches of knowledge needed in that division of philosophy known as mathematics
is the science of completion and reduction, which aims at the determination of numerical
and geometrical unknowns. Parts of this science deal with certain very difficult introductory
theorems, the solution of which has eluded most of those who have attempted it. . . I have always
been very anxious to investigate all types of theorems and to distinguish those that can be solved
in each species, giving proofs for my distinctions, because I know how urgently this is needed
in the solution of difficult problems. However, I have not been able to find time to complete this
work, or to concentrate my thoughts on it, hindered as I have been by troublesome obstacles.
[Kasir, 1931, pp. 43–44]

25.3.9. Sharaf al-Tusi

Sharaf al-Din al-Tusi (ca. 1135–1213) is best remembered for work on cubic equations.
Judging from the name al-Tusi, he must have been born near the town of Tus in northeastern
Iran. Like Omar Khayyam, he lived in turbulent times. The Seljuk Turks had captured
Damascus in 1154 and established their capital in that city. Sharaf al-Tusi is known to have
taught there around 1165 and to have moved from there to Aleppo (also in Syria).

25.3.10. Nasir al-Tusi

Nasir al-Din al-Tusi (1201–1274) had the misfortune to live during the time of the westward
expansion of the Mongols, who subdued Russia during the 1240s and then went on to
conquer Baghdad in 1258. Al-Tusi himself joined the Mongols and was able to continue
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his scholarly work under the new ruler Hulegu, grandson of Genghis Khan. Hulegu, who
died in 1265, conquered and ruled Iraq and Persia over the last decade of his life, taking the
title Ilkhan when he declared himself ruler of Persia. A generation later the Ilkhan rulers
converted from Buddhism to Islam. Hulegu built al-Tusi an observatory at Maragheh, a city
in the Azerbaijan region of Persia that Hulegu had made his seat of government. Here al-
Tusi was able to improve on the earlier astronomical theory of Ptolemy, in connection with
which he developed both plane and spherical trigonometry into much more sophisticated
subjects than they had been previously, including the statement that the sides of triangles
are proportional to the sines of the angles opposite them. Because of his influence, the
loss of Baghdad was less of a blow to Islamic science than it would otherwise have been.
Nevertheless, the constant invasions had the effect of greatly reducing the vitality and the
quantity of research. Al-Tusi played an important role in the flow of mathematical ideas
back into India after the Muslim invasion of that country; it was his revised and commented
edition of Euclid’s Elements that was mainly studied (De Young, 1995, p. 144).

QUESTIONS

Historical Questions

25.1. Describe the general history of Muslim expansion and political decline over the
period from the eighth to fifteenth centuries.

25.2. Who were the major mathematicians working within the world of Islamic scholarship
during this time, and what topics did they develop?

25.3. What justifications do al-Khwarizmi and Omar Khayyam give in the prefaces to their
work for the algebra that they develop?

25.4. In what way was Nasir al-Tusi’s trigonometry an advance on the subject as inherited
from the Hindu mathematicians?

Questions for Reflection

25.5. How did the conquests by different groups of Muslims affect the course of scholarship
in the conquered areas (Spain, Mesopotamia, India, China)?

25.6. How did the Islamic injunction against representation of the human body in art
influence art and architecture in the Islamic countries?

25.7. If one needs to pray facing Mecca while living in (say) Chicago, how is “facing
Mecca” to be interpreted? How can one work out how to face Mecca from Chicago?
This problem is not difficult to solve using spherical trigonometry. To find out how
al-Biruni solved it, see the book by Berggren (1986, pp. 182–186).

25.8. An expository short book (Brett, Feldman, and Sentlowitz, 1974) giving some history
of mathematics contains the following statement (p. 41) about Islamic mathematics:

It is often said that the Arabs were learned but not original; thus, they played the role of
preservation rather than invention of knowledge. Even if we believe this description of them,
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we must be forever grateful for the benevolent custody by the Moslems of the world’s intellectual
possessions which might otherwise have been lost forever in the mire of the Dark Ages.

It is to their credit that the authors do not endorse what they report as a popular
impression of the Islamic world. Most Western historians have given that culture
credit for outstanding achievements in art, literature, and science. The charge of a
lack of creativity is also sometimes made against Byzantine Empire contemporaneous
with the Islamic—again unfairly, since its wealth and geographical range were tiny by
comparison with the world of Islam. Here, for example, is what the British philosopher
Bertrand Russell (1872–1969) said about it (1945, p. xvi):

In the Eastern Empire, Greek civilization, in a desiccated form, survived, as in a museum,
till the fall of Constantinople in 1453, but nothing of importance to the world came out of
Constantinople except an artistic tradition and Justinian’s Codes of Roman law.

Russell did not disparage Islamic science, but in his own area of philosophy, he
did tend to look down on Islamic scholarship, saying (p. 417)

Arabic philosophy is not important as original thought. Men like Avicenna [ibn Sina (980–
1037), Persian physician] and Averroes [ibn Rushd (1126–1198), Spanish philosopher], are
essentially commentators.

Whether this negative opinion is justified or not is a matter for philosophers to
discuss, and any opinion by a non-philosopher would be rash. Let it be said, however,
that important is a word whose meaning may vary from one philosopher to another.

Western writers, it is true, sometimes overlook Islamic contributions and slight
them with silence. For example, Kline (1953, p. 93) in discussing the Medieval period
in Europe, says:

The progress that was made during this period was contributed by the Hindus and Arabs. . .

He goes on to list a number of Hindu mathematical discoveries, and then finishes
with this comment:

These and other Hindu contributions were acquired by the Arabs who transmitted them to
Europeans.

Kline was simply writing carelessly here. He knew better, and he gave more
detailed discussions of the Islamic contributions in his later, encyclopedic work
(Kline, 1972).

Giving these authors the benefit of the doubt, since no one can discuss every single
meritorious deed in any history, how is it possible to write concisely, yet with fairness
to the subject? If you were editing the works just quoted, how would you advise the
authors to recast these sentences?



CHAPTER 26

Islamic Number Theory and Algebra

It is well known that the numerals used all over the world today are an inheritance from
both the Hindu and Arabic mathematicians of 1000 years ago. The Hindu idea of using nine
symbols in a place-value system was known in what is now Iraq in the late seventh century,
before that area became part of the Muslim Empire. In the late eighth century a scholar from
India came to the court of Caliph al-Mansur with a work on Hindu astronomy using these
numerals, and this work was translated into Arabic. An Arabic treatise on these numbers,
containing the first known discussion of decimal fractions, was written by al-Uqlidisi (ca.
920–ca. 980).

Having inherited works from the time of Mesopotamia and also Greek and Hindu works
that used the sexagesimal system in astronomy, the Muslim mathematicians of a thousand
years ago also used that system. The sexagesimal system did not yield immediately to its
decimal rival, and the technique of place-value computation developed in parallel in the
two systems. Ifrah (2000, pp. 539–555) gives a detailed description of the long resistance
to the new system. The sexagesimal system is mentioned in Arabic works of Abu’l-Wafa
and Kushar ben Laban (ca. 971–1029). It continued to appear in Arabic texts through the
time of al-Kashi (1427), although the decimal system also occurs in the work of al-Kashi.1

Some implementations of the decimal system require crossing out or erasing in the pro-
cess of computation, and that was considered a disadvantage. Nevertheless, the superiority
of decimal notation in computation was recognized early. For example, al-Daffa (1973, pp.
56–57) mentions that there there are manuscripts still extant dating to the twelfth century,
in which multiplication is performed by the very efficient method illustrated in Fig. 26.1
for the multiplication 524 · 783 = 410, 292.

26.1. NUMBER THEORY

The Muslims continued the work of Diophantus in number theory. Abu Kamil wrote a
book on “indeterminate problems” in which he studied quadratic Diophantine equations
and systems of such equations in two variables. The first 38 problems that he studied are

1In addition to the sexagesimal and decimal systems, the Muslim mathematicians used an elaborate system of
finger reckoning.
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Figure 26.1. The computation 524 × 783 = 410, 292.

arranged in order of coefficients, exponents, and signs, making a systematic exposition of
these equations. Later scholars noted the astonishing fact that the first 25 of these equations
are what are now known as algebraic curves of genus 0, while the last 13 are of genus 1,
even though the concept of genus of an algebraic curve is a nineteenth-century invention
(Baigozhina, 1995).

Muslim mathematicians also went beyond what is in Euclid and Nicomachus, gener-
alizing perfect numbers. In a series of articles, Rashed [see, for example, Rashed (1989)]
pointed out that a large amount of theory of abundant, deficient, and perfect numbers was
assembled in the ninth century by Thabit ibn-Qurra and others and that ibn al-Haytham
(965–1040) was the first to state and attempt to prove that Euclid’s formula gives all the
even perfect numbers. Thabit ibn Qurra made an interesting contribution to the theory of
amicable numbers. A pair of numbers is said to be amicable if each is the sum of the parts
(proper divisors) of the other. The smallest such pair of numbers is 220 and 284. Although
these numbers are not discussed by Euclid or Nicomachus, the commentator Iamblichus
(see Dickson, 1919, p. 38) ascribed this notion to Pythagoras, who is reported as saying, “A
friend is another self.” This definition of a friend is given by Aristotle in his Nicomachean
Ethics (Bekker, 2000).

In Chapter 9, we discussed the only known way of generating perfect numbers, namely
the Euclidean formula 2n−1(2n − 1), whenever 2n − 1 is a prime. Thabit ibn-Qurra found
a similar way of generating pairs of amicable numbers. His formula is

2n(3 · 2n − 1)(3 · 2n−1 − 1) and 2n(9 · 22n−1 − 1),

whenever 3 · 2n − 1, 3 · 2n−1 − 1, and 9 · 22n−1 − 1 are all prime. The case n = 2 gives the
pair 220 and 284. Whatever one may think about the impracticality of amicable numbers,
there is no denying that Thabit’s discovery indicates very profound insight into the divis-
ibility properties of numbers. It is very difficult to imagine how he could have discovered
this result. A conjecture, which cannot be summarized in a few lines, can be found in the
article by Brentjes and Hogendijk (1989).

It is not clear how many new cases can be generated from this formula, but there definitely
are some. For example, when n = 4, we obtain the amicable pair 17, 296 = 16 · 23 · 47 and
18, 416 = 16 · 1151. Hogendijk (1985) gives Thabit ibn-Qurra’s proof of his criterion for
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amicable numbers and points out that the case n = 7 generates the pair 9,363,584 and
9,437,056, which first appeared in Arabic texts of the fourteenth century.

Unlike some other number-theory problems such as the Chinese remainder theorem,
which arose in a genuinely practical context, the theory of amicable numbers is an offshoot
of the theory of perfect numbers, which was already a completely “useless” topic from the
beginning. It did not seem useless to the people who developed it, however. According to
M. Cantor (1880, p. 631), the tenth-century mystic al-Majriti recommended as a love potion
writing the numbers on two sheets of paper and eating the number 284, while causing the
beloved to eat the number 220. He claimed to have verified the effectiveness of this charm by
personal experience! Dickson (1919, p. 39) mentions the Jewish scholar Abraham Azulai
(1570–1643), who described a work purportedly by the ninth-century commentator Rau
Nachshon, in which the gift of 220 sheep and 220 goats that Jacob sent to his brother Esau
as a peace offering (Genesis 32:14) is connected with the concept of amicable numbers.2

In any case, although their theory seems more complicated, amicable numbers are easier to
find than perfect numbers. Euler alone found 62 pairs of them (see Erdős and Dudley, 1983).

Another advance on the Greeks can be found in the work of Kamal al-Din al-Farisi, a
Persian mathematician who died around 1320. According to Aḡargün and Fletcher (1994),
he wrote the treatise Memorandum for Friends Explaining the Proof of Amicability, whose
purpose was to give a new proof of Thabit ibn-Qurra’s theorem. Proposition 1 in this work
asserts the existence (but not uniqueness) of a prime decomposition for every number.
Propositions 4 and 5 assert that this decomposition is unique, that two distinct products of
primes cannot be equal.

26.2. ALGEBRA

It has always been recognized that Europe received algebra from the Muslims. As we
have already said, the word algebra (al-jabr) is an Arabic word meaning completion or
restoration.3 Its origins in the Muslim world date from the ninth century, in the work of
al-Khwarizmi, as is well established.4

What is less certain is how much of al-Khwarizmi’s algebra was original with him and
how much he learned from Hindu sources. According to Colebrooke (1817, pp. lxiv–lxxx),
he was well versed in Sanskrit and translated a treatise on Hindu computation5 into Arabic

2The peace offering was necessary because Jacob had tricked Esau out of his inheritance. But if the gift was
symbolic and associated with amicable numbers, this interpretation seems to imply that Esau was obligated to
give Jacob 284 sheep and 284 goats. Perhaps there was an ulterior motive in the gift!
3Gandz (1926) presented a different theory of the origin of the term algebra, according to which the word is not
even of Arabic origin, despite its Arabic appearance. To the extent that the majority rules in such matters, this
alternative theory is heavily outvoted by the one just described.
4Colebrooke (1817, p. lxxiii) noted that a manuscript of this work dated 1342 was in the Bodleian Library at Oxford.
Obviously, this manuscript could not be checked out, and Colebrooke complained that the library’s restrictions
“preclude the study of any book which it contains, by a person not enured to the temperature of apartments unvisited
by artificial warmth.” If he worked in the library in 1816, his complaint would be understandable: Due to volcanic
ash in the atmosphere, there was no summer that year. This manuscript is the source that Rosen (1831) translated
and reproduced.
5It is apparently this work that brought al-Khwarizmi’s name into European languages in the form algorism, now
algorithm. A Latin manuscript of this work in the Cambridge University Library, dating to the thirteenth century,
has been translated into English (Crossley and Henry, 1990).
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at the request of Caliph al-Mamun. Colebrooke cites the Italian writer Pietro Cossali,6 who
presented the alternatives that al-Khwarizmi learned algebra either from the Greeks or the
Hindus and opted for the Hindus. These alternatives are a false dichotomy. We need not
conclude that al-Khwarizmi took everything from the Hindus or that he invented everything
himself. It is very likely that he expounded some material that he read in Sanskrit and
added his own ideas to it. Rosen (1831, p. x) explains the difference in the preface to his
edition of al-Khwarizmi’s algebra text, saying that “at least the method which he follows
in expounding his rules, as well as in showing their application, differs considerably from
that of the Hindu mathematical writers.”

Colebrooke also notes (p. lxxi) that Abu’l-Wafa wrote a translation or commentary on
the Arithmetica of Diophantus. This work, however, is now lost. Apart from these possible
influences of Greek and Hindu algebra, whose effect is difficult to measure, it appears that
the progress of algebra in the Islamic world was an indigenous growth. We shall trace
that growth through several of its most prominent representatives, starting with the man
recognized as its originator, Muhammad ibn Musa al-Khwarizmi.

26.2.1. Al-Khwarizmi

Besides the words algebra and algorithm, there is a common English word whose use is
traceable to Arabic influence (although it is not an Arabic word), namely root in the sense of a
square or cube root or a root of an equation. The Greek picture of the square root was the side
of a square, and the word side (pleurá) was used accordingly. The Muslim mathematicians
apparently thought of the root as the part from which the equation was generated and used
the word jadhr accordingly. According to al-Daffa (1977, p. 80), translations into Latin
from Greek use the word latus while those from Arabic use radix. In English the word side
lost out completely in the competition.

Al-Khwarizmi’s numbers correspond to what we call positive real numbers. Theoreti-
cally, such a number could be defined by any convergent sequence of rational numbers, but
in practice some rule is needed to generate the terms of the sequence. For that reason, it is
more accurate to describe al-Khwarizmi’s numbers as positive algebraic numbers, since all
of his numbers are generated by equations with rational coefficients. The absence of negative
numbers prevented al-Khwarizmi from writing all quadratic equations in the single form
“squares plus roots plus numbers equal zero” (ax2 + bx + c = 0). Instead, he had to con-
sider three basic cases and two others, in which either the square or linear term is missing.
He described the solution of “squares plus roots equal numbers” by the example of “a square
plus 10 roots equal 39 dirhems.” (A dirhem is a unit of money.) Al-Khwarizmi’s solution
of this problem is to draw a square of unspecified size (the side of the square is the desired
unknown) to represent the square (Fig. 26.2). To add 10 roots, he then attaches to each side
a rectangle of length equal to the side of the square and width 2 1

2 (since 4 · 2 1
2 = 10). The

resulting cross-shaped figure has, by the condition of the problem, area equal to 39. He then
fills in the four corners of the figure (literally “completing the square”). The total area of
these four squares is 4 · (

2 1
2

)2 = 25. Since 39 + 25 = 64, the completed square has side 8.

6Cossali’s dates are 1748–1813. He was Bishop of Parma and author of Origine, trasporto in Italia, primi progressi
in essa dell’ algebra (The Origins of Algebra and Its Transmission to Italy and Early Advancement There),
published in Parma in 1797.
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Figure 26.2. Al-Khwarizmi’s solution of “square plus 10 roots equals 39 dirhems.”

Since this square was obtained by adding rectangles of side 2 1
2 to each side of the original

square, it follows that the original square had side 3.
This case is the one al-Khwarizmi considers first and is the simplest to understand. His

figures for the other two cases of quadratic equations are more complicated, but all are based

on a geometric illustration of the identity
(
(a + b)/2

)2 − (
(a − b)/2

)2 = ab.
Al-Khwarizmi did not consider any cubic equations. Roughly the first third of the book is

devoted to various examples of pure mathematical problems leading to quadratic equations,
causing the reader to be somewhat skeptical of his claim to be presenting the material needed
in commerce and law. There are no genuine applications of quadratic equations in the book.
Although quadratic equations have no practical applications (outside of technology, of
course), there are occasions when a practical problem requires solving linear equations.
Al-Khwarizmi found many such cases in problems of inheritance, which occupy more than
half of his Algebra. Here is a sample:

A man dies, leaving two sons behind him, and bequeathing one-fifth of his property and one
dirhem to a friend. He leaves 10 dirhems in property and one of the sons owes him 10 dirhems.
How much does each legatee receive?

Although mathematics is cross-cultural, its applications are specific to the culture in
which they are used. The difference between the modern solution of this legal problem
and al-Khwarizmi’s solution is considerable. Under modern law the man’s estate would be
considered to consist of 20 dirhems, the 10 dirhems cash on hand, and the 10 dirhems owed
by one of the sons. The friend would be entitled to 5 dirhems (one-fifth plus one dirhem),
and the indebted son would owe the estate 10 dirhems. His share of the estate would be
one-half of the 15 dirhems left after the friend’s share is taken out, or 7 1

2 dirhems. He would
therefore have to pay 2 1

2 dirhems to the estate, providing it with cash on hand equal to 12 1
2

dirhems. His brother would receive 7 1
2 dirhems.
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Now the notion of an estate as a legal entity that can owe and be owed money is a
modern European one, alien to the world of al-Khwarizmi. Apparently, in al-Khwarizmi’s
time, money could be owed only to a living person. What principles are to be used for
settling accounts in this case? Judging from the solution given by al-Khwarizmi, the estate
is to consist of the 10 dirhems cash on hand, plus a certain portion (not all) of the debt the
second son owed to his deceased father. This “certain portion” is the unknown in a linear
equation and is the reason for invoking algebra in the solution. It is to be chosen so that
when the estate is distributed, the indebted son neither receives any more money nor owes
any to the other heirs. This condition leads to a linear equation. Al-Khwarizmi explains the
solution as follows (we put the legal principle that provides the equation in capital letters):

Call the amount taken out of the debt thing. Add this to the property; the sum is 10 dirhems
plus thing. Subtract one-fifth of this, since he has bequeathed one-fifth of his property to the
friend. The remainder is 8 dirhems plus 4

5 of thing. Then subtract the 1 dirhem extra that is
bequeathed to the friend. There remain 7 dirhems and 4

5 of thing. Divide this between the two
sons. The portion of each of them is 3 1

2 dirhems plus 2
5 of thing. THIS MUST BE EQUAL TO

THING. Reduce it by subtracting 2
5 of thing from thing. Then you have 3

5 of thing equal to 3 1
2

dirhems. Form a complete thing by adding to this quantity 2
3 of itself. Now 2

3 of 3 1
2 dirhems is

2 1
3 dirhems, so that thing is 5 5

6 dirhems.

Rosen (1831, p. 133) suggested that the many arbitrary principles used in these problems
were introduced by lawyers to protect the interests of next-of-kin against those of other
legatees.

26.2.2. Abu Kamil

A commentary on al-Khwarizmi’s Algebra was written by Abu Kamil.7 His exposition of
the subject contained none of the legacy problems found in al-Khwarizmi’s treatise, but
after giving the basic rules of algebra, it listed 69 problems to be solved. For example, a
paraphrase of Problem 10 is as follows:

The number 50 is divided by a certain number. If the divisor is increased by 3, the quotient
decreases by 3 3

4 . What is the divisor?

Abu Kamil is also noteworthy because many of his problems were copied by Leonardo
of Pisa, one of the first to introduce the mathematics of the Muslims into Europe.

26.2.3. Omar Khayyam

Although al-Khwarizmi did not consider any equations of degree higher than 2, such equa-
tions were soon to be considered by Muslim mathematicians. A link between geometry and
algebra appeared in the use of the rectangular hyperbola by Pappus to carry out the neûsis
construction for trisecting an angle (see Section 3 of Chapter 11). Omar Khayyam (see
Amir-Moez, 1963) realized that a large class of geometric problems of this type led to cubic

7A commentary on the commentary was written in Hebrew by the Italian Jewish scholar Mordecai Finzi (1440–
1475). The present example is taken from the English translation of that work (Levey, 1966).
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equations that could be solved using conic sections. His treatise on algebra8 was largely
occupied with the classification and solution of cubic equations by this method. Before we
discuss a general cubic equation solved by Omar Khayyam, we note one particular equation
of this type that he posed and solved (Amir-Moez, 1963). That problem is to find the point
on a circle such that the perpendicular from the point to a radius has the same ratio to the
radius that the two segments into which it divides the radius have to each other.

If the radius is r and the length of the longer segment cut off on the radius is the
unknown x, the equation to be satisfied is x3 + rx2 + r2x = r3. Without actually writing
out this equation, Omar Khayyam showed that the geometric problem amounted to using
the stated condition to find the second asymptote of a rectangular hyperbola, knowing one
of its asymptotes and one point on the hyperbola. However, he regarded that analysis as
merely an introduction to his real purpose, which was a discussion of the kinds of cubic
equations that require conic sections for their solution. After a digression to classify these
equations, he returned to the original problem and, finally, showed how to solve it using a
rectangular hyperbola. He found the arc to be about 57◦, so that x ≈ r cos(57◦) = 0.544r.
Omar Khayyam described x as being about 30 2

3 pieces, that is, sixtieths of the radius.
Omar Khayyam did not have modern algebraic symbolism. Experience had evidently

taught him that attempts to solve the general cubic equation by arithmetic and root ex-
tractions would not work in general. But he discovered that such an equation could be
interpreted geometrically and solved by the use of conic sections. In applying those conic
sections, he wrote in the language of Apollonius and Euclid, with the single exception of
representing the lines as numbers. His classification of equations, like al-Khwarizmi’s, is
conditioned by the use of only positive numbers as data. For that reason his classification
is even more complicated than al-Khwarizmi’s, since he is considering cubic equations as
well as quadratics. He lists 25 types of equations (Kasir, 1931, pp. 51–52), six of which do
not involve any cubic terms.

By way of illustration, we shall consider the case of cubes plus squares plus sides
equal number, or, as we would phrase it, x3 + ax2 + bx = c. In keeping with his geometric
interpretation of magnitudes as line segments, Omar Khayyam had to regard the coefficient
b as a square, so that we shall write b2 rather than b. Similarly, he regarded the constant
term as a solid, which without any loss of generality he considered to be a rectangular
prism whose base was an area equal to the coefficient of the unknown. In keeping with this
reduction we shall write b2c instead of c. Thus Omar Khayyam was considering the equation
x3 + ax2 + b2x = b2c, where a, b, and c are data for the problem, to be represented as lines.
His solution is illustrated in Fig. 26.3. He drew a pair of perpendicular lines intersecting at a
point O and marked off OA = a and OC = c in opposite directions on one of the lines and
OB = b on the other line. He then drew a semicircle having AC as diameter, the line DB

through B perpendicular to OB (parallel to AC), and the rectangular hyperbola through C

having DB and the extension of OB as asymptotes. This hyperbola intersects the semicircle
in the point C and in a second point Z. From Z he drew ZP perpendicular to the extension
of OB. This line ZP represented the solution of the cubic.

When it comes to actually producing a root by numerical procedures, Omar Khayyam’s
solution is circular, a mere restatement of the problem. He has broken the cubic equation
into two quadratic equations in two unknowns, but any attempt to eliminate one of the two

8This treatise was little noticed in Europe until a French translation by Franz Woepcke (1827–1864) appeared in
1851 (Kasir, 1931, p. 7).
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Figure 26.3. Omar Khayyam’s solution of x3 + ax2 + b2x = b2c.

unknowns merely leads back to the original problem. In fact, no method of solution exists
or can exist that reduces the solution of every cubic equation with real roots to the extraction
of real square and cube roots of real numbers. What Omar Khayyam had created was an
analysis of cubic equations using conic sections. He said that no matter how hard you look,
you will never find a numerical solution “because whatever is obtained by conic sections
cannot be obtained by arithmetic” (Amir-Moez, 1963, p. 336).

26.2.4. Sharaf al-Din al-Tusi

A generation after the death of Omar Khayyam, Sharaf al-Din al-Tusi wrote a treatise
on equations in which he analyzed the cubic equation using methods that are surprisingly
modern in appearance. This work has been discussed by Hogendijk (1989). Omar Khayyam
had distinguished the eight types of cubic equations that always have a solution and five
that could fail to have a solution. Al-Tusi provided a numerical method of solution for the
first eight types that was essentially the Chinese method of solving cubic equations. He then
turned to the five types that might have no (positive) solutions for some values of the data.
As an example, one of these forms is

x3 + ax2 + c = bx.

For each of these cases, al-Tusi considered a particular value of x, which for this example
is the value m satisfying

3m2 + 2am = b.

Let us denote the positive root of this equation (the larger root, if there are two) by m. The
reader will undoubtedly have noticed that the equation can be obtained by differentiating
the original equation and setting x equal to m. The point m is thus in all cases a relative
minimum of the difference of the left- and right-hand sides of the equation. That is precisely
the property that al-Tusi wanted. Hogendijk comments that it is unlikely that al-Tusi had any
concept of a derivative. In fact, the equation for m can be derived without calculus, by taking
m as the value at which the minimum occurs, subtracting the values at x from the value at
m, and dividing by m − x. The result is the inequality m2 + mx + x2 + a(m + x) > b for
x > m and the opposite inequality for x < m. Therefore equality must hold when x = m,
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that is, 3m2 + 2am = b, which is the condition given by al-Tusi.9 After finding the point m,
al-Tusi concluded that there will be no solutions if the left-hand side of the equation is larger
than the right-hand side when x = m. There will be one unique solution, namely x = m if
equality holds there. That left only the case in which the left-hand side was smaller than the
right-hand side when x = m. For that case, he considered the auxiliary cubic equation

y3 + py2 = d,

where p and d were determined by the type of equation. The quantity d was the difference
between the right- and left-hand sides of the equation at x = m, that is, bm − m3 − am2 − c

in the present case, with p equal to 3m + a. Al-Tusi was replacing x with y = x − m here.
The procedure was precisely the method we know as Horner’s method, and the linear term
drops out because the condition by which m was chosen ordains that it be so. The equation
in y was known to have a root because it was one of the other 13 types, which always have
solutions. Thus, it followed that the original equation must also have a solution, x = m + y,
where y was the root of the new equation. The added bonus was that a lower bound on m

was obtained.

PROBLEMS AND QUESTIONS

Mathematical Problems

26.1. Solve the following legacy problem from al-Khwarizmi’s Algebra: A woman dies
and leaves her daughter, her mother, and her husband, and she bequeaths to some
person as much as the share of her mother and to another as much as one-ninth of her
entire capital. Find the share of each person. It was understood from legal principles
that the mother’s share would be 2

13 and the husband’s 3
13 .

26.2. Solve the problem of Abu Kamil in the text.

26.3. Consider the cubic equation of Sharaf al-Tusi’s third type, which we write as x3 +
ax2 − bx + c = 0. Using the Chinese/Horner’s method described in Chapter 22, show
that if the first approximation is x = m, where m satisfies 3m2 + 2am − b = 0, then
the equation to be satisfied at the second approximation is y3 + (3m + a)y2 + (m3 +
am2 − bm + c) = 0. That is, carry out the algorithm for reduction and show that the
process is

1

a

−b

c

−→

1

3m + a

3m2 + 2am − b( = 0)

m3 + am2 − bm + c

9This way of finding the minimum was also used by Fermat in the seventeenth century.
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Historical Questions

26.4. What is the subject matter of al-Khwarizmi’s Algebra, and what applications does it
include?

26.5. How did Omar Khayyam solve cubic equations geometrically, and why does he adopt
the geometric approach rather than a numerical one?

26.6. What refinements to the solution of the cubic equation are due to Sharaf al-Din
al-Tusi?

Questions for Reflection

26.7. Why did al-Khwarizmi include a complete discussion of the solution of quadratic
equations in his treatise when he had no applications for them at all?

26.8. Contrast the modern Western solution of the Islamic legacy problem discussed in the
text with the solution of al-Khwarizmi. Is one solution “fairer” than the other? Can
mathematics make any contribution to deciding what is fair?

26.9. Why did Omar Khayyam express the answer to a problem involving circles in pieces
equal to one-sixtieth of the radius?



CHAPTER 27

Islamic Geometry

In the Western world, most of the progress in geometry during the millennium that passed
between the fall of the Western Roman Empire and the fall of the Eastern Empire occurred
among the Muslim and Jewish mathematicians of Baghdad, Samarkand, Cordoba, and other
places. This work had some features of Euclid’s style and some of Heron’s. Matvievskaya
(1999) has studied the extensive commentaries on the tenth book of Euclid’s Elements
written by Muslim scholars from the ninth through twelfth centuries and concluded that
while formally preserving a Euclidean distinction between magnitude and number, they
actually operated with quadratic and quartic irrationals as if they were numbers.

27.1. THE PARALLEL POSTULATE

The Islamic mathematicians continued the later Hellenistic speculation on Euclid’s parallel
postulate. According to Sabra (1969), this topic came into Islamic mathematics through
a commentary by Simplicius on Book 1 of the Elements, whose Greek original is lost,
although an Arabic translation exists. In fact, Sabra found a manuscript that contains Sim-
plicius’ attempted proof. The reworking of this topic by Islamic mathematicians consisted
of a criticism of Simplicius’ argument followed by attempts to repair its defects. Gray
(1989, pp. 42–54) presents a number of these arguments, beginning with the ninth-century
mathematician al-Gauhari. Al-Gauhari attempted to show that two lines constructed so as
to be parallel, as in Proposition 27 of Book 1 of the Elements must also be equidistant at all
points. If he had succeeded, he would indeed have proved the parallel postulate.

27.2. THABIT IBN-QURRA

Thabit ibn-Qurra, whose revision of the Arabic translation of Euclid became a standard in
the Muslim world, also joined the debate over the parallel postulate. According to Gray
(1989, pp. 43–44), he considered a solid body moving without rotating so that one of
its points P traverses a straight line. He claimed that the other points in the body would
also move along straight lines, and obviously they would remain equidistant from the line
generated by the point P . By regarding these lines as completed loci, he avoided a certain
objection that could be made to a later argument of ibn al-Haytham, discussed below. Thabit
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Figure 27.1. Thabit ibn-Qurra’s attempted proof of the parallel postulate.

ibn-Qurra’s work on this problem was ground-breaking in a number of ways, anticipating
much that is usually credited to the eighteenth-century mathematicians Lambert and Sac-
cheri. He proved, for example, that if a quadrilateral has two equal adjacent angles, and the
sides not common to these two angles are equal, then the other two angles are also equal
to each other. In the case when the equal angles are right angles, such a figure is called—
unjustly, we may say—a Saccheri quadrilateral, after Giovanni Saccheri (1667–1733),
who, like Thabit ibn-Qurra, developed it in an attempt to prove the parallel postulate. Gray
prefers to call it a Thabit quadrilateral, and we shall use this name. Thabit ibn-Qurra’s proof
amounted to the claim that a perpendicular drawn from one leg of such a quadrilateral to the
opposite leg would also be perpendicular to the leg from which it was drawn. Such a figure,
a quadrilateral having three right angles, or half of a Thabit quadrilateral, is now called—
again, unjustly—a Lambert quadrilateral, after Johann Heinrich Lambert (1728–1777), who
used it for the same purpose. We should probably call it a semi-Thabit quadrilateral. Thabit’s
claim is that either type of Thabit quadrilateral is in fact a rectangle. If this conclusion is
granted, it follows by consideration of the diagonals of a rectangle that the sum of the acute
angles in a right triangle is a right angle, and this fact makes Thabit’s proof of the parallel
postulate work.

The argument of Thabit ibn-Qurra, according to Gray, is illustrated in Fig. 27.1.1 Given
three lines l, m, and n such that l is perpendicular to n at E and m intersects it at A, making
an acute angle, let W be any point on m above n and draw a perpendicular WZ from W to
n. If E is between A and Z, then l must intersect m by virtue of what is now called Pasch’s
theorem, named after Moritz Pasch (1843–1930), who stated it in 1882. This theorem asserts
that a line intersecting the interior of one side of a triangle must intersect at least one other
side. That much of the argument would be uncontroversial. The difficult part occurs when Z

is between A and E. Thabit ibn-Qurra argued as follows. By Archimedes’ principle, some

1We are supplementing the figure and adding steps to the argument for the sake of clarity.
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Figure 27.2. Thabit ibn-Qurra’s Pythagorean theorem.

multiple of AZ, say AH , exceeds AE, so that E lies between A and H . Now by drawing a
perpendicular HK to n at H , making HK equal to ZW , and joining WK, we have a Thabit
quadrilateral WZHK, which Thabit ibn-Qurra thought he had proved to be a rectangle.
Then, if X is chosen so that AW = WX and a perpendicular XU is drawn to WK, the
triangles AWZ and WXU will be congruent because ∠ZWU is a right angle, and the sum
of the acute angles of a right triangle is a right angle. Thus, because angles AWZ and WXU

are both complementary to angle XWU, they are equal. It follows that �AZW � �WUX

by the angle–angle–side criterion. Then WU will equal AZ. We can then start over, since
WK will be less than AH by a length equal to AZ. In this way, in a finite number of steps,
we will reach a point N on line m that is also on the extension of HK. Hence m contains
points on both sides of l and therefore intersects l.

Gray has called Thabit ibn-Qurra’s mistake “an interesting and deep one.” It makes
use of motion in geometry in a way that seems to be implied by Euclid’s own arguments
involving coinciding figures; that is, that they can be moved without changing their size or
shape. Euclid makes this assumption in Proposition 4 of Book 1, where he “proves” the
side–angle–side criterion for congruence by superposing one triangle on another. He does
not speak explicitly of moving a triangle, but how else is one to imagine this superposition
taking place?

Thabit ibn-Qurra also created the following generalization of the Pythagorean theorem.
Consider a triangle ABC whose longest side is BC. Copy angle B with A as vertex and
AC as one side, extending the other side to meet BC in point C′, and then copy angle C

with A as vertex and BA as one side, extending the other side to meet BC in point B′,
so that angle AB′B and angle AC′C both equal angle A. It then follows that the triangles

B′AB and CAC′ are both similar to the original triangle ABC, and so AB
2 = BC · BB′

and AC
2 = BC · CC′, hence

AB
2 + AC

2 = BC(BB′ + CC′).

The case when angle A is acute is shown in Fig. 27.2.

27.3. AL-BIRUNI: TRIGONOMETRY

The Islamic mathematicians became familiar with both the chord tables of Ptolemy and
the sine tables of Aryabhata I. They used both in their work, but it was the sine function
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that they developed most fully, eventually creating all six of the ratios that we now call
trigonometric functions (although these functions were lines rather than ratios to them). For
the sine function, they took over the Sanskrit term jya, meaning bowstring, in its variant
form jiva, and wrote it in the Arabic alphabet, without vowels, as j-y-b. This foreign word
eventually became conflated with an Arabic word jayb, which means the pocket in a garment.
According to Plofker (2009, p. 257), al-Biruni wrote that the Hindus

. . . call the half-Chords juyūb [plural of jayb], for the name of the Chord in the Indian [language]
was jiba. . .

It was this Arabic word that eventually came to be translated into Latin as sinus, a word
that also means a pocket or cavity.2

27.4. AL-KUHI

A mathematician who devoted himself almost entirely to geometry was Abu Sahl al-Kuhi
(ca. 940–ca. 1000), the author of many works, of which some 30 survive today. Berggren
(1989), who has edited these manuscripts, notes that 14 of them deal with problems inspired
by the reading of Euclid, Archimedes, and Apollonius, while 11 others are devoted to
problems involving the compass, spherical trigonometry, and the theory of the astrolabe.
Berggren presents as an example of al-Kuhi’s work the angle trisection shown in Fig. 27.3.
In that figure the angle ϕ to be trisected is ABG, with the base BG horizontal. The idea
of the trisection is to extend side AB any convenient distance to D. At the midpoint of
BD, draw a pair of mutually perpendicular lines, one of which makes an angle with the
horizontal equal to ϕ/2. Next, draw the rectangular hyperbola through B having those lines
as asymptotes. Then BE is drawn equal to BD. That is, a circle through D with center at B is
drawn, and its intersection with the hyperbola is labeled E. Finally, EZ is drawn parallel to
BG. It then follows that ϕ = ∠AZE = ∠ZBE + ∠ZEB = 3θ, as required. (The difficult
part of this proof lies in showing that ∠ZEB = ∠BDE, as marked in Fig. 27.3.)

27.5. AL-HAYTHAM AND IBN-SAHL

Abu Ali ibn al-Haytham, known in the West as Alhazen, was the author of more than 90
books, 55 of which survive.3 His mathematical prowess is shown by his ambitious attempt
to reconstruct the lost Book 8 of Apollonius’ Conics. His most famous book is his Treatise
on Optics (Kitab al-Manazir) in seven volumes. The fifth volume contains the problem
known as Alhazen’s problem: Given the location of a surface, an object, and an observer,
find the point on the surface at which a light ray from the object will be reflected to the
observer. Rashed (1990) points out that burning-mirror problems of this sort had been

2Contrast this Latin term with the names for the other two trigonometric functions, tangent (touching), and secant
(cutting), both of which have obvious geometric meanings.
3Rashed (1989) suggested that these works and the biographical information about al-Haytham may actually refer
to two different people. The opposite view was maintained by Sabra (1998).
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Figure 27.3. Al-Kuhi’s angle trisection.

studied extensively by Muslim scholars, especially by Abu Saad ibn Sahl (940–1000) some
decades before al-Haytham.

Rashed (1990, p. 478) discovered a manuscript in Teheran written by ibn Sahl containing
the law of refraction known in Europe as Snell’s law, after Willebrod Snell (1591–1626) or
Descartes’ law.4 The law of refraction as given by Ptolemy in the form of a table of values
of the angle of refraction and the angle of incidence implied that the angle of refraction
was a quadratic function of the angle of incidence. The actual relation is that the ratio of
the sines of the two angles is a constant for refraction at the interface between two different
media. What ibn Sahl and ibn al-Haytham knew was that the ratio of the two sines at a
point where two media meet was the same whatever the angle of incidence happened to
be. The seventeenth-century rediscoverers deduced theoretically that this ratio is the ratio
of the speeds with which light propagates in the two media. Fermat, as we shall see in
Chapter 34, showed that, given this connection, the actual time of travel from a point in one
medium to a point in another is minimized.

Al-Haytham also attempted to prove the parallel postulate. According to Gray (1989,
p. 45), the argument given by al-Haytham in his Commentary on the Premises to Euclid’s
Book The Elements, and later in his Book on the Resolution of Doubts, was based on the
idea of translating a line perpendicular to a given line in such a way that it always remains
perpendicular. The idea is that the endpoint of the line must trace a straight line parallel
to the directing line. The idea of the proof is shown in Fig. 27.4. Al-Haytham constructs
a Thabit quadrilateral CDAE and imagines the side CD moving toward the opposite side
EA, with D remaining on the base line, and the side remaining perpendicular at each instant
of time. Obviously then the point C will remain equidistant from the base DA at all times.
Al-Haytham was sure that C would move along the line CE, and could never, for example,
be at a point H above that line. Unfortunately, that seemingly obvious and very intuitive
conviction is precisely the point at issue in the parallel postulate.

4According to Guizal and Dudley, this law was stated by Thomas Harriot (1560–1621) in 1602.
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Figure 27.4. Ibn al-Haytham’s attempted proof of the parallel postulate.

27.6. OMAR KHAYYAM

In his paper Discussion of difficulties in Euclid (Amir-Moez, 1959), Omar Khayyam raised
a number of questions about al-Haytham’s argument. He asked how a line could move while
remaining perpendicular to a given line and, more generally, how geometry and motion could
be connected. Even admitting that Euclid allowed a line to be generated by a moving point
and a surface by a moving line, he pointed out that al-Haytham was requiring something
more in demanding that one line remain perpendicular to another at each instant during its
motion.5

Having refuted al-Haytham’s proof, Omar Khayyam himself attempted a proof (Amir-
Moez, 1959) based on a proposition that he claimed Aristotle had proved: If two lines
converge, they will (eventually) intersect. This claim raises an interesting question, since, as
we have seen, Aristotle did not accept the arguments given by scholars in Plato’s Academy to
prove that parallel lines exist. Given his disbelief in a completed infinity, he probably would
have liked an argument proving that converging lines must intersect. Although none of the
writings now attributed to Aristotle contain such an argument, Gray (1989, p. 47) suggests
that Omar Khayyam may have had access to Aristotelian treatises that no longer exist. Omar
Khayyam concluded on the basis of Aristotle’s authority that two lines that converge on
one side of a transversal must diverge on the other side. With that, having proved correctly
that the perpendicular bisector of the base of a Thabit quadrilateral is also the perpendicular
bisector of the summit, Omar Khayyam concluded that the base and summit could not
diverge on either side, and hence must be equidistant. Like Thabit ibn-Qurra’s proof, his
proof depended on building one Thabit quadrilateral on top of another by doubling the
common bisector of the base and summit, then crossing its endpoint with a perpendicular
which (he said) would intersect the extensions of the lateral sides. Unfortunately, if that
procedure is repeated often enough in hyperbolic geometry, those intersections will not
occur.

All of these mathematicians were well versed in the Euclidean tradition of geometry.
In the preface to his book on algebra, Omar Khayyam says that no one should attempt
to read it who has not already read Euclid’s Elements and Data and the first two books

5Omar Khayyam’s objection is right on target from the point of view of modern physics. If the special theory of
relativity is correct, no sense can be attached to the statement that two events occurring at different places are
simultaneous. One observer may find them so, while another does not agree. The same objection applies to Thabit
ibn-Qurra’s argument, which assumes a rigid body. In special relativity, rigid bodies do not exist. What al-Haytham
did was to ignore all points from the moving solid except those lying along a certain line.



308 ISLAMIC GEOMETRY

of Apollonius’ Conics. His reason for requiring this background was that he intended to
use conic sections to solve cubic and quartic equations geometrically. This book contains
Euclidean rigor attached to algebra in a way that fits equally well into the history of both
algebra and geometry. In other places, it seems clear that Omar Khayyam was posing
geometric problems for the sake of getting interesting equations to solve, as, for example,
in the problem mentioned in the previous chapter of finding the point on a circle such that
the perpendicular from the point to a radius has the same ratio to the radius that the two
segments into which it divides the radius have to each other.

As his work on the parallel postulate shows, Omar Khayyam was very interested in
logical niceties. In the preface to his Algebra and elsewhere [for example, Amir-Moez
(1963, p. 328)] he shows his adherence to Euclidean standards, denying the reality of a
fourth dimension:

If the algebraist were to use the square of the square in measuring areas, his result would be
figurative [theoretical] and not real, because it is impossible to consider the square of the square
as a magnitude of a measurable nature. . . This is even more true in the case of higher powers.
[Kasir, 1931, p. 48]

27.7. NASIR AL-DIN AL-TUSI

The thirteenth century was disruptive to the Islamic world. This was the time of the Mongol
expansion, which brought the conquest of China in the early part of the century, then the
conquest of Kievan Rus in 1243, and, finally, the sack of Baghdad in 1258. Despite the
turbulent times, the astronomer–mathematician Nasir al-Din al-Tusi (1201–1274) managed
to produce some very good mathematics. Al-Tusi was treated with respect by the Mongol
conqueror of Baghdad, who even built for him an astronomical observatory, at which he
made years of accurate observations and improved the models in Ptolemy’s Almagest. Al-
Tusi continued the Muslim work on the problem of the parallel postulate. According to Gray
(1989, pp. 50–51), al-Tusi’s proof followed the route of proving that the summit angles of
a Thabit quadrilateral are right angles. He showed by arguments that Euclid would have
accepted that they cannot be obtuse angles, since, if they were, the summit would diverge
from the base as a point moves from either summit vertex toward the other. Similarly,
he claimed, they could not be acute, since in that case the summit would converge toward
the base as a point moves from either summit vertex toward the other. Having thus argued
that a Thabit quadrilateral must be a rectangle, he could give a proof similar to that of Thabit
ibn-Qurra to establish the parallel postulate.

In a treatise on quadrilaterals written in 1260, al-Tusi also reworked the trigonometry
inherited from the Greeks and Hindus and developed by his predecessors in the Muslim
world, including all six triangle ratios that we know today as the trigonometric functions.
In particular, he gave the law of sines for spherical triangles, which states that the sines
of great-circle arcs forming a spherical triangle are proportional to the sines of their op-
posite angles. According to Hairetdinova (1986), trigonometry had been developing in the
Muslim world for some centuries before this time, and in fact the mathematician Abu Ab-
dullah al-Jayyani (989–1079), who lived in the Caliphate of Cordoba, wrote The Book on
Unknown Arcs of a Sphere, a treatise on plane and spherical trigonometry. Significantly,
he treated ratios of lines as numbers, in accordance with the evolution of thought on this
subject in the Muslim world. Like other Muslim mathematicians, though, he does not use
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negative numbers. As Hairetdinova mentions, there is evidence of Muslim influence in the
first trigonometry treatise written by Europeans, the book De triangulis omnimodis by Re-
giomontanus, (Johann Müller, 1436–1476) whose exposition of plane trigonometry closely
follows that of al-Jayyani.

Among these and many other discoveries, al-Tusi discovered the interesting theorem
that if a circle rolls without slipping inside a circle twice as large, each point on the smaller
circle moves back and forth along a diameter of the larger circle. This fact is easy to prove
and an interesting exercise in geometry. It has obvious applications in geometric astronomy,
and was rediscovered three centuries later by Nicolaus Copernicus (1473–1543) and used
in Book 3, Chapter 4 of his De revolutionibus.

PROBLEMS AND QUESTIONS

Mathematical Problems

27.1. Explain how Thabit ibn-Qurra’s generalization of the Pythagorean theorem reduces
to that theorem when angle A is a right angle. What does the figure look like if angle A

is obtuse? Is there an analogous theorem if BC is not the longest side of the triangle?

27.2. Al-Haytham’s attempted proof of the parallel postulate is fallacious because in non-
Euclidean geometry two straight lines cannot be equidistant at all points. Thus in a
non-Euclidean space the two rails of a railroad cannot both be straight lines. Assuming
Newton’s laws of motion (an object that does not move in a straight line must be
subject to some force), show that in a non-Euclidean universe one of the wheels in
a pair of opposite wheels on a train must be subject to some unbalanced force at
all times. [Note: The spherical earth that we live on happens to be non-Euclidean.
Therefore a pair of opposite wheels on a train cannot both be moving in a great circle
on the earth’s surface at any time.]

27.3. A two-part question: (1) Prove that in both hyperbolic and Euclidean geometry, if a
line passes through the midpoint of side AB of triangle ABC and is perpendicular to
the perpendicular bisector of the side BC, then it also passes through the midpoint
of AC. [Hint: This is easier than it looks: Consider the line that does pass through
both midpoints, and show that it is perpendicular to the perpendicular bisector of
BC; then argue that there is only one line passing through the midpoint of AB that
is perpendicular to the perpendicular bisector of BC.] (2) Use the previous result
to prove, independently of the parallel postulate, that the line joining the midpoints
of the lateral sides of a Thabit (Saccheri) quadrilateral bisects both diagonals. (In
Euclidean geometry, where a Thabit quadrilateral is a rectangle, the diagonals bisect
each other; this is not the case in non-Euclidean geometries.)

Historical Questions

27.4. What efforts were made by the Islamic geometers to clarify the theory of parallel
lines and the parallel postulate of Euclid?

27.5. What generalization of the Pythagorean theorem is due to Thabit ibn-Qurra?

27.6. What advances in trigonometry are due to Nasir al-Din al-Tusi?
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Questions for Reflection

27.7. Why was speculation on the theory of parallel lines confined to the Hellenistic and
Islamic geometers? Why was this problem never addressed by the Indian, Chinese,
or Japanese mathematicians?

27.8. Why was al-Haytham’s attempt to prove the parallel postulate fallacious?

27.9. What applications can you find for Nasir al-Tusi’s theorem about a circle rolling
without slipping inside a circle whose radius equals the diameter of the inner circle?
(Imagine the circles roughened so has to have gear teeth of the same size that mesh.
What use could you make of such a linkage?)



PART VI

EUROPEAN MATHEMATICS, 500–1900

The background to modern mathematics lies in the Medieval period in Europe, when schol-
ars assimilated the knowledge of the Islamic world and recovered some of the Greek works.
By the fourteenth century, European mathematicians were beginning to contribute new ideas
of fundamental importance, such as the representation of variable quantities on a coordinate
system. In the next seven chapters, we shall trace this complicated development through
the Medieval and Renaissance periods, ending around the year 1900. By that time, ideas
that had been used individually for centuries had been combined in new ways to produce
the calculus, which was then applied to study an immense variety of physical phenomena.
Our treatment of the eighteenth and nineteenth centuries is skewed toward the calculus
and its outgrowths. Other topics developed during this period, such as probability and non-
Euclidean geometry, will be discussed in Part VII, which consists of surveys of some areas
of mathematics in the modern era.

Contents of Part VI

This part of our history will bring the story of mathematics up just past its greatest watershed:
the seventeenth-century development of calculus and its extensive use in applications during
the eighteenth. It consists of the following seven chapters.

1. Chapter 28 (Medieval and Modern Europe, 500–1900) situates the mathematics de-
veloped during this period in the context of European history in general, giving some
details of what was preserved from the Roman Empire, what was acquired from the
Islamic world, and what the Europeans made of this heritage.

2. Chapter 29 (European Mathematics, 1200–1500) discusses European mathematical
innovations during the later Medieval period.

3. Chapter 30 (Sixteenth-Century Algebra) focuses on the solution of cubic and quartic
equations in Italy, the consolidation of those advances through improved notation,
and the development of logarithms.

4. Chapter 31 (Renaissance Art and Geometry) takes up the topic of projective geometry
in relation to the work of artists of the time.

The History of Mathematics: A Brief Course, Third Edition. Roger L. Cooke.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

311



312 EUROPEAN MATHEMATICS, 500–1900

5. Chapter 32 (The Calculus Before Newton and Leibniz) traces the development of
algebra and the incorporation of infinitesimal methods into it during the early seven-
teenth century, a process that revealed the essential core of calculus in an unsystematic
manner.

6. Chapter 33 (Newton and Leibniz) discusses the brilliant synthesis of algebra and
infinitesimal methods in the work of Newton and Leibniz and their disciples.

7. Chapter 34 (Consolidation of the Calculus) is devoted to the new areas of mathematics
generated by the calculus, such as differential equations and calculus of variations,
along with the philosophical and foundational issues raised by admitting infinitesimal
methods into mathematics.



CHAPTER 28

Medieval and Early Modern Europe

Greek mathematics held on longer in the Byzantine Empire than in Western Europe. Al-
though Theon of Alexandria had found it necessary to water down the more difficult parts of
Greek geometry for the sake of his weak students, the degeneration in Latin works was even
greater. The decline of cities in the West as the authority of the Roman Emperor failed was
accompanied by a decline in scholarship. Only in the monasteries was learning preserved.
As a result, documents from this period tend to be biased toward issues that concern the
clergy.

28.1. FROM THE FALL OF ROME TO THE YEAR 1200

During the first five centuries after the fall of Rome in 476, a great deal of scholarly work
was lost. While a new, and in many ways admirable, medieval civilization was being built
up, only some very basic mathematics was being preserved in Western Europe. However,
within the Carolingian Empire, the foundation for more advanced activity was being laid in
the cathedral and monastery schools, so that when the knowledge achieved in the Islamic
world was translated into Latin, scholars were prepared to appreciate and extend it. We shall
mention only a handful of the scholars from this time.

28.1.1. Boethius and the Quadrivium

The philosopher Boethius (480–524) wrote Latin translations of many classical Greek works
of mathematics and philosophy. His works on mathematics were translations based on Nico-
machus and Euclid. Boethius’ translation of Euclid has been lost. However, it is believed to
be the basis of many other medieval manuscripts, some of which use his name. These are
referred to as “Boethius” or pseudo-Boethius. The works of “Boethius” fit into the classi-
cal quadrivium of arithmetic, geometry, music, and astronomy. This quadrivium (fourfold
path) was neatly subdivided into the categories of number (discrete quantity), magnitude
(continuous quantity), statics, and kinematics. Thus number at rest is arithmetic, number in
motion is music, magnitude at rest is geometry, magnitude in motion is astronomy.

Politically and militarily, the fifth century was full of disasters in Italy, and some of the
best minds of the time turned from public affairs to theological questions. For many of
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The quadrivium. From left to right: Music holding an instrument, arithmetic doing a finger com-
putation, geometry studying a set of diagrams, astrology holding a set of charts. Copyright © Foto
Marburg/Art Resource.

these thinkers, mathematics came to be valued especially because it could inspire religious
feelings. The pseudo-Boethius gives a good example of this point of view. He writes1:

The utility of geometry is threefold: for work, for health, and for the soul. For work, as in the
case of a mechanic or architect; for health, as in the case of the physician; for the soul, as in
the case of the philosopher. If we pursue this art with a calm mind and diligence, it is clear in
advance that it will illuminate our senses with great clarity and, more than that, will show what
it means to subordinate the heavens to the soul, to make accessible all the supernal mechanism
that cannot be investigated by reason in any other way and through the sublimity of the mind
beholding it, also to integrate and recognize the Creator of the world, who veiled so many deep
secrets.

28.1.2. Arithmetic and Geometry

Besides the geometry just mentioned, Boethius also discussed the numerical part of the
quadrivium, including a topic that is not in the older Greek works: the abacus. It was a ruled
board, not the device we now call an abacus. The Latin word originally denoted the square

1This quotation can be read online at http://pld.chadwyck.com. This passage is from Vol. 63. It can be reached by
searching under “geometria” as title.
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stone at the top of a pillar. This computational aspect of arithmetic is not so well represented
in the Greek texts. In terms of its number-theoretic content, however, Boethius’ treatise is
far less sophisticated than the elaborate logical system found in Books VII–IX of Euclid’s
Elements.

28.1.3. Music and Astronomy

The other two sections of Boethius’ work on the quadrivium are also derivative and based
on Greek sources. His astronomy omits all the harder parts of Ptolemy’s treatise. In addi-
tion, he wrote an influential book with the title De institutione musica that is of interest
in the history of mathematics, since it adopts the traditional Platonic (Pythagorean) point
of view that music is a subdivision of arithmetic. Boethius divides the subject of music
into three areas: Musica Mundana, which encompasses the “music of the spheres,” that
is, the regular mathematical relations observed in the stars and reflected in the sounds
of nature; Musica Humana, which reflects the orderliness of the human body and soul;
and Musica Instrumentalis, the music produced by physical instruments, which exem-
plify the principles of order that the Pythagoreans allegedly ascribed to musical instru-
ments, particularly in the simple mathematical relations between pitch and length of
a string.

For over a millennium, such ideas had a firm grasp on writers such as Dante and scientists
such as the seventeenth-century mathematician and astronomer Johannes Kepler. Indeed,
De institutione musica was used as a textbook at Oxford until the eighteenth century, and
Kepler actually wrote the music of the spheres as he conceived it.

28.1.4. The Carolingian Empire

From the sixth to the ninth centuries a considerable amount of classical learning was pre-
served in the monasteries in Ireland, which had been spared some of the tumult that ac-
companied the decline of Roman power in the rest of Europe. From this source came a
few scholars to the court of Charlemagne to teach Greek and the quadrivium during the
early ninth century. Charlemagne’s attempt to promote the liberal arts, however, encoun-
tered great obstacles, as his empire was divided among his three sons after his death. In
addition, the ninth and tenth centuries saw the last waves of invaders from the north—the
Vikings, who disrupted commerce and civilization both on the continent and in Britain
and Ireland until they themselves became Christians and adopted a settled way of life.
Nevertheless, Charlemagne’s directive to create cathedral and monastery schools had a per-
manent effect, leading eventually the synthesis of observation and logic known as modern
science.

28.1.5. Gerbert

In the chaos that accompanied the breakup of the Carolingian Empire and the Viking
invasions, the main source of stability was the Church. A career in public life for one
not of noble birth was usually an ecclesiastical career, and church officials had to play both
pastoral and diplomatic roles. That some of them also found time for scholarly activity is
evidence of remarkable talent.

Such a talent was Gerbert of Aurillac. He was born to lower-class but free parents
in south-central France some time in the 940s. He benefited from Charlemagne’s decree
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that monasteries and cathedrals must have schools and was educated in Latin grammar
at the monastery of St. Gerald in Aurillac. Throughout a vigorous career in the Church
that led to his coronation as Pope Sylvester II2 in the year 999, he worked for a revival
of learning, both literary and scientific. His work as secretary to the Archbishop of Reims
was reported by a monk of that city named Richer, who described an abacus constructed
to Gerbert’s specifications. It was said to have been divided into 27 parts, and Gerbert
astounded audiences with his skill in multiplying and dividing large numbers on this device
(Lattin, 1961, p. 46).

While revising the curriculum in arithmetic, Gerbert wrote a tract on the use of the abacus
in which the Hindu–Arabic numerals were used. This innovation required reintroduction
several times, but received a strong impetus two centuries later from the Liber abaci of
Leonardo of Pisa.

In some early letters written addressed to the monk Constantine of Fleury just before
he became Abbot of Bobbio, Gerbert discusses some passages in Boethius’ Arithmetic;
and in the last letter written before he became pope, he writes to Adalbold of Liège about
an inconsistency in Boethius’ work (Lattin, 1961). He discusses an equilateral triangle
of side 30 and height 26 (since 26 ≈ 15

√
3), whose area is therefore 390. He says that

if the triangle is measured by the arithmetical rule given by Boethius—that is, in terms
of its side only—the rule is “one side is multiplied by the other and the number of one
side is added to this multiplication, and from this sum one-half is taken.” In our terms
this would give area s(s + 1)/2 to an equilateral triangle of side s. We recognize here the
formula for a triangular number. Thus, guided by arithmetical considerations and triangular
numbers, one would expect that this formula should give the correct area. However, in the
case being considered, the rule leads to an area of 465, which is too large by 20%. Gerbert
correctly deduces that Boethius’ rule actually gives the area of a cross section of a stack
of rectangles containing the triangle in question and that the excess results from the pieces
of the rectangles sticking outside the triangle. He includes a figure to explain this point
to Adalbold.

We can see from this discussion by one of the leading scholars of Europe regarding the
extent to which scientific and mathematical knowledge had sunk to an elementary level
a thousand years ago. From these humble beginnings, European knowledge of science
underwent an amazing growth over the next few centuries.

Gerbert also wrote a treatise on geometry based on Boethius. His reasons for studying
geometry were similar to those given by Boethius3:

Indeed the utility of this discipline to all lovers of wisdom is the greatest possible. For it leads
to vigorous exercises of the soul, and the most subtle demands on the intuition, and to many
certain inquiries by true reasoning, in which wonderful and unexpected and joyful things are
revealed to many along with the wonderful vigor of nature, and to contemplating, admiring, and
praising the power and ineffable wisdom of the Creator who apportioned all things according
to number and measure and weight; it is replete with subtle speculations.

2He was not a successful clergyman or pope. He got involved in the politics of his day, offended the Emperor, and
was suspended from his duties as Archbishop of Reims by Pope Gregory V in 998. He was installed as pope by the
18-year-old Emperor Otto III, but after only three years both he and Otto were driven from Rome by a rebellion.
Otto died trying to reclaim Rome, and Sylvester II died shortly afterward.
3This quotation can be read online at http://pld.chadwyck.com. This passage is from Vol. 139. It can be reached
by searching under “geometria” as title.
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This view of geometry was to be echoed four centuries later in the last Canto of Dante’s
Divine Comedy, which makes use of geometric analogs to describe the poet’s vision of
heaven:

Like the geometer who applies all his powers
To measure the circle, but does not find
By thinking the principle he needs,

Such was I, in this new vista.
I wished to see how the image came together
With the circle and how it could be divined there.

But my own wings could not have made the flight
Had not my mind been struck
By a flash in which his will came to me.

In this lofty vision I could do nothing.
But now turning my desire and will,
Like a wheel that is uniformly moved,

Was the love that moves the sun and the other stars.

28.1.6. Early Medieval Geometry

A picture of the level of geometric knowledge in the eleventh and twelfth centuries, before
there was any major influx of translations of Arabic and Greek treatises, can be gained from
an early twelfth-century treatise called Practica geometriae (The Practice of Geometry,
Homann, 1991), attributed to Master Hugh of the Abbey of St. Victor in Paris.

The content of the Practica geometriae is aimed at the needs of surveying and astronomy
and resembles the treatise of Gerbert in its content. This geometry, although elementary,
is by no means unsophisticated. It discusses similar triangles and spherical triangles, using
three mutually perpendicular great circles to determine positions on the sphere. After a
discussion of the virtues and uses of the astrolabe, the author takes up the subjects of
“altimetry” (surveying) and “cosmimetry” (astronomical measurements).

The discussion of “altimetry” is a straightforward application of similar triangles to
measure inaccessible distances. The section on “cosmimetry” is of interest for two reasons.
First, it gives a glimpse of what was remembered of ancient work in this area; and second,
it shows what techniques were used for astronomical measurements in the twelfth century.
The author begins by giving the history of measurements of the diameter of the earth,
saying that the earth seems large to us, due to our confinement to its surface, even though
“Compared to the incomprehensible immensity of the celestial sphere with everything in
its ambit, earth, one must admit, seems but an indivisible point.”

These views had been expressed by Ptolemy as justification for idealizing the earth
as a point in his astronomy, and, of course, they are completely in accord with modern
knowledge of the size of the cosmos. The author then goes on to discuss in detail the
history of measurements of the circumference of the earth. He tells the famous story of
Eratosthenes’ measurement of a degree of latitude. (See Section 1 of Chapter 17.)

The author of the Practica geometriae continues by calculating the height of the sun
by use of similar triangles. To do this, one must know the distance from the point of
measurement to the point where the sun is directly overhead and then measure the length
of the noontime shadow cast by a pole of known height. The author says that the Egyptians
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should be given credit as the first to compute solar altitude this way and that they were
successful because their country was flat and close to the sun! The figure cited for the
diameter of the sun’s orbit (this is geocentric astronomy) is 9, 720, 181 + 1

2 + 7
22 miles.

Using the value π = 22
7 , the author computes the length of the sun’s orbit as 30, 549, 142 5

6 +
1

42 miles. (This number is less than 6% of the true value.)

28.1.7. The Translators

During the twelfth and thirteenth centuries, European scholars sought out and translated
works from Arabic and ancient Greek into Latin. We can list just a few of the translators
and their works here. Our debt to these people is enormous, as they greatly increased the
breadth and depth of knowledge of natural science and mathematics in Europe.

1. Adelard of Bath (ca. 1080–1160). Born in Bath, England, Adelard (or Athelhard)
studied at Tours, France in one of the cathedral schools established by Charlemagne,
as Gerbert had done. He traveled widely throughout the Mediterranean region. Some
time in the second decade of the twelfth century, he translated Euclid’s Elements
into Latin from an Arabic manuscript. This translation became the basis for all Latin
translations of this work for the next few centuries. He also translated al-Khwarizmi’s
astronomical tables, the Arabic original of which no longer exists.

2. Plato of Tivoli (early twelfth century). Little is known of the life of Plato Tiburtinus
(Plato of Tivoli). He is best known for translating al-Battani’s Kitab al-Zij (Book of
Astronomy) into Latin as De motu stellarum.

3. Robert of Chester (twelfth century). Robert of Chester was an Englishman who went
to Segovia, Spain. He translated al-Khwarizmi’s Algebra around 1145.

4. Gherard of Cremona (1114–1187). Born in Cremona, Italy, Gherard traveled to Spain
with the intention of studying the works of Ptolemy. He made translations of some
eighty works from Arabic into Latin, including an edition of the Elements edited by
Thabit ibn-Qurra, al-Khwarizmi’s Algebra, and of course the Almagest.

Various authors ascribe to each of these last three translators the responsibility for translating
the Arabic word jayb, which had evolved from the Sanskrit jiva (bowstring), into Latin as
sinus, thereby establishing a usage that has persisted for 900 years all over Europe. Most
of these statements are vague as to precisely where the term occurs. According to Holt,
Lambton, and Lewis (1970, p. 754), the word occurs first in the twelfth-century translation
of al-Battani’s Kitab al-Zij, and therefore must have been introduced by Plato of Tivoli.

28.2. THE HIGH MIDDLE AGES

As the western part of the world of Islam was growing politically and militarily weaker
because of invasion and conquest, Europe was entering on a period of increasing power and
vigor. One expression of that new vigor, the stream of European mathematical creativity
that began as a small rivulet 1000 years ago, has been steadily increasing until now; it is
an enormous river and shows no sign of subsiding. By the middle of the twelfth century,
European civilization had absorbed much of the learning of the Islamic world and was
ready to embark on its own explorations. This was the zenith of papal power in Europe,
exemplified by the ascendancy of the popes Gregory VII (1073–1085) and Innocent III
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(1198–1216) over the emperors and kings of the time. The Emperor Frederick I, known
as Frederick Barbarossa because of his red beard, ruled the empire from 1152 to 1190
and tried to maintain the principle that his power was not dependent on the Pope, but was
ultimately unsuccessful. His grandson Frederick II (1194–1250) was a cultured man who
encouraged the arts and sciences. To his court in Sicily4 he invited distinguished scholars
of many different religions, and he corresponded with many others. He himself wrote a
treatise on the principles of falconry. He was in conflict with the Pope for much of his life
and even tried to establish a new religion, based on the premise that “no man should believe
aught but what may be proved by the power and reason of nature,” as the papal document
excommunicating him stated.

Our list of memorable European mathematicians from the late Medieval period begins
in the empire of Frederick II.

28.2.1. Leonardo of Pisa

Leonardo (1170–1250) says in the introduction to his major book, the Liber abaci, that
he accompanied his father on an extended commercial mission in Algeria with a group
of Pisan merchants. There, he says, his father had him instructed in the Hindu–Arabic
numerals and computation, which he enjoyed so much that he continued his studies while
on business trips to Egypt, Syria, Greece, Sicily, and Provence. Upon his return to Pisa
he wrote a treatise to introduce this new learning to Italy. The treatise, whose author
is given as “Leonardus filius Bonaccij Pisani,” that is, “Leonardo, son of Bonaccio of
Pisa,” bears the date 1202. In the nineteenth century Leonardo’s works were edited by
the Italian nobleman Baldassare Boncompagni (1821–1894), who also compiled a catalog
of locations of the manuscripts (Boncompagni, 1854). The name Fibonacci by which the
author is now known seems to have become generally used only in the nineteenth century.
A history of what is known of Leonardo’s life and an exposition of his mathematical works
has recently appeared (Devlin, 2011).

28.2.2. Jordanus Nemorarius

The works of Archimedes were translated into Latin in the thirteenth century, and his work
on the principles of mechanics was extended. One of the authors involved in this work was
Jordanus Nemorarius (1225–1260). Little is known about this author except certain books
that he wrote on mathematics and statics for which manuscripts still exist dating to the
actual time of composition. One of his works, Liber Jordani de Nemore de ratione ponderis
[The book of Jordanus Nemorarius on the ratio of weight (Claggett, 1960, pp. 167–229)]
contains the first correct statement of the mechanics of an inclined plane. We shall confine
our discussion, however, to his algebraic work, in which he discussed various conditions
from which the explicit value of a number can be deduced.

28.2.3. Nicole d’Oresme

One of the most distinguished of the medieval philosophers was Nicole d’Oresme (1323–
1382), whose clerical career brought him to the office of Bishop of Lisieux in 1377.

4Sicily was reconquered from the Muslims in the eleventh century by the Normans. Being in contact with all three
of the great Mediterranean civilizations of the time, it was the most cosmopolitan center of culture in the world
for the next two centuries.
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D’Oresme had a wide-ranging intellect and studied economics, physics, and mathemat-
ics as well as theology and philosophy. He considered the motion of physical bodies from
various points of view, formulated the Merton rule of uniformly accelerated motion (named
for Merton College, Oxford), and for the first time in history explicitly used one line to
represent time, a line perpendicular to it to represent velocity, and the area under the graph
(as we would call it) to represent distance.

28.2.4. Regiomontanus

The work of translating the Greek and Arabic mathematical works went on for several cen-
turies. One of the last to work on this project was Johann Müller (1436–1476) of Königsberg,
better known by his Latin name of Regiomontanus, a translation of Königsberg (King’s
Mountain). Although he died young, Regiomontanus made valuable contributions to as-
tronomy, mathematics, and the construction of scientific measuring instruments. He studied
in Leipzig while a teenager and then spent a decade in Vienna and the decade following
in Italy and Hungary. The last five years of his life were spent in Nürnberg. He is said to
have died of an epidemic while in Rome as a consultant to the Pope on the reform of the
calendar.

Regiomontanus checked the data in copies of Ptolemy’s Almagest and made new obser-
vations with his own instruments. He laid down a challenge to astronomy, remarking that
further improvement in theoretical astronomy, especially the theory of planetary motion,
would require more accurate measuring instruments. He established his own printing press
in Nürnberg so that he could publish his works. These works included several treatises on
pure mathematics. He established trigonometry as an independent branch of mathematics
rather than a tool in astronomy. The main results we now know as plane and spherical
trigonometry are in his book De triangulis omnimodis, although not exactly in the language
we now use.

28.2.5. Nicolas Chuquet

The French Bibliothèque Nationale is in possession of the original manuscript of a math-
ematical treatise written at Lyons in 1484 by one Nicolas Chuquet (1445–1488). Little is
known about the author, except that he describes himself as a Parisian and a man possessing
the degree of Bachelor of Medicine. The treatise (see Flegg, 1988) consists of four parts:
a treatise on arithmetic and algebra called Triparty en la science des nombres, a book of
problems to illustrate and accompany the principles of the Triparty, a book on geometrical
measurement, and a book of commercial arithmetic. The last two are applications of the
principles in the first book.

28.2.6. Luca Pacioli

Written at almost the same time as Chuquet’s Triparty was a work called the Summa de
arithmetica, geometrica, proportioni et proportionalita by Luca Pacioli (or Paciuolo, 1445–
1517). Since Chuquet’s work was not printed until the nineteenth century, Pacioli’s work is
believed to be the first Western printed work on algebra. In comparison with the Triparty,
however, the Summa seems less original. Pacioli has only a few abbreviations, such as co

for cosa, meaning thing (the unknown), ce for censo (the square of the unknown), and æ
for æquitur (equals). Despite its inferiority to the Triparty where symbolism is concerned,
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the Summa was much the more influential of the two books, because it was published. It is
referred to by the Italian algebraists of the early sixteenth century as a basic source.

28.2.7. Leon Battista Alberti

In art, the fifteenth century was a period of innovation that marked the beginning of the
period we call the Renaissance. In an effort to give the illusion of depth in two-dimensional
representations, some artists looked at geometry from a new point of view, studying the
projection of two- and three-dimensional shapes in two dimensions to see what properties
were preserved and how others were changed. A description of such a procedure, based
partly on the work of his predecessors, was given by Leon Battista Alberti (1404–1472) in
a 1435 Latin treatise entitled De pictura, published posthumously in Italian as Della pittura
in 1511.

28.3. THE EARLY MODERN PERIOD

Sixteenth-century Italy produced a group of sometimes quarrelsome but always brilliant
algebraists, who worked to advance mathematics in order to achieve academic success and
for the pleasure of discovery. As happened in Japan a century later, each new advance
brought a challenge for further progress.

28.3.1. Scipione del Ferro

A method of solving a particular cubic equation was discovered by a lector (reader, that
is, a tutor) at the University of Bologna, Scipione del Ferro (1465–1525), around the year
1500.5 He communicated this discovery to another mathematician, Antonio Maria Fior
(dates unknown), who then used the knowledge to win mathematical contests.

28.3.2. Niccolò Tartaglia

Fior met his match in 1535, when he challenged Niccolò Fontana of Brescia, (1500–1557)
known as Tartaglia (the Stammerer) because a wound he received as a child when the French
overran Brescia in 1512 left him with a speech impediment. Tartaglia had also discovered
how to solve certain cubic equations and thus won the contest.

28.3.3. Girolamo Cardano

A brilliant mathematician and gambler, who became rector of the University of Padua at
the age of 25, Girolamo Cardano (1501–1576) was writing a book on mathematics in 1535
when he heard of Tartaglia’s victory over Fior. He wrote to Tartaglia asking permission
to include this technique in his work. Tartaglia at first refused, hoping to work out all the

5Before modern notation was introduced, there was no uniform way of writing a general cubic equation. Since
negative numbers were not understood, equations had to be classified according to the terms on each side of the
equality. As we saw in the case of Omar Khayyam, this complication results in many different types of cubics,
each requiring a special algorithm for its solution.
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details of all cases of the cubic and write a treatise himself. According to his own account,
Tartaglia confided the secret of one kind of cubic to Cardano in 1539, after Cardano swore a
solemn oath not to publish it without permission and gave Tartaglia a letter of introduction
to the Marchese of Vigevano. Tartaglia revealed a rhyme by which he had memorized the
procedure.

Tartaglia did not claim to have given Cardano any proof that his procedure works. It
was left to Cardano himself to find the demonstration. Cardano kept his promise not to
publish this result until 1545. However, as Tartaglia delayed his own publication, and in the
meantime Cardano had discovered the solution of other cases of the cubic himself and had
also heard that del Ferro had priority anyway, he published the result in his Ars magna (The
Great Art), giving credit to Tartaglia. Tartaglia was furious and started a bitter controversy
over Cardano’s alleged breach of faith.

28.3.4. Ludovico Ferrari

Cardano’s student Ludovico Ferrari (1522–1565) worked with him in the solution of the
cubic, and between them they had soon found a way of solving certain quartic equations.

28.3.5. Rafael Bombelli

In addition to the mathematicians proper, we must also mention an engineer in the service of
an Italian nobleman. Rafael Bombelli (1526–1572) is the author of a treatise on algebra that
appeared in 1572. In the introduction to this treatise we find the first mention of Diophantus
in the modern era. Bombelli said that, although all authorities are agreed that the Arabs
invented algebra, he, having been shown the work of Diophantus, credits the invention to
the latter. In making sense of what his predecessors did, he was one of the first to consider
the square root of a negative number and to formulate rules for operating with such numbers.
His work in this area will be discussed in more detail in Chapter 41.

28.4. NORTHERN EUROPEAN ADVANCES

The work being done in Italy did not escape the notice of French and British scholars of the
time, and important mathematical works were soon being produced in those two countries.

28.4.1. François Viète

A lawyer named François Viète (1540–1603), who worked as tutor in a wealthy family and
later became an advisor to Henri de Navarre (who became the first Bourbon king, Henri
IV, in 1598), found time to study Diophantus and to introduce his own ideas into algebra.
His book Artis analyticae praxis (The Practice of the Analytic Art) contained some of the
notational innovations that make modern algebra much less difficult than the algebra of the
sixteenth century.

28.4.2. John Napier

In the late sixteenth century the problem of simplifying laborious multiplications, divisions,
root extractions, and the like, was attacked by the Scottish laird John Napier, (1550–1617)
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Baron of Murchiston. His work consisted of two parts, a theoretical part, based on a continu-
ous geometric model, and a computational part, involving a discrete (tabular) approximation
of the continuous model. The computational part was published in 1614. However, Napier
hesitated to publish his explanation of the theoretical foundation. Only in 1619, two years
after his death, did his son publish an English translation of Napier’s theoretical work under
the title Mirifici logarithmorum canonis descriptio (A Description of the Marvelous Law of
Logarithms). This subject, although aimed at a practical end, turned out to have enormous
value in theoretical studies as well.

QUESTIONS

Historical Questions

28.1. What mathematics was preserved in the Western part of the Roman Empire during
the period from 500 to 1000?

28.2. What justifications do the early Medieval writers give for the study of geometry and
arithmetic?

28.3. What Arabic and Greek works were brought into Europe in the eleventh and twelfth
centuries, and who were the translators responsible for making them available in
Latin?

28.4. How did the term sine (Latin sinus) come to have a geometric meaning as one of the
trigonometric functions?

Questions for Reflection

28.5. Dante’s final stanza (quoted above) uses the problem of squaring the circle to express
the sense of an intellect overwhelmed, which was inspired by his vision of heaven.
What resolution does he find for the inability of his mind to grasp the vision rationally?
Would such an attitude, if widely shared, affect mathematical and scientific activity
in a society?

28.6. What is the significance of ruling a board into 27 columns to make an abacus, as
Gerbert is said to have done? Does it indicate that there was no symbol for zero?

28.7. One popular belief about Christopher Columbus is that he proved to a doubting public
that the earth was spherical. What grounds are there for believing that “the public”
doubted this fact? Which people in the Middle Ages would have been likely to believe
in a flat earth? Consider also the frequently repeated story that people used to believe
the stars were near the earth. Is this view of Medieval scholarship plausible in the
light of the Practica geometriae?

28.8. What role can or should or does mathematics play in representational arts such as
painting and sculpture? Does the presence of mathematical elements enhance or
detract from the emotional content and artistic creativity involved in these arts?



CHAPTER 29

European Mathematics: 1200–1500

In the previous chapter, we mentioned the emperor Frederick II, whose court was located in
Sicily. His encouragement of arts and sciences gave a voice to one of the most remarkable
mathematicians of the Middle Ages, Leonardo of Pisa, with whom we begin our discussion
of late Medieval mathematics.

29.1. LEONARDO OF PISA (FIBONACCI)

As soon as translations from Arabic into Latin became generally available in the twelfth
and thirteenth centuries, Western Europeans began to learn about algebra. The first work
translated (by Robert of Chester in 1145) was al-Khwarizmi’s Algebra. Several talented
mathematicians appeared early on who were able to make original contributions to the
development of algebra. In some cases the books that they wrote were not destined to be
published for many centuries, but at least one of them formed part of an Italian tradition
of algebra that continued for several centuries. That tradition begins with Leonardo, who
wrote several mathematical works, the best known of which is the Liber abaci.1

29.1.1. The Liber abaci

Many of the problems in the Liber abaci (Book of Computation) reflect the routine com-
putations that must be performed when converting currencies. These are applications of
the Rule of Three that we have found in Brahmagupta and Bhaskara. Many of the other
problems are purely fanciful. Leonardo’s indebtedness to Arabic sources was detailed by
Levey (1966), who listed 29 problems in the Liber abaci that are identical to problems in
the Algebra of Abu Kamil. In particular, the problem of separating the number 10 into two
parts satisfying an extra condition occurs many times. For example, one problem is to find
x such that 10/x + 10/(10 − x) = 6 1

4 .

1Devlin (2011), who has looked at the old manuscripts of this work, says that it is properly spelled Liber abbaci.
The spelling we are using merely preserves a long-standing traditional usage.

The History of Mathematics: A Brief Course, Third Edition. Roger L. Cooke.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

324



LEONARDO OF PISA (FIBONACCI) 325

29.1.2. The Fibonacci Sequence

The most famous (not the most profound) of Leonardo’s achievements is a problem from
his Liber abaci, whose second edition appeared in 1202: How many pairs of rabbits can
be bred from one pair in one year, given that each pair produces a new pair each month,
beginning two months after its birth?

By enumeration of cases, the author concludes that there will be 377 pairs, and “in this
way you can do it for the case of infinite numbers of months.” The reasoning is simple.
Each month, those pairs that were alive two months earlier produce duplicates of themselves.
Hence the total number of rabbits after n + 2 months is the number alive after n + 1 months
plus the number alive after n months. That is, each term in the sequence is the sum of the
two preceding numbers.

Assuming the original pair was a mature pair, ready to reproduce, the sequence generated
in this way—starting at the beginning of the year, when 0 months have elapsed—is (1, 2, 3,
5, 8,. . . ), and its 13th term is 377. This sequence has been known as the Fibonacci sequence
since the printing of the Liber abaci in the nineteenth century. The Fibonacci sequence has
been an inexhaustible source of identities. Many curious representations of its terms have
been obtained, and there is a mathematical journal, the Fibonacci Quarterly, named in its
honor and devoted to its lore.

A Practical Application In 1837 and 1839 the crystallographer Auguste Bravais (1811–
1863) and his brother Louis (1801–1843) published articles on the growth of plants.2 In these
articles they studied the spiral patterns in which new branches grow out of the limbs of certain
trees and classified plants into several categories according to this pattern. For one of these
categories they gave the amount of rotation around the limb between successive branches
as 137◦ 30′ 28′′. Now, one could hardly measure the limb of a tree so precisely. To measure
within 10◦ would require extraordinary precision. To refine such crude measurements by
averaging to the claimed precision of 1′′, that is, 1/3600 of a degree, would require thousands
of individual measurements. In fact, the measurements were carried out in a more indirect
way, by counting the total number of branches after each full turn of the spiral. Many
observations convinced the brothers Bravais that normally there were three branches in a
little less than two turns, five in a little more three turns, eight in a little less than five turns,
and thirteen in a little more than eight turns. For that reason they took the actual amount
of revolution between successive branches to be the number we call 1/� = (

√
5 − 1)/2 =

� − 1 of a complete (360◦) revolution, since

3

2
<

8

5
< � <

13

8
<

5

3
.

Observe that 360◦ ÷ � ≈ 222.4922359◦ ≈ 222◦ 29′ 32′′ = 360◦ − (
137◦ 30′ 28′′). An

illustration of this kind of growth is shown in Fig. 29.1. The picture shows three views
of a branch of a flowering crab apple tree with the twigs cut off and the points from which
they grew marked by pushpins. When these pins are joined by string, the string follows

2See the article by I. Adler, D. Barabe, and R. V. Jean, “A history of the study of phyllotaxis,” Annals of Botany,
80 (1997), pp. 231–244, especially p. 234. The articles by Auguste and Louis Bravais are “Essai sur la disposition
générale des feuilles curvisériées,” Annales des sciences naturelles, 7 (1837), pp. 42–110, and “Essai sur la
disposition générale des feuilles rectisériées,” Congrès scientifique de France, 6 (1839), pp. 278–330.
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Figure 29.1. Three views of a branch of a flowering crab apple tree.

a helical path of nearly constant slope along the branch. By simply counting, one can get
an idea of the average number of twigs per turn. For example, the fourth intersection is
between pins 6 and 7, indicating that the average number of pins per turn up to that point
is between 6

4 = 1.5 and 7
4 = 1.75. One can see that the pins that fall nearest to the inter-

section of this helical path with the meridian line marked along the length of the branch
are pins numbered 3, 5, 8, and 13, which are Fibonacci numbers, and that the intersections
they are near come at the end of 2, 3, 5, and 8 revolutions, respectively, also Fibonacci
numbers. Thus the average number of twigs per turn is approximately 3

2 or 5
3 or 8

5 or 13
8 .

The brothers Bravais knew that the ratios of successive Fibonacci numbers are the terms
in the continued-fraction expansion of the Golden Ratio � = (1 + √

5)/2, and hence they
chose this elegant way of formulating what they had observed. By looking at the side of the
intersection where the corresponding pins are in Fig. 29.1, you can see that the first and third
of these approximations are underestimates and the second and fourth are overestimates.
You can also see that the approximation gets better as the number of turns increases.

This pattern is not universal among plants, although the brothers Bravais were able to
find several classes of plants that exhibit a pattern of this type, with different values for the
first two terms of the sequence.

29.1.3. The Liber quadratorum

In his Liber quadratorum [Book of Squares (Sigler, 1987)] Leonardo speculated on the dif-
ference between square and nonsquare numbers. In the prologue, addressed to the Emperor
Frederick II, Leonardo says that he had been inspired to write the book because a certain
John of Palermo, whom he had met at Frederick’s court, had challenged him to find a square
number such that if 5 is added to it or subtracted from it, the result is again a square.3 This
question inspired him to reflect on the difference between square and nonsquare numbers.
He then notes his pleasure on learning that Frederick had actually read one of his previous
books and uses that fact as justification for writing on the challenge problem.

3Leonardo gave a general discussion of problems of this type, asking when m2 + kn2 and m2 + 2kn2 can both be
squares.
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The Liber quadratorum is written in the spirit of Diophantus and shows a keen appreci-
ation of the conditions under which a rational number is a square. Indeed, the ninth of its 24
propositions is a problem of Diophantus: Given a nonsquare number that is the sum of two
squares, find a second pair of squares having this number as their sum. This problem is Prob-
lem 9 of Book 2 of Diophantus, as discussed in Section 4 of Chapter 9. Leonardo’s solution
of this problem, like that of Diophantus, involves a great deal of arbitrariness, since the prob-
lem does not have a unique solution. The resemblance in some points is so strong that one is
inclined to think that Leonardo saw a copy of Diophantus, or, more likely, an Arabic work
commenting and extending the work of Diophantus. This question is discussed by the trans-
lator of the Liber quadratorum (Sigler, 1987, pp. xi–xii), who notes that strong resemblances
have been pointed out between the Liber quadratorum and a book by Abu Bekr ibn Muham-
mad ibn al-Husayn Al-Karaji (953–1029) called the Fakhri,4 parts of which were copied
from the Arithmetica, but that there are also parts of the Liber quadratorum that are original.

One advance in the Liber quadratorum is the use of general letters in an argument. Al-
though in some proofs Leonardo argues much as Diophantus does, using specific numbers,
he becomes more abstract in others. For example, Proposition 5 requires finding two num-
bers, the sum of whose squares is a square that is also the sum of the squares of two given
numbers. He says to proceed as follows. Let the two given numbers be .a. and .b. and the
sum of their squares .g. . Now take any other two numbers .de. and .ez. [not proportional to
the given numbers] the sum of whose squares is a square. These two numbers are arranged
as the legs of a right triangle. If the square on the hypotenuse of this triangle is .g., the
problem is solved. If the square on the hypotenuse is larger than .g., mark off the square
root of .g. on the hypotenuse. The projections (as we would call them) of this portion of
the hypotenuse on each of the legs are known, since their ratios to the square root of .g. are
known. Moreover, that ratio is rational, since they are the same as the ratios of .a. and .b.

to the hypotenuse of the original triangle. These two projections therefore provide the new
pair of numbers. Being proportional to .a. and .b., which are not proportional to the two
numbers given originally, they must be different from those numbers.

This argument is more convincing, because it is more abstract, than proofs by example,
but the geometric picture plays an important role in making the proof comprehensible.

29.1.4. The Flos

Leonardo’s approach to algebra begins to look modern in other ways as well. In one of
his works, called the Flos super solutionibus quarumdam questionum ad numerum et ad
geometriam vel ad utrumque pertinentum [The Full Development5 of the Solutions of Cer-
tain Questions Pertaining to Number or Geometry or Both (Boncompagni 1854, p. 4)] he
reports the challenge from John of Palermo mentioned above, which was to find a number
satisfying x3 + 2x2 + 10x = 20 using the methods given by Euclid in Book 10 of the Ele-
ments, that is, to construct a line of this length using straightedge and compass. In working
on this question, Leonardo made two important contributions to algebra, one numerical
and one theoretical. The numerical contribution was to give the unique positive root in
sexagesimal notation correct to six places. The theoretical contribution was to show by

4Apparently, this word means something like glorious and the full title might be translated as The Glory of Algebra.
5The word flos means bloom and can used in the figurative sense of “the bloom of youth.” That appears to be its
meaning here.
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using divisibility properties of numbers that there cannot be a rational solution or a solution
obtained using only rational numbers and square roots of rational numbers.

29.2. HINDU–ARABIC NUMERALS

The Liber abaci advocated the use of the Hindu–Arabic numerals that we are familiar with.
Partly because of the influence of that book, the advantages of this system came to be
appreciated, and within two centuries these numerals were winning general acceptance. In
1478, an arithmetic was published in Treviso, Italy, explaining the use of Hindu–Arabic
numerals and containing computations in the form shown in Fig. 26.1 of Chapter 26. In the
sixteenth century, scholars such as Robert Recorde (1510–1558) in Britain and Adam Ries
(1492–1559) in Germany, advocated the use of the Hindu–Arabic system and established
it as a universal standard.

The system was explained by the Flemish mathematician and engineer Simon Stevin
(1548–1620) in his 1585 book De Thiende (Decimals). Stevin took only a few pages to
explain, in essentially modern terms, how to add, subtract, multiply, and divide decimal
numbers. He then showed the application of this method of computing in finding land areas
and the volumes of wine vats. He wrote concisely, as he said, “because here we are writing
for teachers, not students.” His notation appears slightly odd, however, since he put a circled
0 where we now have the decimal point, and thereafter he indicated the rank of each digit

From a 1535 illustration to the Margarita philosophica (Philosophical Pearl) published by Gregor
Reisch (1467–1525) in 1503. Copyright © Foto Marburg/Art Resource.
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by a similarly encircled number. For example, he would write 13.4832 as 13 ©0 4 ©1 8
©2 3 ©3 2 ©4 . Here is his explanation of the problem of expressing 0.07 ÷ 0.00004:

When the divisor is larger [has more digits] than the dividend, we adjoin to the dividend as
many zeros as desired or necessary. For example, if 7 ©2 is to be divided by 4 ©5 , I place some
0s next to the 7, namely 7000. This number is then divided as above, as follows:

3/ 2/

7/ 0/ 0/ 0/

4/ 4/ 4/ 4/

(1 7 5 0 ©0

Hence the quotient is 1750 ©0 (Gericke and Vogel, 1965, p. 19).

Except for the location of the digits and the cross-out marks, this notation is essentially
what is now used by school children in the United States. In other countries—Russia, for
example—the divisor would be written just to the right of the dividend and the quotient just
below the divisor.

Stevin also knew what to do if the division does not come out even. He pointed out that
when 4 ©1 is divided by 3 ©2 , the result is an infinite succession of 3s and that the exact
answer will never be reached. He commented, “In such a case, one may go as far as the
particular case requires and neglect the excess. It is certainly true that 13 ©0 3 ©1 3 1

3 ©2 , or
13 ©0 3 ©1 3 ©2 3 1

3 ©3 , and so on, are exactly equal to the required result, but our goal is to
work only with whole numbers in this decimal computation, since we have in mind what
occurs in human business, where [small parts of small measures] are ignored.” Here we
have a clear case in which the existence of infinite decimal expansions is admitted, without
any hint of the possibility of irrational numbers. Stevin was an engineer, not a theoretical
mathematician. His examples were confined to what is of practical value in business and
engineering, and he made no attempt to show how to calculate with an actually infinite
decimal expansion.

Stevin did, however, suggest a reform in trigonometry that was ignored until the advent of
hand-held calculators, remarking that, “if we can trust our experience (with all due respect to
Antiquity and thinking in terms of general usefulness), it is clear that the series of divisions
by 10, not by 60, is the most efficient, at least among those that are by nature possible.”
On those grounds, Stevin suggested that degrees be divided into decimal fractions rather
than minutes and seconds. Modern hand-held calculators now display angles in exactly this
way, despite the scornful remark of a twentieth-century mathematician that this mixture
of sexagesimal and decimal notation proves that“it required four millennia to produce a
system of angle measurement that is completely absurd.”

29.3. JORDANUS NEMORARIUS

The translator and editor of Jordanus’ book De numeris datis (On Given Numbers, Hughes,
1981, p. 11) says, “It is reasonable to assume. . . that Jordanus was influenced by al-
Khwarizmi’s work.” This conclusion was reached on the basis of Jordanus’ classification of
quadratic equations and his order of expounding the three types, among other resemblances
between the two works.
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De numeris datis is the algebraic equivalent of Euclid’s Data. Where Euclid says that a
line is given (determined) if its ratio to a given line is given, Jordanus Nemorarius says that
a number is given if its ratio to a given number is given. The well-known elementary fact
that two numbers can be found if their sum and difference are known is generalized to the
theorem that any set of numbers can be found if the differences of the successive numbers
and the sum of all the numbers is known. This book contains a large variety of data sets
that determine numbers. For example, if the sum of the squares of two numbers is known,
and the square of the difference of the numbers is known, the numbers can be found. The
four books of De numeris datis contain about 100 such results. These results admit a purely
algebraic interpretation. For example, in Book 4 Jordanus Nemorarius writes:

If a square with the addition of its root multiplied by a given number makes a given number,
then the square itself will be given. [p. 100]6

Where earlier mathematicians would have proved this proposition with examples,
Jordanus Nemorarius uses letters representing abstract numbers. The assertion is that there
is only one (positive) number x such that x2 + αx = β, and that x can be found if α and β

are given.

29.4. NICOLE D’ORESME

A work entitled Tractatus de latitudinibus formarum (Treatise on the Latitude of Forms)
was published in Paris in 1482 and ascribed to Oresme, but probably written by one of his
students. It contains descriptions of the graphical representation of “intensities.” This con-
cept finds various expressions in physics, corresponding intuitively to the idea of density. In
Oresme’s language, an “intensity” is any constant of proportionality. Velocity, for example,
is the “intensity” of motion.

We think of analytic geometry as the application of algebra to geometry. Its origins in
Europe, however, antedate the high period of European algebra by a century or more. The
first adjustment in the way mathematicians think about physical dimensions, an essential
step on the way to analytic geometry, occurred in the fourteenth century. The crucial idea
found in the representation of distance as the “area under the velocity curve” was that since
the area of a rectangle is computed by multiplying length and width and the distance traveled
at constant speed is computed by multiplying velocity and time, it follows that if one line
is taken proportional to time and a line perpendicular to it is proportional to a (constant)
velocity, the area of the resulting rectangle is proportional to the distance traveled.

Oresme considered three forms of qualities, which he labeled uniform, uniformly difform,
and difformly difform. We would call these classifications constant, linear, and nonlinear.
Examples are shown in Fig. 29.2, which can be found in another of Oresme’s works. Oresme
(or his students) realized that the “difformly difform” constituted a large class of qualities
and mentioned specifically that a semicircle could be the representation of such a quality.

The advantage of representing a distance by an area rather than a line appeared in the
case when the velocity changed during a motion. In the simplest nontrivial case the velocity

6This translation is my own and is intended to be literal; Hughes gives a smoother, more idiomatic translation on
p. 168.



TRIGONOMETRY: REGIOMONTANUS AND PITISCUS 331

Figure 29.2. Nicole Oresme’s classification of motions.

was uniformly difform. This is the case of constant acceleration. In that case, the distance
traversed is what it would have been had the body moved the whole time with the velocity it
had at the midpoint of the time of travel. This is the case now called uniformly accelerated
motion. According to Clagett (1968, p. 617), this rule was first stated by William Heytesbury
(ca. 1313–ca. 1372) of Merton College, Oxford around 1335 and was well known during
the Middle Ages. Boyer (1949, p. 83) says that the rule was stated around this time by
another fourteenth-century Oxford scholar named Richard Suiseth,7 known as Calculator
for his book Liber calculatorum. Suiseth shares with Oresme the credit for having proved
that the harmonic series (1 + 1

2 + 1
3 + · · · ) diverges.

The rule just stated is called the Merton rule. In his book De configurationibus qualitatum
et motuum, Oresme applied these principles to the analysis of such motion and gave a simple
geometric proof of the Merton Rule. He illustrated the three kinds of motion by drawing a
figure similar to Fig. 29.2. He went on to say that if a difformly difform quality was composed
of uniform or uniformly difform parts, as in the example in Fig. 29.2, its quantity could be
measured by (adding) its parts. He then pushed this principle to the limit, saying that if the
quality was difform but not made up of uniformly difform parts, say being represented by a
curve, then “it is necessary to have recourse to the mutual measurement of curved figures”
(Clagett, 1968, p. 410). This statement must mean that the distance traveled is the “area
under the velocity curve” in all three cases. Oresme unfortunately did not give any examples
of the more general case, but he could hardly have done so, since the measurement of figures
bounded by curves was still very primitive in his day.

29.5. TRIGONOMETRY: REGIOMONTANUS AND PITISCUS

In the late Middle Ages, the treatises translated into Latin from Arabic and Greek were
made the foundation for ever more elaborate mathematical theories.

29.5.1. Regiomontanus

Analytic geometry as we know it today would be unthinkable without plane trigonometry.
Latin translations of Arabic texts of trigonometry, such as the text of Nasir al-Din al-Tusi,
began to circulate in Europe in the late Middle Ages. These works provided the foundation
for such books as De triangulis omnimodis (On General Triangles) by Regiomontanus,

7Also known as Richard Swyneshed and as Swineshead with a great variety of first names. There is uncertainty
whether the works ascribed to this name are all due to the same person.
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Figure 29.3. The three basic trigonometric functions: The secant OB, which cuts the circle; the
tangent AB, which touches the circle; the sine CD, which is half of a chord.

published in 1533, more than half a century after the author’s death. This book contained
trigonometry almost in the form still taught. Book 2, for example, contains as its first
theorem the law of sines for plane triangles, which asserts that the sides of triangles are
proportional to the sines of the angles opposite them. The main difference between this
trigonometry and ours is that a sine remains a line rather than a ratio. It is referred to an
arc rather than to an angle. It was once believed that Regiomontanus discovered the law
of sines for spherical triangles (Proposition 16 of Book 4) as well,8 but we now know that
this theorem was known at least 500 years earlier to Muslim mathematicians whose work
Regiomontanus must have read.

29.5.2. Pitiscus

A more advanced book on trigonometry, which reworked the reasoning of Heron on the
area of a triangle given its sides, was Trigonometriæ sive de dimensione triangulorum libri
quinque (Five Books of Trigonometry, or, On the Size of Triangles), published in 1595
and written by the Calvinist theologian Bartholomeus Pitiscus (1561–1613). This was the
book that established the name trigonometry for this subject even though the basic functions
are called circular functions (Fig. 29.3). Pitiscus showed how to determine the parts into
which a side of a triangle is divided by the altitude, given the lengths of the three sides, or,
conversely, to determine one side of a triangle knowing the other two sides and the length
of the portion of the third side cut off by the altitude. To guarantee that the angles adjacent
to the side were acute, he stated the theorem only for the altitude from the vertex of the
largest angle.

Pitiscus’ way of deriving his fundamental relation was as follows. If the shortest side
of the triangle ABC is AC and the longest is BC, let the altitude to BC be AG, as in
Fig. 29.4. Draw the circle through C with center at A, so that B lies outside the circle,
and let the intersections of the circle with AB and BC be E and F , respectively. Then
extend BA to meet the circle at D, and connect CD. Then ∠BFE is the supplement of
∠CFE. But ∠EDC is also supplementary to ∠CFE, since the two are inscribed in arcs
that partition the circle. Thus, ∠BFE = ∠CDB, and so the triangles BCD and BEF are
similar. It follows that BD · BE = BF · BC, and since BD = AB + AD, BE = AB − AE,
AE = AC = AD, and CF = 2CG, we find

AB
2 − AC

2 = BC · BF = BC
2 − BC · CF = BC

2 − 2BC · CG .

8This law says that the sines of the sides of spherical triangles are proportional to the sines of their opposite angles.
(Both sides and angles in a spherical triangle are measured in great-circle degrees.)
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Figure 29.4. Pitiscus’ derivation of the proportions in which an altitude divides a side of a triangle.

Observe that CG = AC cos(∠ACB). When this substitution is made, we obtain what is
now known as the law of cosines:

AB
2 = AC

2 + BC
2 − 2BC · AC cos(∠C) .

Pitiscus also gave an algebraic solution of the trisection problem discovered by an earlier
mathematician named Jobst Bürgi (1552–1632). The solution had been based on the fact
that the chord of triple an angle is three times the chord of the angle minus the cube of the
chord of the angle. This relation makes no sense in terms of geometric dimension; it is a
purely numerical relation. It is interesting that it is stated in terms of chords, since Pitiscus
surely knew about sines.

29.6. A MATHEMATICAL SKILL: PROSTHAPHÆRESIS

Pitiscus needed trigonometry in order to do astronomy, especially to solve spherical tri-
angles. Since the computations in such problems often become rather lengthy, Pitiscus
discovered (probably in the writings of other mathematicians) a way to shorten the labor.
While the difficulty of addition and subtraction grows at an even, linear rate with the number
of digits being added, multiplying two n-digit numbers requires on the order of 2n2 separate
binary operations on integers. Thus the labor becomes excessive and error-prone for integers
with any appreciable number of digits. As astronomy becomes more precise, of course, the
number of digits to which quantities can be measured increases. Thus a need arose some
centuries ago for a shorter, less error-prone way of doing approximate computations.

The ultimate result of the search for such a method was the subject of logarithms. That
invention, however, required a new and different point of view in algebra. Before it came
along, mathematicians had found a way to make a table of sines serve the purpose that
was later fulfilled by logarithms. Actually, the process could be greatly simplified by using
only a table of cosines, but we shall follow Pitiscus, who used only a table of sines and
thus was forced to compute the complement of an angle where we would simply look up
the cosine. The principle is the same: converting a product to one or two additions and
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subtractions—hence the name prosthaphæresis, from prosthæresis (taking forward, that is,
addition) and aphæresis (taking away, that is, subtraction).

As just pointed out, the amount of labor involved in multiplying two numbers increases
in direct proportion to the product of the numbers of digits in the two factors, while the
labor of adding increases in proportion to the number of digits in the smaller number.
Thus, multiplying two 15-digit numbers requires over 200 one-digit multiplications, and
another 200 or so one-digit additions, while adding the two numbers requires only 15 such
operations (not including carrying). It was the large number of digits in the table entries
that caused the problem in the first place, but the key to the solution turned out to be in the
structural properties of the sine function.

There are hints of this process in several sixteenth-century works, but we shall quote just
one example. In his Trigonometria, first published in Heidelberg in 1595, Pitiscus posed
the following problem: To solve the proportion in which the first term is the radius, while
the second and third terms are sines, avoiding multiplication and division. The problem
here is to find the fourth proportional x, satisfying r : a = b : x, where r is the radius of the
circle and a and b are two sines (half-chords) in the circle. We can see immediately that
x = ab/r, but as Pitiscus says, the idea is to avoid the multiplication and division, since in
the trigonometric tables the time a and b might easily have seven or eight digits each.

The key to prosthaphæresis is the well-known formula

sin α sin(90◦ − β) = sin(α + β) + sin(α − β)

2
.

This formula is applied as follows: If you have to multiply two large numbers, find two
angles having the numbers as their sines. Replace one of the two angles by its complement.
Next, add the angles and take the sine of their sum to obtain the first term; then subtract
the angles and take the sine of their difference to obtain a second term. Finally, divide the
sum of these last two sines by 2 to obtain the product. To take a very simple example,
suppose that we wish to multiply 155 by 36. A table of trigonometric functions shows
that sin(8◦ 55′) = 0.15500 and sin(90◦ − 68◦ 54′) = 0.36000. Hence, since we moved the
decimal points a total of five places to the left in the two factors, we obtain

36 · 155 = 105 sin(77◦ 49′) + sin(−59◦ 59′)
2

= 97748 − 86588

2
= 5580.

In general, some significant figures will be lost in this kind of multiplication. Obviously,
no labor is saved in this simple example, but for large numbers this procedure really does
make things easier. In fact, multiplying even two seven-digit numbers would tax the patience
of most modern people, since it would require about 100 separate multiplications and
additions. A further advantage is that prosthaphæresis is less error-prone than multiplication.
Its advantages were known to the Danish astronomer Tycho Brahe (1546–1601),9 who used

9The formula for the product of two sines had been discovered in 1510 by Johann Werner (1468–1522). This
formula and the similar formula for cosines were first published in 1588 in a small book entitled Fundamentum
astronomicum written by Nicolai Reymers Baer (dates uncertain), known as Ursus, which is the Latin translation
of Baer. Brahe, however, had already noticed their application in spherical trigonometry and had been using them
during the 1580s. He even claimed credit for developing the technique himself. The origin of the technique of
prosthaphæresis is complicated and uncertain. A discussion of it was given by Thoren (1988).
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it in the astronomical computations connected with the precise observations he made at his
observatory during the latter part of the sixteenth century.

This process could be simplified by using the addition and subtraction formula for cosines
rather than sines. That formula is

cos α cos β = cos(α + β) + cos(α − β)

2
.

29.7. ALGEBRA: PACIOLI AND CHUQUET

The fourteenth century, in which Nicole d’Oresme made such remarkable advances in
geometry and nearly created analytic geometry, was also a time of rapid advance in algebra,
epitomized by Antonio de’ Mazzinghi (ca. 1353–1383). His Trattato d’algebra (Treatise on
Algebra) contains some complicated systems of linear and quadratic equations in as many
as three unknown (Franci, 1988). He was one of the earliest algebraists to move the subject
toward the numerical and away from the geometric interpretation of problems.

29.7.1. Luca Pacioli

In the fifteenth century, Luca Pacioli wrote Summa de arithmetica, geometrica, proportioni
et proportionalita (Encyclopedia of Arithmetic, Geometry, Proportion, and Proportional-
ity), which was closer to the elementary work of al-Khwarizmi and more geometrical in its
approach to algebra than was the work of Mazzinghi. Actually, (Parshall, 1988) the work
was largely a compilation of the works of Leonardo of Pisa, but it did bring the art of abbre-
viation closer to true symbolic notation. For example, what we now write as x − √

x2 − 36
was written by Pacioli as

1.co.m̃Rv.1.ce m̃36 .

Here co means cosa (thing), the unknown. It is a translation of the Arabic word used by
al-Khwarizmi. The abbreviation ce means censo (power), and Rv is probably a printed
version of Rx, from the Latin radix, meaning root.10 Pacioli’s work was both an indication
of how widespread knowledge of algebra had become by this time and an important element
in propagating that knowledge even more widely. The sixteenth-century Italian algebraists
who moved to the forefront of the subject and advanced it far beyond where it had been up
to that time had all read Pacioli’s treatise thoroughly.

29.7.2. Chuquet

According to Flegg (1988), on whose work the following exposition is based, there were
several new things in the Triparty. One is a superscript notation similar to the modern
notation for the powers of the unknown in an equation. The unknown itself is called the

10The symbol Rx should not be confused with the same symbol in pharmacy, which comes from the Latin recipe,
meaning take.
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premier or “first,” that is, power 1 of the unknown. In this work, algebra is called the rigle
des premiers “rule of firsts.” Chuquet listed the first 20 powers of 2 and pointed out that
when two such numbers are multiplied, their indices are added. Thus, he had a clear idea of
the laws of integer exponents. A second innovation in the Triparty is the free use of negative
numbers as coefficients, solutions, and exponents. Still another innovation is the use of some
symbolic abbreviations. For example, the square root is denoted R2 (R for the Latin radix,
or perhaps the French racine). The equation we would write as 3x2 + 12 = 9x was written
.3.2 p̄.12. egaulx a .9.1. Chuquet called this equation impossible, since its solution would
involve taking the square root of − 63.

His instructions are given in words. For example (Struik, 1986, p. 62), consider the
equation

R242
. p̃.41p̃.21

. p̃.1 egaulx a .100,

which we would write

√
4x2 + 4x + 2x + 1 = 100.

Chuquet says to subtract .21
. p̃.1 from both sides, so that the equation becomes

R242
. p̃.41 egaulx a .99m̃.21

. .

Next he says to square, getting

42
. p̃.41 egaulx a 9801.m̃.3961

. p̃.42
. .

Subtracting 42
. (that is, 4x2) from both sides and adding 3961

. to both sides then yields

4001
. egaulx a .9801. .

Thus x = 9801/400.
Chuquet’s approach to algebra and its application can be gathered from one of the

illustrative problems in the second part (Problem 35). This problem tells of a merchant who
buys 15 pieces of cloth, spending a total of 160 ecus. Some of the pieces cost 11 ecus each,
and the others 13 ecus. How many were bought at each price?

If x is the number bought at 11 ecus apiece, this problem leads to the equation 11x +
13(15 − x) = 160. Since the solution is x = 17 1

2 , this means the merchant bought −2 1
2

pieces at 13 ecus. How does one set about buying a negative number of pieces of cloth?
Chuquet said that these 2 1

2 pieces were bought on credit!

PROBLEMS AND QUESTIONS

Mathematical Problems

29.1. Carry out Leonardo’s description of the way to find two numbers the sum of whose
squares is a square that is the sum of two other given squares in the particular
case when the given numbers are .a. = 5 and .b. = 12 (the sum of whose squares
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is 169 = 132). Take .de. = 8 and .ez. = 15. Draw the right triangle described by
Leonardo, and also carry out the numerical computation that produces the new pair
for which the sum of the squares is again 169.

29.2. Use Pitiscus’ law of cosines to find the third side of a triangle having sides of length 6
cm and 8 cm and such that the altitude to the side of length 8 cm divides it into lengths
of 5 cm and 3 cm. (There are two possible triangles, depending on the orientation.)

29.3. Use prosthaphæresis to find the product 829.038 × 66.9131. (First write this product
as 105 × 0.829038 × 0.669131. Find the angles that have the last two numbers as
cosines, and use the addition and subtraction formula for cosines given above.)

Historical Questions

29.4. What parts of the algebraic work of Leonardo of Pisa were compilations of work in
earlier sources, and what parts were advances on that earlier work?

29.5. In what ways did the geometric work of Nicole of Oresme prefigure modern analytic
geometry?

29.6. How did Regiomontanus and Pitiscus change the way mathematicians thought about
trigonometry? How did their trigonometry continue to differ from what we use today?

Questions for Reflection

29.7. Was there scientific value in making use of the real (irrational, infinitely precise)
number �, as the Bravais brothers did, even though no actual plant grows exactly
according to the rule they stated? Why wouldn’t a rational approximation have done
just as well?

29.8. How did the notion of geometric dimension (length, area, volume) limit the use
of numerical methods in geometry? How did Oresme’s latitude of forms help to
overcome this limitation?

29.9. Does it make sense to interpret the purchase of a negative number of items as an
amount bought on credit? Would it be better to interpret such a “purchase” as returned
merchandise?



CHAPTER 30

Sixteenth-Century Algebra

Several important innovations in algebra and computation occurred during the sixteenth and
early seventeenth centuries. In Italy, cubic and quartic equations were solved. In France,
a new kind of notation made it possible to discuss equations in general without having to
resort to specific examples, and in Scotland the discovery of logarithms reduced the labor
involved in long computations.

30.1. SOLUTION OF CUBIC AND QUARTIC EQUATIONS

In Europe, algebra was confined to linear and quadratic equations for many centuries,
whereas the Chinese and Japanese had not hesitated to attack equations of any degree. The
difference in the two approaches is a result of different ideas of what constitutes a solution.
This distinction is easy to make nowadays: The European mathematicians were seeking a
sequence of arithmetic operations, including root extractions, that could be applied to the
coefficients of a polynomial equation in order to produce a root, what is called solution
by radicals, while the Chinese and Japanese were seeking the decimal expansions of real
roots, one digit at a time.

The Italian algebraists of the early sixteenth century made advances in the search for a
general algorithm for solving higher-degree equations. We discussed the interesting personal
aspects of the solution of cubic equations in Chapter 29. Here we concentrate on the technical
aspects of the solution. Because the notation of the time is rather cumbersome, on this
subject we are going to use some anachronistic modern notation in order to explain the
solution.

The verses Tartaglia had memorized (see Chapter 28) say, in modern language, that to
solve the equation x3 + px = q for x, one should look for two numbers u and v satisfying
u − v = q, uv = (p/3)3. The problem of finding u and v is that of finding two numbers
given their difference and their product; and, of course, this is merely a matter of solving
a quadratic equation, a problem that had already been completely solved some 2500 years
earlier. Once this quadratic has been solved, the solution of the original cubic is x = 3

√
u −

3
√

v. The solution of the cubic has thus been reduced to solving a quadratic equation, taking
the cube roots of its two roots, and subtracting. Cardano illustrated with the case of “a cube
and six times the side equal to 20.” Using his complicated rule (complicated because he

The History of Mathematics: A Brief Course, Third Edition. Roger L. Cooke.
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stated it in words), he gave the solution as

3
√√

108 + 10 − 3
√√

108 − 10 .

He did not add that this number equals 2.

30.1.1. Ludovico Ferrari

Cardano’s student Ludovico Ferrari worked with him in the solution of the cubic, and be-
tween them they had soon found a way of solving certain fourth-degree equations. Ferrari’s
solution of the quartic was included near the end of Cardano’s treatise Ars magna. Counting
cases as for the cubic, one finds a total of 20 possibilities. The principle in most cases is the
same, however. The idea is to make a perfect square in x2 equal to a perfect square in x by
adding the same expression to both sides. Cardano gives the example

60x = x4 + 6x2 + 36.

It is necessary to add to both sides an expression rx2 + s to make them squares, that is, so
that both sides of

rx2 + 60x + s = x4 + (6 + r)x2 + (36 + s)

are perfect squares. Now the condition for this to happen is well known: ax2 + bx + c is a
perfect square if and only if b2 − 4ac = 0. Hence we need to have simultaneously

3600 − 4sr = 0, (6 + r)2 − 4(36 + s) = 0.

Solving the second of these equations for s in terms of r and substituting in the first leads
to the equation

r3 + 12r2 = 108r + 3600.

This is a cubic equation called the resolvent cubic. Once it is solved, the original quartic
breaks into two quadratic equations upon taking square roots and adding an ambiguous
sign.

A few aspects of the solution of cubic and quartic equations should be noted. First,
the problem is not a practical one. Second, the Cardano recipe for solving an equation
sometimes gives the solution in a rather strange form. For example, Cardano says that the

solution of x3 + 6x = 20 is
3
√√

108 + 10 − 3
√√

108 − 10. The expression is correct, but
can you tell at a glance that it represents the number 2?

Third, the procedure does not always seem to work. For example, the equation x3 + 6 =
7x has to be solved by guessing a number that can be added to both sides so as to produce
a common factor that can be canceled out. The number in this case is 21, but there is no
algorithm for finding such a number.1 For equations of this type, the algebraic procedure

1There is an algorithm for finding all rational solutions of an equation with rational coefficients; but when the
roots are irrational, this problem remains.
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described by Cardano for finding x involves square roots of negative numbers. This was
the first time mathematicians had encountered a need for such roots. When they occur in
the solution of a quadratic equation, the roots themselves are complex numbers, making
it possible to say that the equation simply has no solution. In the case of cubic equations
with real coefficients, however, the algebraic procedures lead to complex numbers precisely
when there are three real roots. Cardano tried to make some sense out of this case, pointing
out that if one imagined a solution, it was possible to find solutions to quadratic equations
that had previously been believed to have no roots. He gave as an example the problem of
finding two numbers whose sum is 10 and whose product is 40, in other words, solving
the quadratic equation x2 − 10x + 40 = 0, and he gave the solutions as 5 + √−15 and
5 − √−15. Thus, under the influence of algebra, the stock of numbers was enlarged to
include negative numbers (called false roots at first) and imaginary and complex numbers.

The case of three real roots came to be known as the irreducible case of the cubic.
Strenuous efforts were made to avoid the use of complex numbers in this case, but care-
ful analysis (see Chapter 37) showed that they are unavoidable. The difference between
cubic and quadratic equations shows up in the fact that extracting the square root, and
hence also the fourth root, of a complex number can be reduced to repeated extractions
of the square roots of positive real numbers. But no such reduction exists for cube roots.
When the equation (x + yi)3 = a + bi is written with real and imaginary parts separated,
the result is generally a cubic equation for x having three distinct roots and a cubic equation
for y having three distinct roots. Any attempt to remove complex numbers from the case
when there are three real roots merely replaces one such equation with two others.

30.2. CONSOLIDATION

There were two natural ways to build on what had been achieved in algebra by the end of the
sixteenth century. One was to find a notation that could unify equations so that it would not
be necessary to consider so many different cases and so many different possible numbers
of roots. The other was to solve equations of degree five and higher. We shall discuss the
first of these here, reserving the second for Chapter 37.

All original algebra treatises written up to and including the treatise of Bombelli (to be
discussed in Chapter 41) are very tiresome for the modern student, who is familiar with
symbolic notation. For that reason we have sometimes allowed ourselves the convenience
of modern notation when doing so will not distort the thought process involved too severely.
In the years between 1575 and 1650, several innovations in notation were introduced that
make treatises written since that time appear essentially modern. The symbols + and −
were originally used in bookkeeping in warehouses to indicate excess and deficiencies;
they first appeared in a German treatise on commercial arithmetic in 1489 but were not
widely used in the rest of Europe for another century. The sign for equality was intro-
duced by a Welsh medical doctor, physician to the short-lived Edward VI, named Robert
Recorde (1510–1558). His symbol was a very long pair of parallel lines, because, as he said,
“noe .2. thynges, can be moare equalle.” The use of abbreviations for the various powers of
the unknown in an equation was eventually achieved, but there were two other needs to be
met before algebra could become a mathematical subject on a par with geometry: a unified
way of writing equations and a concept of number in which every equation would have a
solution. The use of exponential notation and grouping according to powers was discussed
by Simon Stevin, who was mentioned in Chapter 29. Stevin used the abbreviation M for
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the first unknown in a problem, sec for the second, and ter for the third. Thus (see Zeuthen,
1903, p. 95), what we would write as the equation

6x3

y
÷ 2xz2 = 3x2

yz2

was expressed as follows: If we divide

6 M ©3 D sec ©1 by 2 M ©1 ter ©2 ,

we obtain

3 M ©2 D sec ©1 D ter ©2 .

Although notation still had far to go, from the modern point of view, at least it was no longer
necessary to use a different letter to represent each power of the unknown in a problem, as
Leonardo of Pisa had done in his Liber quadratorum.

30.2.1. François Viète

The French lawyer François Viète (1540–1603), who worked as tutor in a wealthy family
and later became an advisor to Henri de Navarre (the future king Henri IV), found time
to study Diophantus and to introduce his own ideas into algebra. Viète is credited with
several crucial advances in the subject. In his book Artis analyticæ praxis (The Practice
of the Analytic Art) he begins by giving the rules for powers of binomials (in words).
For example, he describes the fifth power of a binomial as “the fifth power of the first
[term], plus the product of the fourth power of the first and five times the second, . . . .”
Viète’s notation was slightly different from ours, but is more recognizable to us than that
of Stevin. He would write the equation A3 + 3BA = D, where the vowel A represented
the unknown and the consonants B and D were taken as known, as follows (Zeuthen,
1903, p. 98):

A cubus + B planum in A3 aequatur D solido.

As this quotation shows, Viète appears to be following the tedious route of writ-
ing everything out in words and to be adhering to the requirement that all the terms
in an equation be geometrically homogeneous. In other words, the notion of quantity
as a pure number, as opposed to a line or a plane or solid region, had not yet been
introduced.

This introduction is followed by five books of zetetics (research, from the Greek word
zēteı̂n, meaning seek). The mention of “roots” in connection with the binomial expansions
was not accidental. Viète studied the relation between roots and coefficients in general
equations. By using vowels to represent unknowns and consonants to represent data for a
problem, Viète finally achieved what was lacking in earlier treatises: a convenient way of
talking about general data without having to give specific examples. Consonants could be
thought of as representing numbers that would be known in any particular application of a
process, but were left unspecified for purposes of describing the process itself. We might
call them parameters. His first example was the equation A2 + AB = Z2, in other words, a
standard quadratic equation. According to Viète, these three letters are associated with three
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numbers in direct proportion, Z being the middle, B the difference between the extremes,
and A the smallest number. In our terms, Z = Ar and B = Ar2 − A. Thus, the general
problem reduces to finding the smallest of three numbers A, Ar, Ar2 given the middle value
and the difference of the largest and smallest. Viète had already shown how to do that in
his books of zetetics.

This analysis showed Viète the true relation between the coefficients and the roots. For
example, he knew that in the equation x3 − 6x2 + 11x = 6, the sum and product of the roots
must be 6 and the sum of the products taken two at a time must be 11. This observation
still did not enable him to solve the general cubic equation, but he did study the problem
geometrically and show that any cubic could be solved, provided that one could solve two
of the classical problems of antiquity: constructing two mean proportionals between two
given lines and trisecting any angle. As he concluded at the end of his geometric chapter:
“It is very worthwhile to note this.” In fact, by assuming the trisection of a general angle,
Viète was able to avoid the annoying complex numbers that arose in the Cardano procedure
for solving x3 + px + q = 0 when it has three distinct real roots. In this case, the cubic

discriminant p3

27 + q2

4 , whose square root needs to be taken, is negative, and that is how the
complex numbers arise.

Although complex numbers began to gain acceptance after the work of Cardano and
Bombelli, attempts were still made to solve the irreducible case using only real numbers.
Viète’s method of doing so was the most successful. It is a transcendental solution rather
than an algebraic one, since it involves the cosine function.

The classical problem of trisecting the angle reduces to a cubic equation through the
trigonometric identity

cos3
(θ

3

)
− 3

4
cos

(θ

3

)
− 1

4
cos θ = 0 .

This cubic equation generally has three real roots in the variable y = cos(θ/3).
Viète’s technique for solving the equation x3 + px + q = 0 when there are three real

roots involves “fitting” a scaled version of x to this basic equation for the cosine. Specifically,
one must set y = (√

3/(2
√−p)

)
x. (The negative sign is necessary because the existence

of three distinct real roots implies that p < 0.) The result is the equation

y3 − 3

4
y − 1

4

3
√

3q

2p
√−p

= 0 .

The number y = cos(θ/3) will be a solution of this equation if the angle θ satisfies

cos θ = 3
√

3q

2p
√−p

.

There will be such an angle, provided that the right-hand side of this last equation lies be-
tween−1 and+1; that is, its square is at most 1. That condition amounts to 27q2/(−4p3) ≤ 1
and can be rewritten as q2/4 + p3/27 ≤ 0. But the left-hand side of this inequality is pre-
cisely the number whose square root must be taken when following the Cardano procedure!
In other words, this solution works precisely in the irreducible case. Thus, we have a non-



LOGARITHMS 343

algebraic (transcendental) solution of the irreducible case of the cubic that does not involve
any complex numbers.

30.3. LOGARITHMS

While Viète was revolutionizing algebraic notation, the problem of simplifying laborious
multiplications, divisions, root extractions, and the like, was being attacked at the same
time in another part of the world and from another point of view. The connection between
geometric and arithmetic proportion had been noticed earlier by Chuquet, but the prac-
tical application of this fact had never been worked out. The Scottish laird John Napier,
Baron of Murchiston (1550–1617), tried to clarify this connection and apply it. His work
consisted of two parts: (a) a theoretical part based on a continuous geometric model and
(b) a computational part involving a discrete (tabular) approximation of the continuous
model. The computational part was published in 1614. However, Napier hesitated to pub-
lish his explanation of the theoretical foundation. Only in 1619, two years after his death,
did his son publish the theoretical work under the title Mirifici logarithmorum canonis de-
scriptio (A Description of the Marvelous Rule of Logarithms). The word logarithm means
ratio number, and it was from the concept of ratios (geometric progressions) that Napier
proceeded.

To explain his ideas, Napier used the concept of moving points. He imagined one point
P moving along a straight line from a point T toward a point S with decreasing velocity
such that the ratio of the distances from the point P to S at two different times depends only
on the difference in the times. (Actually, he called the line ending at S a sine and imagined
it shrinking from its initial size TS, which he called the radius.) A second point is imagined
as moving along a second line at a constant velocity equal to that with which the first point
began. These two motions are accurately drawn in Fig. 30.1.

The first point sets out from T at the same time and with the same speed with which
the second point sets out from t. The first point, however, slows down, while the second
point continues to move at constant speed. The figure shows the locations reached at various
times by the two points: When the first point is at A, the second is at a; when the first point
is at B, the second is at b; and so on. The point moving with decreasing velocity requires a
certain amount of time to move from T to A, the same amount of time to move from A to
B, from B to C, and from C to D. The geometric decrease means that TS/AS = AS/BS =
BS/CS = CS/DS.

The first point will never reach S, since it keeps slowing down, and its velocity at S

would be zero. The second point will travel indefinitely far, given enough time. Because the
points are in correspondence, the division relation that exists between two positions in the
first case is mirrored by a subtractive relation in the corresponding positions in the second
case. Thus, this diagram essentially changes division into subtraction and multiplication

Figure 30.1. Geometric basis of logarithms.
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into addition. The top scale in Fig. 30.1 resembles a slide rule, and this resemblance is
not accidental: A slide rule is merely an analog computer that incorporates a table of
logarithms.

Napier’s definition of the logarithm can be stated in the modern notation of functions
by writing log(AS/TS) = 1 = ta/ta, log(BS/TS) = tb/ta, and so on; in other words, the
logarithm increases as the “sine” decreases. These considerations contain the essential idea
of logarithms. The quantity Napier defined is not the logarithm as we know it today. If
points T , A, and P correspond to points t, a, and p, then

tp = logk

(
PS

TS

)
· ta ,

where k = AS/TS. For the computational table that he compiled, Napier took k =
0.9999999 = 1 − 10−7.

30.3.1. Arithmetical Implementation of the Geometric Model

The geometric model just discussed is theoretically perfect, but of course one cannot put
the points on a line into a table of numbers. It is necessary to construct the table from a
finite set of points; and these points, when converted into numbers, must be rounded off.
Napier analyzed the maximum errors that could arise in constructing such a table. In terms
of Fig. 30.1, he showed that ta satisfies

TA < ta < TA
(

1 + TA

AS

)
.

These inequalities are simple to prove. The first one is obvious, since starting from time
t = 0, the upper point moves from T to A with velocity that is smaller than the velocity
of the point below it, which is moving from t to a. As for the second, we imagine the two
motions extended into the time before the lower point was at t by the same amount of time
that was required for the points to reach A and a. At that earlier time, the upper point would
have been at a point U, where US/TS = TS/AS. Consequently UT/TS = US/TS − 1 =
TS/AS − 1 = TA/AS. Since the velocity of the upper point was larger throughout this time
interval, ta = tu < UT = TS(TA/AS) = TA

(
1 + TA/AS

)
.

The tabular value for the logarithm of AS/TS can be taken as the average of the two
extremes, that is, as TA

(
1 + TA/(2AS)

)
, and the relative error will be very small when TA

is small.
Napier’s death at the age of 67 prevented him from making some improvements in his

system, which are sketched in an appendix to his treatise. These improvements consist of
scaling in such a way that the logarithm of 1 is 0 and the logarithm of 10 is 1, which is
the basic idea of what we now call common logarithms. These further improvements to the
theory of logarithms were made by Henry Briggs (1561–1630), who was in contact with
Napier for the last two years of Napier’s life and wrote a commentary on the appendix to
Napier’s treatise. As a consequence, logarithms to base 10 came to be known as Briggsian
logarithms.
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Ci
C

1

1 1 2 3 4 5 6 7 8 9

1D 1 2 3 4 5 6 7 8 9 2

c

9 8 7 6

Portions of the C, D, and CI scales of a slide rule. Adjacent numbers on the C and D scales are in
proportion, so that 1 : 1.23 :: 1.3 : 1.599 :: 1.9 : 2.337. Thus, the position shown here illustrates the
multiplication 1.23 · 1.3 = 1.599, the division 1.722 ÷ 1.4 = 1.23, and many other computations.
Some visual error is inevitable. The CI (inverted) scale gives the reciprocals of the numbers on the
C scale, so that division can be performed as multiplication, only using the CI scale instead of the C
scale. Decimal points have to be provided by the user.

30.4. HARDWARE: SLIDE RULES AND CALCULATING MACHINES

The fact that logarithms change multiplication into addition and that addition can be per-
formed mechanically by sliding one ruler along another led to the development of rulers
with the numbers arranged in proportion to their logarithms (slide rules).

30.4.1. The Slide Rule

When one such scale is slid along a second, the numbers pair up in proportion to the distance
slid, so that if 1 is opposite 5, then 3 will be opposite 15. Multiplication and division are
then just as easy to do as addition and subtraction would be. The process is the same for
both multiplication and division, as it was in the Egyptian graphical system, also based
on proportion. Napier designed a system of rods for this purpose. The twentieth-century
refinement of this idea is the slide rule.

A variant of this linear system was a system of sliding circles. Such a circular slide rule
was described in a pamphlet entitled Grammelogia written in 1630 by Richard Delamain
(1600–1644), a mathematics teacher living in London. Delamain urged the use of this
device on the grounds that it made it easy to compute compound interest. Two years later
the English clergyman William Oughtred (1574–1660) produced a similar description of a
more complex device. Oughtred’s circles of proportion, as he called them, gave sines and
tangents of angles in various ranges on eight different circles. Because of their portability,
slide rules remained the calculating machine of choice for engineers for 350 years, and
improvements were still being made in them in the 1950s. Different types of slide rule even
came to have different degrees of prestige, according to the number of scales incorporated
into them.

30.4.2. Calculating Machines

Slide rule calculations are floating-point computations—that is, the user has to keep track
of the location of the decimal point—with limited precision and unavoidable roundoff error.
When computing with integers, we often need an exact answer. To achieve that result, adding
machines and other digital devices have been developed over the centuries. An early design
for such a device with a series of interlocking wheels can be found in the notebooks of
Leonardo da Vinci (1452–1519). Similar machines were designed by Blaise Pascal (1623–
1662) and Gottfried Wilhelm Leibniz (1646–1716). Pascal’s machine was a simple adding
machine that depended on turning a crank a certain number of times in order to find a sum.
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A replica of Pascal’s adding machine constructed by Roberto Guatelli (1904–1993). Copyright
© Richard Marks. Courtesy of The Computer History Museum.

Leibniz used a variant of this machine with a removable set of wheels that would multiply,
provided that the user kept count of the number of times the crank was turned.

PROBLEMS AND QUESTIONS

Mathematical Problems

30.1. Verify (using a calculator) that the expression given for a root of x2 + 6x = 20 really
is the number 2. If you didn’t have a calculator, how would you demonstrate this fact
convincingly to someone?

30.2. Solve the problem that Viète solved, finding all three of the numbers A, Ar, and
Ar2, given that the middle term Ar is 15 and the difference between the largest and
smallest is 40.

30.3. Find 5
√

53 by first finding the logarithm of 53, dividing it by 5, and taking the an-
tilogarithm of the result. Use a calculator to do it in two ways, first with the LOG
function, so that the antilogarithm of x is 10x; then use the LN function, so that
the antilogarithm of x is ex. Finally, check your work by computing 531/5 = 530.2

directly on the calculator.

Historical Questions

30.4. Who were the main figures involved in the solution of cubic and quartic equations,
and what did each of them do?

30.5. What contributions to algebra are due to François Viète?

30.6. In what way were logarithms an improvement on prosthaphæresis? Are there any
situations in which one might prefer prosthaphæresis?

Questions for Reflection

30.7. The general problem of solving a quadratic equation with complex coefficients re-
duces through the quadratic formula to the extraction of one square root (which may



PROBLEMS AND QUESTIONS 347

be the square root of a complex number) followed by simple additions or subtrac-
tions and division. Extracting the square root of a complex number a + bi amounts
to solving simultaneously the equations x2 − y2 = a and 2xy = b, and these can
be reduced to taking two square roots of positive real numbers. Hence there exists a
purely real procedure for solving any quadratic equation when the roots are real. Tak-
ing the cube root of a + bi, however, means simultaneously solving x3 − 3xy2 = a,
3x2y − y3 = b. In general, there are three pairs of real numbers (x, y) that will sat-
isfy these two equations simultaneously, but finding them, as noted above, requires
introducing complex numbers yet again. In what sense, then, has the general cubic
equation been solved?

30.8. Why was the introduction of special letters to denote constants and variables an
important advance in algebra?

30.9. We have seen that multiplication and division can be reduced to addition and sub-
traction in two different ways, namely prosthaphæresis and logarithms. What can
you infer from this fact about the relation between trigonometric, logarithmic, and
exponential functions?



CHAPTER 31

Renaissance Art and Geometry

It is said that Euclid’s geometry is tactile rather than visual, since the theorems tell you what
you can measure and feel with your hands, not what your eye sees. It is a commonplace that
a circle seen from any position except a point on the line through its center perpendicular
to its plane appears to be an ellipse. If figures did not distort in this way when seen in
perspective, we would have a very difficult time navigating through the world. We are so
accustomed to adjusting our judgments of what we see that we usually recognize a circle
automatically when we see it, even from an angle. The distortion is an essential element of
our perception of depth.

31.1. THE GREEK FOUNDATIONS

Renaissance geometers and artists built on a foundation that the Greeks had laid for them
in the areas of regular and semiregular solids, conic sections, and perspective. These last
two have a particularly intimate relationship.

To take the simpler subject first, Euclid had discussed the five regular solids in the last
three books of his Elements, finding the proportions between their edges and the radii of their
inscribed and circumscribed spheres and showing that there can be only five such solids.
He also discussed some semiregular solids such as prisms and pyramids, which would
be needed later in applications of the method of exhaustion to spheres. The Renaissance
geometers and artists expanded the limited circle of ideas around regular polyhedra to a
large number of semiregular figures.

Euclid also wrote a book on optics in which he discussed the apparent reduction in size
of objects as they move away from the observer. He used his “tactile” geometry to compare
their actual sizes with their apparent sizes. The apparent sizes of the two equal vertical lines
DG and AB in Fig. 31.1, as seen by the eye located at E, is measured by the angles they
subtend, and thus are proportional to the arcs TH and TZ or, equivalently, to the circular
sectors THE and TZE. But DE : BE :: DZ : BA :: DZ : DG. This last ratio, in turn, is
proportional to the areas of the triangles EDZ and EDG. But EDZ is smaller than sector
TZE, while EZG is larger than sector ZHE. It follows that EZG : EDZ > ZHE : TZE,
and adding 1 to both sides implies that EDG : EDZ > THE : TZE. Thus, the ratio of the
apparent size of DG to the apparent size of AB, which is the ratio THE : TZE, is smaller
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Figure 31.1. Apparent shrinkage of a vertical line as its distance from the observer increases.

than the ratio of EDG to EDZ, and hence also smaller than the ratio of BE to DE. In other
words, the apparent “shrinkage” with distance is not inversely proportional to the distance.
An object moved so as to double its distance from the eye appears to be more than half of
its previous size.

Artists, especially those of the Italian Renaissance, used these principles to create paint-
ings that were astoundingly realistic. As Leonardo da Vinci (1452–1519) said, “the primary
task of a painter is to make a flat plane look like a body seen in relief projecting out of it.”
Many records of the principles by which this effect was achieved have survived, includ-
ing treatises of Leonardo himself and a painter’s manual by Albrecht Dürer (1471–1528),
first published in 1525. Over a period of several centuries, these principles gave rise to the
subject now known as projective geometry.

31.2. THE RENAISSANCE ARTISTS AND GEOMETERS

The revival of interest in ancient culture in general during the Renaissance naturally carried
with it an interest in geometry. The famous artist Piero della Francesca (ca. 1410–1492) was
inspired by the writings of Leonardo of Pisa and others to write treatises on arithmetic and
the five regular solids. The scholar Luca Pacioli (1445–1517), who was influenced by Piero
della Francesca and was a friend of Leonardo da Vinci, published a comprehensive treatise
on arithmetic and geometry in 1494, and a second book, De divina proportione, in 1509.
He gave the name Divine Proportion to what is now called the Golden Section, the division
of a line into mean and extreme ratios. Interest in the five regular solids branched out into
an interest in semiregular solids. Leonardo da Vinci designed wooden models of these,
which were depicted in Pacioli’s treatise. A typical example is the truncated icosahedron,
formed by cutting off the 12 vertices of an icosahedron so as to produce 12 pentagons. If
the vertices are cut off at just the right distance, the middle portions of the edges of the
original triangles will be exactly equal to the sides of the pentagons that replace the vertices
of the triangles, so that the remaining portion of the triangular face will become a regular
hexagon. The resulting figure, consisting of 20 hexagons and 12 pentagons, is the truncated
icosahedron.

The regular and semiregular solids formed an important part of Dürer’s 1525 manual for
painters. He showed how to cut out a paper model of a truncated icosahedron (Fig. 31.2).
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Figure 31.2. Dürer’s paper model of a truncated icosahedron.

The solid, although not the name, has become very familiar to modern people through its
application in athletics (the ball used in playing soccer) and organic chemistry (a molecule
of C60, known as buckminsterfullerene).

31.3. PROJECTIVE PROPERTIES

Projective geometry studies the relations among figures that remain constant in perspective.
Among these things are points and lines, the number of intersections of lines and circles,
and consequently also such things as parallelism (but not always, unless certain “points
at infinity” remain at infinity) and tangency, but not things that depend on shape, such as
angles or circles. Like the result from Euclid’s Optics discussed above, its methods come
out of Euclidean geometry, but explore new implications of the Euclidean definitions and
assumptions.
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Two modern applications of the truncated icosahedron: a molecule of C60, buckminsterfullerene (a
“buckyball”); a soccer ball.

A circle seen in perspective is an ellipse.

A nonobvious property that is preserved in projection is what is now called the cross-
ratio of four points on a line.1 If A, B, C, and D are four points on a line, with B and C

both between A and D and C between B and D, their cross-ratio is

(A, B, C, D) = AC · BD

AD · BC
.

If the rays PA, PB, PC, and PD from a point P intersect a second line in points A′, B′, C′,
and D′, the cross-ratio of these new points is the same as that of the original four points.
Coolidge (1940, p. 88) speculated that Euclid may have known about the cross-ratio, and
he asserted that the early second-century mathematician Menelaus did know about it. The
concept was introduced by Pappus in Book 7 of the Synagōgē (Jones, 1986). It is preserved

1Although this ratio has been used for centuries, the name it now bears in English seems to go back only to an
1869 treatise on dynamics by William Kingdon Clifford (1845–1879). Before that it was called the anharmonic
ratio, a phrase translated from an 1837 French treatise by Michel Chasles (1809–1880).
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by fractional-linear transformations such as those introduced by Newton (see Chapter 38)
and is used in defining distance in the models of non-Euclidean geometry (see Chapter 40).

A geometric description of perspective was written by Leon Battista Alberti (1404–1472)
in 1435 in a Latin treatise entitled De pictura, reworked by him in Italian the following year
as Della pittura and published posthumously in 1511. If the eye is at fixed height above a
horizontal plane, parallel horizontal lines in that plane receding from the imagined point
where the eye is located can be drawn as rays emanating from a point (the vanishing point)
at the same height above the plane, giving the illusion that the vanishing point is infinitely
distant. The application to art is obvious: Since the canvas can be thought of as a window
through which the scene is viewed, if you want to draw parallel horizontal lines as they would
appear through a window, you must draw them as if they all converged on the vanishing
point. Thus, a family of lines having a common property (being parallel to one another)
projects to a family having a different common property (passing through a common point).
Obviously, lines remain lines under such a projection. However, perpendicular lines will
not remain perpendicular, nor will circles remain circles.

31.3.1. Girard Desargues

The mathematical development of the theory of projection began with the work of Girard
Desargues (1593–1662). In 1636, Desargues published a pamphlet with the ponderous
title An Example of One of the General Methods of S.G.D.L.2 Applied to the Practice of
Perspective Without the Use of Any Third Point, Whether of Distance or Any Other Kind,
Lying Outside the Work Area. The reference to a “third point” was aimed at the primary
disadvantage of Alberti’s rules, the need to use a point not on the canvas in order to get
the perspective correct. Three years later he produced a Rough Draft of an Essay on the
Consequences of Intersecting a Cone with a Plane. In both works, written in French rather
than the more customary Latin, he took advantage of the vernacular to invent new names, not
only for the conic sections,3 as Dürer had done, but also for a large number of concepts that
called attention to particular aspects of the distribution and proportions of points and lines.
He was particularly fond of botanical names4 and included tree, trunk, branch, shoot, and
stem, among many other neologisms. Although the new language might seem distracting,
using standard terms for what he had in mind would have been misleading, since the theory
he was constructing unified concepts that had been distinct before. For example, he realized
that a cylinder could be regarded as a limiting case of a cone, and so he gave the name
scroll to the class consisting of both surfaces. Desargues had very little need to refer to any
specific conic section; his theorems applied to all of them equally. As he said (Field and
Gray, 1987, p. 102—I have changed their roll to scroll):

The most remarkable properties of the sections of a scroll are common to all types, and the
names Ellipse, Parabola, and Hyperbola have been given them only on account of matters
extraneous to them and to their nature.

2Sieur Girard Desargues Lyonnois.
3He gave the standard names to the conic sections themselves, but suggested deficit, equalation, and exceedence
as alternatives.
4Ivins (1947, cited by Field and Gray, 1987, p. 62) suggested that these names were inspired by similar names in
Alberti’s treatise.
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Figure 31.3. Menelaus’ theorem for a plane triangle.

Desargues was among the first to regard lines as infinitely long, in the modern way. In
fact, he opens his treatise by saying that he will consider both the infinitely large and the
infinitely small in his work, and he says that “in this work every straight line is, if necessary,
taken to be produced to infinity in both directions.” He also had the important insight that
a family of parallel lines and a family of lines with a common point of intersection have
similar properties. He said that lines belonged to the same order5 if either they all intersected
at a common point or were all mutually parallel. This term was introduced “[to] indicate
that in the one case as well as in the other, it is as if they all converged to the same place”
[emphasis added].

Although Desargues’ terminology was messy, his Rough Draft contained some elegant
theorems about points on conics. Two significant results are the following6:

First: If four lines in a plane intersect two at a time, and the points of intersection on the
first line are A, B, and C, with B between A and C, and the lines through A and B intersect
in the point D, those through A and C in E and those through B and C in F , then

BD

BF
= AD

AE
· CE

CF
. (31.1)

The situation here was described by Pappus, and the result is also known as Menelaus’
theorem. The proof involves drawing the line through E parallel to AB, meeting BD in a
point G, and then using the similarity of triangles EGF and CBF and of triangles DEG

and DAB, as in Fig. 31.3. From Eq. (31.1) it is easy to deduce that BD · AE · CF =
BF · AD · CE. Klein (1926, p. 80) attributes this form of the theorem to Lazare Carnot
(1753–1823).

Second: The converse of this statement is also true, and can be interpreted as stating
that three points lie on a line. That is, if ADB is a triangle, and E and F are points on AD

and BD respectively such that AD : AE < BD : BF , then the line through E and F meets

5Now called a pencil or sheaf.
6To keep the reader’s eye from getting too tangled up, we shall use standard letters in the statement and figure
rather than Desargues’ weird mixture of uppercase and lowercase letters and numbers, which almost seems to
anticipate the finest principles of computer password selection.
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Figure 31.4. Desargues’ theorem for triangles lying in different planes.

the extension of AB on the side of B in a point C, which is characterized as the only point
on the line EF satisfying Eq. (31.1).

In 1648 the engraver Abraham Bosse (1602–1676), who was an enthusiastic supporter
of Desargues’ new ideas, published La perspective de Mr Desargues, in which he reworked
these ideas in detail. Near the end of the book he published the theorem that is now known as
Desargues’ theorem. Like Desargues’ work, Bosse’s statement of the theorem is a tangled
mess involving ten points denoted by four uppercase letters and six lowercase letters. The
points lie on nine different lines. When suitably clarified, the theorem states that if the lines
joining the three pairs of vertices from two different triangles intersect in a common point,
the pairs of lines containing the corresponding sides of these triangles meet in three points
all on the same line. This result is easy to establish if the triangles lie in different planes,
since the three points must lie on the line of intersection of the two planes containing the
triangles, as shown in Fig. 31.4.

For two triangles in the same plane, the theorem, illustrated in Fig. 31.5, was proved
by Bosse by applying Menelaus’ theorem to the three sets of collinear points {A′′, C, B},
{B′′, A, C}, and {C′′, A, B}, with K as the third vertex of the triangle whose base ends in the
second and third points in all three cases. (There is no other conceivable way to proceed, so
that in a sense the proof is a mere computation.) When the ratios AK : AA′, BK : BB′, and
CK : CC′ are eliminated from the three equations that result, what is left is the equation

C′′B′

C′′A′ = A′′B′

A′′C′ · B′′C′

B′′A′ .

Having received a copy of this work from the Parisian mathematician Marin Mersenne
(1588–1648), René Descartes (1596–1654) took the word draft literally and regarded it as
a proposal to write a treatise—which it may have been—such as a modern author would
address to a publisher, and a publisher would send to an expert for review. He wrote to
Desargues to express his opinion of “what I can conjecture of the Treatise on Conic Sections,
of which [Mersenne] sent me the Draft.” Descartes’ “review” of the work contained the kind
of advice reviewers still give: that the author should decide more definitely who the intended
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Figure 31.5. Desargues’ theorem for two triangles in the same plane.

audience was. As he said, if Desargues was aiming to present new ideas to scholars, there
was no need to invent new terms for familiar concepts. On the other hand, if the book was
aimed at the general public, it would need to be very thick, since everything would have to
be explained in great detail (Field and Gray, 1987, p. 176).

31.3.2. Blaise Pascal

Desargues’ work was read by a teenage boy named Blaise Pascal (1623–1662), who was
to become famous for his mathematical work and renowned for his Pensées (Meditations),
which are still read by many people today for inspiration. He began working on the project
of writing his own treatise on conics. Being very young, he was humble and merely sketched
what he planned to do, saying that his mistrust of his own abilities inclined him to sub-
mit the proposal to experts, and “if someone thinks the subject worth pursuing, we shall
try to carry it out to the extent that God gives us the strength.” Pascal admired Desar-
gues’ work very much, saying that he owed “what little I have discovered to his writings”
and would imitate Desargues’ methods, which he considered especially important because
they treated conic sections without introducing the extraneous axial section of the cone.
He used much of Desargues’ notation for points and lines, including the word order for
a family of concurrent lines. His work, like that of Desargues, remained only a draft, al-
though Struik (1986, p. 165) reports that Pascal worked further on this project and that
Leibniz saw a manuscript of it—not the rough draft, apparently—in 1676. All that has been
preserved, however, is the rough draft. That draft contains several results in the spirit of
Desargues, one of which, called by Pascal a “third lemma,” is well known. In the notation
of Fig. 31.6, where four lines MK, MV , SK, and SV are drawn and then a conic is passed
through K and V meeting these four lines in four other points P , O, N, and Q respec-
tively, Pascal asserted that the lines PQ, NO, and MS would be concurrent (belong to the
same order).
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Figure 31.6. Pascal’s third lemma.

PROBLEMS AND QUESTIONS

Mathematical Problems

31.1. Prove Menelaus’ theorem and its converse. What happens if the points E and F are
such that AD : AE :: BD : BE? (Euclid gave the answer to this question.)

31.2. Use Menelaus’ theorem to prove that two medians of a triangle intersect in a point
that divides each in the ratio of 1:2. You may assume that all three medians are
concurrent, as this is not difficult to prove.

31.3. Euclid showed that the angle subtended by an object of height h at distance d is larger
at larger distances than it would be if it were merely inversely proportional to d. In
other words, there is no constant k such that

α = k · h

d
,

and in fact αd/h is an increasing function of d when h is fixed.7 Show that, if α is
measured in degrees, then

lim
d→∞

αd

h
= π

180
.

7In other words, the actual horizontal distance grows faster than the apparent height, measured by α, shrinks. The
effect is that horizontal distances appear foreshortened, and things don’t appear to be as far away as they actually
are. This phenomenon is well-known to anyone who has ever swum across a lake.
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Historical Questions

31.4. Which Renaissance artists studied geometry for the purpose of creating paintings,
buildings, and sculpture?

31.5. How does projective geometry differ from Euclidean geometry?

31.6. Where was the modern notion of a line as “infinitely long” first stated?

Questions for Reflection

31.7. What considerations may have led the Renaissance artists to renew their interest in
geometry and apply it to their art?

31.8. One of Dürer’s devices for drawing in perspective involves a thread passing through
a rectangular frame with a gate hinged on one side of it containing the canvas. On
the opposite side of the frame from the object being painted, the thread passes over
a pulley, which constitutes the vanishing point for the perspective. The end of the
thread is held against a point to be mapped onto the canvas. Crosshairs are stuck on
the frame to mark the point where the thread passes through it. The thread is then
removed, the gate is closed, and a mark is made at the point where the crosshairs
meet. Painting in this way is a two-person job, requiring one person to hold the end
of the thread against the object and a second person to set the crosshairs. Which of
these two people counts as the artist, and which as the assistant?

31.9. In what sense are lines and points treated symmetrically in projective geometry.
(Think of Desargues’ theorem.)



CHAPTER 32

The Calculus Before Newton and Leibniz

The infinite occurs in three forms in calculus: the derivative, the integral, and the power
series. Integration, in the form of finding areas and volumes, was developed as a particular
theory before the other two subjects came into general use. Although infinite series appear
on the horizon, so to speak, in the work of Archimedes on the quadrature of the parabola,
as we saw in Chapter 14, they do not come into full view.

As we have also seen, infinitesimal methods were used in geometry by the Chinese and
Japanese, and the latter also used infinite series to solve geometric problems (somewhat
later than Newton and Leibniz, however). In India, mathematicians had used infinite series
a few centuries before the Europeans began to use them, to solve geometric problems via
trigonometry. According to Rajagopal (1993), the mathematician Nilakanta, who lived in
South India and whose dates are given as 1444–1543, gave a general proof of the formula for
the sum of a geometric series. The most advanced of these results is attributed to Madhava
(1340–1425), but is definitively stated in the work of Jyesthadeva (1530–ca. 1608):

The product of the given Sine and the radius divided by the Cosine is the first result. From
the first,. . . etc., results obtain. . . a sequence of results by taking repeatedly the square of the
Sine as the multiplier and the square of the Cosine as the divisor. Divide . . . in order by the odd
numbers one, three, etc. . . From the sum of the odd terms, subtract the sum of the even terms.
[The result] becomes the arc. [Rajagopal, 1993, p. 98]

These instructions give in words an algorithm that we would write as the following
formula, remembering that the Sine and Cosine used in earlier times correspond to our
r sin θ and r cos θ, where r is the radius of the circle:

rθ = r2 sin θ

r cos θ
− r4 sin3 θ

3r3 cos3 θ
+ r6 sin5 θ

5r5 cos5 θ
− · · · .

The bulk of calculus was developed in Europe during the seventeenth century, and it is
on that development that the rest of this chapter is focused.

32.1. ANALYTIC GEOMETRY

The creation of what we now know as analytic geometry had to wait for algebraic thinking
about geometry (the type of thinking Pappus called analytic) to become a standard mode
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of thinking. No small contribution to this process was the creation of the modern notational
conventions, many of which were due to François Viète and René Descartes. It was Descartes
who started the very useful convention of using letters near the beginning of the alphabet
for constants and data and those near the end of the alphabet for variables and unknowns.
Viète’s convention, which was followed by Fermat, had been to use consonants and vowels
respectively for these purposes.

32.1.1. Pierre de Fermat

Besides working in number theory, Fermat (1601–1665) studied the works of Apollonius,
including references by to lost works. This study inspired him to write a work on plane
and solid loci, first published with his collected works in 1679. He used these terms in
the sense of Pappus: A plane locus is one that can be constructed using straight lines and
circles, and a solid locus is one that requires conic sections for its construction. He says in
the introduction that he hopes to systematize what the ancients, known to him from Book 7
of Pappus’ Synagōgē, had left haphazard. Pappus had written that the locus to more than
six lines had hardly been touched. Thus, locus problems were the context in which Fermat
invented analytic geometry.

Apart from the adherence to a dimensional uniformity that Descartes (finally!) elimi-
nated, Fermat’s analytic geometry looks much like what we are now familiar with. He stated
its basic principle, asserting that the lines representing two unknown magnitudes should
form an angle that would usually be assumed a right angle. He began with the equation of a
straight line:1 Z2 − DA = BE. This equation looks strange to us because we automatically
(following Descartes) tend to look at the Z as a variable and the A and E as constants, exactly
the reverse of what Fermat intended. If we make the replacements Z �→ c, D �→ a, A �→ x,
B �→ b, and E �→ y, this equation becomes c2 − ax = by, and now only the exponent on c

looks strange, the result of Fermat’s adherence to the Euclidean niceties of dimension.
Fermat illustrated the claim of Apollonius that a locus was determined by the condition

that the sum of the pairwise products of lines from a variable point to given lines is given. His
example was the case of two lines, where—when the two lines are mutually perpendicular—
it is the familiar rectangular hyperbola that we have now seen used many times for various
purposes. Fermat wrote its equation as ae = z2. He showed that the graph of any quadratic
equation in two variables is a conic section.

32.1.2. René Descartes

Fermat’s work on analytic geometry was not published in his lifetime, and therefore was less
influential than it might have been. As a result, his contemporary René Descartes (1596–
1650) is remembered as the creator of analytic geometry, and we speak of “Cartesian”
coordinates, even though Fermat was more explicit about their use.

Descartes is remembered not only as one of the most original and creative modern
mathematicians, but also as one of the leading voices in modern philosophy and science.
Both his scientific work on optics and mechanics and his geometry formed part of his
philosophy. Like Plato, he formed a grand project of integrating all of human knowledge
into a single system. Also like Plato, he recognized the special place of mathematics in

1Fermat actually wrote “Z pl. − D in A æquetur B in E.” That is, “Let Z2 − DA equal BE.”
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such a system. In his Discourse on Method, published at Leyden in 1637, he explained that
logic, while it enabled a person to make correct judgments about inferences drawn through
syllogisms, did not provide any actual knowledge about the world, what is usually called
empirical knowledge. In what was either a deadpan piece of sarcasm or a sincere tribute to
the mystic Ramon Lull (1232–1316), he said that in the art of “Lully” it enabled a person
to speak fluently about matters on which he is entirely ignorant. He seems to have agreed
with Plato that mathematical concepts are real objects, not mere logical relations among
words, and that they are perceived directly by the mind. In his famous attempt at doubting
everything, he had brought himself back from total skepticism by deducing the principle
that whatever he could clearly and distinctly perceive with his mind must be correct.

As Davis and Hersh (1986) have written, the Discourse on Method was the fruit of a
decade and a half of hard work and thinking on Descartes’ part, after a series of three vivid
dreams on the night of November 10, 1619, when he was a 23-year-old soldier of fortune.
The link between Descartes’ philosophy and his mathematics lies precisely in the matter
of “clear and distinct perception,” for there seems to be no other area of thought in which
human ideas are so clear and distinct. As Grabiner (1995, p. 84) says, when Descartes
attacked, for example, a locus problem, the answer had to be “it is this curve, it has this
equation, and it can be constructed in this way.” Descartes’ Géométrie, which contains his
ideas on analytic geometry, was published as the last of three appendices to the Discourse.

What Descartes meant by “clear and distinct” ideas in mathematics is shown in a method
of generating curves given in his Géométrie that appears mechanical, but can be stated in
pure geometric language. A pair of lines intersecting at a fixed point Y coincide initially
(Fig. 32.1). The point A remains fixed on the horizontal line. As the oblique line rotates
about Y , the point B, which remains fixed on it, describes a circle. The tangent at B intersects
the horizontal line at C, and the point on the oblique line directly above C is D. The line
perpendicular to the oblique line at D intersects the horizontal line at E, from which a
vertical line intersects the oblique line at F , and so forth in a zigzag pattern. Descartes
imagined a mechanical linkage that could actually draw these curves.

Descartes regarded determinate curves of this sort, depending on one parameter, as we
would say, as legitimate to use in geometry. He offered the opinion that the opposition
to “mechanical” curves by ancient Greek mathematicians arose because the mechanical
curves they knew about—he mentioned the spiral of Archimedes and the quadratix—were
indeterminate. In the case of the spiral of Archimedes, which is generated by a point moving

Figure 32.1. Descartes’ linkage for generating curves. The curve x4n = a2(x2 + y2)2n−1 is shown for
n = 0, 1, 2, 3.
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Figure 32.2. Left: AB = 1, so that BE = BC · BD. Right: FG = 1, so that GI = √
GH .

at constant linear velocity along a line that is rotating with constant angular velocity, the
indeterminacy arises because the two velocities need to be coordinated with infinite preci-
sion. For the quadratrix, the same problem arises, since the ratio of the angular velocity of
a rotating line and the linear velocity of a translating line needs to be known with infinite
precision.

Descartes’ Géométrie resembles a modern textbook of analytic geometry less than does
Fermat’s Introduction to Plane and Solid Loci. He does not routinely use a system of
“Cartesian” coordinates, as one might expect from the name. But he does remove the
dimensional difficulties that had complicated geometric arguments since Euclid’s definition
of a ratio.

[U]nity can always be understood, even when there are too many or too few dimensions; thus,
if it be required to extract the cube root of a2b2 − b, we must consider the quantity a2b2 divided
once by unity, and the quantity b multiplied twice by unity. [Smith and Latham, 1954, p. 6]

Here Descartes is explaining that all four arithmetic operations can be performed on
lines and yield lines as a result. He illustrated the product and square root by the diagrams
in Fig. 32.2, where AB = 1 on the left and FG = 1 on the right.

Descartes went a step further than Oresme in eliminating dimensional considerations,
and he went a step further than Pappus in his classification of locus problems. Having
translated these problems into the language of algebra, he realized that the three- and four-
line locus problems always led to polynomial equations of degree at most 2 in x and y,
and conversely, any equation of degree 2 or less represented a three- or four-line locus. He
asserted with confidence that he had solved the problem that Pappus reported unsolved in
his day. It was in this context that he formulated the idea of using two intersecting lines as
a frame of reference, saying that

since so many lines are confusing, I may simplify matters by considering one of the given lines
and one of those to be drawn. . . as the principal lines, to which I shall try to refer all the others.
[Smith and Latham, 1954, p. 29]

The idea of using two coordinate lines is psychologically very close to the linkages
illustrated in Fig. 32.1. In terms of Fig. 32.3, Descartes took one of the fixed lines as a
horizontal axis AB, since a line was to be drawn from point C on the locus making a fixed
angle θ with AB. He thought of this line as sliding along AB and intersecting it at point
B, and he denoted the variable length AB by x. Then since C needed to slide along this
moving line so as to keep the proportions demanded by the conditions of the locus problem,
he denoted the distance CB by y. All the lines were fixed except CB, which moved parallel
to itself, causing x to vary, while on it y adjusted to the conditions of the problem. For
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Figure 32.3. Descartes’ analysis of the n-line locus problem.

each of the other fixed lines, say AR, the angles ψ, θ, and ϕ will all be given, ψ by the
position of the fixed lines AB and AR, and the other two by the conditions prescribed in
the problem. Since these three angles determine the shape of the triangles ADR and BCD,
they determine the ratios of any pair of sides in these triangles through the law of sines,
and hence all sides can be expressed in terms of constants and the two lengths x and y. If
the set of 2n lines is divided into two sets of n as the 2n-line locus problem requires, the
conditions of the problem can be stated as an equation of the form

p(x, y) = q(x, y) ,

where p and q are of degree at most n in each variable. The analysis was mostly “clear and
distinct.”

Descartes argued that the locus could be considered known if one could locate as many
points on it as desired.2 He next pointed out that in order to locate points on the locus one
could assign values to either variable x and y, then compute the value of the other by solving
the equation.3

Everyone who has studied analytic geometry in school must have been struck at the
beginning by how much clearer and easier it was to use than the synthetic geometry of
Euclid. That aspect of the subject is nicely captured in the words the poet Paul Valéry
(1871–1945) applied to Descartes’ philosophical method in general: “the most brilliant
victory ever achieved by a man whose genius was applied to reducing the need for genius”
(quoted by Davis and Hersh, 1986, p. 7).

This point was not appreciated by Newton, who, in a rather ungenerous exhibition of
his own remarkable mathematical talent (Whiteside, 1967, Vol. IV, pp. 275–283), said
that Descartes “makes a great show” about his solution of the three- and four-line locus
problems, “as if he had achieved something so earnestly sought after by the ancients.” He
also expressed a distaste for Descartes’ use of symbolic algebra to solve this problem (a
distaste that would be echoed by other mathematicians), saying that if this algebra were
written out in words, it “would prove to be so tedious and entangled as to provoke nausea.”
One is inclined to say, on Descartes’ behalf, “Precisely! That’s why it’s better to use algebraic
symbolism and avoid the tedium, confusion, and nausea.”

2The validity of this claim is somewhat less than “clear and distinct.”
3This claim also involves a great deal of hope, since equations of degree higher than 4 were unknown territory in
his day.
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32.2. COMPONENTS OF THE CALCULUS

In his comprehensive history of the calculus, Boyer (1949) described “a century of antici-
pation” during which the application of algebra to geometric problems began to incorporate
some of the less systematic parts of ancient geometry, especially the infinitesimal ideas
contained in what was called the method of indivisibles. Let us take up the story of calculus
at the point where algebra enters the picture, beginning with some elementary problems of
finding tangents and areas.

32.2.1. Tangent and Maximum Problems

The main problem in finding a tangent to a curve at a given point is to find some second
condition, in addition to passing through the point, that this line must satisfy so as to
determine it uniquely. It suffices to know either a second point that it must pass through or
the angle that it must make with a given line.

Fermat had attacked the problem of finding maxima and minima of variables even before
the publication of Descartes’ Géométrie. As his works were not published during his lifetime
but only circulated among those who were in a rather select group of correspondents, his
work in this area was not recognized for some time. His method is very close to what is
still taught in calculus books. The difference is that whereas we now use the derivative to
find the slope of the tangent line, that is, the tangent of the angle it makes with a reference
axis, Fermat looked for the point where the tangent intercepted that axis. If the two lines
did not intersect, as happens at maxima and minima, the tangent was easily determined
as the unique parallel through the given point to the given axis. In all other cases Fermat
needed to determine the length of the projection of the tangent on the axis from the point of
intersection to the point below the point of tangency, a length known as the subtangent. In a
letter sent to the monk and mathematician Marin Mersenne (1588–1648) and forwarded to
Descartes in 1638, Fermat explained his method of finding the subtangent, which invokes
some of the same ideas used earlier by Sharaf al-Tusi (see Chapter 26).

In Fig. 32.4 the curve DB is a parabola with axis CD, and the tangent at B, above the
point C, meets the axis at EC. Since the parabola is convex, a point O between B and EC on
the tangent lies outside the parabola. That location provided Fermat with two inequalities,

one of which was CD : DI > BC
2

: OI
2
. (Equality would hold here if OI were replaced

by the portion of it cut off by the parabola.) Since BC : OI = CEC : ECI, it follows that

CD : DI > CEC
2

: ECI
2
. Then abbreviating by setting CD = g, CEC = x, and CI = y,

we have g : g − y > x2 : x2 + y2 − 2xy. Cross-multiplying, we obtain

gx2 + gy2 − 2gxy > gx2 − x2y.

Figure 32.4. Fermat’s method of finding the subtangent.
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Figure 32.5. The folium of Descartes. Descartes and Fermat considered only the loop in this curve.

Canceling the term gx2 and dividing by y, we obtain gy − 2gx > −x2. Since this inequality
must hold for all positive numbers y (no matter how small), it follows that x2 ≥ 2gx, that
is, x ≥ 2g if x > 0. That is, CEC ≥ 2CD if C is right of the point I, and so IEI ≥ 2CD

also. Reasoning similarly if C is left of I, shows that CEC ≤ 2CD if C is any point left of I ,
and so IEI ≤ 2CD. Having thus ruled out the possibilities IEI < 2CD and IEI > 2CD,
Fermat had proved that IEI = 2ID, and thereby solved the problem. In this argument,
Fermat was relying on the Archimedean trichotomy. His argument can be formulated as a
limiting argument, but it is perfectly rigorous in the finite terms in which he stated it.

In this paper Fermat asserted, “And this method never fails. . . .” This assertion provoked
an objection from Descartes,4 who used circles in a very similar way to find the normal
to a curve at a point. (We do not have space to discuss that method.) Descartes challenged
Fermat with the curve of Fig. 32.5, now known as the folium of Descartes, having equation
x3 + y3 = 3axy.

As already mentioned, Descartes did not regard curves such as the spiral and the quadra-
trix as admissible in argument, since they are generated by two motions whose relationship
to each other cannot be determined exactly. A few such curves, however, were to prove a
very fruitful source of new constructions and applications. One of them, which had first
been noticed in the early sixteenth century by an obscure mathematician named Charles
Bouvelles (ca. 1470–ca. 1553), is the cycloid, the curve generated by a point on a circle
(called the generating circle) that rolls without slipping along a straight line. It is easily
pictured by imagining a painted spot on the rim of a wheel as the wheel rolls along the
ground. Since the speed of the rim about its center is exactly equal to the linear speed of
the center, it follows that the point is at any instant moving along the bisector of the angle
formed by a horizontal line and the tangent to the generating circle. In this way, given the
generating circle, it is an easy matter to construct the tangent to the cycloid. This result
was obtained independently around 1638 by Descartes, Fermat, and Gilles Personne de

4There was little love lost between Descartes and Fermat, since Fermat had dismissed Descartes’ derivation of the
law of refraction. [Descartes assumed that light traveled faster in denser media; Fermat assumed that it traveled
slower. Yet they both arrived at the same law! For details, see Indorato and Nastasi 1989).] Descartes longed
for revenge, and even though he eventually ended the controversy over Fermat’s methods with a grudging half-
acknowledgment that Fermat was right, he continued to attack Fermat’s construction of the tangent to a cycloid.
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Roberval (1602–1675), and slightly later by Evangelista Torricelli (1608–1647), a pupil of
Galileo Galilei (1564–1642).

32.2.2. Lengths, Areas, and Volumes

Seventeenth-century mathematicians had inherited two conceptually different ways of ap-
plying infinitesimal ideas to find areas and volumes. One was to regard an area as a “sum
of lines.” The other was to approximate the area by a sum of regular figures and try to show
that the approximation got better as the individual regular figures got smaller. The rigor-
ous version of the latter argument, the method of exhaustion, based on the Archimedean
trichotomy was tedious and of limited application.

32.2.3. Bonaventura Cavalieri

In the “sum of lines” approach, a figure whose area or volume was required was sliced into
parallel sections, and these sections were shown to be equal or proportional to corresponding
sections of a second figure whose area or volume was known. The first figure was then
asserted to be equal or proportional to the second. The principle was stated in 1635 by
Bonaventura Cavalieri (1598–1647), a Jesuit priest and a student of Galileo. At the time
it was customary for professors to prove their worthiness for a chair of mathematics by a
learned dissertation. Cavalieri proved certain figures equal by pairing off congruent sections
of them, in a manner similar to Archimedes’ Method and the method by which Zu Chongzhi
and Zu Geng found the volume of a sphere. This method implied that figures in a plane
lying between two parallel lines and such that all sections parallel to those lines have
the same length must have equal area. This principle is now called Cavalieri’s principle.
The idea of regarding a two-dimensional figure as a sum of lines or a three-dimensional
figure as a sum of plane figures was extended by Cavalieri to consideration of the squares
on the lines in a plane figure, then to the cubes on the lines in a figure, and so on.

To see how his reasoning works, we give a sample. Figure 32.6 shows an isosceles right
triangle ABC of side AB = a = BC, completed to form the square ABCF . The “sum of
the lines” such as DE inside this triangle is simply its area, namely a2/2. The sum of the
lines in the triangle AHK, whose sides are only half as large, is one-fourth of this area,

A D H L B

O

CF

N

K

E

M

Figure 32.6. The sum of the powers of the lines in a triangle, according to Cavalieri.
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or a2/8. (One can see this by letting each line BE correspond to the line only half as far
from A as B is. That line will be only half as long as BE, and the total length along which
the new lines are “summed” will also be only half as long.) Cavalieri undertook to find a
similar expression for the sum of the squares of the lines, which we would interpret as the
area under the curve y = x2. The sum of the portion of these squares that lie between A

and H is one-eighth of the full sum, since again one can imagine summing the squares of
the lines only half as far away from A, which are only one-fourth as long, and the length
along which they are summed is only half of side AB.

The sum of all the squares inside ABC is the sum of all the squares DE2 inside triangle
AHK, plus the sum of all the squares LN2 inside the trapezoid HBCK. But since LN =
LM + MN = a/2 + MN, we see that the latter sum is the sum of all the squares MN2

inside KOC (which is the same as the sum of all the squares DE2 inside AHK) plus a

times the sum of all the lines MN inside KOC (which is a3/8), plus another a3/8 for the
sum of the squares a2/4 of the lines inside the square HBOK. Altogether then, the sum of
the squares of the lines inside ABC is twice the sum of the squares of the lines inside AHK,
plus a3/4. Since the sum of the squares of the lines inside AHK is one-eighth of the sum of
the squares of the lines inside ABC, it follows that three fourths of the latter sum is a3/4,
and therefore the sum is a3/3. In this way, Cavalieri established what is equivalent to the
formula

∫ a

0 x2 dx = a3/3. More generally, using the binomial expansion of (a/2 + MN)n

just as we did here in the case n = 2, he established the equivalent of
∫ a

0 xn dx = an+1/n.

32.2.4. Gilles Personne de Roberval

Cavalieri’s principle was applied to find the area of the cycloid. Roberval (1602–1675),
who found the tangent to the cycloid, also found the area beneath it by a clever use of
Cavalieri’s principle. He considered along with half an arch of the cycloid itself a curve he
called the companion to the cycloid. This companion curve is generated by a point that is
always directly below or above the center of the generating circle as it rolls along and at the
same height as the point on the rim that is generating the cycloid. As the circle makes half
a revolution (see Fig. 32.7), the cycloid and its companion first diverge from the ground
level, then meet again at the top. Symmetry considerations show that the area under the
companion curve is exactly one-half of the rectangle whose vertical sides are the initial
and final positions of the diameter of the generating circle through the point generating the
cycloid. But by definition of the two curves their generating points are always at the same
height, and the horizontal distance between them at any instant is half of the corresponding

Figure 32.7. Roberval’s quadrature of the cycloid.
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horizontal section of the generating circle. Hence by Cavalieri’s principle the area between
the two curves is exactly half the area of the circle.

32.2.5. Rectangular Approximations and the Method of Exhaustion

Besides the method of indivisibles (Cavalieri’s principle), mathematicians of the time also
applied the method of polygonal approximation, that is, the method of exhaustion to find
areas. This method, as we saw in Chapter 14, was used by Archimedes to find the area of a
parabolic segment and was completely rigorous from the Euclidean point of view. In 1640,
Fermat wrote a paper on quadratures in which he found the areas under certain figures by
this method. He was somewhat sketchier in the details than Archimedes had been, but that
was because he referred explicitly to Archimedes’ work, saying that “it suffices to make
this remark once and for all, and there is no need to refer constantly to a technique that is
well known to mathematicians.” In other words, as we see from examining what Fermat
wrote, all the basic ideas of the analysis were already present in the work of Archimedes,
and what had been lacking was an algebraic language to make the expression of those ideas
more transparent. That language is what Fermat supplied.

He considered a “generalized hyperbola,” as in Fig. 32.8, a curve referred to asymptotes
AR and AC and defined by the property that the ratio AHm : AGm = EGn : HIn is the
same for any two points E and I on the curve; we would describe this property by saying
that xmyn = const.

The case n = 1, m = 2 is illustrated in Fig. 32.6, where the abscissas AG, AH , AO, AM,
AR,. . . increase geometrically, that is AG/AH = AH/AO = AO/AM = AM/AR,. . . ,
and the ordinates EG, IH , NO, PM, SR,. . . are inversely proportional to the squares of the
corresponding abscissas. As we would write this relation, EG = k/AG2, and so on. From
these relations, it is not difficult to see that the area S under the curve from G to infinity
satisfies

S > GH · HI + HO · OK + OM · MN + MP · PR + · · ·
= k · GH

AH
2

(
1 + AG

AH
+

( AG

AH

)2 +
( AG

AH

)3 + · · ·
)

= k

AH
.

A
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Figure 32.8. Fermat’s quadrature of a generalized hyperbola.
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And similarly,

S < GH · EG + HO · HI + OM · OK + MP · MN + · · ·
= k · GH

AG
2

(
1 + AG

AH
+

( AG

AH

)2 +
( AG

AH

)3 + · · ·
)

= k · AH

AG
2 .

When H is taken sufficiently close to G, both of these expressions can be made as close
to k

AG
, that is, to GE · AG, as desired. Hence, the rectangle AGEB must be the required

area. We would now phrase this result as

∫ ∞

a

k

x2 dx = k

a
.

32.2.6. Blaise Pascal

As shown above, Cavalieri found the “sums of the powers of the lines” inside a triangle,
which makes it possible to find the area under a curve y = xn between any two values x = a

and x = b. Naturally, one would like to be able to do the same for the portion of a semicircle
h = √

R2 − x2 cut off between two chords x = a and x = b. Thus instead of summing the
lines xn from x = a to x = b, we would like to sum the lines

√
R2 − x2. The technique we

illustrated above will not help, since the portion of the sum in the first half of the interval has
no simple relation to the whole sum, and the binomial expansion of

√
R2 − ((a/2 + MN))2

in terms of MN is infinite and very messy. How is this problem to be solved? To explain
it, we shall introduce a bit of later notation due to Leibniz to clarify what Cavalieri was
actually doing. He wasn’t actually summing all the x2 between x = 0 and x = a. Rather, he
was summing x2 dx, where dx is an “infinitely short” portion of the x-axis. The technical
basis for his results, as shown in the example given above, was the use of the binomial
theorem to break the sum of powers of lines inside a rectangle into the portions above and
below the diagonal. That technique will not work for a circle, where instead of powers of
x, one needs to consider lines of length

√
R2 − x2. To find the quadrature of the circle, it is

necessary to change to a new variable, namely the polar angle ϕ, and express dx in terms
of dϕ. That feat was achieved by Blaise Pascal (1623–1662) in 1659.

Pascal found the “sums of the powers of the lines inside a quadrant of a circle.” Now a
line inside a quadrant of a circle is what up to now has been called a sine. Thus, Pascal found
the sum of the powers of the sines of a quadrant of a circle. Ordinarily, as we have repeatedly
seen, the geometric interpretation of this sum would be as the area under the curve. However,
that will not work in this case. To keep the reasoning clear (or, rather, as clear as it could
be at the time, since he was using actual infinitesimal arguments, in contrast to Fermat),
Pascal distinguished between a sine and an ordinate. We can keep this distinction clear by
noting that it is all a matter of which variable is regarded as the independent variable. The
ordinate is y = √

R2 − x2 and refers to rectangular coordinates (x, y). The sine is R sin ϕ

and refers to what we call polar coordinates (ϕ, r). Thus, the “sum of the sines” is carried
out only over an infinitesimal arc, which must be imagined as having been straightened out
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Figure 32.9. Pascal’s infinitesimal triangle method of finding the sum of the sines in a quadrant.

(rectified) and turned into a portion of the tangent.5 The area under the curve is the sum of
the ordinates, which we can’t find. Pascal managed to express the sum of the ordinates in
terms of the sum of the sines, which he was able to find.

Pascal argued that when a finite arc is divided into infinitely many equal small pieces,
those pieces are equal to the portions of the tangent cut off between the two bounding
ordinates. He acknowledged that the arc and the tangent were not equal with only a finite
number of divisions, but claimed that they were equal with an infinite number. Thus he took
the plunge into an actual infinity. This was a bold step beyond what the Greeks and Fermat
would have admitted. This argument was logically shaky at the time, but the intuitive riches
that Leibniz reaped from it ultimately justified a few centuries of doubt and uncertainty as
to its validity. To see what Pascal did, refer to Fig. 32.9.

We would like to sum the infinitely thin rectangles
√

R2 − x2 dx, but the algebraic
techniques used by Cavalieri and Fermat do not allow us to do so. By approximat-
ing a small piece of arc of length d(Rϕ) = R(β − α) by the tangent AC, and drawing
the radius AD to the point of tangency, we get an infinitesimal triangle ABC that is
similar to the finite triangle DEO, whence it follows that OD · AB = AC · DE. Now,
AB = R(cos α − cos β) = d(R cos ϕ), OD = R, AC = d(Rϕ), and DE = R sin ϕ. Thus
we have the infinitesimal relation

R d(R cos ϕ) = R sin ϕ d(Rϕ) ,

and it is clear that R can be divided out of this relation. Pascal expressed this result by
saying that the sum of the sines of any arc is equal to the portion of the base between the
extreme sines [that is, R cos α − R cos β] multiplied by the radius.

In terms of the rectangular coordinates x and y, the differential relation says dx =
R sin ϕ dϕ. Hence to find the area (the sum of the ordinates, in Pascal’s language) from
ϕ = 0 to ϕ = β, we would have to sum R sin ϕ dx = R2 sin2 ϕ dϕ. Pascal did so, and

5Leibniz, who was inspired by Pascal’s infinitesimal triangle, showed that the chord would work just as well as
the tangent.
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determined correctly that the sum of the squares of those sines is equal to the sum of
the ordinates that lie between the extreme sines.

However, we are getting ahead of the story by talking about differential relations. As
noted, the concept of a differential was due to Leibniz, inspired by precisely the work of
Pascal that we are discussing here.

In modern terms, where Cavalieri found
∫ a

0 xn dx = an+1/(n + 1), Pascal found
∫ β

α
(R sin ϕ) R dϕ = R(R cos α − R cos β).

32.2.7. The Relation Between Tangents and Areas

The first statement of a relation between tangents and areas appears in 1670 in a book
entitled Lectiones geometricae by Isaac Barrow (1630–1677), a professor of mathematics
at Cambridge and later chaplain to Charles II. Barrow gave the credit for this theorem
to “that most learned man, Gregory of Aberdeen” (James Gregory, 1638–1675). Barrow
states several theorems resembling the fundamental theorem of calculus. The first theorem
(Section 11 of Lecture 10) is the easiest to understand. Given a curve referred to an axis,
Barrow constructs a second curve such that the ordinate at each point is proportional to the
area under the original curve up to that point. We would express this relation as F (x) =
(1/R)

∫ x

a f (t) dt, where y = f (x) is the first curve, y = F (x) is the second, and 1/R is
the constant of proportionality. If the point T = (t, 0) is chosen on the axis so that (x − t) ·
f (x) = RF (x), then, said Barrow, T is the foot of the subtangent to the curve y = F (x); that
is, x − t is the length of the subtangent. In modern language the length of the subtangent to
the curve y = F (x) is

∣∣F (x)/F ′(x)
∣∣. This expression would replace (x − t) in the equation

given by Barrow. If both F (x) and F ′(x) are positive, this relation really does say that
f (x) = RF ′(x) = (d/dx)

∫ x

a
f (t) dt.

Later, in Section 19 of Lecture 11, Barrow shows the other version of the fundamental
theorem, that is, that if a curve is chosen so that the ratio of its ordinate to its subtangent
(this ratio is precisely what we now call the derivative) is proportional to the ordinate of a
second curve, the area under the second curve is proportional to the ordinate of the first.

32.2.8. Infinite Series and Products

The methods of integration requiring the summing of infinitesimal rectangles or all the lines
inside a plane figure led naturally to the consideration of infinite series. Several special series
were known by the mid-seventeenth century. For example, the Scottish mathematician James
Gregory published a work on geometry in 1668 in which he stated the equivalent of the
formula given earlier (unbeknown to Gregory, of course) by Jyesthadeva:

arctan x = x − x3

3
+ x5

5
− x7

7
+ · · · .

Infinite product expansions were known by this time for the number π. One, due to John
Wallis (1616–1703), is

2

π
= 1 · 3 · 3 · 5 · 5 · 7 · · ·

2 · 2 · 4 · 4 · 6 · 6 · · · .
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32.2.9. The Binomial Series

It was the binomial series that really established the use of infinite series in analysis. The
expansion of a power of a binomial leads to finite series when the exponent is a nonnegative
integer and to an infinite series otherwise. This series, which we now write in the form

(1 + x)r = 1 +
∞∑

k=1

r(r − 1) · · · (r − k + 1)

1 · · · k xk,

was discovered by Newton around 1665, although he expressed it in a different language, as a
recursive procedure for finding the terms. In a 1676 letter to Henry Oldenburg (1615–1677),
Secretary of the Royal Society, Newton wrote this expansion as

P + PQ
∣∣m
n

= P
∣∣m
n

+ m

n
AQ + m − n

2n
BQ + m − 2n

3n
CQ + m − 3n

4n
DQ + etc.

“where P + PQ stands for a quantity whose root or power or whose root of a power is to
be found, P being the first term of that quantity, Q being the remaining terms divided by
the first term and m/n the numerical index of the powers of P + PQ. . . A stands for the
first term P |m

n
, B for the second term m

n
AQ, and so on. . . .”

Newton’s explanation of the meaning of the terms A, B, C,. . . , means that the kth term
is obtained from its predecessor via multiplication by

{[
(m/n) − k

]
/(k + 1)

}
Q. He said

that m/n could be any fraction, positive or negative.
The entrance of Newton into this arena was to lead to revolutionary changes in the way

people thought about the myriad techniques and principles that made up the subject that
was soon to become the calculus. That story forms the subject of our next chapter.

PROBLEMS AND QUESTIONS

Mathematical Problems

32.1. Show that the Madhava–Jyesthadeva formula given at the beginning of the chapter
is equivalent to

θ =
∞∑

k=0

(−1)k
tan2k+1 θ

2k + 1
,

or, letting x = tan θ,

arctan x =
∞∑

k=0

(−1)k
x2k+1

2k + 1
.

32.2. Referring to Fig. 32.6, show that the rectangle containing half of the cycloidal arch
has length equal to the circumference of the circle and height equal to its diameter,
and so, because of Archimedes’ result that a circle equals a right triangle having
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one leg equal to its circumference and the other equal to its radius, that rectangle is
exactly twice as large as the circle generating the cycloid. Use that and Roberval’s
result to show that the area under one full arch of a cycloid is exactly three times the
area of the generating circle.

32.3. Consider an ellipse with semiaxes a and b (a > b) and a circle of radius b, the center
of the circle lying on the extension of the major axis of the ellipse. Show that for
every line parallel to major axis of the ellipse, the portion of that line inside the ellipse
will be a/b times the portion inside the circle. Use this fact and Cavalieri’s principle
to compute the area of the ellipse. This result was given by Kepler.

Historical Questions

32.4. What differences are noticeable between analytic geometry as developed by Fermat
and by Descartes?

32.5. What major innovation in the application of geometry to algebra is due to Descartes?

32.6. Which infinite series were the first to be introduced, and what was the motive for
introducing them?

Questions for Reflection

32.7. What methodological techniques inherited from Euclidean geometry had to be
ignored in order to apply algebra to geometry?

32.8. The philosopher Bertrand Russell wrote (1945, p. 36), “When Descartes introduced
coordinate geometry, thereby again making arithmetic supreme [above geometry], he
assumed the possibility of a solution to the problem of incommensurables, though in
his day no such solution had been found.” What is the “problem of incommensurables”
that Russell is referring to, and on what grounds can one conclude that Descartes was
ignoring the difficulty?

32.9. Given the large number of tangent and area problems solved by the mid-seventeenth
century, what was still needed before one could say that calculus had arisen?



CHAPTER 33

Newton and Leibniz

The discoveries described in the preceding chapter show that the essential components of
calculus were recognized by the mid-seventeenth century, like the pieces of a jigsaw puzzle
lying loose on a table. What was needed was someone to see the pattern and fit all the pieces
together. The unifying principle was the concept of a derivative, and that concept came to
Newton and Leibniz independently and in slightly differing forms.

33.1. ISAAC NEWTON

Isaac Newton was born prematurely on Christmas day in 1642. (When the British adopted
the Gregorian calendar in 1752, eleven days had to be removed as an adjustment from the
earlier Julian calendar. As a result, on what is called the proleptic Gregorian calendar, his
actual birthday was January 4, 1643.) His parents were minor gentry, but his father had died
before his birth. The midwife who attended his mother is said to have predicted that the
child would not live out the day. Medical predictions are notoriously unreliable, and this
one was wrong by 85 years! He was 6 years old when the English Civil War began, and the
rest of his childhood was spent in that turbulent period. He attended a neighborhood school,
and though not a particularly good student, he exhibited enough talent to motivate his uncle
to send him to Cambridge University, which he entered about the time of the restoration
of Charles II to the throne. Although he was primarily interested in chemistry, he did buy
and read not only Euclid’s Elements but also some of the current treatises on algebra and
analytic geometry. From 1663 on he attended the lectures of Isaac Barrow.

Due to an outbreak of plague in 1665, he returned to his family home at Woolsthorpe,
and during the next two years, while the University was closed, he alternated between
Woolsthorpe and his rooms in Cambridge, pursuing his own mathematical and physical
researches. He was a careful observer and experimenter, and this period was, as he later
recalled, the most productive of his life. Besides the binomial theorem already discussed,
he discovered the general use of infinite series and what he called the method of fluxions.
His early notes on the subject were not published until after his death, but a revised version
of the method was expounded in his Principia.

33.1.1. Newton’s First Version of the Calculus

Newton first developed the calculus in what we would call parametric form. Time was the
universal independent variable, and the relative rates of change of other variables were
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computed as the ratios of their rates of change with respect to time. Newton thought of
variables as moving quantities and focused attention on their velocities. He used the letter
o to represent a small time interval and p for the velocity of the variable x, so that the
change in x over the time interval o was op. Similarly, using q for the velocity of y, if y

and x are related by yn = xm, then (y + oq)n = (x + op)m. Both sides can be expanded by
the binomial theorem. Then if the equal terms yn and xm are subtracted, all the remaining
terms are divisible by o. When o is divided out, one side is nqyn−1 + oA and the other is
mpxm−1 + oB. Ignoring the terms containing o, since o is small, one finds that the relative
rate of change of the two variables, q/p is given by q/p = (mxm−1)/(nyn−1); and since
y = xm/n, it follows that q/p = (m/n)x(m/n)−1. Here at last was the concept of a derivative,
expressed as a relative rate of change.

Newton recognized that reversing the process of finding the relative rate of change
provides a solution of the area problem. He was able to find the area under the curve
y = axm/n by working backward.

33.1.2. Fluxions and Fluents

Newton’s “second draft” of the calculus was the concept of fluents and fluxions. A fluent is
a moving or flowing quantity; its fluxion is its rate of flow, which we now call its velocity
or derivative. In his Fluxions, written in Latin in 1671 and published in 1742 (an English
translation appeared in 1736), he replaced the notation p for velocity by ẋ, a notation still
used in mechanics and in the calculus of variations. Newton’s notation for the opposite
operation, finding a fluent from the fluxion, is no longer used. Instead of

∫
x(t) dt, he wrote

x́.
The first problem in the Fluxions is: The relation of the flowing quantities to one another

being given, to determine the relation of their fluxions. The rule given for solving this
problem is to arrange the equation that expresses the given relation (assumed algebraic) in
increasing integer powers of one of the variables, say x, multiply its terms by any arithmetic
progression (that is, the first power is multiplied by c, the square by 2c, the cube by 3c, etc.),
and then multiply by ẋ/x. After this operation has been performed for each of the variables,
the sum of all the resulting terms is set equal to zero.

Newton illustrated this operation with the relation x3 − ax2 + axy − y2 = 0, for which
the corresponding fluxion relation is 3x2ẋ − 2axẋ + aẋy + axẏ − 2yẏ = 0, and by numer-
ous examples of finding tangents to well-known curves such as the spiral and the cycloid.
Newton also found their curvatures and areas. The combination of these techniques with
infinite series was important, since fluents often could not be found in finite terms. For
example, Newton found that the area under the curve ż = 1/(1 + x2) was given by the
Jyesthadeva–Gregory series z = x − 1

3x3 + 1
5x5 − 1

7x7 + · · · .

33.1.3. Later Exposition of the Calculus

Newton made an attempt to explain fluxions in terms that would be more acceptable log-
ically, calling it the “method of initial and final ratios,” in his treatise on mechanics, the
Philosophiae naturalis principia mathematica (Mathematical Principles of Natural Philos-
ophy), where he said the following:



GOTTFRIED WILHELM VON LEIBNIZ 375

Quantities, and the ratios of quantities, which in any finite time converge continually toward
equality, and before the end of that time approach nearer to each other than by any given
difference, become ultimately equal.

If you deny it, suppose them to be ultimately unequal, and let D be their ultimate difference.
Therefore they cannot approach nearer to equality than by that given difference D; which is
contrary to the supposition.

If only the phrase become ultimately equal had some clear meaning, as Newton seemed
to assume, this argument might have been convincing. As it is, it comes close to being a
definition of ultimately equal, or, as we would say, equal in the limit. Newton came close
to stating the modern concept of a limit at another point in his treatise, when he described
the “final ratios” (derivatives) as “limits towards which the ratios of quantities decreasing
without limits do always converge, and to which they approach nearer than by any given
difference.” Here one can almost see the “arbitrarily small ε” that plays the central role in
the modern definition of a limit.

33.1.4. Objections

Newton anticipated some objections to these principles, and in his Principia, tried to phrase
his exposition of the method of initial and final ratios in such a way as not to outrage
anyone’s logical scruples. He said:

It may be objected that there is no final ratio of vanishing quantities, because before they vanish
their ratio is not the final one, and after they vanish, they have no ratio. But that same argument
would imply that a body arriving at a certain place and stopping there has no final velocity,
because the velocity before it arrived was not its final velocity; and after it arrived, it had no
velocity. But the answer is easy: the final velocity is the velocity the body has at the exact
instant when it arrives, not before or after.

Was this explanation adequate? Do human beings in fact have any conception of what is
meant by an instant of time? Do we have a clear idea of the velocity of a body at the very
instant when it stops moving? Or do some people only imagine that we do? We are here
very close to the arrow paradox of Zeno. At any given instant, the arrow does not move;
therefore it is at rest. How can there be a motion (a traversal of a positive distance) as a result
of an accumulation of states of rest, in each of which no distance is traveled? Newton’s “by
the same argument” practically invited the further objection that his attempted explanation
merely stated the same fallacy in a new way.

33.2. GOTTFRIED WILHELM VON LEIBNIZ

The codiscoverer with Newton of the calculus was, like Newton, a man involved in public
life, but a much more amiable character. The philosopher Bertrand Russell, who had studied
Leibniz and understood him better than anyone else, proclaimed him not an admirable man.
According to Russell, Leibniz developed a profound philosophy, which he kept secret,
knowing that it would not be popular, and published instead only a fatuous optimism aimed
at winning friends. Leibniz, the optimistic philosopher, was parodied in the character of Dr.
Paingloss in Voltaire’s Candide.
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As was the case with Newton, Leibniz had wide-ranging interests as a youth and focused
on mathematics only in early adulthood. He was born in Leipzig in 1646, more than three
years later than Newton, and entered the university there in 1661, at the age of 15. Like
Descartes, Fermat and Viète, he studied the law, but was considered too young to be awarded
the degree of doctor of laws when he finished his course at the age of 20. He entered the
service of the Elector of Mainz as a diplomat and finally came to serve the Electors of
Hannover for four decades, including the future King George I of Britain, who succeeded
Queen Anne in 1714. In contrast to the prickly, anti-social Newton, he was an urbane,
tolerant man, who worked diplomatically in an attempt to reunite the Catholic and Protestant
churches, and it was his suggestion to Tsar Peter I (1682–1726) that the Russian Academy
of Sciences be founded. This was done the year before Peter died, and many talented
mathematicians, including Daniel Bernoulli and Leonhard Euler, did some of their best
work there.

During his lifetime, France was militarily powerful while Germany was divided and
weak. As servant of several German princes, Leibniz attempted to shield Germany from
the power of the French by diverting the interests of Louis XIV toward a holy war against
the Ottoman Empire in Egypt. It was during a mission to Paris in 1672 that Leibniz became
interested in mathematics and began to read the writings of Pascal. The following year he
visited London and met some members of the Royal Society, including the secretary Henry
Oldenburg and the librarian James Collins (1625–1683). He kept a diary of this journey on
a sheet of paper ruled into columns headed Chemistry, Mechanica, Magnetica, Botanica,
and so on. Under mathematics the notes are very sparse, containing only a reference to a
general method of finding tangents, probably derived from the lectures of Barrow, which
he had bought.

From this time on, Leibniz studied mathematics in earnest and within a decade had
derived most of the calculus in essentially the form we know it today. His approach to the
subject, in particular the delicate notion of the meaning to be assigned to the limiting ratio
of two quantities as they vanish, is quite different from Newton’s.

33.2.1. Leibniz’ Presentation of the Calculus

Leibniz believed in the reality of infinitesimals, quantities so small that any finite sum
of them is still less than any assignable positive number, but which are nevertheless not
zero, so that one is allowed to divide by them. The three kinds of numbers (finite, infinite,
and infinitesimal) could, in Leibniz’ view, be multiplied by one another, and the result of
multiplying an infinite number by an infinitesimal might be any one of the three kinds.
This position was rejected in the nineteenth century but was resurrected in the twentieth
century and made logically sound. It lies at the heart of what is called nonstandard analysis,
a subject that has not penetrated the undergraduate curriculum. The radical step that must
be taken in order to believe in infinitesimals is a rejection of the Archimedean principle that
for any two positive quantities of the same kind, some finite number of bisections of the
first will produce a quantity smaller than the second. This principle was essential to the use
of the method of exhaustion, which was one of the crowning glories of Euclidean geometry.
It is no wonder that mathematicians were reluctant to give it up.

Leibniz invented the expression dx to indicate the difference of two infinitely close values
of x, dy to indicate the difference of two infinitely close values of y, and dy/dx to indicate
the ratio of these two values. This notation was beautifully intuitive and is still the preferred
notation for thinking about calculus. Its logical basis at the time was questionable, since it
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avoided the objections listed above by claiming that the two quantities have not vanished
at all but have yet become less than any assigned positive number. However, at the time,
consistency would have been counterproductive in mathematics and science.

The integral calculus and the fundamental theorem of calculus flowed very naturally
from Leibniz’ approach. Leibniz could argue that the ordinates to the points on a curve
represent infinitesimal rectangles of height y and width dx, and hence finding the area
under the curve—“summing all the lines in the figure”—amounted to summing infinitesimal
increments of area dA, which accumulated to give the total area. Since it was obvious that, on
the infinitesimal level, dA = y dx, the fundamental theorem of calculus was an immediate
consequence. Leibniz first set it out in geometric form in a paper on quadratures in the
1693 Acta eruditorum, a scholarly journal founded by the philosopher Otto Mencke (1644–
1707) in Leipzig in 1682. In that paper, Leibniz considered two curves: one, which we would
now write as y = f (x), with its graph above a horizontal axis, the other, which we write
as z = F (x), with its graph below the horizontal axis.1 The second curve has an ordinate
proportional to the area under the first curve. That is, for a positive constant a, having the
dimension of length, aF (x) is the area under the curve y = f (x) from the origin up to the
point with abscissa x. We would write the relation now as2

aF (x) =
∫ x

0
f (t) dt.

In this form the relation is dimensionally consistent. What Leibniz proved was that the
curve z = F (x), which he called the quadratrix (squarer), could be constructed from its
infinitesimal elements. In Fig. 33.1, the parentheses around letters denote points at an
infinitesimal distance from the points denoted by the same letters without parentheses.
In the infinitesimal triangle CE(C) the line E(C) represents dF , while the infinitesimal
quadrilateral HF (F )(H) represents dA, the element of area under the curve. The lines F (F )
and CE both represent dx. Leibniz argued that by construction, a dF = f (x) dx, and so dF :
dx = f (x) : a. That meant that the quadratrix could be constructed by antidifferentiating
f (x).

Leibniz eventually abbreviated the sum of all the increments in the area (that is, the

total area) using an elongated S, so that A =
∫

dA =
∫

y dx. Nearly all the basic rules

of calculus for finding the derivatives of the elementary functions and the derivatives of
products, quotients, and so on, were contained in Leibniz’ 1684 paper on his method of
finding tangents. He had obtained these results several years earlier. His collected works
contain a paper written in Latin with the title Compendium quadraturæ arithmeticæ, to
which the editor assigns a date of 1678 or 1679. This paper shows Leibniz’ approach
through infinitesimal differences and their sums and suggests that it was primarily the
problem of squaring the circle and other conic sections that inspired this work, which consists
of 49 propositions and two problems. Most of the propositions are stated without proof.

1The vertical axis is to be assumed positive in both directions from the origin. We are preserving in Fig. 33.1 only
the lines needed to explain Leibniz’ argument. He himself merely labeled points on the two curves with letters
and referred to those letters.
2The limits of integration shown here were unknown in Leibniz’ time. They were introduced in the nineteenth
century by Joseph Fourier (1768–1830).
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Figure 33.1. Leibniz’ proof of the fundamental theorem of calculus.

Among them are the Taylor series expansions of logarithms, exponentials, and trigonometric
functions.

33.2.2. Later Reflections on the Calculus

Like Newton, Leibniz felt the need to answer objections to the new methods of the calcu-
lus. In the Acta eruditorum of 1695 Leibniz published a “Response to certain objections
raised by Herr Bernardo Niewentiit3 regarding differential or infinitesimal methods.” These
objections were three: (1) that certain infinitely small quantities were discarded as if they
were zero4; (2) the method could not be applied when the exponent is a variable; and (3) the
higher-order differentials were inconsistent with Leibniz’ claim that only geometry could
provide the necessary foundation. In answer to the first objection, Leibniz attempted to
explain different orders of infinitesimals, pointing out that one could neglect all but the
lowest orders in a given equation. To answer the second, he used the binomial theorem to
demonstrate how to handle the differentials dx, dy, dz when yx = z. To answer the third,
Leibniz said that one should not think of d(dx) as a quantity that fails to yield a (finite)
quantity even when multiplied by an infinite number. He pointed out that if x varies geo-
metrically when y varies arithmetically—in modern terms, if x = ey/a—then dx = (x dy)/a
and ddx = (dx dy)/a, which makes perfectly good sense.

3Bernard Nieuwentijt (1654–1718) was a Dutch Calvinist theologian.
4This principle was set forth as fundamental in the following year in the textbook of calculus by the Marquis de
l’Hospital (1661–1704).



PHILOSOPHICAL ISSUES 379

33.3. THE DISCIPLES OF NEWTON AND LEIBNIZ

Newton and Leibniz had disciples who carried on their work. Among Newton’s followers
was Roger Cotes (1682–1716), who oversaw the publication of a later edition of Newton’s
Principia and defended Newton’s inverse square law of gravitation in a preface to that work.
He also fleshed out the calculus with some particular results on plane loci and considered the
extension of functions defined by power series to complex values, deriving the important
formula iφ = log(cos φ + i sin φ), where i = √−1. Another of Newton’s followers was
Brook Taylor (1685–1731), who developed a calculus of finite differences that mirrors in
many ways the “continuous” calculus of Newton and Leibniz and is of both theoretical
and practical use today. Taylor is famous for the infinite power series representation of
functions that now bears his name. It appeared in his 1715 treatise on finite differences. We
have already seen that many particular “Taylor series” were known to Newton and Leibniz;
Taylor’s merit is to have recognized a general way of producing such a series in terms of
the derivatives of the generating function. This step, however, was also taken by Leibniz’
disciple John Bernoulli.

Leibniz also had a group of active and intelligent followers who continued to develop
his ideas. The most prominent of these were the Bernoulli brothers James (1654–1705)
and John (1667–1748), citizens of Switzerland, between whom relations were not always
cordial. They investigated problems that arose in connection with calculus and helped to
systematize, extend, and popularize the subject. In addition, they pioneered new mathemat-
ical subjects such as the calculus of variations, differential equations, and the mathematical
theory of probability. A French nobleman, the Marquis de l’Hospital, took lessons from
John Bernoulli and paid him a salary in return for the right to Bernoulli’s mathematical
discoveries. As a result, Bernoulli’s discovery of a way of assigning values to what are now
called indeterminate forms appeared in L’Hospital’s 1696 textbook Analyse des infiniment
petits (Infinitesimal Analysis) and has ever since been known as L’Hospital’s rule. Like
the followers of Newton, who had to answer the objections of Bishop Berkeley that
will be discussed in the next section, Leibniz’ followers encountered objections from Michel
Rolle (1652–1719), objections that were answered by John Bernoulli with the claim that
Rolle didn’t understand the subject.

33.4. PHILOSOPHICAL ISSUES

Some objections to the calculus were eloquently stated seven years after Newton’s death by
the philosopher George Berkeley5 (1685–1753, Anglican Bishop of Cloyne, Ireland), for
whom the city of Berkeley6 in California is named. In his 1734 book The Analyst, Berkeley
first took on Newton’s fluxions, noting that “It is said that the minutest errors are not to be
neglected in mathematics.”7 Berkeley continues:

[It is said] that the fluxions are celerities [speeds], not proportional to the finite increments,
though ever so small; but only to the moments or nascent increments, whereof the proportion
alone, and not the magnitude, is considered. And of the aforesaid fluxions there be other

5Pronounced “Barkley.”
6Pronounced “Birkley.”
7It was indeed said, and by Newton himself, in his 1704 treatise Introduction to the Quadrature of Curves.
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fluxions, which fluxions of fluxions are called second fluxions. And the fluxions of the second
fluxions are called third fluxions: and so on, fourth, fifth, sixth, &c. ad infinitum. Now, as
our sense is strained and puzzled with the perception of objects extremely minute, even so
the imagination, which faculty derives from sense, is very much strained and puzzled to frame
clear ideas of the least particles of time. . . and much more so to comprehend. . . those increments
of the flowing quantities. . . in their very first origin, or beginning to exist, before they become
finite particles. . . The incipient celerity of an incipient celerity, the nascent augment of a nascent
augment, i.e., of a thing which hath no magnitude: take it in what light you please, the clear
conception of it will, if I mistake not, be found impossible.

He then proceeded to attack the views of Leibniz:

The foreign mathematicians are supposed by some, even of our own, to proceed in a manner
less accurate, perhaps, and geometrical, yet more intelligible. . . Now to conceive a quantity
infinitely small, that is, infinitely less than any sensible or imaginable quantity or than any the
least finite magnitude is, I confess, above my capacity. But to conceive a part of such infinitely
small quantity that shall be still infinitely less than it, and consequently though multiplied
infinitely shall never equal the minutest finite quantity, is, I suspect, an infinite difficulty to any
man whatsoever.

Berkeley analyzed a curve whose area up to x was x3 (he wrote xxx). If z − x was
the increment of the abscissa and z3 − x3 the increment of area, the quotient would be
z2 + zx + x2. He said that, if z = x, of course this last expression is 3x2, and that must
be the ordinate of the curve in question. That is, its equation must be y = 3x2. But, he
pointed out,

[H]erein is a direct fallacy: for, in the first place, it is supposed that the abscisses z and x are
unequal, without which supposition no one step could have been made [that is, the division
by z − x would have been undefined]; which is a manifest inconsistency, and amounts to the
same thing that hath been before considered. . . The great author of the method of fluxions felt
this difficulty, and therefore he gave in to those nice abstractions and geometrical metaphysics
without which he saw nothing could be done on the received principles. . . It must, indeed,
be acknowledged that he used fluxions, like the scaffold of a building, as things to be laid
aside or got rid of as soon as finite lines were found proportional to them. . . And what are
these fluxions? The velocities of evanescent increments? And what are these same evanescent
increments? They are neither finite quantities, nor quantities infinitely small, nor yet nothing.
May we not call them the ghosts of departed quantities?

33.4.1. The Debate on the Continent

Calculus disturbed the metaphysical assumptions of philosophers and mathematicians on the
Continent as well as in Britain. L’Hospital’s textbook had made two explicit assumptions:
first, that if a quantity is increased or diminished by a quantity that is infinitesimal in
comparison with itself, it may be regarded as remaining unchanged. Second, that a curve
may be regarded as an infinite succession of straight lines. L’Hospital’s justification for
these claims was not commensurate with the strength of the assumptions. He merely said:

[T]hey seem so obvious to me that I do not believe they could leave any doubt in the mind of
attentive readers. And I could even have proved them easily after the manner of the Ancients,
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if I had not resolved to treat only briefly things that are already known, concentrating on those
that are new. [Quoted by Mancosu, 1989, p. 228]

The idea that x + dx = x, implicit in l’Hospital’s first assumption, leads algebraically
to the equation dx = 0 if equations are to retain their previous meaning. Rolle raised this
objection and was answered by the claim that dx represents the distance traveled in an instant
of time by an object moving with finite velocity. This debate was carried on in private in the
Paris Academy during the first decade of the eighteenth century, and members were at first
instructed not to discuss it in public, as if it were a criminal case! Rolle’s criticism could be
answered, but it was not answered at the time. According to Mancosu (1989), the matter
was settled in a most unacademic manner, by making l’Hospital into an icon after his death
in 1704. His eulogy by Bernard Lebouyer de Fontenelle (1657–1757) simply declared the
anti-infinitesimalists wrong, as if the Academy could decide metaphysical questions by fiat,
just as it can define what is proper usage in French:

[T]hose who knew nothing of the mysteries of this new infinitesimal geometry were shocked
to hear that there are infinities of infinities, and some infinities larger or smaller than others;
for they saw only the top of the building without knowing its foundation. [Quoted by Mancosu
(1989, 241)]

33.5. THE PRIORITY DISPUTE

One of the better known and less edifying incidents in the history of mathematics is the
dispute between the disciples of Newton and those of Leibniz over the credit for the invention
of the calculus. Although Newton had discovered the calculus by the early 1670s and had
described it in a paper sent to James Collins, the librarian of the Royal Society, he did
not publish his discoveries until 1687. Leibniz made his discoveries a few years later than
Newton but published some of them earlier, in 1684. Newton’s vanity was wounded in 1695
when he learned that Leibniz was regarded on the Continent as the discoverer of the calculus,
even though Leibniz himself made no claim to this honor. In 1699 a Swiss immigrant to
England, Nicolas Fatio de Duillier (1664–1753), suggested that Leibniz had seen Newton’s
paper when he had visited London and talked with Collins in 1673. (Collins died in 1683,
before his testimony in the matter was needed.) This unfortunate rumor poisoned relations
between Newton and Leibniz and their followers.

In 1711–1712 a committee of the Royal Society (of which Newton was President) in-
vestigated the matter and reported that it believed Leibniz had seen certain documents
that in fact he had not seen. Relations between British and Continental mathematicians
reached such a low ebb that Newton deleted certain laudatory references to Leibniz from
the third edition of his Principia. This dispute confirmed the British in the use of the clumsy
Newtonian notation for more than a century, a notation far inferior to the elegant and intuitive
symbolism of Leibniz. But in the early nineteenth century the impressive advances made
by Continental scholars such as Euler, Lagrange, and Laplace won over the British math-
ematicians. Scholars such as William Wallace (1768–1843) rewrote the theory of fluxions
in terms of the theory of limits. Wallace asserted that there was never any need to introduce
motion and velocity into this theory, except as illustrations, and that indeed Newton himself
used motion only for illustration, recasting his arguments in terms of limits when rigor was
needed [see Panteki (1987) and Craik 1999)]. Eventually, even the British began using the
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term integral instead of fluent and derivative instead of fluxion, and these Newtonian terms
became mathematically part of a dead language.

Some important facts were obscured by the terms in which the priority dispute was cast.
One of these is the extent to which Fermat, Descartes, Cavalieri, Pascal, Roberval, and
others had developed the techniques in isolated cases that were to be unified by the calculus
as we know it now. In any case, Newton’s teacher Isaac Barrow had the insight into the
connection between subtangents and area before either Newton or Leibniz thought of it.
Barrow’s contributions were ignored in the heat of the dispute; their significance has been
pointed out by Feingold (1993).

33.6. EARLY TEXTBOOKS ON CALCULUS

The secure place of calculus in the mathematical curriculum was established by the publi-
cation of a number of textbooks. One of the earliest was the Analyse des infiniment petits,
mentioned above, which was published by the Marquis de l’Hospital in 1696.

Most students of calculus know the Maclaurin series as a special case of the Taylor series.
Its discoverer was a Scottish contemporary of Taylor, Colin Maclaurin (1698–1746), whose
Treatise of Fluxions (1742) contained a thorough and rigorous exposition of calculus. It
was written partly as a response to Berkeley’s attacks on the foundations of calculus.

The Italian textbook Istituzioni analitiche ad uso della gioventù italiana (Analytic Prin-
ciples for the Use of Italian Youth) became a standard treatise on analytic geometry and
calculus and was translated into English in 1801. Its author was Maria Gaetana Agnesi
(1718–1799), one of the first women to achieve prominence in mathematics.

The definitive textbooks of calculus were written by the greatest mathematician of the
eighteenth century, the Swiss scholar Leonhard Euler. In his 1748 Introductio in analysin
infinitorum, a two-volume work, Euler gave a thorough discussion of analytic geometry in
two and three dimensions, infinite series (including the use of complex variables in such
series), and the foundations of a systematic theory of algebraic functions. The modern
presentation of trigonometry was established in this work. The Introductio was followed in
1755 by Institutiones calculi differentialis and a three-volume Institutiones calculi integralis
(1768–1774), which included the entire theory of calculus and the elements of differential
equations, richly illustrated with challenging examples. It was in Euler’s textbooks that
many prominent nineteenth-century mathematicians such as the Norwegian genius Niels
Henrik Abel (1802–1829) first encountered higher mathematics, and the influence of Euler’s
methods and results can be traced in their work.

33.6.1. The State of the Calculus Around 1700

Most of what we now know as calculus—rules for differentiating and integrating elementary
functions, solving simple differential equations, and expanding functions in power series—
was known by the early eighteenth century and was included in the standard textbooks just
mentioned. Nevertheless, there was much unfinished work. We list here a few of the open
questions:

1. Nonelementary Integrals. Differentiation of elementary functions is an algorithmic
procedure, and the derivative of any elementary function whatsoever, no matter how
complicated, can be found if the investigator has sufficient patience. Such is not the
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case for the inverse operation of integration. Many important elementary functions,
such as (sin x)/x and e−x2

, are not the derivatives of elementary functions. Since such
integrals turned up in the analysis of some fairly simple motions, such as that of a
pendulum, the problem of these integrals became pressing.

2. Differential Equations. Although integration had originally been associated with
problems of area and volume, because of the importance of differential equations
in mechanical problems the solution of differential equations soon became the major
application of integration. The general procedure was to convert an equation to a form
in which the derivatives could be eliminated by integrating both sides (reduction to
quadratures). As these applications became more extensive, more and more cases
began to arise in which the natural physical model led to equations that could not be
reduced to quadratures. The subject of differential equations began to take on a life
of its own, independent of the calculus.

3. Foundational Difficulties. The philosophical difficulties connected with the use of
infinitesimal methods were paralleled by mathematical difficulties connected with the
extension of the rules for operating with finite polynomials to infinite series. These
difficulties were hidden for some time, and for a blissful century, mathematicians and
physicists operated formally on power series as if they were finite polynomials. They
did so even though it had been known since the time of Oresme that the partial sums
of the harmonic series 1 + 1

2 + 1
3 + · · · grow arbitrarily large.

PROBLEMS AND QUESTIONS

Mathematical Problems

33.1. The mathematical structures called ordered fields, have most of the properties of real
numbers, in the sense that one can add, subtract, multiply, and divide them, as well as
compare any two of them to determine which is the larger. One such field is formed by
the real-valued rational functions of a real variable, that is, quotients of polynomials
with real coefficients, an example of which is

r(x) = 5x2 − 7x + √
2

πx3 − 46x2 + 13
.

Two such functions p(x
q(x) and P(x)

Q(x) are regarded as equal if p(x)Q(x) = q(x)P(x)
in the sense that the two sides are exactly the same polynomial, having exactly the
same coefficients. Since polynomials have only a finite number of zeros, there is
a largest zero for the numerator and denominator of a rational function p(x)

q(x) . For
values of x larger than that largest zero, the fraction is of constant sign. We define
p(x)
q(x) > 0 to mean that the values for all large x are positive, and p(x)

q(x) > r(x)
s(x) to mean

that p(x)
q(x) − r(x)

s(x) > 0.
Show that the rational function f (x) = x is positive and larger than any constant

function g(x) = c. Then show that no finite number of divisions of f (x) by 2 will
ever produce a function smaller than g(x). Hence the rational functions are a non-
Archimedean ordered field. (The standard real numbers are an Archimedean ordered
field.)
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33.2. Show that the point at which the tangent to the curve y = f (x) intersects the y axis is(
0, f (x) − xf ′(x)

)
, and verify that the area under the curve y = f (x) − xf ′(x) from

x = 0 to x = a is twice the area between the curve y = f (x) and the line ay = f (a)x.
This result was used by Leibniz to illustrate the power of his infinitesimal methods.

33.3. The principle that a curve is closely approximated by its tangent line at points near the
point of tangency accounts for both the existence and the usefulness of the derivative.
While the curve may have such a complicated equation that computations involving
it are not feasible, the tangent line is computable, and computations on the tangent
line involve only first-degree equations. That is the basis of Newton’s method of
approximating points where a function f (x) is zero. You make a guess x0, compute the
tangent line at the point (x0, f (x0)), which has equation y − f (x0) = f ′(x0)(x − x0),
and solve it for x when y = 0, getting a new guess x1, which one can hope is an
improvement:

x1 = x0 − f (x0)

f ′(x0)
.

If x1 still isn’t good enough, repeat the process to get x2, and so on.
Use this technique to find

√
2. That is, find a zero of the function f (x) = x2 − 2, for

which f ′(x) = 2x, starting with the guess x0 = 2. What sequence of approximations
do you obtain? How close is x4 to

√
2?

Historical Questions

33.4. When did Newton begin to create the calculus, and what problems did he solve with
it?

33.5. When did Leibniz begin to create the calculus, and what may have been his motive
for doing so?

33.6. What were the objections that philosophers raised against the techniques of calculus?

Questions for Reflection

33.7. Just as Eudoxus solved the problem of incommensurables by making a definition of
proportion to cover cases where no definition existed before, Newton’s “theorem”
asserting that quantities that approach each other monotonically and become arbitrar-
ily close to each other in a finite time must become equal in an infinite time assumes
that one has a definition of equality at infinity. Formulate such a definition.

33.8. Draw a square and one of its diagonals. Then draw a very fine “staircase” by connect-
ing short horizontal and vertical line segments in alternation, each segment crossing
the diagonal. The total length of the horizontal segments is the same as the side of
the square, and the same is true of the vertical segments, so that the total length of
these segments is twice the length of a side. In an intuitive sense these segments do
approximate the diagonal of the square, since they get closer and closer to it as the
number of steps increases. This fact seems to imply that the diagonal of a square
equals twice its side, which is absurd. Does this argument show that the method of
indivisibles is wrong?
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33.9. In the passage quoted from the Analyst, Berkeley asserts that the experience of the
senses provides the only foundation for our imagination. From that premise he con-
cludes that we can have no understanding of infinitesimals. Analyze whether the
premise is true, and if so, whether it implies the conclusion. Assuming that our
thinking processes have been shaped by the evolution of the brain, for example, is it
possible that some of our spatial and counting intuition is “hard-wired” and not the
result of any previous sense impressions? The philosopher Immanuel Kant (1724–
1804) thought so. Do we have the power to make correct judgments about spaces
and times on scales that we have not experienced? What would Berkeley have said
if he had heard Riemann’s argument that space may be finite, yet unbounded? If our
intuition is “hard-wired,” does it follow that it is a perfectly accurate reflection of
reality?



CHAPTER 34

Consolidation of the Calculus

The calculus grew organically, sending forth branches while simultaneously putting down
roots. The roots were the subject of philosophical speculation that eventually led to new
mathematics as well, but the branches were natural outgrowths of pure mathematics that
appeared very early in the history of the subject. In order to carry the story to a natural
conclusion, we shall go beyond the time limits we have set for ourselves in this part and
discuss results from the nineteenth century, but only in relation to calculus (analysis). The
development of modern algebra, number theory, geometry, probability, and other subjects
will be discussed in later chapters. In addition to the pioneers of calculus we have already
discussed, we will be mentioning a number of outstanding eighteenth- and nineteenth-
century mathematicians who made contributions to analysis, especially the following:

1. Leonhard Euler (1707–1783), a Swiss mathematician who became one of the early
members of the Russian Academy of Sciences (1727–1741), then spent a quarter-
century in Berlin (1741–1766) before returning to St. Petersburg when the Prussian
Princess Catherine II (1762–1796) ruled there. He holds the record for having written
the greatest volume of mathematical papers in all of history, amounting to more than
80 large volumes in the edition of his collected works. (A mathematician whose works
fill 10 volumes is an extreme rarity.)

2. Jean le Rond d’Alembert (1717–1783), a French mathematician who made significant
contributions to algebra, in which he attempted to prove that every polynomial with
real coefficients can be written as a product of linear and quadratic factors with
real coefficients. (If he had succeeded, he would as a by-product have proved the
fundamental theorem of algebra.) He also contributed to partial differential equations
(the vibrating string problem) and the foundations of mathematics. He was one of the
authors of the great compendium of knowledge known as the Encyclopédie.

3. Joseph-Louis Lagrange (1736–1813), an Italian mathematician (Giuseppe-Luigi
Lagrange), who spent most of his life in Berlin and Paris. He worked on many of the
same problems in analysis as Euler. These two were remarkably prolific and between
them advanced analysis, mechanics, and algebra immensely. Lagrange represented
an algebraic point of view in analysis, generally eschewing appeals to geometry.

4. Adrien-Marie Legendre (1752–1833), a French mathematician who founded the
theory of elliptic functions and made fundamental contributions to number
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theory. He also was one of the earliest to recognize the importance of least-squares
approximation.

5. Augustin-Louis Cauchy (1789–1856), the most prolific mathematician of the nine-
teenth century. He published constantly in the Comptes rendus (Reports) of the Paris
Academy of Sciences. He raised the level of rigor in real analysis and was largely re-
sponsible for shaping one of three basic approaches to complex analysis. Although we
shall be discussing some particular results of Cauchy in connection with the solution
of algebraic and differential equations, his treatises on analysis are the contributions
for which he is best remembered. He became a mathematician only after practicing
as an engineer for several years.

6. Carl Gustav Jacob Jacobi (1804–1851), the first Jewish professor in Germany, who
worked in many areas, including mechanics, elliptic and more general algebraic func-
tions, differential equations, and number theory.

7. Karl Weierstrass (1815–1897), a professor at the University of Berlin from 1855 until
his death. His insistence on clarity led him to reformulate much of analysis, algebra,
and calculus of variations.

8. Bernhard Riemann (1826–1866), a brilliant geometer at the University of Göttingen.
In frail health (he died young, of tuberculosis), he applied his wonderful intuition
to invent a geometric style in complex analysis and algebra that complemented the
analytic style of Weierstrass and the algebraic style of the Lagrangian tradition.

In our examination of the tree of calculus, we begin with the branches and will end with
the roots.

34.1. ORDINARY DIFFERENTIAL EQUATIONS

Ordinary differential equations arose almost as soon as there was a language (differential
calculus) in which they could be expressed. These equations were used to formulate prob-
lems from geometry and physics in the late seventeenth century, and the natural approach
to solving them was to apply the integral calculus, that is, to reduce a given equation to
quadratures. Leibniz, in particular, developed the technique now known as separation of
variables as early as 1690 (Grosholz, 1987). In the simplest case, that of an ordinary differ-
ential equation of first order and first degree, one is seeking an equation f (x, y) = c, which
may be interpreted as a conservation law if x and y are functions of time having physical
significance. The conservation law is expressed as the differential equation

∂f

∂x
dx + ∂f

∂y
dy = 0 .

The resulting equation is known as an exact differential equation, since the left-hand side is
the exact differential of the function f (x, y). To solve this equation, one has only to integrate
the first differential with respect to x, adding an arbitrary function g(y) to the solution, then
differentiate with respect to y and compare the result with ∂f

∂y
in order to get an equation for

g′(y), which can then be integrated.
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If all equations were this simple, differential equations would be a very trivial subject.
Unfortunately, it seems that nature tries to confuse us, multiplying these equations by
arbitrary functions μ(x, y). That is, when an equation is written down as a particular case
of a physical law, it often looks like

M(x, y) dx + N(x, y) dy = 0,

where M(x, y) = μ(x, y) ∂f
∂x

and N(x, y) = μ(x, y) ∂f
∂y

, and no one can tell from looking at

M just which factors in it constitute μ and which constitute ∂f
∂x

. To take the simplest possible
example, the mass y of a radioactive substance that remains undecayed in a sample after
time x satisfies the equation

dy − ky dx = 0,

where k is a constant. The mathematician’s job is to get rid of μ(x, y) by looking for
an “integrating factor” that will make the equation exact.1 One integrating factor for this
equation is 1/y; another is e−kx. (When the equation is solved, these are seen to be the same
function.)

It appeared at a very early stage that finding an integrating factor is not in general possible,
and both Newton and Leibniz were led to the use of infinite series with undetermined
coefficients to solve such equations. Later, Maclaurin, was to warn against too hasty recourse
to infinite series, saying that certain integrals could be better expressed geometrically as the
arc lengths of various curves. But the idea of replacing a differential equation by a system of
algebraic equations was very attractive. The earliest examples of series solutions were cited
by Feigenbaum (1994). In his Fluxions, Newton considered the linear differential equation
that we would now write as

dy

dx
= 1 − 3x + x2 + (1 + x)y .

Newton wrote it as n/m = 1 − 3x + y + xx + xy and found that

y = x − x2 + 1

3
x3 − 1

6
x4 + 1

30
x5 − 1

45
x6 − · · · .

Similarly, in a paper published in the Acta eruditorum in 1693 (Gerhardt, 1971, Vol. 5,
p. 287), Leibniz studied the differential equations for the logarithm and the arcsine in order
to obtain what we now call the Maclaurin series of the logarithm, exponential, and sine func-
tions. For example, he considered the equation a2 dy2 = a2 dx2 + x2 dy2 and assumed that
x = by + cy3 + ey5 + fy7 + · · · , thereby obtaining the series that represents the function
x = a sin(y/a). Neither Newton nor Leibniz mentioned that the coefficients in these series
were the derivatives of the functions represented by the series divided by the corresponding
factorials. However, that realization came to John Bernoulli very soon after the publication

1The equations presented in first courses on differential equations—those with variables separated, homogeneous
equations, and linear equations—are precisely the equations for which an integrating factor is known.
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of Leibniz’ work. In a letter to Leibniz dated September 2, 1694 (Gerhardt, 1971, Vol. 3/1,
p. 350), Bernoulli described essentially what we now call the Taylor series of a function.
In the course of this description, he gave in passing what became a standard definition of
a function, saying, “I take n to be a quantity formed in an arbitrary manner from variables
and constants.” Leibniz had used the word function as early as 1673, and in an article in the
1694 Acta eruditorum had defined a function to be “the portion of a line cut off by lines
drawn using only a fixed point and a given point lying on a curved line.” As Leibniz said, a
given curve defines a number of functions: its abscissas, its ordinates, its subtangents, and
so on. The problem that differential equations solve is to reconstruct the curve given the
ratio between two of these functions.2

In classical terms, the solution of a differential equation is a function or family of func-
tions. Given that fact, the ways in which a function can be presented become an important
issue. With the modern definition of a function and the familiar notation, one might easily
forget that in order to apply the theory of functions it is necessary to deal with particular
functions, and these must be presented somehow. Bernoulli’s description addresses that
issue, although it leaves open the question of what methods of combining variables and
constants are legal.

34.1.1. A Digression on Time

The Taylor series of a given function can be generated knowing the values of the function
over any interval of the independent variable, no matter how short. Thus, a quantity repre-
sented by such a series is determined for all values of the independent variable when the
values are given on any interval at all. Given that the independent variable is usually time,
that property corresponds to physical determinacy: Knowing the full state of a physical
quantity for some interval of time determines its values for all time. Lagrange, in particular,
was a proponent of power series, for which he invented the term analytic function. However,
as we now know, the natural domain of analytic function theory is the complex numbers.
Now in mechanics the independent variable often represents time, and that fact raises an
interesting question: Why should time be a complex variable? How do complex numbers
turn out to be relevant to a problem where only real values of the variables have any physical
meaning? To this question the eighteenth- and nineteenth-century mathematicians gave no
answer. Indeed, it does not appear that they even asked the question very often. Extensive
searches of the nineteenth-century literature by the present author have produced only the
following comments on this interesting question, made by Weierstrass in 1885 (see his
Werke, Bd. 3, S. 24):

It is very remarkable that in a problem of mathematical physics where one seeks an unknown
function of two variables that, in terms of their physical meaning, can have only real values
and is such that for a particular value of one of the variables the function must equal a prescribed
function of the other, an expression often results that is an analytic function of the variable and
hence also has a meaning for complex values of the latter.

2The mathematical meaning of the word function has always been somewhat at variance with its meaning in
ordinary language. A person’s function consists of the work the person does. Apparently, Leibniz pictured the
curve as a means for producing these lines, which were therefore functions of the curve.
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It is indeed very remarkable, but neither Weierstrass nor anyone since seems to have
explained the mystery. Near the end of Weierstrass’ life, Felix Klein (1897) remarked that
if physical variables are regarded as complex, a rotating rigid body can be treated either as a
motion in hyperbolic space or motion in Euclidean space accompanied by a strain. Perhaps,
since they had seen that complex numbers were needed to produce the three real roots of a
cubic equation, it may not have seemed strange to them that the complex-variable properties
of solutions of differential equations are relevant in the study of problems generated by
physical considerations involving only real variables. Time is sometimes represented as a
two-dimensional quantity in connection with what are known as Gibbs random fields.

34.2. PARTIAL DIFFERENTIAL EQUATIONS

In the middle of the eighteenth century mathematical physicists began to consider problems
involving more than one independent variable. The most famous of these is the vibrating
string problem discussed by Euler, d’Alembert, and Daniel Bernoulli (1700–1782, son of
John Bernoulli) during the 1740s and 1750s.3 This problem led to the one-dimensional
wave equation

∂2u

∂t2 = c2 ∂2u

∂2x
,

with the initial conditions u(x, 0) = f (x), ∂u
∂t

(x, 0) = 0. Here u(x, t) is the height of the
point of the string above x at time t. Daniel Bernoulli solved this equation in the form of an
infinite double trigonometric series

u(x, t) =
∞∑

n=1

an sin nx cos nct ,

claiming that the an could be chosen so that
∞∑

n=1
an sin nx = f (x). This solution was crit-

icized by Euler, leading to a debate over the allowable methods of defining functions and
the proper definition of a function.

The developments that grew out of trigonometric-series techniques like this one by Daniel
Bernoulli will be discussed in Chapter 42, along with the development of real analysis in
general. For the rest of the present section, we confine our discussion to power-series
techniques of solving partial differential equations.

In the nineteenth century, Newton’s power-series method was applied to the heat equation

∂u

∂t
= a

∂2u

∂x2

3The problem had been considered a generation earlier by Brook Taylor, who made the assumption that the
restoring force on the string at any point and any time was proportional to the curvature of its shape at that point
and time. Since the curvature is essentially the second derivative with respect to arc length, this condition, when
linearized, amounts to the partial differential equation used by d’Alembert.
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by Joseph Fourier, who is actually better known for applying trigonometric series and inte-
grals in such cases. (In fact, they are called Fourier series and integrals in his honor.) In this
equation, u(x, t) represents the temperature at time t at point x in a long thin wire. Assuming
that the temperature at x at time t = 0 is ϕ(x) and a = 1, Fourier obtained the solution

u(x, t) =
∞∑

r=0

ϕ(2r)(x)

r!
tr.

As it turns out, this series often diverges for all nonzero values of t.
It was not until the nineteenth century that mathematicians began to worry about the

convergence of series solutions. First Cauchy, and then Weierstrass produced proofs that
the series do converge for ordinary differential equations, provided that the coefficients
have convergent series representations. For partial differential equations, between 1841
and 1876, Cauchy, Jacobi, Weierstrass, Weierstrass’ student Sof’ya Kovalevskaya (1850–
1891), and Gaston Darboux (1842–1917), produced theorems that guaranteed convergence
of the formally generated power series. In general, however, it turned out that the series
formally satisfying the equation could actually diverge, and that the algebraic form of
the equation controlled whether it did or not. Kovalevskaya showed that in general the
power series solution for the heat equation diverges if the initial temperature distribu-
tion is prescribed, even when that temperature is an analytic function of position. (This is
the case considered by Fourier.) She showed, however, that the series converges if the tem-
perature and temperature gradient at one point are prescribed as analytic functions of time.
More generally, she showed that the power-series solution of any initial-value problem in
“normal form” would converge. Normal form is relative to a particular variable that occurs
in the equation. It means that the initial conditions are imposed on a variable whose highest-
order pure derivative in the equation equals the order of the equation. The heat equation is
in normal form relative to the spatial variable, but not relative to the time variable.

34.3. CALCULUS OF VARIATIONS

The notion of function lies at the heart of calculus. The usual picture of a function is of one
point being mapped to another point. However, the independent variable in a function can
be a curve or surface as well as a point. For example, given a curve γ that is the graph of a
function y = f (x) between x = a and x = b, we can define its length as

�(γ) =
∫ b

a

√
1 + (

f ′(x)
)2

dx.

One of the important problems in the history of geometry has been to pick out the curve γ

that minimizes �(γ) and satisfies certain extra conditions, such as joining two fixed points
P and Q on a surface or enclosing a fixed area A. The calculus technique of “setting the
derivative equal to zero” needs to be generalized for such problems, and the techniques for
doing so constitute the calculus of variations. The history of this outgrowth of the calculus
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Figure 34.1. Left: Fermat’s principle. The time of travel from P to Q is a minimum if the ray
crosses the interface at the point where sin(θ1)/v1 = sin(θ2)/v2. Right: Application of this principle
to the brachistochrone, assuming the speed varies continuously in proportion to the square root of the
distance of descent.

has been studied in many classic works, such as those by Woodhouse (1810),4 Todhunter
(1861), and Goldstine (1980), and in articles like the one by Kreyszig (1993).

As with the ordinary calculus, the development of calculus of variations proceeded from
particular problems solved by special devices to general techniques and algorithms based
on theoretical analysis and rigorous proof. In the seventeenth century there were three
such special problems that had important consequences. The first was the brachistochrone
(shortest-time) problem for an object crossing an interface between two media while moving
from one point to another. In the simplest case (Fig. 34.1), the interface is a straight line,
and the time required to travel from P to Q at speed v1 above the line P0Q0 and speed v2
below it is to be minimized. If the two speeds are not the same, it is clear that the path of
minimum time will not be a straight line, since time can be saved by traveling a slightly
longer distance in the medium in which the speed is greater. The path of minimum time
turns out to be the one in which the sines of the angle of incidence and refraction have a
fixed ratio, namely the ratio of the speeds in the two media. (Compare this result with the
shortest reflected path in a single medium, discussed in Problem 15.1 of Chapter 15, which
is also a path of minimum time.)

Fermat’s principle, which asserts that the path of a light ray is the one that requires least
time, found application in the second problem, stated as a challenge by John Bernoulli in
1696: Find the curve down which a frictionless particle will slide from point P to point
Q under the influence of gravity in minimal time. Since the speed of a falling body is
proportional to the square root of the distance fallen, Bernoulli reasoned that the sine of the
angle between the tangent and the vertical would be proportional to the square root of the

4The treatise of Woodhouse is a textbook as much as a history, and its last chapter is a set of 29 examples
posed as exercises for the reader with solutions provided. The book also marks an important transition in British
mathematics. Woodhouse says in the preface that, “In a former Work, I adopted the foreign notation. . . ”. The
foreign notation was the Leibniz notation for differentials, in preference to the dot above the letter that Newton
used to denote his fluxions. He says that he found this notation even more necessary in calculus of variations,
since he would otherwise have had to adopt some new symbol for Lagrange’s variation. But he then goes on to
marvel that Lagrange had taken the reverse step of introducing Newton’s fluxion notation into the calculus of
variations.
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vertical coordinate, assuming the vertical axis directed downward.5 In that way, Bernoulli
arrived at a differential equation for the curve:

dy

dx
=

√
y

a − y
.

Here we have taken y as the vertical coordinate, directed downward. He recognized this
equation as the differential equation of a cycloid and thus concluded that this curve, which
Christiaan Huygens (1629–1695) had studied because it enabled a clock to keep theo-
retically perfect time (the tautochrone property, discussed in Chapter 39), also had the
brachistochrone property. The challenge problem was solved by Bernoulli himself, by his
brother James, and by both Newton and Leibniz.6 According to Woodhouse (1810, p. 150),
Newton’s anonymously submitted solution was so concise and elegant that John Bernoulli
knew immediately who it must be from. He wrote, “Even though the author, from excessive
modesty, does not give his name, we can nevertheless tell certainly by a number of signs
that it is the famous Newton; and even if these signs were not present, seeing a small sample
would suffice to recognize him, as ex ungue Leonem.”7

The third problem, that of finding the cross-sectional shape of the optimally streamlined
body moving through a resisting medium, is discussed in the scholium to Proposition 34
(Theorem 28) of Book 2 of Newton’s Principia.

34.3.1. Euler

Variational problems were categorized and systematized by Euler in a large treatise in 1744
named Methodus inveniendi lineas curvas (A Method of Finding Curves). In this treatise
Euler set forth a series of problems of increasing complexity, each involving the finding
of a curve having certain extremal properties, such as minimal length among all curves
joining two points on a given surface.8 Proposition 3 in Chapter 2, for example, asks for
the minimum value of an integral

∫
Z dx, where Z is a function of variables, x, y, and

p = y′ = dy
dx

. Based on his previous examples, Euler derived the differential equation

0 = N dx − dP,

where dZ = M dx + N dy + P dp is the differential of the integrand Z. Since N = ∂Z
∂y

and

P = ∂Z
∂p

, this equation could be written in the form that is now the basic equation of the

5As discussed in Chapter 27, the Muslim scholars ibn Sahl and al-Haytham knew that the ratio of the sines of the
angles of incidence and refraction was constant at a point where two media meet. The Europeans Thomas Harriot,
Willebrod Snell, and René Descartes derived the law of refraction from theoretical principles and deduced that
the ratio of these sines is the ratio of the speeds of propagation in the two media. Fermat’s principle, which was
stated in a letter written in 1662, uses this law to show that the time of travel from a point in one medium to a point
in the other is minimal.
6Newton apparently recognized structural similarities between this problem and his own optimal-streamlining
problem (see Goldstine, 1980, pp. 7–35).
7A Latin proverb much in vogue at the time. It means literally “from [just] the claw [one can recognize] the Lion.”
8This problem was Example 4 in Chapter 4 of the treatise.
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calculus of variations, and is known as Euler’s equation:

∂Z

∂y
= d

dx

(∂Z

∂y′
)
.

In Chapter 3, Euler generalized this result by allowing Z to depend on additional param-
eters and applied his result to find minimal surfaces. In an appendix he studied elastic curves
and surfaces, including the problem of the vibrating membrane. This work was being done
at the very time when Euler’s former colleague Daniel Bernoulli was studying the simpler
problem of the vibrating string. In a second appendix, Euler showed how to derive the
equations of mechanics from variational principles, thus providing a unifying mathematical
principle that applied to both optics (Fermat’s principle) and mechanics.9

34.3.2. Lagrange

The calculus of variations acquired “variations” and its name as the result of a letter written
by Lagrange to Euler in 1755. In that letter, Lagrange generalized Leibniz’ differentials from
points to curves, using the Greek δ instead of the Latin d to denote them. Thus, if y = f (x)
was a curve, its variation δy was a small perturbation of it. Just as dy was a small change
in the value of y at a point, δy was a small change in all the values of y at all points. The
variation operator δ can be manipulated quite easily, since it commutes with differentiation
and integration: δy′ = (δy)′ and δ

∫
Z dx = ∫

δZ dx. With this operator, Euler’s equation and
its many applications were easy to derive. Euler recognized the usefulness of what Lagrange
had done and gave the new theory the name it has borne ever since: calculus of variations.

Lagrange also considered extremal problems with constraint and introduced the famous
Lagrange multipliers as a way of turning these relative (constrained) extrema into absolute
(unconstrained) extrema. Euler had given an explanation of this process earlier. Woodhouse
(1810, p. 79) thought that Lagrange’s systematization actually deprived Euler’s ideas of
their simplicity.

34.3.3. Second-Variation Tests for Maxima and Minima

Like the equation f ′(x) = 0 in calculus, the Euler equation is only a necessary condition
for an extremal, not sufficient, and it does not distinguish between maximum, minimum,
and neither. In general, however, if Euler’s equation has only one solution, and there is good
reason to believe that a maximum or minimum exists, the solution of the Euler equation
provides a basis to proceed in practice. Still, mathematicians were bound to explore the
question of distinguishing maxima from minima. Such investigations were undertaken by
Lagrange and Legendre in the late eighteenth century.

In 1786 Legendre was able to show that a sufficient condition for a minimum of the
integral

I(y) =
∫ b

a

f (x, y, y′) dx,

9 One of his results is that a particle moving over a surface and free of any forces tangential to the surface will
move along a geodesic of that surface. One cannot help seeing in this result an anticipation of the basic principle
of general relativity (see Chapter 39 below).
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at a function satisfying Euler’s necessary condition, was ∂2f

∂y′2 > 0 for all x and that a sufficient

condition for a maximum was ∂2f

∂y′2 < 0.
In 1797 Lagrange published a comprehensive treatise on the calculus, in which he ob-

jected to some of Legendre’s reasoning, noting that it assumed that certain functions re-
mained finite on the interval of integration (Dorofeeva, 1998, p. 209).

34.3.4. Jacobi: Sufficiency Criteria

The second-variation test is strong enough to show that a solution of the Euler equation
really is an extremal among the smooth functions that are “nearby” in the sense that their
values are close to those of the solution and their derivatives also take values close to those
of the derivative of the solution. Such an extremal was called a weak extremal by Adolf
Kneser (1862–1930). Jacobi had the idea of replacing the curve y(x) that satisfied Euler’s
equation with a family of such curves depending on parameters (two in the case we have
been considering) y(x, α1, α2) and replacing the nearby curves y + δy and y′ + δy′ with
values corresponding to different parameters. In 1837—see Dorofeeva (1998) or Fraser
(1993)—he finally solved the problem of finding sufficient conditions for an extremal. He
included his solution in the lectures on dynamics that he gave in 1842, which were published
in 1866, after his death. The complication that had held up Jacobi and others was the fact that
sometimes the extremals with given endpoints are not unique. The most obvious example
is the case of great circles on the sphere, which satisfy the Euler equations for the integral
that gives arc length subject to fixed endpoints. If the endpoints happen to be antipodal
points, all great circles passing through the two points have the same length. Weierstrass
was later to call such pairs of points conjugate points. Jacobi gave a differential equation
whose solutions had zeros at these points and showed that Legendre’s criterion was correct,
provided that the interval (a, b] contained no points conjugate to a.

34.3.5. Weierstrass and his School

A number of important advances in the calculus of variations were due to Weierstrass, such
as the elimination of some of the more restrictive assumptions about differentiability and
taking account of the distinction between a lower bound and a minimum.10

An important example in this connection was Riemann’s use of Dirichlet’s principle to
prove the Riemann mapping theorem, which asserts that any simply connected region in
the plane except the plane itself can be mapped conformally onto the unit disk 	 = {(x, y) :
x2 + y2 < 1}. That principle required the existence of a real-valued function u(x, y) that
minimizes the integral

∫ ∫

	

(∂u

∂x

)2 +
(∂u

∂y

)2
dx dy

among all functions u(x, y) taking prescribed values on the boundary of the disk. That
function is the unique harmonic function11 in 	 with the given boundary values. In 1870,

10This distinction was pointed out by Gauss as early as 1799, in his criticism of d’Alembert’s 1746 proof of the
fundamental theorem of algebra.
11A brief definition of a harmonic function is that its graph is the surface of a nonvibrating flexible membrane.
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Weierstrass called attention to the integral


(ϕ) =
∫ +1

−1
x2(ϕ′(x)

)2
dx ,

which when combined with the boundary condition ϕ(−1) = a, ϕ(+1) = b, can be made
arbitrarily small by taking k sufficiently large in the formula

ϕ(x) = a + b

2
+ b − a

2

arctan(kx)

arctan(k)
,

yet (if a /= b) cannot be zero for any function ϕ satisfying the boundary conditions and such
that ϕ′ exists at every point.

Weierstrass’ example was a case where it was necessary to look outside the class of
smooth functions for a minimum of the functional. The limiting position of the graphs of
the functions for which the integral approximates its minimum value consists of the two
horizontal lines from (−1, a) to (0, a), from (0, b) to (+1, b), and the section of the y-axis
joining them (see Fig. 34.2).

Weierstrass thought of the smoothness assumptions as necessary evils. He recognized
that they limited the generality of the results, yet he saw that without them no application of
the calculus was possible. The result is a certain vagueness about the formulation of minimal
principles in physics. A certain functional must be a minimum assuming that all the relevant
quantities are differentiable a sufficient number of times. Obviously, if a functional can be
extended to a wider class of functions in a natural way, the minimum reached may be
smaller, or the maximum larger. To make the restrictions as weak as possible, Weierstrass
imposed the condition that the partial derivatives of the integrand should be continuous at
corners. An extremal among all functions satisfying these less restrictive hypotheses was

Figure 34.2. The functional 
(y) = ∫ +1

−1

(
xy′(x)

)2
dx does not assume its minimum value for con-

tinuously differentiable functions y(x) satisfying y(−1) = 2, y(+1) = 4. The limiting position of a
minimizing sequence is the dashed line.
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called a strong extremal. The corner condition was also found in 1877 by G. Erdmann (dates
unknown), a teacher at the Gymnasium in Königsberg, who proved in 1878 that Jacobi’s
sufficient condition for a weak extremal was also necessary.

34.4. FOUNDATIONS OF THE CALCULUS

The British and Continental mathematicians both found the power of the calculus so attrac-
tive that they applied and developed it (sending forth new branches), all the while struggling
to be clear about the principles they were using (extending its roots). The branches grew
more or less continuously from the beginning. The development of the roots was slower and
more sporadic. A satisfactory consensus was achieved only late in the nineteenth century,
with the full development of real analysis.

The source of the difficulty was the introduction of the infinite into analysis in the
form of infinitesimal reasoning. As mentioned in the previous chapter, Leibniz believed
in actual infinitesimals, levels of magnitude that were real, not zero, but so small that no
accumulation of them could ever exceed any finite quantity. His dx was such an infinitesimal,
and a product of two, such as dx dy or dx2, was a higher-order infinitesimal, so small that
no accumulation of such could ever exceed any infinitesimal of the first order. On this
view, even though theorems established using calculus were not absolutely accurate, the
errors were below the threshold of human perception and therefore could not matter in
practice. Newton was probably alluding to this belief of Leibniz when, in his discussion of
the quadrature of curves (1704), he wrote, “In rebus mathematicis errores quam minimi non
sunt contemnendi” (“Errors, no matter how small, are not to be allowed in mathematics”).12

Newton knew that his arguments could have been phrased using the Eudoxan method
of exhaustion. In his Principia he wrote that he used his method of first and last ratios “to
avoid the tediousness of deducing involved demonstrations ad absurdum, according to the
method of the ancient geometers.” That is to say, to avoid the trichotomy arguments used
by Archimedes.

There seemed to be three approaches that would allow the operation that we now know
as integration to be performed by antidifferentiation of tangents. One is the infinitesimal
approach of Leibniz, characterized by Mancosu (1989) as “static.” That is, a tangent is a
state or position of a line, namely that of passing through two infinitely near points. The
second is Newton’s “dynamic” approach, in which a fluxion is the velocity of a moving
object. The third is the ancient method of exhaustion. In principle, a reduction of calculus to
the Eudoxan theory of proportion is possible. Psychologically, it would involve not only a
great deal of tedium, as Newton noted, but also a great deal of confusion. If mathematicians
had been shackled by the requirements of this kind of rigor, the amount of geometry and
analysis created would have been much smaller than it was.

In the eighteenth century, however, better expositions of the calculus were produced
by d’Alembert and others. In his article on the differential for the famous Encyclopédie,
d’Alembert wrote that 0/0 could be equal to anything, and that the derivative dy

dx
was not

actually 0 divided by 0, but the limit of finite quotients as numerator and denominator tended
to zero. (This was essentially what Newton had said in his Principia.)

12As we saw in the last chapter, Berkeley flung these very words back at Newton.
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34.4.1. Lagrange’s Algebraic Analysis

The attempt to be clear about infinitesimals or to banish them entirely took many forms
during the eighteenth and nineteenth centuries. One of them (see Fraser, 1987) was
Lagrange’s exposition of analytic functions. Lagrange understood the term function to
mean a formula composed of symbols representing variables and arithmetic operations. He
argued that “in general” (with certain obvious exceptions) every function f (x) could be
expanded as a power series, based on Taylor’s theorem, for which he provided his own form
of the remainder term. He claimed that the hypothetical expansion

√
x + h = √

x + ph + qh2 + · · · + hm/n

could not occur, since the left-hand side has only two values, while the right-hand side has
n values.13 In this way, he ruled out fractional exponents. Negative exponents were ruled
out by the mere fact that the function was defined at h = 0. The determinacy property of
analytic functions was used implicitly by Lagrange when he assumed that any zero of a
function must have finite order, as we would say (Fraser, 1987, p. 42).

The advantage of confining attention to functions defined by power series is that the
derivative and integral of such a function have a perfectly definite meaning. Lagrange
advocated it on the grounds that it showed the qualitative difference between the functions
dx and x.

34.4.2. Cauchy’s Calculus

The modern presentation of calculus owes a great deal to the textbooks of Cauchy, written for
his lectures at the Ecole Polytechnique during the 1820s. Cauchy recognized that calculus
could not get by without something equivalent to infinitesimals. He defined a function f (x)
to be continuous if the absolute value of the difference f (x + α) − f (x) “decreases without
limit along with that of α.” He continues:

In other words, the function f (x) remains continuous with respect to x in a given interval, if
an infinitesimal increase in the variable within this interval always produces an infinitesimal
increase in the function itself.

Cauchy did not discuss the question whether only one single point x is being considered
or the increase is being thought of as occurring at all points simultaneously. It turns out that
the size of the infinitesimal change in f (x) corresponding to a given change in x may vary
from one point to another and from one function to another. Stronger assumptions, invoking
the concepts of uniform continuity and equicontinuity are needed to guarantee results such
as Cauchy stated here. In particular, he uniform convergence and continuity but did not
say so. Cauchy defined a limit in terms of the “successive values attributed to a variable,”
approaching a fixed value and ultimately differing from it by an arbitrarily small amount.
This definition can be regarded as an informal version of what we now state precisely with
deltas and epsilons; and Cauchy is generally regarded, along with Weierstrass, as one of the

13This kind of reasoning was used by Abel in the nineteenth century to prove that there is no finite algebraic
algorithm for solving the general equation of degree 5.
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people who finally made the foundations of calculus secure. Yet Cauchy’s language clearly
presumes that infinitesimals are real. As Laugwitz (1987, p. 272) says:

All attempts to understand Cauchy from a ‘rigorous’ theory of real numbers and functions
including uniformity concepts have failed. . . One advantage of modern theories like the Non-
standard Analysis of Robinson. . . [which includes infinitesimals] is that they provide consistent
reconstructions of Cauchy’s concepts and results in a language which sounds very much like
Cauchy’s.

The secure foundation of modern analysis owes much to Cauchy’s treatises. As Grabiner
(1981) said, he applied ancient Greek rigor and modern algebraic techniques to derive results
from analysis.

PROBLEMS AND QUESTIONS

Mathematical Problems

34.1. Consider the one-dimensional heat equation, according to which the temperature u

at point x along a line (say a wire) at time t satisfies

∂u

∂t
= k

∂2u

∂x2 ,

where k is a constant of proportionality. Assume the units of time and distance
are chosen so that k = 1. If the initial temperature distribution is given by the so-
called witch of Agnesi14 u(x, 0) = (1 + x2)−1 (so that the temperature has some
resemblance to a bell-shaped curve), assume that

u(x, t) =
∞∑

m=0

∞∑

n=0

cmnx
mtn .

Use the fact that

u(x, 0) = 1 − x2 + x4 − x6 + · · ·

for all small x to conclude that

cm0 =
{

0 , if m is odd,

(−1)p , if m = 2p .

14In her calculus textbook, Maria Gaetana Agnesi called this curve la versiera, meaning twisted. It was incorrectly
translated into English, apparently because of the resemblance of this word to l’avversiera, meaning wife of the
Devil.
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Then differentiate formally, and show that the assumed series for u(x, t) must be

u(x, t) =
∞∑

m=0

∞∑

n=0

(−1)m+n (2m + 2n)!

(2m)!n!
x2mtn.

Show that this series diverges for all nonzero values of t when x = 0.

34.2. There are yet more subtleties in the notion of continuity than even Cauchy realized.
In one of his works, he had stated the theorem that the sum of a series of continuous
functions is continuous. Abel, who admired Cauchy’s mathematics (while regarding
Cauchy himself as rather crazy), diplomatically pointed out that “this theorem appears
to admit some exceptions.” In fact,

∞∑

n=1

1

n
sin nx =

⎧
⎪⎨

⎪⎩

+π−x
2 if 0 < x < π ,

0 if x = kπ , k = 0 , ±1 , ±2 , . . .
−π−x

2 if − π < x < 0 .

Since Cauchy had argued that an infinitesimal change in x will produce an infinites-
imal change in each term sin nx

n
, why does an infinitesimal increase in x starting at

x = 0 not produce an infinitesimal change in the sum of this series?

34.3. Fill in the details of Weierstrass’ example of a functional that does not assume its
minimum value subject to certain endpoint conditions. In Fig. 34.2, the function
yk = 3 + arctan(kx)/ arctan(k) satisfies the endpoint conditions that y(−1) = 2 and
y(+1) = 4. Using partial fractions to do the integration, you can show that

∫ +1

−1

(
xy′

k(x)
)2

dx =
(1

k
− 1

(1 + k2) arctan(k)

)
,

which obviously tends to zero as k → ∞. For the functional actually to be zero,
however, y′(x) would have to be identically zero except at x = 0, and so y(x) would
have to be 2 for x < 0 and 4 for x > 0.

Historical Questions

34.4. How does the calculus of variations differ from ordinary calculus?

34.5. What new methodological questions arose in the course of solving the problem of
the vibrating string?

34.6. What solutions did nineteenth-century analysts like Cauchy and Weierstrass find to
the philosophical difficulties connected with infinitesimals?

Questions for Reflection

34.7. Is it possible to make calculus “finitistic,” so that each step in its development refers
only to a finite number of concrete things? Or is the infinite inherent in the sub-
ject? In particular, does Lagrange’s approach, developing functions as power series
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and defining the derivative as the coefficient of the first-degree term, satisfy such a
requirement and eliminate the need for infinitesimals?

34.8. What sense can you make out of time as a complex variable? If it has no meaning at
all, why did Weierstrass and his students think it important to use complex variables
in solving differential equations?

34.9. What differences are there between an algebraic equation and a differential equation?
What does the term solution mean for each of them?





PART VII

SPECIAL TOPICS

The ordering of material that we have used up to now—first, by cultures and, within each
culture, roughly chronological—becomes useless after the beginning of the eighteenth cen-
tury. From that point on, there is essentially only one mathematical culture, a world-wide
one, with a broad consensus as to methods, although some specialties are more concentrated
in one geographical area than another. As for chronology, so much mathematics has been
produced every year, and mathematics has been advancing along so many broad fronts,
that a chapter devoted to a single decade in the eighteenth century or a single year in the
twentieth would be prodigiously long. As the time period grew shorter and the chapters
grew longer, all perspective would be lost. For that reason, this final part of the history,
except for Chapter 35, which discusses women mathematicians in the late nineteenth and
early twentieth centuries, consists of chapters, each of which is devoted to the development
of a single subject area.

In an effort to convey as much mathematics as possible in this book, we have slighted
some other questions of sociological and political interest, such as the increasing democ-
ratization of mathematics that accompanied the increase in prosperity after the industrial
revolution, its opening up to people from working-class backgrounds. Especially important
in that democratization was the gradual involvement of women in the mathematical world.
We shall devote the first chapter in this final part to that subject. For lack of space, we are
forced to omit other interesting subjects, such as the influence of the Nazi and Communist
regimes on mathematics in Germany and the Soviet Union and the impact of the Cold War
on mathematical research in the United States.

We ended our narrative of the development of different mathematical subjects at different
points. We left the story of both algebra and geometry at the point they had reached around the
beginning of the seventeenth century, and we left the story of calculus and its outgrowths
in the nineteenth century. Certain prominent parts of mathematics, such as probability,
mathematical logic, set theory, and modern number theory have hardly been mentioned at
all. While the enormous literature generated by these subjects in the modern era makes
the task of summarizing them nearly impossible, we can at least make a grand sweep of
each of them to provide some measure of completeness to our coverage of the world of
mathematics. These last eleven chapters will fill in some of these gaps. These chapters,
much more than those that have preceded, are written in the style that we called heritage in
Chapter 1. That is, they aim to show how certain familiar features of modern mathematics
arose rather than to describe objectively what mathematical life was like in the past.
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Contents of Part VII

1. Chapter 35 (Women Mathematicians), as mentioned above, discusses women math-
ematicians in the late nineteenth and early twentieth centuries.

2. Chapter 36 (Probability) traces the history of probability from the Renaissance to the
nineteenth century.

3. Chapter 37 (Algebra from 1600 to 1850) discusses the development of algebra up to
the mid-nineteenth century.

4. Chapters 38–40 (Projective and Algebraic Geometry and Topology, Differential Ge-
ometry, Non-Euclidean Geometry) describe, as their titles indicate, the develop-
ment of projective and algebraic geometry, differential geometry, and non-Euclidean
geometry, respectively, to the end of the nineteenth century.

5. Chapter 41 (Complex Analysis) is devoted to complex analysis.

6. Chapters 42 and 43 (Real Numbers, Series, and Integrals; Foundations of Real
Analysis) describe the parts of real analysis as branches and roots of calculus, pursuing
the analogy introduced in Chapter 34.

7. Chapter 44 (Set Theory) discusses the origin and development of set theory from the
1880s through the early twentieth century.

8. Chapter 45 (Logic) discusses mathematical logic and the philosophy of mathematics
from the mid-nineteenth century through the mid-twentieth century.



CHAPTER 35

Women Mathematicians

The history of women’s participation in mathematical research has become an area of con-
siderable interest over the past few decades. The movement of women into mathematics
blossomed enormously during the late twentieth century, the result of a long and arduous
struggle by brave and determined pioneers. Unfortunately for those who write the history
of mathematics, almost all of this movement occurred after the time period one can rea-
sonably cover in a single semester. In the preceding chapters, only three women—Hypatia,
Maria Gaetana Agnesi, and Sof’ya Kovalevskaya—are prominent enough to merit mention.
Hypatia was primarily a philosopher, and the details of her mathematical activity are not
known. What Agnesi and Kovalevskaya did is well understood and appreciated. However,
they enter the picture, as we have seen, near the end of the time period we are covering. To
make up in some degree for these omissions, we discuss here three of the women who, in
the years between 1850 and 1935, made a mark on the mathematical world in their time,
overcoming prejudice and personal hardship in many cases in order to do so.

Women first began to break into the intellectual world of modern Europe in the eighteenth
century, mingling with the educated society of their communities, but not allowed to attend
the meetings of scientific societies. The struggle for a woman’s right to be a scientist or
mathematician was very much an obstacle course, similar to running the high hurdles.
The first hurdle was to get the family to support a scientific education. That hurdle alone
caused many to drop out at the very beginning, leaving only a few lucky or very determined
women to go on to the second hurdle, gaining access to higher education. The second
hurdle began to be crossed in the late nineteenth century. On the continent, a few women
were admitted to university lectures without being matriculated, as exceptional cases. These
cases established a precedent, and the exceptions eventually became regularized. In Britain,
the University of London began admitting women in the 1870s, and in the United States
there were women’s colleges for undergraduate education. The opening of Bryn Mawr
College in 1885 with a program of graduate studies in mathematics was an important
milestone in this progress. Once a woman had gotten past the second hurdle, the third and
highest of all had to be faced: getting hired and accepted by the mathematical community,
and finding time to do mathematics in addition to the heavy familial responsibilities laid
on women by society. The three pioneers we are about to discuss had to improvise their
solutions to this problem. The fundamental societal changes needed to provide women with
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the same assured, routine access that men enjoyed when pursuing such a career required
many decades to be recognized and partially implemented.

35.1. SOF’YA KOVALEVSKAYA

Most of the early women mathematicians came from a leisured class of people with in-
dependent incomes. Only such people can afford both to defy convention and to spend
most of their time pursuing what interests them. However, merely having an independent
income was not in itself sufficient to draw a young woman into a scientific career. In most
cases, some contact with intellectual circles was present as well. Hypatia was the daughter
of a distinguished scholar, and Maria Gaetana Agnesi’s father encouraged her by hiring
tutors to instruct her in classical languages. In the case of Sof’ya Kovalevskaya, the urge
to study mathematics and science fused with her participation in the radical political and
social movements of her time, which looked to science as the engine of material progress
and aimed to establish a society in accordance with the ideals of democracy and socialism.

She was born Sof’ya Vasil’evna Kryukovskaya in Moscow, where her father was an
officer in the army, on January 15, 1850 (January 3 on the Julian calendar in effect in the
Russia of her day). As a child she looked with admiration on her older sister Anna (1843–
1887) and followed Anna’s lead into radical political and social activism. According to
her Polish tutor, she showed talent for mathematics when still in her early teens. She also
showed great sympathy for the cause of Polish independence during the rebellion of 1863,
which was crushed by the Tsar’s troops. When she was 15, one of her neighbors, a physicist,
was impressed upon discovering that she had invented the rudiments of trigonometry all
by herself in order to read a book on optics; he urged her father to allow her to study more
science. She was allowed to study up through the beginnings of calculus with a private
tutor in St. Petersburg, but matriculation at a Russian university did not appear to be an
option. Thinking that Western Europe was more enlightened in this regard, many young
Russian women used a variety of methods to travel abroad. Some were able to persuade
their parents to let them go. Others had to adopt more radical means, either running away or
arranging a marriage of convenience, in Sof’ya’s case to a young radical publisher named
Vladimir Onufrevich Kovalevskii (1842–1883). They were married in 1869 and soon after
left for Vienna and Heidelberg, where Kovalevskaya studied science and mathematics for
a year without being allowed to enroll in the university, before moving on to Berlin with
recommendations from her Heidelberg professors to meet the man who was to have the
dominant influence on her professional life, Weierstrass. At Berlin also, the university
would not accept her as a regular student, but Weierstrass agreed to tutor her privately.

Although the next four years were extremely stressful for a number of personal reasons,
her regular meetings with Weierstrass brought her knowledge of mathematical analysis up
to the level of the very best students in the world (those attending Weierstrass’ lectures). By
1874, Weierstrass thought she had done more than enough work for a degree and proposed
three of her papers as dissertations. Since Berlin would not award the degree, he wrote to
the University of Göttingen and requested that the degree be granted in absentia. It was,
and one of the three papers became a classic work in differential equations, published the
following year in the most distinguished German journal, the Journal für die reine und
angewandte Mathematik.

The next eight years may well be described as Kovalevskaya’s wandering in the intel-
lectual wilderness. She and Vladimir, who had obtained a doctorate in geology from the
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University of Jena, returned to Russia; but neither found an academic position commensurate
with their talents. They began to invest in real estate, in the hope of gaining the independent
wealth they would need to pursue their scientific interests. During this time, Kovalevskaya
gave birth to a daughter, Sof’ya Vladimirovna Kovalevskaya (1878–1951). Soon afterward,
their investments failed, and they were forced to declare bankruptcy. Vladimir’s life began to
unravel at this point; and Kovalevskaya, knowing that she would have to depend on herself,
reopened her mathematical contacts and began to attend mathematical meetings. Recog-
nizing the gap in her résumé since her dissertation, she asked Weierstrass for a problem to
work on in order to reestablish her credentials. While she was in Paris in the spring of 1883,
Vladimir (back in Russia) committed suicide, leading Sof’ya to an intense depression that
nearly resulted in her own death. When she recovered, she resumed work on the problem
that Weierstrass had given her. Meanwhile, Weierstrass and his student Gösta Mittag-Leffler
(1846–1927) collaborated to find her a teaching position at the newly founded institution in
Stockholm.1 At first she was Privatdozent, meaning that she was paid a certain amount for
each student she taught. After the first year, she received a regular salary. She was to spend
the last eight years of her life teaching at this institution.

In the mid-1880s, Kovalevskaya made a second mathematical discovery of profound
importance. Mathematical physics is made complicated by the fact that the differential
equations used to describe even simple, idealized cases of physical laws are extremely
difficult to solve. The obstacle consists of two parts. First, the equations must be reduced
to a set of integrals to be evaluated; second, those integrals must be computed. In many
important cases, such as the equations of the three-body problem, the first is impossible
using only algebraic methods. When it is possible, the second is often impossible if only
elementary functions are to be used. For example, the equation of pendulum motion can
be reduced to an integral, but that integral involves the square root of a cubic or quartic
polynomial; it is known as an elliptic integral. Such is the case in the phenomenon studied
by Kovalevskaya, the motion of a rigid body about a fixed point.

The six equations of motion for a rigid body in general cannot be reduced to integrals
using only algebraic transformations. In Kovalevskaya’s day only two special cases were
known in which such a reduction was possible, and the integrals in both cases were elliptic
integrals. Only in the case of bodies satisfying the hypotheses of both of these cases si-
multaneously were the integrals elementary. With Weierstrass, however, Kovalevskaya had
studied not merely elliptic integrals, but integrals of completely arbitrary algebraic func-
tions. Such integrals were known as abelian integrals after Abel, the first person to make
significant progress in studying them. She was not daunted by the prospect of working with
such integrals, since she knew that the secret of taming them was to use the functions known
as theta functions, which had been introduced earlier by Abel and his rival in the creation of
elliptic function theory, Jacobi. All she had to do was reduce the equations of motion to inte-
grals; evaluating them was within her power. Unfortunately, it turns out that the completely
general set of such equations cannot be reduced to integrals. But Kovalevskaya found a new
case, much less symmetric than the cases already known (due to Euler and Lagrange), in
which this reduction was possible. The algebraic changes of variable by which she made
this reduction are quite impressive, spread over some 16 pages of one of the papers she
eventually published on this subject. Still more impressive is the 80-page argument that
follows to evaluate these integrals, which turn out to be hyperelliptic, involving the square

1It is now the University of Stockholm.
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root of a fifth-degree polynomial. This work so impressed the leading mathematicians of
Paris that they decided the time had come to propose a contest for work in this area. When
the contest was held in 1888, Kovalevskaya submitted a paper and was awarded the prize.
She had finally reached the top of her profession and was rewarded with a tenured position
in Stockholm. Sadly, she was not to be in that lofty position for long. In January 1891 she
contracted pneumonia while returning to Stockholm from a winter vacation in Italy and
died on February 10.

35.1.1. Resistance from Conservatives

Lest it be thought that the existence of such a powerful talent as Sof’ya Kovalevskaya
removed all doubt as to women’s ability to create mathematics, we must point out that
minds did not simply change immediately. Confronted with the evidence that good women
mathematicians had already existed, the geometer Gino Loria (1862–1954) rationalized his
continuing opposition to the admission of women to universities as follows, in an article in
Revue scientifique in 1904:

As for. . . Sonja Kowalevsky, the collaboration [she] obtained from first-rate mathematicians
prevents us from fixing with precision her mathematical role. Nevertheless what we know
allows us to put the finishing touches on a character portrait of any woman mathematician.
She is always a child prodigy, who, because of her unusual aptitudes, is admired, encouraged,
and strongly aided by her friends and teachers. In childhood she manages to surpass her male
fellow-students; in her youth she succeeds only in equalling them; while at the end of her
studies, when her comrades of the other sex are progressing vigorously and boldly, she always
seeks the support of a teacher, friend, or relative; and after a few years, exhausted by efforts
beyond her strength, she finally abandons a work which is bringing her no joy.

Loria could have known better. Six years before Loria wrote these words Felix Klein
(1849–1925) was quoted by the journal Le progrès de l’est as saying that he found his
women students to be in every respect the equals of their male colleagues.

35.2. GRACE CHISHOLM YOUNG

Klein began taking on women students in the 1890s. The first of these students was Grace
Chisholm, who completed the doctorate under his supervision in 1895 with a dissertation
on the algebraic groups of spherical trigonometry. Her life and career were documented by
her daughter and written up in an article by I. Grattan-Guinness (1972), which forms the
basis for the present essay.

She was born on March 15, 1868, near London, the fifth child of parents of modest but
comfortable means and the third child to survive. As a child she was stricken with polio
and never completely recovered the use of her right hand. She was tutored at home and
passed the Cambridge Senior Examination in 1885. She attended Girton College and met
the prominent algebraist Arthur Cayley (1821–1895). Her impressions of him were not
flattering. To her he seemed to be a lumbering intellectual dinosaur, preventing any new life
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from emerging to enjoy the mathematical sunshine. In a colorful phrase, she wrote, “Cayley,
unconscious himself of the effect he was having on his entourage, sat, like a figure of Buddha
on its pedestal, dead-weight on the mathematical school of Cambridge” (Grattan-Guinness,
1972, p. 115).

In her first year at Cambridge, she might have been tutored by William Young (1863–
1942), who later became her husband, except that she had heard that his teaching methods
were ill-suited to young women. She found that Newnham College, the other women’s
college at Cambridge, had a much more serious professional atmosphere than Girton. She
made contacts there with two other young women who had the same tutor that she had.
With the support of this tutor and her fellow women students, she began to move among
the serious mathematicians at Cambridge and prepare to take the Tripos Examination.2

In particular, she made friends with a student named Isabel Maddison (1869–1950) of
Newnham College, who was being tutored by William Young. In 1890, after reading a few
names of the top Wranglers, the moderator—W. W. Rouse Ball (1850–1925), the author of
a best-selling popular history of mathematics—made a long pause to get the attention of the
audience, then said in a loud, clear voice, “Above the Senior Wrangler: Fawcett, Newnham.”
The young woman, Philippa Fawcett3 of Newnham College, had scored a major triumph for
women’s education, being the top mathematics student at Cambridge in her year. No better
role model can be imagined for students such as Isabel Maddison and Grace Chisholm.
They finished first and second, respectively, in the year-end examinations at Girton College
the following year. That fall, due to the absence of her regular tutor, Chisholm was forced
to take lessons from William Young. In 1892 she ranked between the 23rd and 24th men on
the Tripos, and Isabel Maddison finished in a tie with the 27th. (The rankings went as far as
112.) As a result, each received a First in mathematics. That same year they became the first
women to attempt the Final Honours examinations at Oxford, where Chisholm obtained a
First and Maddison a Second. This achievement made Chisholm the first person to obtain
a First in any subject from both Oxford and Cambridge.4

Unfortunately, Cambridge did not offer Grace Chisholm support for graduate study, and
her application to Cornell University in the United States was rejected. As an interesting
irony, then, she was forced to apply to a university with a higher standard of quality than
Cornell at the time, and one that was the mathematical equal of Cambridge: the University of
Göttingen. There, thanks to the liberal views of Felix Klein and Friedrich Althoff,5 she was
accepted, along with two young American women, Mary Frances (“May”) Winston (1869–
1959) and Margaret Eliza Maltby (1860–1944). In 1895, Chisholm broached the subject of

2The Tripos Examination was a venerable tradition at Cambridge, dating back to Medieval times. A high-quality
performance merited a First degree, lower quality a Second. Those who gained a First were called Wranglers.
With modifications, the system continues at the present time.
3Philippa Garrett Fawcett (1868–1948) was the daughter of a professor of political economy at Cambridge. Her
mother was a prominent advocate of women’s rights, and her sister was the first woman to obtain a medical degree
at the University of St Andrews in Scotland. Philippa used her Cambridge education to go to the Transvaal in 1902
and help set up an educational system there. From 1905 to 1934 she was Director of Education of the London
County Council.
4Isabel Maddison was awarded the Bachelor of Science degree at the University of London in 1892. She received
the Ph.D. at Bryn Mawr in 1896 under the supervision of Charlotte Angas Scott (1858–1931, another alumna of
Girton College and a student of Cayley). She taught at Bryn Mawr until her retirement in 1926.
5Althoff (1839–1908) was the Prussian Under-Secretary of Education and Cultural Affairs during the time of
Kaiser Wilhelm II.
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a Ph.D. with Klein, who agreed to use his influence in the faculty to obtain authorization
for the degree. It turned out to be necessary to go all the way to the Ministry of Culture
in Berlin and obtain permission from Althoff personally. Fortunately, Althoff continued
to be an enthusiastic supporter, and her final oral examination took place on April 26 of
that year. She passed it and was granted the Ph.D. magna cum laude. She herself could
hardly take in the magnitude of her achievement. More than two decades had passed since
the university had awarded the Ph.D. to Sof’ya Kovalevskaya in absentia. Grace Chisholm
had become the first woman to obtain that degree in mathematics through regular channels
anywhere in Germany. She and Mary Winston were left alone together for a few minutes,
which they used “to execute a war dance of triumph.” Her two companions Mary Winston
and Margaret Maltby also received the Ph.D. degree at Göttingen, Maltby (in physics) in
1895 and Winston in 1896.6

Grace Chisholm sent a copy of her dissertation to her former tutor William Young, and
in the fall of 1895 they began collaboration on a book on astronomy, a project that both soon
forgot in the pleasant fog of courtship. They were married in June 1896. They planned a
life in which Grace would do mathematical research and William would support the family
by his teaching. Grace sent off her first research paper for publication, and William, who
was then 33 years old, continued tutoring. Circumstances intervened, however, to change
these plans. Cambridge began to reduce the importance of coaching, and the first of their
four children was born in June 1897. Because of what they regarded as the intellectual
dryness of Cambridge and the need for a more substantial career for William, they moved
back to Germany in the autumn of 1897. With the help of Felix Klein, William sent off
his first research paper to the London Mathematical Society. It was Klein’s advice a few
years later that caused both Youngs to begin working in set theory. William, once started in
mathematics, proved to be a prolific writer. In the words of Grattan-Guinness (1972, p. 142),
he “definitely belongs to the category of creative men who published more than was good
for him.” Moreover, he received a great deal of collaboration from his wife that, apparently
by mutual consent, was not publicly acknowledged. He himself admitted that much of his
role was to lay out for Grace problems that he couldn’t solve himself. To the modern eye
he appears too eager to interpret this situation by saying that “we are rising together to new
heights.” As he wrote to her:

The fact is that our papers ought to be published under our joint names, but if this were done
neither of us get the benefit of it. No. Mine the laurels now and the knowledge. Yours the
knowledge only. Everything under my name now, and later when the loaves and fishes are no
more procurable in that way, everything or much under your name. [Grattan-Guinness, 1972,
p. 141]

Perhaps the criticism Loria made of Sof’ya Kovalevskaya for obtaining help from first-
rate mathematicians might more properly have been leveled against William Young. The
rationalization in this quotation seems self-serving. Yet, the only person who could make

6Margaret Maltby taught at Barnard College (now part of Columbia University in New York) for 31 years and
was chair of physics for 20 of those years. Mary Winston had studied at Bryn Mawr with Charlotte Angas Scott.
She had met Felix Klein at the World’s Columbian Exposition in Chicago in 1893 and had moved to Göttingen at
his invitation. After returning to the United States she taught at Kansas State Agricultural College, married Henry
Newson, a professor of mathematics at the University of Kansas, bore three children, and went back to teaching
after Henry’s early death. From 1921 to 1942 she taught at Eureka College in Illinois.
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that judgment, Grace Chisholm Young herself, never gave any hint that she felt exploited,
and William was certainly a very talented mathematician in his own right, whose talent
manifested itself rather late in life. And one cannot deny that, given the state of society at
the time, the situation William Young is describing was very likely the best option for both
of them.

In 1903 Cambridge University Press agreed to publish a work on set theory under both
their names. That book appeared in 1906; a book on geometry appeared under both names
in 1905. Grace was busy bearing children all this time (their last three children were born
in 1903, 1904, and 1908) and studying medicine. She began to write mathematical papers
under her own name in 1913, after William took a position in Calcutta, which of course
required him to be away for long periods of time. These papers, especially her paper on the
differentiability properties of completely arbitrary functions, added to her reputation and
were cited in textbooks on measure theory for many decades.

Sadly, the fanaticism of World War I caused some strains between the Youngs and their
old mentor Felix Klein. As a patriotic German, Klein had signed a declaration of support
for the German position at the beginning of the war. Four years later, as the defeat of
Germany drew near, Grace wrote to him, asking him to withdraw his signature. Of course,
propaganda had been intense in all the belligerent countries during the war, and even the
mildest-mannered people tended to believe what they were told and to hate the enemy. Klein
replied diplomatically, saying that, “Everyone will hold to his own country in light and dark
days, but we must free ourselves from passion if international cooperation such as we all
desire is to assert itself again for the good of the whole” (Grattan-Guinness, 1972, p. 160). If
only other scholars, in other countries, had been as magnanimous as Klein, German scholars
might have had less justification for complaining of exclusion in the bitter postwar period.
At least there was no irreparable breach between the Youngs and Klein. When Klein died in
1925, his widow thanked the Youngs for sending their sympathy, saying, “From all over the
world I received such lovely letters full of affection and gratitude, so many tell me that he
showed them the way on which their life was built. I had him for fifty years, this wonderful
man; how privileged I am above most women. . . ” (Grattan-Guinness, 1972, p. 171).

All four of their children eventually obtained doctoral degrees, and the pair had good
grounds for being well-satisfied with their married life. When World War II began in Septem-
ber 1939, they were on holiday in Switzerland, and there was fear that Switzerland would
be invaded. Grace immediately returned to England, but William stayed behind. The fall
of France in 1940 enforced a long separation on them. The health of William, who was by
then in his late 70s, declined rapidly, and he died in a nursing home in June 1942. Grace
survived for nearly two more years, dying in March 1944. Grattan-Guinness (1972, p. 181)
has eloquently characterized this remarkable woman:

She knew more than half a dozen languages herself, and in addition she was a good mathemati-
cian, a virtually qualified medical doctor, and in her spare time, pianist, poet, painter, author,
Platonic and Elizabethan scholar—and a devoted mother to all her children. And in the blend
of her rôles as scholar and as mother lay the fulfillment of her complicated personality.

35.3. EMMY NOETHER

Sof’ya Kovalevskaya and Grace Chisholm Young had had to improvise their careers, taking
advantage of the opportunities that arose from time to time. One might have thought that
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Amalie Emmy Noether was better situated in regard to both the number of opportunities
arising and the ability to take advantage of them. After all, she came a full generation later
than Kovalevskaya, the University of Göttingen had been awarding degrees to women for
five years when she enrolled, and she was the eldest child of the distinguished mathematician
Max Noether. According to Dick (1981), on whose biography of her the following account
is based, she was born on March 23, 1882 in Erlangen, Germany, where her father was a
professor of mathematics. She was to acquire three younger brothers in 1883, 1884, and
1889. Her childhood was quite a normal one for a girl of her day, and at the age of 18 she took
the examinations for teachers of French and English, scoring very well. This achievement
made her eligible to teach modern languages at women’s educational institutions. She
decided instead to attend the University of Erlangen. There, she was one of only two women
in the student body of 986, and she was only an auditor, preparing simultaneously to take
the graduation examinations in Nürnberg. After passing these examinations, she went to
the University of Göttingen for one year, again not as a matriculated student. If it seems
strange that Grace Chisholm was allowed to matriculate at Göttingen and Emmy Noether
was not, the explanation seems to be precisely that Emmy Noether was a German.

In 1904 she was allowed to matriculate at Erlangen, where she wrote a dissertation
under the direction of Paul Gordan (1837–1912). Gordan was a constructivist and disliked
abstract proofs. According to Kowalewski (1950, p. 25) he is said to have remarked of one
proof of the Hilbert basis theorem, “That is no longer mathematics; that is theology.” In her
dissertation, Emmy Noether followed Gordan’s constructivist methods; but she was later to
become famous for work done from a much more abstract point of view. She received the
doctorate summa cum laude in 1907. Thus, she overcame the first two obstacles to a career in
mathematics with only a small amount of difficulty, not much more than faced by her brother
Fritz (1884–1941), who was also a mathematician. That third obstacle, however, finding
work at a university, was formidable. Emmy Noether spent many years working without
salary at the Mathematical Institute in Erlangen. This position enabled her to look after her
father, who had been frail since he contracted polio at the age of 14. It also allowed her to
continue working on mathematical ideas. For nearly two decades she corresponded with
Gordan’s successor in Erlangen, Ernst Fischer (1875–1954), who is best remembered for
having discovered the Riesz–Fischer theorem independently of F. Riesz (1880–1956). By
staying in touch with the mathematical community and giving lectures on her discoveries,
she kept her name before certain influential mathematicians, namely David Hilbert (1862–
1943) and Felix Klein,7 and in 1915 she was invited to work as a Privatdozent in Göttingen,
the same rank originally offered to Kovalevskaya at Stockholm in 1883. Over the next
four years Klein and Hilbert used all their influence to get her a regular appointment at
Göttingen; during part of that time she lectured for Hilbert in mathematical physics. That
work led her to a theorem in general relativity that was highly praised by both Hilbert and
Einstein. Despite this brilliant work, however, she was not allowed to pass the Habilitation
needed to acquire a professorship. Only after the German defeat in World War I, which was
followed by the abdication of the Kaiser and a general spirit of reform in Germany, was
she allowed to “habilitate.” Between Sof’ya Kovalevskaya and Emmy Noether there was
a curious kind of symmetry: Kovalevskaya was probably aided in her efforts to become a
student in Berlin because many of the students were away at war at the time. Noether was

7Klein wrote to Hilbert, “You know that Fräulein Noether is continually advising me in my projects and that it is
really through her that I have become competent in the subject.” (Dick, 1981, p. 31)
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aided in her efforts to become a professor by an influx of returning war veterans. She began
lecturing in courses offered under the name Dr. Emmy Noether (without any mention of
Hilbert) in the fall of 1919. Through the efforts of Richard Courant (1888–1972) she was
eventually granted a small salary for her lectures.

In the 1920s she moved into the area of abstract algebra, and it is in this area that
mathematicians know her work best. Noetherian rings became a basic area of study after
her work, which became part of a standard textbook by her student Bartel Leendert van der
Waerden (1903–1996). He later described her influence on this work (1975, p. 32):

When I came to Göttingen in 1924, a new world opened up before me. I learned from Emmy
Noether that the tools by which my questions could be handled had already been developed
by Dedekind [Richard Dedekind (1831–1916) and Weber [Heinrich Weber, 1842–1913)], by
Hilbert, Lasker [Emanuel Lasker (1868–1941)] and Macaulay [Francis Sowerby Macaulay
(1862–1937)], by Steinitz [Ernst Steinitz (1871–1928)] and by Emmy Noether herself.

Of all the women we have discussed Emmy Noether was unquestionably the most talented
mathematically. Her work, both in quantity and quality, places her in the elite of twentieth-
century mathematicians, and it was recognized as such during her lifetime. She became an
editor of Mathematische Annalen, one of the two or three most prestigious journals in the
world. She was invited to speak at the International Congress of Mathematicians in Bologna
in 1928 and in Zürich in 1932, when she shared with Emil Artin (1898–1962) a prestigious
prize for the advancement of mathematical knowledge. This recognition was clear and
simple proof of her ability. Hilbert’s successor in Göttingen, Hermann Weyl (1885–1955),
made this point when wrote her obituary:

When I was called permanently to Göttingen in 1930, I earnestly tried to obtain from the
Ministerium a better position for her, because I was ashamed to occupy such a preferred
position beside her, whom I knew to be my superior as a mathematician in many respects. I
did not succeed, nor did an attempt to push through her election as a member of the Göttinger
Gesellschaft der Wissenschaften. Tradition, prejudice, external considerations, weighted the
balance against her scientific merits and scientific greatness, by that time denied by no one. In
my Göttingen years, 1930–1933, she was without doubt the strongest center of mathematical
activity there. [Dick, 1981, p. 169]

To have been recognized by one of the twentieth century’s greatest mathematicians as
“the strongest center of mathematical activity” at a university that was second to none in
the quality of its research is high praise indeed. It is unfortunate that this recognition was
beyond the capability of the Ministerium. The year 1932 was to be the summit of Noether’s
career. The following year, the advanced culture of Germany, which had enabled her to
develop her talents to their fullest, turned its back on its own brilliant past and plunged
into the nightmare of Nazism. Despite extraordinary efforts by the greatest scientists on her
behalf, Noether was removed from the position that she had achieved through such a long
struggle and the assistance of great mathematicians. Along with hundreds of other Jewish
mathematicians, including her friends Richard Courant and Hermann Weyl (who was not
Jewish, but whose wife was), she had to find a new life in a different land. She accepted
a visiting professorship at Bryn Mawr, which allowed her also to lecture at the Institute
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for Advanced Study in Princeton.8 Despite the gathering clouds in Germany, she returned
there in 1934 to visit her brother Fritz, who was about to seek asylum in the Soviet Union.
(Ironically, he was arrested in 1937, during one of the many purges conducted by Stalin,
and executed as a German spy on the day the Germans occupied Smolensk in 1941.) She
returned to Bryn Mawr in the spring of 1934.

Weyl, who went to Princeton in 1933, expressed his indignation at the Nazi policy of
excluding “non-Aryans” from teaching. In a letter sent to Heinrich Brandt (1886–1954)
in Halle he gave his opinion of Nazi-sympathizing intellectuals like Oswald Spengler and
Ludwig Bieberbach9:

What impresses me most about Emmy Noether is that her research has become more and
more concrete and profound. Why should this Jewess not work in the area that has led to such
great achievements in the hands of the “Aryan” Dedekind? I am happy to leave it to Herrn
Spengler and Bieberbach to assign mathematical modes of thought according to cultures and
races. [Jentsch, 1986, p. 9]

At Bryn Mawr she was a great success and an inspiration to the women studying there.
She taught several graduate and postdoctoral students who went on to successful careers,
including her former assistant from Göttingen, Olga Taussky (1906–1995), who was forced
to leave a tutoring position in Vienna in 1933. Her time, however, was to be very brief. She
developed a tumor in 1935, but she does not seem to have been worried about its possible
consequences. It was therefore a great shock to her colleagues in April 1935 when, after
an operation at Bryn Mawr Hospital that seemed to offer a good prognosis, she developed
complications and died within a few hours.

QUESTIONS

Historical Questions

35.1. For what mathematical achievements is Sof’ya Kovalevskaya best remembered?

35.2. What events turned Grace Chisholm Young toward mathematics, and how was she
able to fulfill her ambition to become a mathematician?

35.3. What special contribution did Bryn Mawr College make toward the mathematical
education of women?

35.4. In what areas of mathematics was Emmy Noether a world leader in research?

8There was no chance of her lecturing at Princeton University itself, which was all-male at the time.
9Oswald Spengler (1880–1936) was a German philosopher of history, best known for having written Der Untergang
des Abendlandes (The Decline of the West). His philosophy of history, which Weyl alludes to in this quote, suited
the Nazis. Although at first sympathetic to them, he was repelled by their crudity and their antisemitism. By the
time Weyl wrote this letter, the Nazis had banned all mention of Spengler on German radio. Ludwig Bieberbach
(1886–1982) was a mathematician of some talent who worked in Berlin during the Nazi era and edited the Party-
approved journal Deutsche Mathematik. At the time when Weyl wrote this letter, Bieberbach was wearing a Nazi
uniform to the university and enthusiastically endorsing the persecution of non-Aryans.
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Questions for Reflection

35.5. What were the advantages and disadvantages of marriage for a woman seeking an
academic career before the twentieth century? How much of this depended on the
particular choice of a husband at each stage of the career? The cases of Sof’ya
Kovalevskaya, Grace Chisholm Young, and Emmy Noether will be illuminating, but
it will be useful to seek more detailed sources than the narratives above.

35.6. How important is (or was) encouragement from family and friends in the decision to
study science? How important is it to have a mentor, an established professional in
the same field, to help orient early career decisions? How important is it for a young
woman to have an older woman as a role model? Try to answer these questions
along a scale from “not at all important” through “somewhat important” and “very
important” to “essential.” Use the examples of the women whose careers are sketched
above to support your rankings.

35.7. How strong are the claims that Loria adduces in his argument against admitting
women to universities? Were all the women discussed here encouraged by their
families when they were young? Is it really true that it is impossible to “fix with
precision” the original contributions of Sof’ya Kovalevskaya? Would collaboration
with other mathematicians make it impossible to “fix with precision” the work of any
male mathematicians? Consider also the case of the three women discussed above.
Is it true that they were exhausted after finishing their education?

Next, consider that universities select the top students in high school classes for
admission, so that a student who excelled the other students in high school might
be able at best to equal the other students at a university. Further selections for
graduate school, then for hiring at universities of various levels of prestige, then for
academic honors, provide layer after layer of filtering. Except for an extremely tiny
elite, those who were at the top at one stage find themselves in the middle at the
next and eventually reach (what is ideally) a level commensurate with their talent.
What conclusions could be justified in regard to any gender link in this universal
process, based on a sample of fewer than five women? And how can Loria be sure
he knows their proper level when all the women up to the time of writing were
systematically locked out of the best opportunities for professional advancement?
Look at the twentieth century and see what becomes of Loria’s argument that women
never reach the top.

Finally, examine Loria’s argument in the light of the cold facts of society: A woman
who wished to have a career in mathematics would naturally be well advised to find
a mentor with a well-established reputation, as Sof’ya Kovalevskaya did. A woman
who did not do that would have no chance of being cited by Loria as an example,
since she would never have been heard of. Is this argument not a classical example
of Catch-22?

35.8. The primary undergraduate competition for mathematics majors in the United States
is the Putnam Examination, administered the first weekend in December each year
by the Mathematical Association of America. In addition to its rankings for the
top teams and the top individuals, this examination also provides, for women who
choose to enter, a prize for the highest-ranking woman. (The people grading the
examinations do not know the identities of the entrants, and a woman can enter this
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competition without giving her name or the name of her university to the graders.) Is
this policy an important affirmative-action step to encourage talented young women
in mathematical careers, or does it “send the wrong message,” implying that women
cannot compete with men on an equal basis in mathematics? If you consider it a
good thing, how long should it be continued? Forever? If not, what criterion should
be used to determine when to discontinue the separate category?



CHAPTER 36

Probability

One important part of modern mathematics that has not yet been mentioned is the theory
of probability. Besides being a mathematical subject with its own special principles, it
provides the mathematical apparatus for another discipline (statistics), which has perhaps
more applications in the modern world than all of mathematics and also its own theoretical
side. Unfortunately, we do not have space to discuss more than a few incidents in the history
of statistics.

The word probability is related to the English words probe, probation, prove, and
approve. All of these words originally had a sense of testing or experimenting,1 reflect-
ing their descent from the Latin probo, which has these meanings. In other languages the
word used in this mathematical sense has a meaning more like plausibility,2 as in the Ger-
man Wahrscheinlichkeit (literally, truth resemblance) or the Russian veroyatnost’ (literally,
credibility, from the root ver-, meaning faith). The concept is very difficult to define in
declarative sentences, precisely because it refers to phenomena that are normally described
in the subjunctive mood. This mood has nearly disappeared in modern English; it clings to
a precarious existence in the past tense, “If it were true that. . . ” having replaced the older
“If it be true that. . . ”. The language of Aristotle and Plato, however, who were among the
first people to discuss chance philosophically, had two such moods, the subjunctive and the
optative, by which it was possible to express the difference between what would happen
and what might happen. As a result, they could express more easily than we the intuitive
concepts involved in discussing events that are imagined rather than observed.

Intuitively, probability attempts to express the relative strength of the feeling of confi-
dence we have that an event will occur. How surprised would we be if the event happened?
How surprised would we be if it did not happen? Because we do have different degrees of
confidence in certain future events, quantitative concepts become applicable to the study of
probability. Generally speaking, if an event occurs essentially all the time under specified
conditions, such as an eclipse of the sun, we use a deterministic model (geometric astron-
omy, in this case) to study and predict it. If it occurs sometimes under conditions frequently
associated with it, we rely on probabilistic models. Some earlier scientists and philosophers

1The common phrase “the exception that proves the rule” is nowadays misunderstood and misused because of this
shift in the meaning of the word prove. Exceptions test rules, they do not prove them in the current sense of that
word. In fact, quite to the contrary, exceptions disprove rules.
2Here is another interesting word etymology. The root is plaudo, meaning strike, but specifically meaning to clap
one’s hands together, to applaud. Once again, approval is involved in the notion of probability.
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regarded probability as a measure of our ignorance. Kepler, for example, believed that the
supernova of 1604 in the constellation Serpent may have been caused by a random collision
of particles; but in general he was a determinist who thought that our uncertainty about a
roll of dice was merely a matter of insufficient data being available. He admitted, however,
that he could find no law to explain the apparently random pattern of eccentricities in the
elliptical orbits of the six planets known to him.

Once the mathematical subject got started, it developed a life of its own, in which
theorems could be proved with the same rigor as in any other part of mathematics. Only
the application of those theorems to the physical world remained and remains clouded by
doubt. We use probability informally every day, as the weather forecast informs us that the
chance of rain is 30% or 80% or 100%,3 or when we are told that one person in 30 will be
afflicted with Alzheimer’s disease between the ages of 65 and 74. Much of the public use
of such probabilistic notions is, although not meaningless, at least of questionable value.
For example, we are told that the life expectancy of an average American is now 77 years.
Leaving aside the many assumptions of environmental and political stability used in the
model that produced this number, we should at least ask one question: Can the number be
related to the life of any person in any meaningful way? What plans can one base on it,
since anyone may die on any given day, yet very few people can confidently rule out the
possibility of living past age 90?4

The many uncertainties of everyday life, such as the weather and our health, occur
mixed with so many possibly relevant variables that it would be difficult to distill a theory
of probability from those intensely practical matters. What is needed is a simpler and
more abstract model from which principles can be extracted and gradually made more
sophisticated. The most obvious and accessible such models are games of chance. On them,
probability can be given a quantitative and empirical formulation, based on the frequency
of wins and losses. At the same time, the imagination can arrange the possible outcomes
symmetrically and in many cases assign equal probabilities to different events. Finally, since
money generally changes hands at the outcome of a game, the notion of a random variable
(payoff to a given player, in this case) as a quantity assuming different values with different
probabilities can be modeled.

36.1. CARDANO

The mathematization of probability began in sixteenth-century Italy with Cardano.
Todhunter (1865), on whose work the following discussion of Cardano’s book is based,
reports (p. 3) that Cardano gave the following table of values for a roll of three dice.

1 2 3 4 5 6 7 8 9 10 11 12
108 111 115 120 126 133 33 36 37 36 33 26

3These numbers are generated by computer models of weather patterns for squares in a grid representing a
geographical area. The modeling of their accuracy also uses probabilistic notions.
4The Russian mathematician Yu. V. Chaikovskii (2001) believes that some of this cloudiness is about to be removed
with the creation of a new science he calls aleatics (from the Latin word alea, meaning dice-play or gambling).
We must wait and see. A century ago, other Russian mathematicians confidently predicted a bright future for
arithmology.
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This table is enigmatic. Since it is impossible to roll a 1 with three dice, the first entry should
perhaps be interpreted as the number of ways in which 1 may appear on at least one of the
three dice. If so, then Cardan has got it wrong. One can imagine him thinking that if a 1
appears on one of the dice, the other two may show 36 different numbers, and since there are
three dice on which the 1 may appear, the total number of ways of rolling a 1 must be 3 · 36
or 108. That way of counting ignores the fact that in some of these cases 1 appears on two
of the dice or all three. By what is now known as the inclusion-exclusion principle, the total
should be 3 · 36 − 3 · 6 + 1 = 91. But it is difficult to say what Cardano had in mind. The
number 111 given for 2 may be the result of the same count, increased by the three ways of
choosing two of the dice to show a 1. Todhunter worked out a simple formula giving these
numbers, but could not imagine any gaming rules that would correspond to them. If indeed
Cardano made mistakes in his computations, he was not the only great mathematician to
do so.

Cardano’s Liber de ludo (Book on Gambling) was published about a century after his
death. In this book Cardano introduces the idea of assigning a probability p between 0 and
1 to an event whose outcome is not certain. The principal applications of this notion were
in games of chance, where one might bet, for example, that a player could roll a 6 with one
die given three chances. The subject is not developed in detail in Cardano’s book, much
of which is occupied by descriptions of the actual games played. Cardano does, however,
state the multiplicative rule for a run of successes in independent trials. Thus the probability
of getting a six on each of three successive rolls with one die is

( 1
6

)3
. Most important, he

recognized the real-world application of what we call the law of large numbers, saying that
when the probability for an event is p, then after a large number n of repetitions, the number
of times it will occur does not lie far from the value np. This law says that it is not certain
that the number of occurrences will be near np, but “that is where the smart money bets.”

36.2. FERMAT AND PASCAL

After a bet has been made and before it is settled, a player cannot unilaterally withdraw
from the bet and recover her or his stake. On the other hand, an accountant computing
the net worth of one of the players ought to count part of the stake as an asset owned by
that player; and perhaps the player would like the right to sell out and leave the game.
What would be a fair price to charge someone for taking over the player’s position? More
generally, what happens if the game is interrupted? How are the stakes to be divided? The
principle that seemed fair was that, regardless of the relative amount of the stake each
player had bet, at each moment in the game a player should be considered as owning
the portion of the stakes equal to that player’s probability of winning at that moment. Thus,
the net worth of each player is constantly changing as the game progresses, in accordance
with what we now call conditional probability. Computing these probabilities in games
of chance usually involves the combinatorial counting techniques the reader may have
encountered in elementary discussions of probability. Problems of this kind were discussed
in correspondence between Pascal and Fermat in the mid-seventeenth century.

A French nobleman, the Chevalier de Méré, who was fond of gambling, proposed to
Pascal the problem of dividing the stakes in a game where one player has bet that a six will
appear in eight rolls of a single die, but the game is terminated after three unsuccessful tries.
Pascal wrote to Fermat that the player should be allowed to sell the throws one at a time. If
the first throw is foregone, the player should take one-sixth of the stake, leaving five-sixths.
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Then if the second throw is also foregone, the player should take one-sixth of the remaining
five-sixths or 5

36 , and so on. In this way, Pascal argued that the fourth through eighth throws

were worth 1
6

[( 5
6

)3 + ( 5
6

)4 + ( 5
6

)5 + ( 5
6

)6 + ( 5
6

)7].
This expression is the value of those throws before any throws have been made. If, after

the bets are made but before any throws of the die have been made, the bet is changed and
the players agree that only three throws shall be made, then the player holding the die should
take this portion of the stakes as compensation for sacrificing the last five throws. Remember,
however, that the net worth of a player is constantly changing as the game progresses and
the probability of winning changes. The value of the fourth throw, for example, is smaller
to begin with, since there is some chance that the player will win before it arrives, in which
case it will not arrive. At the beginning of the game, the chance of winning on the fourth roll
is

( 5
6

)3 1
6 . Here the factor

( 5
6

)k in each term represents the probability that the player will
not have won in the first k terms. After three unsuccessful throws, however, the probability
that the player “will not have” won (that is to say, did not win) on the first three throws is
1, and so the probability of winning on the fourth throw becomes 1

6 .
Fermat expressed the matter as follows:

[T]he three first throws having gained nothing for the player who holds the die, the total sum
thus remaining at stake, he who holds the die and who agrees not to play his fourth throw
should take 1

6 as his reward. And if he has played four throws without finding the desired point
and if they agree that he shall not play the fifth time, he will, nevertheless, have 1

6 of the total
for his share. Since the whole sum stays in play it not only follows from the theory, but it is
indeed common sense that each throw should be of equal value.

Pascal wrote back to Fermat, proclaiming himself satisfied with Fermat’s analysis and
overjoyed to find that “the truth is the same at Toulouse and at Paris.”

36.3. HUYGENS

The Dutch mathematical physicist Christiaan Huygens (1629–1695), author of a very in-
fluential book on optics, wrote a treatise on probability in 1657. His De ratiociniis in ludo
aleæ (On Reasoning in a Dice Game) consisted of 14 propositions and contained some of
the results of Fermat and Pascal. In addition, Huygens considered multinomial problems,
involving three or more players. Cardano’s idea of an estimate of the expectation was elab-
orated by Huygens. He asserted, for example, that if there are p (equally likely) ways for a
player to gain a and q ways to gain b, then the player’s expectation is (pa + qb)/(p + q).

Even simple problems involving these notions can be subtle. For example, Huygens
considered two players A and B taking turns rolling a pair of dice, with A going first. Any
time A rolls a 6, A wins; any time B rolls a 7, B wins. What are the relative chances of
winning? (The answer to that question would determine the fair proportions of the stakes
to be borne by the two players.) Huygens concluded (correctly) that the odds were 31:30 in
favor of B, that is, A’s probability of winning was 30

61 and B’s probability was 31
61 .

36.4. LEIBNIZ

Although Leibniz wrote a full treatise on combinatorics, which provides the mathematical
apparatus for computing many probabilities in games of chance, he did not himself gamble.
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But he did analyze many games of chance and suggest modifications of them that would
make them fair (zero-sum) games. Some of his manuscripts on this topic have been analyzed
by De Mora-Charles (1992). One of the games he analyzed is known as quinquenove. This
game is played between two players using a pair of dice. One of the players, called the
banker, rolls the dice, winning if the result is either a double or a total number of spots
showing equal to 3 or 11. There are thus 10 equally likely ways for the banker to win
with this roll, out of 36 equally likely outcomes. If the banker rolls a 5 or 9 (hence the
name “quinquenove”), the other player wins. The other player has eight ways of winning
of the equally likely 36 outcomes, leaving 18 ways for the game to end in a draw. The
reader may be amused to learn that the great mathematician Leibniz, author of De arte
combinatoria, confused permutations and combinations in his calculations for this game
and got the probabilities wrong.

36.5. THE ARS CONJECTANDI OF JAMES BERNOULLI

One of the founding documents of probability theory was published in 1713, eight years
after the death of its author, Leibniz’ disciple James Bernoulli. This work, Ars conjectandi
(The Art of Prediction), moved probability theory beyond the limitations of analyzing games
of chance. It was intended by its author to apply mathematical methods to the uncertainties
of life. As he said in a letter to Leibniz, “I have now finished the major part of the book,
but it still lacks the particular examples, the principles of the art of prediction that I teach
how to apply to society, morals, and economics. . . .” That was an ambitious undertaking,
and Bernoulli had not quite finished the work when he died in 1705.

Bernoulli noted an obvious gap between theory and application, saying that only in
simple games such as dice could one apply the equal-likelihood approach of Huygens,
Fermat and Pascal, whereas in the cases of practical importance, such as human health and
longevity, no one had the power to construct a suitable model. He recommended statistical
studies as the remedy to our ignorance, saying that if 200 people out of 300 of a given age
and constitution were known to have died within 10 years, it was a 2-to-1 bet that any other
person of that age and constitution would die within a decade.

In this treatise, Bernoulli reproduced the problems solved by Huygens and gave his own
solution of them. He considered what are now called Bernoulli trials. These are repeated
experiments in which a particular outcome either happens (success) with probability b/a or
does not happen (failure) with probability c/a, the same probability each time the experiment
is performed, each outcome being independent of all others. (A simple nontrivial example is
rolling a single die, counting success as rolling a 3. Then the probabilities are 1

6 and 5
6 .) Since

b/a + c/a = 1, Bernoulli saw that the binomial expansion would be useful in computing
the probability of getting at least m successes in n trials. He gave that probability as

n∑

k=m

(n

k

)(b

a

)k( c

a

)n−k

.

It was, incidentally, in this treatise, when computing the sum of the rth powers of the
first n integers, that Bernoulli introduced what are now called the Bernoulli numbers,5

5As mentioned in Chapter 24, a table of these numbers can be found in Seki Kōwa’s posthumously published
Katsuyō Sampō, which appeared the year before Bernoulli’s work.
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1 , 1
2 , A , B , . . . defined by the formula

n∑

k=1

kr = nr+1

r + 1
+ nr

2
+ r

2
Anr−1 + r(r − 1)(r − 2)

2 · 3 · 4
Bnr−3 + · · · .

Nowadays we define these numbers as B0 = 1, B1 = − 1
2 , and then B2 = A = 1

6 , B3 = 0,
B4 = B, and so forth. He illustrated his formula by finding

1000∑

k=1

k10 = 91409924241424243424241924242500 .

36.5.1. The Law of Large Numbers

Bernoulli imagined an urn containing numbers of black and white pebbles, whose ratio is
to be determined by sampling with replacement. It is possible that you will always get a
white pebble, no matter how many times you sample. However, if black pebbles constitute
a significant proportion of the contents of the urn, this outcome is very unlikely. After
discussing the degree of certainty that would suffice for practical purposes (he called it
virtual certainty),6 he noted that this degree of certainty could be attained empirically by
taking a sufficiently large sample. The probability that the empirically determined ratio
would be close to the true ratio increases as the sample size increases, but the result would
be accurate only within certain limits of error, and

. . . we can attain any desired degree of probability that the ratio found by our many repeated
observations will lie between these limits.

This last assertion is an informal statement of the law of large numbers for Bernoulli
trials. If the probability of the outcome is p and the number of trials is n, this law can be
phrased precisely by saying that for any ε > 0 there exists a number n0 such that if m is
the number of times the outcome occurs in n trials and n > n0, the probability that the
inequality |(m/n) − p| > ε will hold is less than ε.7 Bernoulli stated this principle in terms
of the segment of the binomial series of (r + s)n(r+s) consisting of the n terms on each side
of the largest term (the term containing rnrsns), and he proved it by giving an estimate on n

sufficient to make the ratio of this sum to the sum of the remaining terms at least c, where
c is specified in advance.

6This phrase is often translated more literally as moral certainty, which has the wrong connotation.
7Probabilists say that the frequency of successes converges “in probability” to the probability of success at each
trial. Analysts say it converges “in measure.” There is also a strong law of large numbers, more easily stated in
terms of independent random variables, which asserts that (under suitable hypotheses) there is a set of probability 1
on which the convergence to the mean occurs. That is, the convergence is “almost surely,” as probabilists say, and
“almost everywhere,” as analysts phrase the matter. On a finite measure space such as a probability space, almost
everywhere convergence implies convergence in measure, but the converse is not true.
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36.6. DE MOIVRE

In 1711, even before the appearance of James Bernoulli’s treatise, another ground-breaking
book on probability appeared, the Doctrine of Chances, written by Abraham De Moivre
(1667–1754), a French Huguenot who took refuge in England after 1685, when Louis XIV
revoked the Edict of Nantes, issued by Henri IV to put an end to religious war in France by
guaranteeing the civil rights of the Huguenots upon his accession to the throne in 1598.8

De Moivre’s book went through several editions. Its second edition, which appeared in
1738, introduced a significant piece of numerical analysis, useful for approximating sums
of terms of a binomial expansion (a + b)n for large n. De Moivre had published the work
earlier in a paper written in 1733. Having no notation for the base e, which was introduced
by Euler a few years later, De Moivre simply referred to the hyperbolic (natural) logarithm
and “the number whose logarithm is 1.” De Moivre first considered only the middle term
of the expansion. That is, for an even power n = 2m, he estimated the term

(
2m

m

)
= (2m)!

(m!)2

and found it equal to 2n+1

B
√

n
, where B was a constant for which he knew only an infinite

series. At that point, he got stuck, as he admitted, until his friend James Stirling (1692–
1770) showed him that “the Quantity B did denote the Square-root of the circumference of
a circle whose Radius is Unity.”9 In our terms, B = √

2π, but De Moivre simply wrote c

for B. Without having to know the exact value of B, De Moivre was able to show that “the
Logarithm of the Ratio, which a Term distant from the middle by the Interval �, has the the
middle Term, is [approximately, for large n] − 2��

n
.” In modern language,

(
2n

n + l

)/(
2n

n

)
≈ e−2�2/n .

De Moivre went on to say, “The Number, which answers to the Hyperbolic Logarithm
−2��/n, [is]

1 − 2��

n
+ 4�4

2nn
− 8�6

6n3 + 16�8

24n4 − 32�10

120n5 + 64�12

720n6 , &c.”

By scaling, De Moivre was able to estimate segments of the binomial distribution. In
particular, the fact that the numerator was �2 and the denominator n allowed him to estimate
the probability that the number of successes in Bernoulli trials would be between fixed limits.
He came close to noticing that the natural unit of probability for n trials was a multiple of

√
n.

In 1893, this natural unit of measure for probability was named the standard deviation by

8The spirit of sectarianism has infected historians to the extent that Catholic and Protestant biographers of De
Moivre do not agree on how long he was imprisoned in France for being a Protestant. They do agree that he was
imprisoned, however. To be fair to the French, they did elect him a member of the Academy of Sciences a few
months before his death.
9The approximation n! ≈ √

2πn
(

n
e

)n
is now called Stirling’s formula.
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the British mathematician Karl Pearson (1857–1936). For Bernoulli trials with probability
of success p at each trial the standard deviation is σ = √

np(1 − p).
For what we would call a coin-tossing experiment in which p = 1

2 —he imagined tossing
a metal disk painted white on one side and black on the other—de Moivre observed that
with 3600 coin tosses, the odds would be more than 2 to 1 against a deviation of more than
30 “heads” from the expected number of 1800. The standard deviation for this experiment
is exactly 30, and 68 percent of the area under a normal curve lies within one standard
deviation of the mean. De Moivre could imagine the bell-shaped normal curve that we are

familiar with, but he did not give it the equation it now has (y = 1√
2π

e− 1
2 x2

). Instead he
described it as the curve whose ordinates were numbers having certain logarithms. What
seems most advanced in his analysis is that he recognized the area under the curve as a
probability and computed it by a mechanical quadrature method that he credited jointly to
Newton, Roger Cotes, James Stirling, and himself. This tendency of the distribution density
of the average of many independent, identically distributed random variables to look like
the bell-shaped curve is called the central limit theorem.

36.7. THE PETERSBURG PARADOX

Soon after its introduction by Huygens and James Bernoulli the concept of mathematical
expectation came in for some critical appraisal. While working in the Russian Academy of
Sciences, Daniel Bernoulli discussed the problem now known as the Petersburg paradox
with his brother Nicholas (1695–1726, known as Nicholas II). We can describe this paradox
informally as follows. Suppose that you toss a coin until heads appears. If it appears on
the first toss, you win $2, if it first appears on the second toss, you win $4, and so on; if
heads first appears on the nth toss, you win 2n dollars. How much money would you be
willing to pay to play this game? Now by “rational” computations the expected winning is
infinite, being 2 · 1

2 + 4 · 1
4 + 8 · 1

8 + · · · , so that you should be willing to pay, say, $10,000
to play each time. On the other hand, who would bet $10,000 knowing that there was an
even chance of winning back only $2, and that the odds are 7 to 1 against winning more
than $10? Something more than mere expectation was involved here.

Daniel Bernoulli discussed the matter at length in an article in the Commentarii of the
Petersburg Academy for 1730–1731 (published in 1738). He argued for the importance of
something that we now call utility. If you already possess an amount of money x and you
receive a small additional amount of money dx, how much utility does the additional money
have for you, subjectively? Bernoulli assumed that the increment of utility dy was directly
proportional to dx and inversely proportional to x, so that

dy = k dx

x
,

and as a result, the total utility of personal wealth is a logarithmic function of total wealth.
One consequence of this assumption is a law of diminishing returns: The additional

satisfaction from additional wealth decreases as wealth increases. Bernoulli used this idea
to explain why a rational person would refuse to play the game. Obviously, the expected
gain in utility from each of these wins, being proportional to the logarithm of the money
gained, has a finite total, and so one should be willing to pay only an amount of money that
has an equal utility to the gambler. A different explanation, which seems to have been given
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first by the mathematician John Venn (1834–1923) of Caius10 College, Cambridge in 1866,
invokes the decreasing marginal utility of gain versus risk to explain why a rational person
would not pay a large sum to play this game.

The utility y, which Bernoulli called the emolumentum (gain), is an important tool in eco-
nomic analysis, since it provides a dynamic model of economic behavior: Buyers exchange
money for goods or services of higher personal utility; sellers exchange goods and services
for money of higher personal utility. If money, goods, and services did not have different
utility for different people, no market could exist at all.11 That idea is valid independently
of the actual formula for utility given by Bernoulli, although, as far as measurements of
pyschological phenomena can be made, Bernoulli’s assumption was extremely good. The
physiologist Ernst Heinrich Weber (1795–1878) asked blindfolded subjects to hold weights,
which he gradually increased, and to say when they noticed an increase in the weight. He
found that the threshold for a noticeable difference was indeed inversely proportional to the
weight. That is, if S is the perceived weight and W the actual weight, then dS = k dW/W ,
where dW is the smallest increment that can be noticed and dS the corresponding perceived
increment. Thus he found exactly the law assumed by Bernoulli for perceived increases in
wealth.12 Utility is of vital importance to the insurance industry, which makes its profit by
having a large enough stake to play “games” that resemble the Petersburg paradox.

One important concept was missing from the explanation of the Petersburg paradox.
Granted that one should expect the “expected” value of a quantity depending on chance,
how confidently should one expect it? The question of dispersion or variance of a random
quantity lies beneath the surface here and needed to be brought out. (Variance is the square
of the standard deviation.) It turns out that when the expected value is infinite, or even when
the variance is infinite, no rational projections can be made. Since we live in a world of finite
duration and finite resources, however, each game will be played only a finite number of
times. It follows that every actual game has a finite expectation and variance and is subject
to rational analysis using them.

36.8. LAPLACE

Although Pierre-Simon Laplace (1749–1827) is known primarily as an astronomer, he also
developed a great deal of theoretical physics. (The partial differential equation satisfied by
harmonic functions is named after him.) He also understood the importance of probabilistic
methods in the analysis of data. In his Théorie analytique des probabilités, he proved that
the distribution of the average of random observational errors that are uniformly distributed
in an interval symmetric about zero tends to the normal distribution as the number of
observations increases. Except for using the letter c where we now use e to denote the base
of natural logarithms, he had what we now call the central limit theorem for independent
uniformly distributed random variables.

10Pronounced “Keys.”
11One feels the lack of this concept very strongly in the writing on economics by Aristotle and his followers,
especially in their condemnation of the practice of lending money at interest, which ignores the utility of time.
12Weber’s result was publicized by Gustave Theodor Fechner (1801–1887) and is now known as the Weber–
Fechner law.
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36.9. LEGENDRE

In a treatise on methods of determining the orbits of comets, published in 1805, Legendre
dealt with the problem that frequently results when observation meets theory. Theory pre-
scribes a certain number of equations of a particular form to be satisfied by the observed
quantities. These equations involve certain parameters that are not observed, but are to be
determined by fitting observations to the theoretical model. Observation provides a large
number of empirical, approximate solutions to these equations, and thus normally provides
a number of equations far in excess of the number of parameters to be chosen. If the law
is supposed to be represented by a straight line, for example, only two constants are to be
chosen. But the observed data will normally not lie on a line; instead, they may cluster
around a line. How is the observer to choose canonical values for the parameters from the
observed values of each of the quantities?

Legendre’s solution to this problem is now a familiar technique. If the theoretical equation
is y = f (x), where f (x) involves parameters α, β, . . . , and one has data points (xk, yk), k =
1, . . . , n, sum the squares of the “errors” f (xk) − yk to get an expression in the parameters

E(α, β, . . . ) =
n∑

k=1

(
f (xk) − yk

)2
,

and then choose the parameters so as to minimize E. For fitting with a straight line y =
ax + b, for example, one needs to choose E(a, b) given by

E(a, b) =
n∑

k=1

(axk + b − yk)2

so that

∂E

∂a
= 0 = ∂E

∂b
.

36.10. GAUSS

Legendre was not the first to study the problem of determining the most likely value of a
quantity x using the results of repeated measurements of it, say xk, k = 1, . . . , n. In 1799
Laplace had tried the technique of taking the value x that minimizes the sum of the absolute
errors13 |x − xk|. But still earlier, in 1794 as shown by his diary and correspondence, the
teenager Gauss had hit on the least-squares technique for the same purpose. As Reich (1977,
p. 56) points out, Gauss did not consider this discovery very important and did not publish it
until 1809. In 1816, Gauss published a paper on observational errors, in which he discussed
the most probable value of a variable based on a number of observations of it. His discussion
was much more modern in its notation than those that had gone before, and also much more

13This method has the disadvantage that one large error and many small errors count equally. The least-squares
technique avoids that problem.
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rigorous. He found the likelihood of an error of size x to be

h√
π

e−h2x2
,

where h was what he called the measure of precision. He showed how to estimate this
parameter by inverse-probability methods. In modern terms, h = 1/(σ

√
2), where σ is the

standard deviation. This work brought the normal distribution into a standard form, and it
is now often referred to as the Gaussian distribution.

36.11. PHILOSOPHICAL ISSUES

The notions of chance and necessity have often played a role in philosophical speculation;
in fact, most books on logic are kept in the philosophy sections of libraries. Many of the
mathematicians who have worked in this area have had a strong interest in philosophy and
have speculated on what probability means. In so doing, they have come up against the
same difficulties that confront natural philosophers when trying to explain how induction
works. Like Pavlov’s dogs and Skinner’s pigeons (see Chapter 1), human beings tend to
form expectations based on frequent, but not necessarily invariable conjunctions of events
and seem to find it very difficult to suspend judgment and live with no belief where there is
no evidence.14 Can philosophy offer us any assurance that proceeding by induction based
on probability and statistics is any better than, say, divination? Are insurance companies
acting on pure faith when they offer to bet us that we will survive long enough to pay
them more money (counting the return on investment) in life insurance premiums than they
will pay out when we die? If probability is a subjective matter, is subjectivity the same as
arbitrariness?

What is probability, when applied to the physical world? Is it merely a matter of fre-
quency of observation, and consequently objective? Or do human beings have some innate
faculty for assigning probabilities? For example, when we toss a coin twice, there are four
distinguishable outcomes: HH, HT, TH, TT. Are these four equally likely? If one does not
know the order of the tosses, only three possibilities can be distinguished: two heads, two
tails, and one of each. Should those be regarded as equally likely, or should we imagine
that we do know the order and distinguish all four possibilities?15 Philosophers still argue
over such matters. Siméon-Denis Poisson (1781–1840) seemed to be having it both ways
in his Recherches sur la probabilité des jugemens (Investigations into the Plausibility of
Inferences) when he wrote that

The probability of an event is the reason we have to believe that it has taken place, or that it
will take place.

14In his Formal Logic, Augustus De Morgan imagined asking a person selected at random for an opinion whether
the volcanoes—he meant craters—on the unseen side of the moon were larger than those on the side we can see.
He concluded, “The odds are, that though he has never thought of the question, he has a pretty stiff opinion in
three seconds.”
15If the answer to that question seems intuitively obvious, please note that in more exotic applications of statistics,
such as in quantum mechanics, either possibility can occur. Fermions have wave functions that are antisymmetric,
and they distinguish between HT and TH; bosons have symmetric wave functions and do not distinguish them.
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and then immediately followed up with this:

The measure of the probability of an event is the ratio of the number of cases favorable to that
event, to the total number of cases favorable or contrary.

In the first statement, he appeared to be defining probability as a subjective event, one’s
own personal reason, but then proceeded to make that reason an objective thing by assuming
equal likelihood of all outcomes. Without some restriction on the universe of discourse, these
definitions are not very useful. We do not know, for example, whether our automobile will
start tomorrow morning or not, but if the probability of its doing so were really only 50%
because there are precisely two possible outcomes, most of us would not bother to buy an
automobile. Surely Poisson was assuming some kind of symmetry that would allow the
imagination to assign equal likelihoods to the outcomes, and intending the theory to be
applied only in those cases. Still, in the presence of ignorance of causes, equal probabilities
seem to be a reasonable starting point. The law of entropy in thermodynamics, for example,
can be deduced as a tendency for an isolated system to evolve to a state of maximum
probability, and maximum probability means the maximum number of equally likely states
for each particle.

36.12. LARGE NUMBERS AND LIMIT THEOREMS

The idea of the law of large numbers was stated imprecisely by Cardano and with more
precision by James Bernoulli. To better carry out the computations involved in using it,
De Moivre was led to approximate the binomial distribution with what we now realize
was the normal distribution. He, Laplace, and Gauss all grasped with different degrees
of clarity the principle (central limit theorem) that when independent measurements are
averaged, their distribution density tends to resemble the bell-shaped curve.

The law of large numbers was given its name in the 1837 work of Poisson just mentioned.
Poisson discovered an approximation to the probability of getting at most k successes in n

trials, valid when n is large and the probability p is small. He thereby introduced what is
now known as the Poisson distribution, in which the probability of k successes is given by

pk = e−λ λk

k!
.

The Russian mathematician Chebyshëv16 (1821–1894) introduced the concept of a ran-
dom variable and its mathematical expectation. He is best known for his 1846 proof of
the weak law of large numbers for repeated independent trials. That is, he showed that the
probability that the actual proportion of successes will differ from the expected proportion
by less than any specified ε > 0 tends to 1 as the number of trials increases. In 1867 he
proved what is now called Chebyshëv’s inequality: The probability that a random variable
will assume a value more than [what is now called k standard deviations] from its mean is at
most 1/k2. This inequality was published by Chebyshëv’s friend and translator Irénée-Jules
Bienaymé (1796–1878) and is sometimes called the Chebyshëv–Bienaymé inequality (see

16Properly pronounced “Cheb-wee-SHAWF,” but more commonly “CHEB-ee-shev,” by English speakers.
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Heyde and Seneta, 1977). This inequality implies the weak law of large numbers. In 1887,
Chebyshëv also stated the central limit theorem for independent random variables.

The extension of the law of large numbers to dependent trials was achieved by
Chebyshëv’s student Andrei Andreevich Markov (1856–1922). The subject of dependent
trials—known as Markov chains—remains an object of current research. In its simplest
form it applies to a system in one of a number of states {S1, . . . , Sn} which at specified
times may change from one state to another. If the probability of a transition from Si to Sj

is pij , the matrix

P =

⎛

⎜
⎝

p11 · · · p1n

...
. . .

...

pn1 · · · pnn

⎞

⎟
⎠

is called the transition matrix. If the transition probabilities are the same at each stage, one
can easily verify that the matrix power Pk gives the probabilities of the transitions in k

steps.

PROBLEMS AND QUESTIONS

Mathematical Problems

36.1. We saw above that Cardano (probably) and Pascal and Leibniz (certainly) miscalcu-
lated some elementary probabilities. As an illustration of the counterintuitive nature
of many simple probabilities, consider the following hypothetical games. (A casino
could probably be persuaded to provide these games if there was enough public in-
terest in them.) In Game 1 the dealer draws two randomly chosen cards from a deck
on the table and looks at them. If neither card is an ace, the dealer shows them to the
other players, and no game is played. The cards are replaced in the deck, the deck is
shuffled, and the game begins again. If one card is an ace, players are not shown the
cards, but are invited to bet against a fixed winning amount offered by the house that
the other card is also an ace. What winning should the house offer (in order to break
even in the long run) if players pay one dollar per bet?

In Game 2 the rules are the same, except that the game is played only when one
of the two cards is the ace of hearts. What winning should the house offer in order
to break even charging one dollar to bet? Why is this amount not the same as for
Game 1?

36.2. Use the Maclaurin series for e−(1/2)t2 to verify that the series given by De Moivre,
which was

√
2

π

( 1

0! · 1 · 2
− 1

1! · 3 · 4
+ 1

2! · 5 · 8
− 1

3! · 7 · 16
+ · · ·

)
,

represents the integral

1√
2π

∫ 1

0
e− 1

2 t2 dt,
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which is the area under a standard normal (bell-shaped) curve above the mean, but
by at most one standard deviation, as given in many tables.

36.3. Radium-228 is an unstable isotope. Each atom of Ra-228 has a probability of 0.1145
(about 1 chance in 9, or about the probability of rolling a 5 with two dice) of decaying
to form an atom of actinium within any given year. This means that the probability that
the atom will survive the year as an atom of Ra-228 is 1 − 0.1145 = 0.8855. Denote
this “one-year survival” probability by p. Because any sample of reasonable size
contains a huge number of atoms, that survival probability (0.8855) is the proportion
of the weight of Ra-228 that we would expect to survive a year.

If you had one gram of Ra-228 to begin with, after one year you would expect to
have p = 0.8855 grams. Each succeeding year, the weight of the Ra-228 left would be
multiplied by p, so that after two years you would expect to have p2 = (0.8855)2 =
0.7841 grams. In general, after t years, if you started with W0 grams, you would
expect to have W = W0p

t grams. Now push these considerations a little further
and determine how strongly you can rely on this expectation. Recall Chebyshëv’s
inequality, which says that the probability of being more than k standard deviations
from the expected value is never larger than (1/k)2. What we need to know to answer
the question in this case is the standard deviation σ.

Assume that each atom decays at random, independently of what happens to any
other atom. This independence allows us to think that observing our sample for a
year amounts to a large number of “independent trials,” one for each atom. We test
each atom to see if it survived as an Ra-228 atom or decayed into actinium. Let N0
be the number of atoms that we started with. Assuming that we started with 1 gram
of Ra-228, there will be N0 = 2.642 · 1021 atoms of Ra-228 in the original sample.17

That is a very large number of atoms. The survival probability is p = 0.8855. For
this kind of independent trial, as mentioned the standard deviation with N0 trials is

√
N0p(1 − p) =

√
p(1 − p)

N0
N0 .

We write the standard deviation in this odd-looking way so that we can express it as
a fraction of the number N0 that we started with. Since weights are proportional to
the number of atoms, that same fraction will apply to the weights as well.

Put in the given values of p and N0 to compute the fraction of the initial sample
that constitutes one standard deviation. Since the original sample was assumed to
be one gram, you can regard the answer as being expressed in grams. Then use
Chebyshëv’s inequality to estimate the probability that the amount of the sample
remaining will differ from the theoretically predicted amount by 1 millionth of a
gram (1 microgram, that is, 10−6 grams)? [Hint: How many standard deviations is
one millionth of a gram?]

Historical Questions

36.4. From what real-life situations did the first mathematical analyses of probability arise?

17The number of atoms in one gram of Ra-228 is the Avogadro number 6.023 · 1023 divided by 228.
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36.5. What new concepts were introduced in James Bernoulli’s Ars conjectandi?

36.6. What are the two best-known mathematical theorems about the probable outcome of
a large number of random trials?

Questions for Reflection

36.7. Consider the case of 200 men and 200 women applying to a university consisting of
only two different departments, and assume that the acceptance rates are given by
the following table.

Men Women
Department A 120/160 32/40
Department B 8/40 40/160

Observe that the admission rate for men in department A is 3
4 , while that for

women is 4
5 . In department B the admission rate for men is 1

5 and for women it is
1
4 . In both cases, the people making the admission decisions are admitting a higher
proportion of women than of men. Yet the overall admission rate is 64% for men and
only 36% for women. Explain this paradox in simple, nonmathematical language.

This paradox was first pointed out by George Udny Yule (1871–1951) in 1903. Yule
produced a set of two 2 × 2 tables, each of which had no correlation, but produced
a correlation when combined (see David and Edwards, 2001, p. 137). Yule’s result
was, for some reason, not given his name; but because it was publicized by Edward
Hugh Simpson in 1951,18 it came to be known as Simpson’s paradox.19 Simpson’s
paradox is a counterintuitive oddity, not a contradiction.

An example of it occurred in the admissions data from the graduate school of
the University of California at Berkeley in 1973. These data raised some warning
flags. Of the 12,763 applicants, 5232 were admitted, giving an admission rate of
41%. However, investigation revealed that 44% of the male applicants had been
admitted and only 35% of the female applicants. There were 8442 male applicants,
3738 of whom were accepted, and 4321 female applicants, 1494 of whom were
accepted. Simple chi-square testing showed that the hypothesis that these numbers
represent a random deviation from a sex-independent acceptance rate of 41% was not
plausible. There was unquestionably bias. The question was: Did this bias amount
to discrimination? If so, who was doing the discriminating?

For more information on this case study and a very surprising conclusion, see “Sex
bias in graduate admissions: Data from Berkeley,” Science, 187, 7 February 1975,
398–404. In that paper, the authors analyzed the very evident bias in admissions
to look for evidence of discrimination. Since admission decisions are made by the
individual departments, it seemed logical to determine which departments had a
noticeably higher admission rate for men than for women. Surprisingly, the authors

18See “The interpretation of interaction in contingency tables,” Journal of the Royal Statistical Society, Series B,
13, 238–241.
19The name Simpson’s paradox goes back at least to the article of C. R. Blyth, “On Simpson’s paradox and the
sure-thing principle,” in the Journal of the American Statistical Association, 67 (1972), 364–366.
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found only four such departments (out of 101), and the imbalance resulting from
those four departments was more than offset by six other departments that had a
higher admission rate for women.

36.8. It is interesting that an exponential law of growth or decay can be associated with
both completely deterministic models of growth (compound interest) and completely
random models, as in the case of radioactive decay. Is it possible to assume physical
laws that would make radioactive decay completely deterministic?

36.9. In the Power Ball lottery that is played by millions of people in the United States
every week, players are trying to guess which five of 59 numbered balls will drop
out of a hopper, and which one of 39 others will drop out of a hopper. The jackpot
is won by guessing all six correctly. Any combination of 5 numbers and 1 number is
as likely to drop as any other. Hence, the number of possible combinations is

39

(
59

5

)

= 59 · 58 · 57 · 56 · 55 · 39

5 · 4 · 3 · 2 · 1
= 195, 249, 054.

This is, needless to say, a rather large number, meaning that the odds are heavily
against the player. To picture the odds more vividly, imagine that the winning combi-
nations are the serial numbers on dollar bills, and that this $195,249,054 consists of
one-dollar bills laid end to end. They would cover more than 30,000 km, roughly the
distance from the North Pole to the South Pole and then north again to the Equator.
Even if the journey could all be made on level ground, it would require a vigorous
walker 250 days to make it with no stops to rest. In that scenario, the gambler is going
to bend down just once and hope to pick up the winning dollar bill.

Still, somebody does eventually win the Power Ball, every few weeks or months.
Why is this fact not surprising? Is it a rational wager to spend a dollar to play the
lottery if the prize goes above this stake, on the grounds that the expected gain is
larger than the cost of playing?



CHAPTER 37

Algebra from 1600 to 1850

By the mid-seventeenth century, the relation between the coefficients and roots of a general
equation was understood, and it was conjectured that if you counted roots according to
multiplicity and allowed complex roots, an equation of degree n would have n roots. Algebra
had been consolidated to the point that the main unsolved problem, the solution of equations
of degree higher than 4, could be stated simply and analyzed.

The solution of this problem took nearly two centuries, and it was not until the late
eighteenth and early nineteenth centuries that enough insight was gained into the process of
determining the roots of an equation from its coefficients to prove that arithmetic operations
and root extractions were not sufficient for this purpose. Although the solution was a negative
result, it led to the important concepts of modern algebra that we know as groups, rings, and
fields; and these, especially groups, turned out to be applicable in many areas not directly
connected with algebra. Also on the positive side, nonalgebraic methods of solving higher-
degree equations were found, along with a criterion to determine whether or not a prescribed
set of roots can be expressed algebraically in terms of the coefficients of the equation that
they satisfy.

37.1. THEORY OF EQUATIONS

Viète understood something of the relation between the roots and the coefficients of some
equations. His understanding was not complete, because he was not able to find all the
roots. Before the connection could be made completely, there had to be a domain in which
an equation of degree n would have n roots. Such a domain is called an algebraically
closed field. Then the general connection between coefficients and roots could be made for
quadratic, cubic, and quartic equations and generalized from there. The missing theorem
was eventually to be called the fundamental theorem of algebra.1

1In his textbook on analytic function theory (1959, p. 24), Einar Hille (1894–1980) wrote that “modern algebraists
are inclined to deny both its algebraic and its fundamental character.” In the context of its time, the theorem
was both algebraic and fundamental. The fact that the complex numbers are algebraically closed depends on the
topological properties of the complex plane, especially the fact that it is a connected set. That connectedness would
not exist if not for nonalgebraic (transcendental) numbers such as π and e. That is the meaning of Hille’s statement
that the algebraic closedness of the complex numbers is not an algebraic theorem.

The History of Mathematics: A Brief Course, Third Edition. Roger L. Cooke.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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37.1.1. Albert Girard

This fundamental theorem was first stated by Albert Girard (1595–1632), the editor of the
works of Simon Stevin. In 1629 he wrote L’invention nouvelle en l’algèbre [New Discovery
(Invention) in Algebra]. This work contained some of the unifying concepts that make
modern algebra the compact, efficient system that it now is. One of these ideas is to regard
the constant term as the coefficient of the zeroth power of the unknown. He introduced the
notion of factions of a finite set of numbers. The first faction is the sum of the numbers,
the second one is the sum of all products of two distinct numbers from the set, and so
on. The last faction is the product of all the numbers, so that “there are as many factions
as there are numbers given.” He noted that the number of terms in each faction could be
found by using Pascal’s triangle.

Girard always regarded the leading coefficient as 1. Putting the equation into this form,
he stated as a theorem (see, for example, Struik, 1986, p. 85) that “all equations of algebra
receive as many solutions as the denomination [degree] of the highest form shows, except
the incomplete, and the first faction of the solutions is equal to the number of the first mixed
[that is, the coefficient of the power one less than the degree of the equation], their second
faction is equal to the number of the second mixed, their third to the third mixed, and so on,
so that the last faction is equal to the closure [product], and this according to the signs that
can be observed in the alternate order.” This recognition that the coefficients of a polynomial
are elementary symmetric polynomials in its zeros was the first ray of light at the dawn of
modern algebra.

By “incomplete,” Girard seems to have meant equations with some terms missing. In
some cases, he said, these may not have a full set of solutions. He gave the example of
the equation x4 = 4x − 3, whose solutions he gave as 1, 1, −1 + √−2, and −1 − √−2,
showing that he realized the need to count both complex roots and multiple real roots for
the sake of the general rule. It is not clear what connection he made between missing
terms and a reduced number of solutions. If an equation p(x) = 0 with real coefficients
has a pure imaginary solution x = c

√−1, then p(x) is divisible by x2 + c2, and there will
be missing terms. But there may be terms missing even in an equation with a full set of
solutions, for example, x4 − 13x2 + 36; and there may be no missing terms in an equation
with no real solutions, such as x2 − x + 1 = 0. He invoked the simplicity of the general
rule as justification for introducing the multiple and complex roots, along with the fact that
complex numbers provide solutions where otherwise none would exist.

37.1.2. Tschirnhaus Transformations

Every complex number has nth roots—exactly n of them except in the case of 0—that are
also complex numbers. As a consequence, any formula for solving equations with complex
coefficients that involves only the application of rational operations and root extractions
starting with the coefficients will remain within the domain of complex numbers. This
elementary fact led to the proposition stated by Girard, which we know as the fundamental
theorem of algebra. Finding such a formula for equations of degree five and higher was to
become a preoccupation of algebraists for the next two centuries.

By the year 1600, equations of degrees 2, 3, and 4 could all be solved, assuming that
one could extract the cube root of a complex number (and that problem could not and
cannot be reduced to purely algebraic operations on real numbers). The methods used to
solve it—reducing the cubic to a quadratic equation in x3 and reducing the quartic to the
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resolvent cubic—suggest an inductive process in which the solution of an equation of degree
n, say

xn − a1x
n−1 + · · · ∓ an−1x ± an = 0 ,

would be found by a substitution y = xn−1 − b1x
n−2 + · · · ± bn−2x ∓ bn−1 with the

coefficients b1, . . . , bn−1 chosen so that the original equation becomes yn = C. Here we
have n − 1 coefficients bk at our disposal and n − 1 coefficients a1, . . . , an−1 to be removed
from the original equation. The program looks feasible. Something of the kind must have
been the reasoning that led Ehrenfried Walther von Tschirnhaus (1652–1708) to the belief
that he had discovered a general solution to all polynomial equations. In 1677 he wrote to
Leibniz:

In Paris I received some letters from Mr. Oldenburg, but from lack of time have not yet been
able to write back that I have found a new way of determining the irrational roots of all
equations. . . The entire problem reduces to the following: We must be able to remove all the
middle terms from any equation. When that is done, and as a result only a single power and a
single known quantity remain, one need only extract the root.

Tschirnhaus claimed that the the middle terms (the ak above) would be eliminated by a
polynomial of the sort just discussed, provided that the bk are suitably chosen. Such a change
of variable is now called a Tschirnhaus transformation. If a Tschirnhaus transformation
could be found for the general equation of degree n, and a formula existed for solving the
general equation of degree n − 1, the two could be combined to generate a formula for
solving the general equation of degree n. At the time, there was not even a Tschirnhaus
transformation for the cubic equation. Tschirnhaus was to provide one.

He illustrated his transformation using the example x3 − qx − r = 0. Taking y = x2 −
ax − b, he noted that y satisfied the equation2

y3 + (3b − 2q)y2 + (3b2 + 3ar − 4qb + q2 − a2q)y

+ (b3 − 2qb2 + 3bar + q2b − aqr − a2qb + a3r − r2) = 0 .

He eliminated the square term by choosing b = 2q/3, then removed the linear term by
solving for a in the quadratic equation

qa2 − 3ra + q2/3 = 0 .

In this way, he had found at the very least a second solution of the general cubic equation,
independent of the solution given by Cardano. And, what is more important, he had indicated
a plausible way by which any equation might be solved. If it worked, it would prove that every
polynomial equation could be solved using rational operations and root extractions, thereby
proving at the same time that the complex numbers are algebraically closed. Unfortunately,
detailed examination of the problem revealed difficulties that Tschirnhaus had apparently
not noticed at the time of his letter to Leibniz.

2This equation can be derived by Seki Kōwa’s method of tatami (folding), which makes it possible to express x

as a fractional-linear function of y, and hence y as a fractional-linear function of x.
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When folding is used twice with the two polynomial equations pn(x) = 0 and y =
pn−1(x), where pn is of degree n and pn−1 of degree n − 1, the polynomial that remains,
just as in the case n = 3, contains a constant term and a linear term in x whose coefficients
are linear functions of y. Those two terms would make it possible to express x as a fractional-
linear function of y. Unfortunately, this polynomial also contains terms of degrees up to
n − 2. Those terms can be removed by a suitable choice of parameters in pn−1(x), but doing
so requires fixing all but 2 of the coefficients. As a result, it is not in general possible to
remove more than two of the coefficients in the resulting equation of degree n in this way.
Only in the case of a cubic does that elimination produce a pure equation. The process may,
however, work for a particular equation of higher degree. Leibniz was not convinced. He
wrote to Tschirnhaus,

I do not believe that [your method] will be successful for equations of higher degree, except in
special cases. I believe that I have a proof for this. [Kracht and Kreyszig, 1990, p. 27]

Tschirnhaus’ method had intuitive plausibility: If there existed an algorithm for solving
all equations, that algorithm should be a procedure like the Tschirnhaus transformation.
Because the method does not work, the thought suggests itself that there may be equations
that cannot be solved algebraically. The work of Tschirnhaus and Girard had produced two
important insights into the general problem of polynomial equations: (1) The coefficients
are symmetric functions of the roots; (2) solving the equation should be a matter of finding
a sequence of operations that would eliminate coefficients until a pure equation yn = C was
obtained. Since the problem was still unresolved, still more new insights were needed.

To explain the most important of these new insights, let us consider what Girard’s result
means when applied to Cardano’s solution of the cubic y3 + py = q. If the roots of this
equation are r, s, and t, then p = st + tr + rs, q = rst, t = −r − s, since the coefficient of
y2 is zero. The sequence of operations implied by Cardano’s formula is

u = p

3
; v = q

2
;

a =
√

u3 + v2 ;

y = 3
√

v + a + 3
√

v − a .

Girard’s work implies that the quantity a, which is an irrational function of the coefficients
p and q, is a rational function of the roots r, s, and t:

a = ± i√
108

(r − s)(s − t)(t − r) ;

that is, it does not involve taking the square root of any expression containing a root.

37.1.3. Newton, Leibniz, and the Bernoullis

In the 1670s, Newton wrote a textbook of algebra called Arithmetica universalis, which
was published in 1707, in which he stated more clearly and generally than Girard had done
the relation between the coefficients and roots of a polynomial. Moreover, he showed that
symmetric polynomials in the roots could be expressed as polynomials in the coefficients
by giving a set of rules that are still known by his name.
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Another impetus toward the fundamental theorem of algebra came from calculus. The
well-known method known as partial fractions for integrating a quotient of two polynomials
reduces all such problems to the purely algebraic problem of factoring the denominator. It
is not immediately obvious that the denominator can be factored into linear and quadratic
real factors; that is the content of the fundamental theorem of algebra. John Bernoulli
asserted in a paper in the Acta eruditorum in 1702 that such a factoring was always possible,
and therefore all rational functions could be integrated. Leibniz did not agree, arguing that
the polynomial x4 + a2, for example, could not be factored into quadratic factors over
the reals. Here we see a great mathematician being misled by following a method. He
recognized that the factorization had to be (x2 + a2

√−1)(x2 − a2
√−1) and that the first

factor should therefore be factored as (x + a
√

−√−1)(x − a
√

−√−1) and the second
factor as (x + a

√√−1)(x − a
√√−1), but he did not realize that these factors could be

combined to yield x4 + a2 = (x2 − √
2ax + a2)(x2 + √

2ax + a2). It was pointed out by
Nicholas Bernoulli I (1687–1759) in the Acta eruditorum of 1719 (three years after the
death of Leibniz) that this last factorization was a consequence of the identity x4 + a4 =
(x2 + a2)2 − 2a2x2.

37.2. EULER, D’ALEMBERT, AND LAGRANGE

The eighteenth century saw considerable progress in the understanding of equations in
general and the procedures needed to solve them. Much of this new understanding came
from the two men who dominated mathematical life in that century, Euler and Lagrange.

37.2.1. Euler

In his 1749 paper “Recherches sur les racines imaginaires des équations” (“Investigations
into the imaginary roots of equations”), devoted to equations whose degree is a power
of 2 and published in the memoirs of the Berlin Academy, Euler showed that when the
coefficients of a polynomial are real, its roots occur in conjugate pairs, and therefore produce
irreducible real quadratic factors of the form (x − a)2 + b2. In this paper, Euler argued that
every polynomial of degree 2n with real coefficients can be factored as a product of two
polynomials of degree 2n−1 with real coefficients. In the course of the proof, Euler presented
the germ of an idea that was to have profound consequences. In showing that a polynomial
of degree 8 could be written as a product of two polynomials of degree 4, he assumed that
the coefficient of x7 was made equal to zero by means of a linear substitution. The remaining
polynomial x8 − ax6 + bx5 − cx4 − dx2 + ex − f was then to be written as a product

(x4 − ux3 + αx2 + βx + γ)(x4 + ux3 + δx2 + εx + ζ) .

Euler noted that since u was the sum of four roots of the equation, it could assume (poten-
tially) 70 values (the number of combinations of eight things taken four at a time), and its
square would satisfy an equation of degree 35.

In the 1749 paper, Euler also conjectured that the roots of an equation of degree higher
than 4 cannot be constructed by applying a finite number of algebraic operations to the
coefficients. This was the first explicit statement of such a conjecture.
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In his 1762 paper “De resolutione aequationum cuiusque gradus” (“On the solution of
equations of any degree”), published in the Commentarii of the Petersburg Academy, Euler
tried a different approach,3 assuming a solution of the form

x = w + A n
√

v + B
n
√

v2 + · · · + Q
n
√

vn−1 ,

where w is a real number and v and the coefficients A, . . . , Q are to be found by a procedure
resembling a Tschirnhaus transformation. This approach was useful for equations of degree
2n, but fell short of being a general solution of all polynomial equations.

37.2.2. D’Alembert

Euler’s contemporary and correspondent d’Alembert tried to prove that all polynomials
could be factored into linear and quadratic factors in order to prove that all rational functions
could be integrated by partial fractions. In the course of his argument he assumed that any
algebraic function could be expanded in a series of fractional powers of the independent
variable. While Euler was convinced by this proof, he also wrote to d’Alembert to say that
this assumption would be questioned (Bottazzini, 1986, pp. 15–18).

37.2.3. Lagrange

In 1770, Lagrange made a survey of the methods known up to his time for solving general
equations. He devoted a great deal of space to a preliminary analysis of the cubic and quartic
equations. In particular, he was intrigued by the fact that the resolvent equation, which he
called the reduced equation (équation reduite), for the cubic was actually an equation of
degree 6 that just happened to be quadratic in the third power of the unknown. He showed
that if the roots of the cubic equation x3 + px = q being solved were a, b, and c, then a
root of the resolvent would be

y = a + αb + α2c

3
,

where α3 = 1, α /= 1. He argued that since the original equation was symmetric in a, b,
and c, the resolvent would have to admit this y as a root, no matter how the letters a, b,
and c were permuted. It therefore followed that the resolvent would in general have six
different roots. (Note, however, that y3 assumes only two values under these permutations,
and therefore satisfies it a quadratic equation whose coefficients are rational functions of p

and q that can be computed by an algorithm.)
For the quartic equation with roots a, b, c, and d, he showed that the resolvent cubic

equation would have a root

t = ab + cd

2
.

3This approach was discovered independently by Etienne Bézout (1730–1783).
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Since this expression could assume only three different values when the roots were
permuted—namely, half of ab + cd, ac + bd, or ad + bc—it would have to satisfy an
equation of degree three with coefficients expressible in terms of those of the original
equation.

Proceeding to equations of fifth degree, Lagrange examined the only methods proposed
up to that time, by Tschirnhaus and Euler–Bézout, and showed that the resolvent to be
expected in all cases would be of degree 24. Pointing out that even Tschirnhaus, Euler, and
Bézout themselves had not seriously attacked equations of degree five or higher, nor had
anyone else tried to extend their methods, he said, “It is therefore greatly to be desired that
one could estimate a priori the success that is to be expected in applying these methods to
degrees higher than the fourth.” He then set out to provide proof that, in general, one could
not expect the resolvent equation to reduce to lower degree than the original equation in
such cases, at least using the methods mentioned.

To prove his point, Lagrange analyzed the method of Tschirnhaus from a more general
point of view. For cubic and quartic equations, in which only two coefficients needed to
be eliminated (the linear and quadratic terms in the cubic, the linear and cubic terms in
the quartic), the substitution y = x2 + ax + b would always work, since the elimination
procedure resulted in linear and quadratic expressions in a and b in the coefficients that
needed to be eliminated. Still, as Lagrange remarked, that meant two pairs of possible values
(a, b) and hence really two cubic resolvents to be solved. The resolvent was therefore once
again an equation of degree 6, which happened to be a quadratic polynomial in the cube of
the variable. He noted what must be an ominous sign for those hoping to solve all algebraic
equations by algebraic methods: The construction of the coefficients in the resolvent for an
equation of degree n appeared to require solving n − 1 equations in n − 1 unknowns, of
degrees 1, 2,. . . , n − 1, so that eliminating the variable x in these equations therefore led to
an expression for x that was of degree (n − 1)! in y, and hence to a resolvent equation of
degree n! in y.

Lagrange summed up his analysis as follows:

To apply, for example, the method of Tschirnhaus to the equation of degree 5, one must solve
four equations in four unknowns, the first being of degree 1, the second of degree 2, and so
on. Thus the final equation resulting from the elimination of three of these unknowns will in
general be of degree 24. But apart from the immense amount of labor needed to derive this
equation, it is clear that after finding it, one will be hardly better off than before, unless one
can reduce it to an equation of degree less than 5; and if such a reduction is possible, it can
only be by dint of further labor, even more extensive than before.

The technique of counting the number of different values the root of the resolvent
will have when the roots of the original equation are permuted among themselves was an
important clue in solving the problem of the quintic.

37.3. THE FUNDAMENTAL THEOREM OF ALGEBRA AND SOLUTION
BY RADICALS

The question of the theoretical existence of roots was settled on an intuitive level in the 1799
dissertation of Gauss. Gauss distinguished between the abstract existence of a root, which
he proved, and an algebraic algorithm for finding it, the existence of which he doubted. He
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pointed out that attempts to prove the existence of a root and any possible algorithm for
finding it must assume the possibility of extracting the nth root of a complex number. He
also noted the opinion, first stated by Euler, that no algebraic algorithm existed for solving
the general quintic.

The reason we say that the existence of roots was settled only on the intuitive level is that
the proof of the fundamental theorem of algebra is as much topological as algebraic. The
existence of real roots of an equation of odd degree with real coefficients seems obvious
since a real polynomial of odd degree tends to oppositely signed infinities as the independent
variable ranges from one infinity to the other. It thus follows by connectivity that it must
assume a zero at some point. Gauss’ proof of the existence of complex roots was similar.
Much of what he was doing was new at the time, and he had to explain it in considerable
detail. For that reason, he preferred to use only real-variable methods, so as not to raise any
additional doubts with the use of complex numbers. In fact, he stated his purpose in that
way: to prove that every polynomial with real coefficients has a complete factorization into
linear and quadratic real polynomials. (It was noted above that d’Alembert had proposed
a proof of this theorem, but Gauss found it defective, since it conflated an infimum with a
minimum.)

The complex-variable background of the proof is obvious nowadays, and Gauss admitted
that his lemmas were normally proved using complex numbers. The steps were as follows.
First, considering the equation zm + Azm−1 + Bzm−2 + · · · + Kz2 + Lz + M = 0, where
all coefficients A,. . . , M were real numbers,4 taking z = r(cos ϕ + i sin ϕ) and using the
relation zm = rm(cos mϕ + i sin mϕ), one can see that finding a root amounts to setting the
real and imaginary parts equal to zero simultaneously, that is, finding r and ϕ such that

rm cos mϕ + Arm−1 cos(m − 1)ϕ + · · · + Kr2 cos 2ϕ + Lr cos ϕ + M = 0 ,

rm sin mϕ + Arm−1 sin(m − 1)ϕ + · · · + Kr2 sin 2ϕ + Lr sin ϕ = 0 .

What remained was to show that there actually were points where the two curves inter-
sected. For that purpose, Gauss divided both equations by rm and argued that for large values
of r the two functions must have zeros near the zeros of cos mϕ = 0 and sin mϕ = 0, respec-
tively. That would mean that on a sufficiently large circle, each would have 2m zeros; and
moreover, the zeros of the first curve, being near the points with polar angles (k + 1/2)π/m,
must separate those of the second, which are near the points with polar angles kπ/m. Then,
arguing that the portion of each curve inside the disk of radius r was connected, he said that
it was obvious that one could not join all the pairs from one set and all the pairs from the
other set using two curves that do not intersect.

Gauss was uneasy about the intuitive aspect of the proof. During his lifetime he gave
several other proofs of the theorem that he regarded as more rigorous.

37.3.1. Ruffini

As it turned out, Gauss had no need to publish his own research on the quintic equation. In the
very year in which he wrote his dissertation, the first claim of a proof that it is impossible
to find a formula for solving all quintic equations by algebraic operations was made by
the Italian physician Paolo Ruffini (1765–1822). Ruffini’s proof was based on Lagrange’s

4This restriction involves no loss of generality (see Problem 37.1 below).
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count of the number of values a function can assume when its variables are permuted.5 The
principles of such a proof were gradually coming into focus. Newton’s principle that every
symmetric polynomial in the roots of a polynomial can be expressed as a function of its
coefficients, proved by Edward Waring (1736–1798), was an important step, as was the idea
of counting the number of different values a rational function of the roots can assume. To
get the general proof, it was necessary to show that the root extractions performed in the
course of a hypothetical solution would also be rational functions of the roots. That this is
the case for quadratic and cubic equations is not difficult to see, since the quadratic formula
for solving x2 − (r1 + r2)x + r1r2 = 0 involves taking only one square root:

√
(r1 + r2)2 − 4r1r2 =

√
(r1 − r2)2 = ±(r1 − r2) .

Similarly, the Cardano formula for solvingy3 + (r1r2 + r2r3 + r3r1)y = r1r2r3, where r1 +
r2 + r3 = 0, involves taking

√
(r1r2 + r2r3 + r3r1)3

27
+ (r1r2r3)2

4
=

√
−1

108

(
(r1 − r2)(2r2

1 + 5r1r2 + 2r2
2)

)
,

followed by extraction of the cube roots of the two numbers

i

3
√

3
(r1 + ωr2)3 and

i

3
√

3
(r1 + ω2r2)3 ,

where ω = −1/2 + i
√

3/2 is a complex cube root of 1. All of these radicals are consequently
rational (but not symmetric) functions of the roots.

37.3.2. Cauchy

Although Ruffini’s proof was not fully accepted by his contemporaries, it was endorsed
many years later by Cauchy. In 1812, Cauchy wrote a paper entitled “Essai sur les fonctions
symétriques” in which he proved the crucial fact that a polynomial in 5 variables that
assumes fewer than 5 values when its variables are permuted assumes at most two values.
In 1815 he published this result.

Cauchy gave credit to Lagrange, Alexandre Théophile Vandermonde (1735–1796), and
Ruffini for earlier work in this area. Vandermonde, in particular, exhibited the Vandermonde
determinant

det

⎡

⎢⎢⎢
⎢⎢
⎣

1 x1 x2
1 · · · xn−1

1

1 x2 x2
2 · · · xn−1

2
...

... · · · ...

1 xn x2
n · · · xn−1

n

⎤

⎥⎥⎥⎥
⎥
⎦

= −(x1 − x2)(x1 − x3) · · · (x1 − xn)(x2 − x3) · · · (x2 − xn) · · · (xn−1 − xn) ,

5An exposition of Ruffini’s proof, clothed in modern terminology that Ruffini would not have recognized, can be
found in the paper of Ayoub (1980).
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which assumes only two values, since interchanging two variables transposes the corre-
sponding rows of the determinant and hence reverses the sign of the determinant.

37.3.3. Abel

Cauchy’s work had a profound influence on two young geniuses whose lives were destined
to be very short. The first of these, Abel, believed in 1821 that he had succeeded in solving
the quintic equation. He sent his solution to the Danish mathematician Ferdinand Degen
(1766–1825), who asked him to provide a worked-out example of a quintic equation that
could be solved by Abel’s method. While working through the details of an example, Abel
realized his mistake. In 1824, he constructed an argument to show that such a solution was
impossible and had the proof published privately. A formal version was published in the
Journal für die reine und angewandte Mathematik in 1826. Abel was aware of Ruffini’s
work, and mentioned it in his argument. He attempted to fill in the gap in Ruffini’s work with
a proof that the intermediate radicals in any supposed solution by formula can be expressed
as rational functions of the roots.

Abel’s idea was that if some finite sequence of rational operations and root extractions
applied to the coefficients produces a root of the equation

x5 − ax4 + bx3 − cx2 + dx − e = 0 ,

the final result must be expressible in the form

x = p + R
1
m + p2R

2
m + · · · + pm−1R

m−1
m ,

where p, p2,. . . , pm−1, and R are also formed by rational operations and root extractions
applied to the coefficients, m is a prime number,6 and R1/m is not expressible as a rational
function of the coefficients a, b, c, d, e, p, p2,. . . , pm−1.7 By straightforward reasoning on a
system of linear equations for the coefficients pj , he was able to show that R is a symmetric
function of the roots, and hence that R1/m can assume the same m different values, no matter
how the roots are permuted. Moreover, since there are 5! permutations of the roots and m is
a prime, it followed that m = 2 or m = 5, the case m = 3 having been ruled out by Cauchy.
The hypothesis that m = 5 led to an equation in which the left-hand side assumed only five
values while the right-hand side assumed 120 values as the roots were permuted. Then the
hypothesis m = 2 led to a similar equation in which one side assumed 120 values and the
other only 10. Abel concluded that the hypothesis that there exists an algorithm for solving
the equation was incorrect.

The standard version of the history of mathematics credits Abel with being “the” person
who proved the impossibility of solving the quintic equation. But according to Ayoub
(1980, p. 274), in 1832 the Prague Scientific Society declared the proofs of Ruffini and
Abel unsatisfactory and offered a prize for a correct proof. The question was investigated

6Extracting any root is tantamount to the sequential extraction of prime roots. Hence every root extraction in the
hypothetical process of solving the equation can be assumed to be the extraction of a prime root.
7Abel incorporated the apparently missing coefficient p1 into R here, since he saw no loss of generality in doing
so. A decade later, William Rowan Hamilton pointed out that doing so might increase the index of the root that
needed to be extracted, since p1 might itself require the extraction of an mth root.
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by Hamilton in a report to the Royal Society in 1836 and published in the Transactions of the
Royal Irish Academy in 1839. Hamilton’s report was so heavily laden with subscripts and
superscripts bearing primes that only the most dedicated reader would attempt to understand
it, although Felix Klein (1884) was later to describe it as being “as lucid as it is voluminous.”
The proof was described by the American number theorist and historian of mathematics
Leonard Eugene Dickson as “a very complicated reconstruction of Abel’s proof.” Hamilton
regarded the problem of the solvability of the quintic as still open. He wrote:

[T]he opinions of mathematicians appear to be not yet entirely agreed respecting the possibility
or impossibility of expressing a root as a function of the coefficients by any finite combination
of radicals and rational functions.

The verdict of history has been that Abel’s proof, suitably worded, is correct. Ruffini
also had a sound method (see Ayoub, 1980), but needed to make certain subtle distinctions
that were noticed only after the problem was better understood. By the end of the nineteenth
century, Klein (1884) referred to “the proofs of Ruffini and Abel, by which it is established
that a solution of the general equation of the fifth degree by extracting a finite number of
roots is impossible.”

Besides his impossibility proof, Abel made positive contributions to the solution of
equations. He generalized the work of Gauss on the cyclotomic (circle-splitting) equation
xn + xn−1 + · · · + x + 1 = 0, which had led Gauss to the construction of the regular 17-
sided polygon. Abel showed that if every root of an equation could be generated by applying a
given rational function successively to a single (primitive) root, the equation could be solved
by radicals. Any two permutations that leave this function invariant necessarily commute
with each other. As a result, nowadays any group whose elements commute is called an
abelian group.

37.3.4. Galois

More light was shed on the solution of equations by the work of Abel’s contemporary
Evariste Galois (1811–1832), a volatile young man who did not live to become even mature.
As is well known, he died at the age of 20 in a duel fought with one of his fellow republicans.8

The concepts of group, ring, and field that make modern algebra the beautiful subject
that it is grew out of the work of Abel and Galois, but neither of these two short-lived
geniuses had a full picture of any of them. Where we now talk easily about algebraic and
transcendental field extensions and regard the general equation of degree n over a field F

as xn + a1x
n−1 + · · · + an−1x + an = 0, where each aj is transcendental over F , Galois

had to explain that the concept of a rational function was relative to what was given. For
an equation with numerical coefficients, a rational function was simply a quotient of two

8The word republican (républicain) is being used in its French sense, of course, not the American sense. It is
the opposite of royaliste or légitimiste. (Cauchy was a légitimiste, who went into exile with the King after the
1848 revolution.) There are murky details about the duel, but it appears that the gun Galois used was not loaded,
probably because he did not wish to kill a comrade-in-arms. It may be that the combatants had agreed to let fate
determine the outcome and each picked up a weapon, not knowing which of the two guns was loaded. The cause
of the duel is also not entirely clear. The notes that Galois left behind seem to imply that he felt it necessary to
warn his friends about what he considered to be the wiles of a certain young woman by whom he felt betrayed,
and they felt obliged to defend her honor against his remarks.
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polynomials with numerical coefficients, while if the equation had letters as coefficients,
a rational function meant a quotient of two polynomials whose coefficients were rational
functions of the coefficients of the equation. Even the concept of a group, which is associated
with Galois, is not stated formally in any of his work. He does use the word group frequently
in referring to a set of permutations of the roots of an equation, and he uses the properties
that we associate with a group: the composition of permutations. However, it is clear from
his language that what makes a set of permutations a group is that all of them have the
same effect on certain rational functions of the roots. In particular, when what we now call
a group is decomposed into cosets over a subgroup, Galois refers to the cosets as groups,
since any two elements of a given coset have the same effect on the rational functions. He
says that a group, in this sense, may begin with any permutation at all, since there is no
need to specify any natural order of the roots.

Besides the shortness of their lives, Abel and Galois had another thing in common:
neglect of their achievements by the Paris Academy of Sciences. Abel’s most brilliant paper
on general algebraic integrals (now called abelian integrals at the suggestion of Abel’s rival
Jacobi) was lost for over a decade until Jacobi, in 1841, insisted on its publication. As for
Galois, he had been expelled from the École Normale because of his republican activities
and had been in prison. He left a second paper among his effects, which was finally published
in 1846. It had been written in January 1831, 17 months before his death, and it contained
the following plaintive preface:

The attached paper is excerpted from a work that I had the honor to present to the Academy
a year ago. Since this work was not understood, and doubt was cast on the propositions that it
contains, I have had to settle for giving the general principles and only one application of my
theorie in systematic order. I beg the referees at least to read these few pages with attention.
[Picard, 1897, p. 33]

In a letter to a friend written the night before the duel in which he died, Galois showed
that he had gone still further into this subject, making the distinction between proper and
improper decompositions of the group of an equation, that is, the distinction we now make
between normal and nonnormal subgroups.

The ideas of Abel and Galois were developed further by Laurent Wantzel (1814–1848)
and Enrico Betti (1823–1892). Using reasoning about the roots of equations similar to that
of Abel, Wantzel was able to prove (1837) that it is impossible to double the cube or trisect
the angle using ruler and compass. More generally, he showed that any complex number
that can be located using a straightedge and compass starting from the numbers 0 and 1
must satisfy an equation obtained by substituting one quadratic polynomial inside another
a finite number n of times in such a way that the final polynomial of degree 2n is irreducible
over the rational numbers. At the time, no one knew whether π could be the root of such
a polynomial, and so the question of squaring the circle remained open for several more
decades. Later, Wantzel gave a thorough classification of the roots of equations with rational
coefficients, and in the process showed (1843, p. 125) that there is no algebraic algorithm
that can be applied to the coefficients of a cubic equation with three real roots and yield a
root without involving complex numbers at some intermediate stage. In 1845, he “cleaned
up” Abel’s proof that it is impossible to solve equations of degree five or higher in radicals
(as Hamilton had already done nine years earlier). Nowadays, all of Wantzel’s results are
proved using Galois theory.
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In 1852, Betti published a series of theorems elucidating the theory of solvability by
radicals. In this way, group theory proved to be the key not only to the solvability of
equations but to the full understanding of classical problems. When Ferdinand Lindemann
(1852–1939) proved in 1881 that π is a transcendental number, it followed that no ruler-
and-compass quadrature of the circle was possible.

The proof that the general quintic equation of degree 5 was not solvable by radicals
naturally raised two questions: (1) How can the general quintic equation of degree 5 be
solved? (2) Which particular quintic equations can be solved by radicals? These questions
required some time to answer. Eventually, Charles Hermite9 (1822–1902) showed how
to use elliptic integrals to solve the general quintic equation. The algebraic algorithm for
solving a solvable quintic equation depends on the Galois group of the equation. Using
modern computer algebra methods, mathematicians have produced a complete solution of
this problem.10 An early summary of results in this direction was the famous book by Felix
Klein on the icosahedron (1884). A study of the theory of solvability of equations of all
degrees, with historical reference, can be found in the book of R. Bruce King (1996).

PROBLEMS AND QUESTIONS

Mathematical Problems

37.1. Prove that if every polynomial with real coefficients has a zero in the complex
numbers, then the same is true of every polynomial with complex coefficients. To get
started, let p(z) = zn + a1z

n−1 + · · · + an−1z + an be a polynomial with complex
coefficients a1, . . . , an. Consider the polynomial q(z) of degree 2n given by q(z) =
p(z)p(z̄), where the overline indicates complex conjugation. This polynomial has
real coefficients, and so by hypothesis has a complex zero z0.

37.2. You are familiar with the fact that for any two polynomials p(x) and q(x), there exist
other polynomials a(x) and r(x) such that p(x) = a(x)q(x) + r(x), where r(x) is of
lower degree than q(x). (This is the familiar long-division algorithm for polynomials.)
The operation can be repeated using q(x) and r(x) in place of p(x) and q(x), eventually
producing a remainder of maximal degree that divides both p(x) and q(x). This
is the Euclidean algorithm discussed in Section 9.1 of Chapter 9. Because of this
algorithm, it follows that every polynomial p(x) can be factored in only one way (up
to constant multiples) as a product of irreducible polynomials, that is, polynomials
that cannot be divided by any non-constant polynomial of lower degree. This is
because an irreducible polynomial is prime in the sense that if it divides a product of
two polynomials, it must divide one of the factors. Use this fact to prove that since
p(x) is divisible by x − a if p(a) = 0, it follows that p(x) cannot have a number of
roots that exceeds its degree.

37.3. Show that complex numbers of the form m + n
√

2i, where m and n are integers can
be added, subtracted, multiplied, and divided with a remainder, in the sense that given

9Hermite was also the first person to prove that e is a transcendental number, in 1858.
10See the paper by D. S. Dummit “Solving solvable quintics,” in Mathematics of Computation, 57 (1991), No.
195, 387–401.
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m + n
√

2i and p + q
√

2i, we can find a + b
√

2i and r + s
√

2i such that

m + n
√

2i = (p + q
√

2i)(a + b
√

2i) + (r + s
√

2i) ,

where r + s
√

2i is smaller than p + q
√

2i in the sense that the norm N(r + s
√

2i),
defined as r2 + 2s2, satisfies N(r + s

√
2i) < N(p + q

√
2i). It follows from this result

that an irreducible element of this form is prime in the sense of Problem 37.2, and
hence that there is only one factorization (except for signs) for any number of this
form. Does this result continue to hold if

√
2 is replaced by

√
3? [Hint: The complex

quotient

c + d
√

2i = m + n
√

2i

p + q
√

2i
= mp + 2nq

p2 + 2q2 + (np − mq)
√

2i

p2 + 2q2

is not of the required form because c and d are not necessarily integers. However,
there are integers a and b such that |a − c| ≤ 1

2 and |b − d| ≤ 1
2 . Write c = a + δ,

d = b + ε, where |δ| ≤ 1
2 and |ε| ≤ 1

2 , and show that the difference m + n
√

2i −
(p + q

√
2i)(a + b

√
2i) = r + s

√
2i satisfies the required inequality. For the second

question, note that 4 = (1 + √
3i)(1 − √

3i) = 2 · 2.]

Historical Questions

37.4. What advance in clarity concerning polynomial equations is due to Girard?

37.5. What was the conclusion of Lagrange’s detailed analysis of the general algebraic
equation?

37.6. How did the results of Abel and Galois bring a measure of completeness to the search
for an algebraic formula to solve each equation?

Questions for Reflection

37.7. It is possible to define a multiplication on four-dimensional space by regarding the
first coordinate as a real number and the last three as a vector. In other words, we can
write formally

A = (a, a1, a2, a3) = a + α ,

where a on the right stands for (a, 0, 0, 0) and α for (0, a1, a2, a3). Addition of
these quaternions, as they are called, is simple: A + B = (a + b) + (α + β), where
of course B = b + β = (b, b1, b2, b3). Multiplication is a little trickier, and we de-
fine A × B = (ab − α · β) + (aβ + bα + α × β), where α · β corresponds to the dot
product (a1b1 + a2b2 + a3b3, 0, 0, 0), and α × β is the cross product (0, a2b3 −
a3b2, a3b1 − a1b3, a1b2 − a2b1). It is not difficult to verify that 1 = (1, 0, 0, 0) has
the property 1 × A = A × 1 = A for all quaternions A and that the quaternion con-
jugate Ā = a − α satisfies A × Ā = Ā × A = |A|2 = (a2 + a2

1 + a2
2 + a2

3, 0, 0, 0),
which is identified with the real number a2 + a2

1 + a2
2 + a2

3. It follows that A−1, de-
fined to be |A|−2Ā is the inverse of A in the sense that A × A−1 = A−1 × A = 1 =



PROBLEMS AND QUESTIONS 447

(1, 0, 0, 0). Thus all the operations of arithmetic make sense on quaternions. One can
add subtract, multiply, and divide. However, multiplying or dividing on the left is in
general different from multiplying or dividing on the right. In general, the quaternions
can be thought of as a number system containing a copy of the real numbers, infinitely
many copies of the complex numbers, and a copy of ordinary three-dimensional vec-
tor space. That kind of generality causes a few restrictions in what can be said about
quaternions.

Show that in quaternions the equation X2 + r2 = 0, where r is a positive real
number, identified with the quaternion R = (r, 0, 0, 0), is satisfied precisely by the
quaternions X = x + ξ such that x = 0, |ξ| = r, that is, by all the points on the sphere
of radius r about the origin as center in three-dimensional space. In other words, in
quaternions the square roots of negative real numbers are simply the nonzero vectors
in three-dimensional space. Thus, even though quaternions act “almost” like the
complex numbers, the fact that multiplication is not commutative makes a great
difference when polynomial algebra is considered. In the quaternions, just as in the
complex numbers, a linear equation can have only one solution. In contrast, while
a quadratic equation can have only two solutions in the complex numbers, such an
equation may have an uncountable infinity of solutions in the quaternions. Where does
the proof that the number of roots does not exceed the degree of the equation, given
above (Problem 37.2), break down? You can show nevertheless that if R = (r, 0, 0, 0)
is a real solution of the equation P(X) = 0, then X − r does divide P(X), and so a
quaternion polynomial cannot have a number of real solutions that exceeds its degree.
This is because r commutes with every quaternion.

37.8. The results of Abel and Galois represent the outcome of many centuries of attempts to
express the roots of a polynomial algebraically in terms of its coefficients. Meanwhile,
computing the roots numerically from the coefficients—the approach followed in
China and Japan—was a problem that had been solved centuries earlier. What are
the advantages and disadvantages of each approach to the problem?

37.9. Consider the set of all real and complex numbers that can be located in the complex
plane using only straight lines and circles (straightedge and compass) starting from
two arbitrary points labeled 0 and 1. Denote this set E. We could call these “Euclidean
numbers” or “constructible numbers” if we wished to invent a name for them. It is not
difficult to show that if the complex numbers a, b, and c belong to E, then so do the
roots of the quadratic equation ax2 + bx + c = 0. Thus the Euclidean numbers are
“quadratically closed.” Are they also algebraically closed, in the sense that the roots
of every polynomial with coefficients in E also lie in E? [Hint: Consider the problem
of duplicating the cube. What number must be constructed to solve this problem, and
what equation does it satisfy?]



CHAPTER 38

Projective and Algebraic Geometry
and Topology

No area of modern mathematics is so difficult to summarize as geometry. Besides the projec-
tive and descriptive geometry developed during the Renaissance in connection with painting
and engineering, the ancient problem of the parallel postulate resurfaced in the eighteenth
century, leading to non-Euclidean geometry in the nineteenth. Descartes’ analytic geometry
infused the subject with algebra and, when algebra had mastered complex numbers, gave
rise to the subject of algebraic geometry. Meanwhile, the application of calculus brought
about the creation of differential geometry. The complicated curves and surfaces that could
be handled by means of algebra and calculus led to further generalizations, and combina-
torial, algebraic, and differential topology were the result. Finally, as an underpinning for
all these subjects, the infusion of set theory into geometry brought about point-set topology
in the twentieth century. We must employ drastic principles of selection to give even a
hint of understanding of all this profound and beautiful mathematics. When we last looked
at geometry, in Chapter 31, we discussed projective and descriptive geometry up to the
mid-seventeenth century. In the present chapter, we shall discuss a small sampling of later
developments in projective and algebraic geometry, along with various types of the more
general geometry known as topology.

38.1. PROJECTIVE GEOMETRY

Projective geometry underwent a rapid development in the two centuries from 1650 to 1850.
We shall discuss a sampling of the results and principles discovered.

38.1.1. Newton’s Degree-Preserving Mapping

Newton described the mapping shown in Fig. 38.1 (Whiteside, 1967, Vol. VI, p. 269), in
which the parallel lines BL and AO, the points A, B, and O are fixed from the outset, and
the angle θ are specified in advance. These parameters determine the distances h and � and
the angle ϕ. To map the figure GHI to its image ghi, first project each point G parallel to
BL so as to meet the extension of AB at a point D. Next, draw the line OD meeting BL

in point d. Finally, from d along the line making angle θ with BL, choose the image point
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Figure 38.1. Newton’s degree-preserving projection.

g so that gd : Od :: GD : OD. The original point, according to Newton, had coordinates
(BD, DG) and its image the coordinates (Bd, dg). If we let x = BD, y = DG, ξ = BD,
and η = dg, the coordinate transformations in the two directions are

(x, y) �→ (ξ, η) =
( �x sin ϕ

h + x sin ϕ
,

hy

h + x sin ϕ

)
,

(ξ, η) �→
( hξ

(� − ξ) sin ϕ
,

�η

� − ξ

)
.

Newton noted that this kind of projection preserves the degree of an equation. Hence a conic
section will remain a conic section, a cubic curve will remain a cubic curve, and so on, under
such a mapping. In fact, if a polynomial equation p(x, y) = 0 is given whose highest-degree
term is xmyn, then every term xpyq, when expressed in terms of ξ and η, will be a multiple
of ξpηq/(� − ξ)p+q, so that if the entire equation is converted to the new coordinates and
then multiplied by (� − ξ)m+n, this term will become ξpηq(� − ξ)m+n−p−q, which will
be of degree m + n. Thus the degree of an equation does not change under Newton’s map-
ping. These mappings are special cases of the transformations known as fractional-linear
or Möbius transformations, after August Ferdinand Möbius (1790–1868), who developed
them more fully. They play a vital role in algebraic geometry and complex analysis, being
the only one-to-one analytic mappings of the extended complex plane onto itself. Accord-
ing to Coolidge (1940, p. 269), Edward Waring remarked in 1762 that fractional-linear
transformations were the most general degree-preserving transformations.

38.1.2. Brianchon

Pascal’s work on the projective properties of conics was extended by Charles Julien
Brianchon (1785–1864), who was also only a teenager when he proved what is now recog-
nized as the dual of Pascal’s theorem that the pairs of opposite sides of a hexagon inscribed
in a conic meet in three collinear points. Pascal’s theorem in the case of a circle is illustrated
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Figure 38.2. Pascal’s theorem for a circle.

in Fig. 38.2. Brianchon’s theorem asserts that the diagonals of a hexagon circumscribed
about a conic are concurrent. The case of an ellipse is illustrated in Fig. 38.3.

38.1.3. Monge and his School

After a century of relative neglect, projective geometry revived at the Ecole Polytechnique
under the students of Gaspard Monge (1746–1818), who was a master of the application of
calculus to geometry. Felix Klein (1926, pp. 77–78) described his school as distinguished
by “the liveliest spatial intuition combined in the most natural way possible with analytic
operations.” Klein went on to say that Monge taught his students to make physical models,
“not to make up for the deficiencies of their intuition but to develop an already clear and lively
intuition.” As a military engineer, Monge had used his knowledge of geometry to design
fortifications. His work in this area was highly esteemed by his superiors and declared a
military secret. He wrote a book on descriptive geometry and one on the applications of
analysis to geometry, whose influence appeared in the work of his students. Klein says of
the second book that it “reads like a novel.” In this book, Monge analyzed quadric surfaces
with extreme thoroughness.

Monge is regarded as the founder of descriptive geometry, which is based on the same
principles of perspective as projective geometry but more concerned with the mechanics

Figure 38.3. Brianchon’s theorem for an ellipse.
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of representing three-dimensional objects properly in two dimensions and the principles of
interpreting such representations. Monge himself described the subject as the science of
giving a complete description in two dimensions of those three-dimensional objects that
can be defined geometrically. As such, it continues to be taught today under other names,
such as mechanical drawing; it is the most useful form of geometry for engineers.

Monge’s greatest student (according to Klein) was Jean-Victor Poncelet (1788–1867). He
participated as a military engineer in Napoleon’s invasion of Russia in 1812, was wounded,
and spent a year in a Russian prison, where he busied himself with what he had learned
from Monge. Returning to France, he published his Treatise on the Projective Properties
of Figures in 1822, the founding document of modern projective geometry. Its connection
with the work of Desargues shows in the first chapter, where Poncelet says he will be using
the word projective in the same sense as the word perspective. In Chapter 3 he introduces
the idea that all points at infinity in a plane can be regarded as belonging to a single line at
infinity.1 These concepts brought out fully the duality between points and lines in a plane
and between points and planes in three-dimensional space, so that interchanging these words
in a theorem of projective geometry results in another theorem. The theorems of Pascal and
Brianchon, as mentioned, are dual to each other.

38.1.4. Steiner

The increasing algebraization of geometry was opposed by the Swiss mathematician Jacob
Steiner (1796–1863), described by Klein (1926, pp. 126–127) as “the only example known
to me. . . of the development of mathematical abilities after maturity.” Steiner had been a
farmer up to the age of 17, when he entered the school of the Swiss educational reformer Jo-
hann Heinrich Pestalozzi (1746–1827), whose influence was widespread, extending through
the philosopher/psychologist Johann Friedrich Herbart (1776–1841), a mathematically
inclined philosopher whose attempts to quantify sense impressions was an early form of
mathematical psychology,2 down to Riemann, as will be explained in the next section.

Steiner was a peculiar character in the history of mathematics, who when his own cre-
ativity was in decline, adopted the ideas of others as his own without acknowledgment (see
Klein, 1926, p. 128). But in his best years, around 1830, he had the brilliant idea of building
space using higher-dimensional objects such as lines and planes instead of points, recog-
nizing that these objects were projectively invariant. He sought to restore the ancient Greek
“synthetic” approach to geometry, the one we have called metric-free, that is, independent
of numbers and the concept of length. To this end, in his 1832 work on geometric figures
he considered a family of mappings of one plane on another that resembles Newton’s pro-
jection. Klein (1926, p. 129) found nothing materially new in this work, but admired the
systematization that it contained. The Steiner principle of successively building more and
more intricate figures by allowing simpler ones to combine geometrically was novel and
had its uses, but according to Klein, encompassed only one part of geometry.

1Field and Gray (1987, p. 185) point out that Kepler had introduced points at infinity in a 1604 work on conic
sections, so that a parabola would have two foci.
2Herbart’s 1824 book Psychologie als Wissenschaft, neu gegründet auf Erfahrung, Metaphysik, und Mathematik
(Psychology as Science on a New Foundation of Experiment, Metaphysics, and Mathematics) is full of mathematical
formulas involving the strength of sense impressions, manipulated by the rules of algebra and calculus. Klein
(1926, pp. 127–128) has nothing good to say about the more extreme recommendations of these men, calling their
recommendations “pedagogical monstrosities.”
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38.1.5. Möbius

Projective geometry was enhanced through the barycentric calculus invented by Möbius
and expounded in a long treatise in 1827. This work contained a number of very useful
innovations. Möbius’ use of barycentric coordinates to specify the location of a point an-
ticipated vector methods by some 20 years and proved its value in many parts of geometry.
He used his barycentric coordinates to classify plane figures in new ways. As he explained
in Chapter 3 of the second section of his barycentric calculus (Baltzer, 1885, pp. 177–194),
if the vertices of a triangle were specified as A, B, C, and one considered all the points that
could be written as aA + bB + cC, with the lengths of the sides and the proportions of the
coefficients a : b : c given, all such figures would be congruent (he used the phrase “equal
and similar”). If one specified only the proportions of the sides instead of their lengths, all
such figures would be similar. If one specified only the proportions of the coefficients, the
figures would be in an affine relationship, a word still used to denote a linear transformation
followed by a translation in a vector space. Finally, he introduced the relation of equality
(in area).

The work of Möbius on the barycentric calculus was reviewed by a French author with the
initials A.C. It has been thought that this was Cauchy,3 Grattan-Guinness says, however,
that the reviewer was probably not Cauchy. The reviewer, as reported by Baltzer (1885,
pp. xi–xii), was cautious at first, saying that the work was “a different method of analytic
geometry whose foundation is certainly not so simple; only a deeper study can enable us to
determine whether the advantages of this method will repay the difficulties.” After reporting
on the new classification of figures in Part 2, he commented:

One must be very confident of taking a large step forward in science to burden it with so much
new terminology and to demand that your readers follow you in investigations presented to
them in such a strange manner.

Finally, after reporting some of the results from Part 3, he concluded that, “It seems
that the author of the barycentric calculus is not familiar with the general theory of duality
between the properties of systems of points and lines established by M. Gergonne.”4 This
duality (gegenseitiges Entsprechen) was discussed in Chapters 4 and 5 of Part 3. This
comment apparently alludes to ideas in Gergonne’s papers that the reviewer found missing
in the work of Möbius. Chapters 4 and 5 contain some of the most interesting results in the
work. Chapter 4, for example, discusses conic sections and uses the barycentric calculus to
prove that two distinct parabolas can be drawn through four coplanar points, provided none
of them lies inside the triangle formed by the other three.

Möbius is best remembered for two concepts, the Möbius transformation, and the Möbius
band. A Möbius transformation, by which we now understand a mapping of the complex
plane into itself, z �→ w, of the form

w = az + b

cz + d
, ad − bc /= 0 ,

3Cauchy was able to read German, not a common accomplishment for French mathematicians in the 1820s, when
the vast majority of mathematical papers of significance were written in French.
4Joseph Gergonne (1771–1859). Besides his work in geometry, he is best remembered as the founder (in 1810)
of the journal Annales des mathématiques pures et appliquées.
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can be found in his 1829 paper on metric relations in line geometry. He gave such transfor-
mations with real coefficients in terms of the two coordinates (x, y), the real and imaginary
parts of what we now write as the complex number z, and showed that they were the most
general one-to-one transformations that preserve collinearity. The Möbius band is discussed
in Section 38.3 below.

38.2. ALGEBRAIC GEOMETRY

Like Descartes, Newton made a classification of curves according to the degree of the
equations that represent them or, rather, according to the maximal number of points in
which they could intersect a straight line. As Descartes had argued for the use of any curves
that could be generated by one parameter, excluding spirals and the quadratrix because they
required two independent motions to be coordinated, Newton likewise argued that geometers
should either confine themselves to conic sections or else allow any curve having a clear
description. In his Universal Arithmetick, he mentioned in particular the trochoid,5 which
makes it possible to divide an angle into any number of equal parts, as a useful curve that
is simple to describe.

Descartes had begun the subject of algebraic geometry by classifying algebraic curves
into “genera,” and, as just shown, Newton gave an alternative classification of curves, also
based on algebra, although he included some curves that we would call transcendental,
which could intersect a line in infinitely many points. The general study of algebraic curves
p(x, y) = 0, where p(x, y) is a polynomial in two variables, began with Colin Maclaurin
(1698–1746), who in his Geometria organica of 1720 remarked that a cubic curve was not
uniquely determined by nine points, even though nine points apparently suffice to determine
the coefficients of any polynomial p(x, y) of degree 3, up to proportionality and hence ought
to determine a unique curve p(x, y) = 0. Two distinct cubic curves generally intersect in
nine points, so that some sets of nine points do not determine the curve uniquely. This fact
was later (1748) noted by Euler as well, and finally, by Gabriel Cramér (1704–1752), who
also noted Maclaurin’s priority in the discovery that a curve of degree m and a curve of
degree n meet generally in mn points.

This curious fact is called Cramér’s paradox after Cramér published it in a 1750 textbook
on algebraic curves. Although he correctly explained why more than one curve of degree
n can sometimes be made to pass through n(n + 3)/2 points—because the equations for
determining the coefficients from the coordinates of the points might not be independent—
he noted that in that case there were actually infinitely many such curves. That, he said, was
a real paradox. Incidentally, it was in connection with the determination of the coefficients
of an algebraic curve through given points that Cramér stated Cramér’s rule for solving a
system of linear equations by determinants.6

5A trochoid is the locus of a point rigidly attached to a rolling wheel. If the point lies between the rim and the
center, the trochoid is called a curtate cycloid. If the point lies outside the rim, the trochoid is a prolate cycloid.
If the point is on the rim, the trochoid is called simply a cycloid. The names come from the Greek words trokhós
(wheel) and kýklos (circle).
6As mentioned in Chapter 24, the solution of linear equations by determinants had been known to Seki Kōwa and
Leibniz. Thus, Cramér has two mathematical concepts named after him, and in both cases he was the third person
to make the discovery.
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38.2.1. Plücker

A number of excellent German, Swiss, and Italian geometers arose in the nineteenth century.
As an example, we take Julius Plücker (1801–1868), who was a professor at the University
of Bonn for the last 30 years of his life. Plücker himself remembered (Coolidge, 1940,
p. 144) that when young he had discovered a theorem in Euclidean geometry: The three
lines containing the common chords of pairs of three intersecting circles are all concurrent.
Plücker’s proof of this theorem is simplicity itself. Suppose that the equations of the three
circles are A = 0, B = 0, C = 0, where each equation contains x2 + y2 plus linear terms.
By subtracting these equations in pairs, we get the quadratic terms to drop out, leaving the
equations of the three lines containing the three common chords: A − B = 0, A − C = 0,
B − C = 0. But it is manifest that any two of these equations imply the third, so that the
point of intersection of any two also lies on the third line.

Plücker’s student Felix Klein (1926, p. 122) described a more sophisticated specimen
of this same kind of reasoning by Plücker to prove Pascal’s theorem that the opposite sides
of a hexagon inscribed in a conic, when extended, intersect in three collinear points. The
proof goes as follows: The problem involves two sets, each containing three lines, six of
whose nine pairwise intersections lie on a conic section. The conic section has an equation
of the form q(x, y) = 0, where q(x, y) is quadratic in both x and y. Represent each line by a
linear polynomial of the form ajx + bjy + cj , the jth line being the set of (x, y) where this
polynomial equals zero, and assume that the lines are numbered in clockwise order around
the hexagon. Form the polynomial

s(x, y) = (a1x + b1y + c1)(a3x + b3y + c3)(a5x + b5y + c5)

− μ(a2x + b2y + c2)(a4x + b4y + c4)(a6x + b6y + c6)

with the parameter μ to be chosen later. This polynomial vanishes at all nine intersections
of the lines. Line 1, for example, meets lines 2 and 6 inside the conic and line 4 outside it.

Now, when y is eliminated from the equations q(x, y) = 0 and s(x, y) = 0, the result is
an equation t(x) = 0, where t(x) is a polynomial of degree at most 6 in x. This polynomial
must vanish at all of the simultaneous zeros of q(x, y) and s(x, y). We know that there are
six such zeros for every μ. However, it is very easy to choose μ so that there will be a
seventh common zero. With that choice of μ, the polynomial t(x) must have seven zeros,
and hence must vanish identically. But since t(x) was the result of eliminating y between the
two equations q(x, y) = 0 and s(x, y) = 0, it now follows that q(x, y) divides s(x, y). That
is, the equation s(x, y) = 0 can be written as (ax + by + c)q(x, y) = 0. Hence its solution
set consists of the conic and the line ax + by + c = 0, and this line must contain the other
three points of intersection.

Conic sections and quadratic functions in general continued to be a source of new ideas
for geometers during the early nineteenth century. Plücker liked to use homogeneous coor-
dinates to give a symmetric description of a quadric surface (a surface whose equation is
p(x, y, z) = 0, where p(x, y, z) is a polynomial of degree 2). To take the simplest example,
consider the sphere of radius 2 in three-dimensional space with center at (2, 3, 1), whose
equation is

(x − 2)2 + (y − 3)2 + (z − 1)2 = 4 .
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If x, y, and z, are replaced by ξ/τ, η/τ, and ζ/τ and each term is multiplied by τ2, this
equation becomes a homogeneous quadratic relation in the four variables (ξ, η, ζ, τ):

(ξ − 2τ)2 + (η − 3τ)2 + (ζ − τ)2 = 4τ2 .

The sphere of unit radius centered at the origin then has the simple equation τ2 − ξ2 − η2 −
ζ2 = 0. Plücker introduced homogeneous coordinates in 1830. One of their advantages is
that if τ = 0, but the other three coordinates are not all zero, the point (ξ, η, ζ, τ) can be
considered to be located on a sphere of infinite radius. The point (0, 0, 0, 0) is excluded,
since it seems to correspond to all points at once.

Homogeneous coordinates correspond very well to the ideas of projective geometry, in
which a point in a plane is identified with all the points in three-dimensional space that project
to that point from a point outside the plane. If, for example, we take the center of projection
as (0, 0, 0) and identify the plane with the plane z = 1, that is, each point (x, y) is identified
with the point (x, y, 1), the points that project to (x, y) are all points (tx, ty, t), where t /= 0.
Since the equation of a line in the (x, y)-plane has the form ax + by + c = 0, one can think
of the coordinates (a, b, c) as the coordinates of the line. Here again, multiplication by a
nonzero constant does not affect the equation, so that these coordinates can be identified with
(ta, tb, tc) for any t /= 0. Notice that the condition for the point (x, y) to lie on the line (a, b, c)
is that 〈(a, b, c), (x, y, 1)〉 = a · x + b · y + c · 1 = 0, and this condition is unaffected by
multiplication by a constant. The duality between points and lines in a plane is then clear.
Any triple of numbers, not all zero, can represent either a point or a line, and the incidence
relation between a point and a line is symmetric in the two. We might as well say that the
line lies on the point as that the point lies on the line.

Equations can be written in either line coordinates or point coordinates. For example,
the equation of an ellipse can be written in homogeneous point coordinates (ξ, η, ζ) as

b2c2ξ2 + a2c2η2 = a2b2ζ2 ,

or in line coordinates (λ, μ, ν) as

a2λ2 + b2μ2 = c2ν2 ,

where the geometric meaning of this last expression is that the line (λ, μ, ν) is tangent to
the ellipse.

38.2.2. Cayley

Homogeneous coordinates provided important invariants and covariants7 in projective
geometry. One such invariant under orthogonal transformations (those that leave the sphere

7According to Klein (1926, p. 148), the distinction between an invariant and a covariant is not essential. An
algebraic expression that remains unchanged under a family of changes of coordinates is a covariant if it contains
variables, and it is an invariant if it contains only constants.
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fixed) is the dihedral angle between two planes Ax + By + Cz = D and A′x + B′y + C′z =
D′, given by

arccos

(
AA′ + BB′ + CC′

√
A2 + B2 + C2

√
(A′)2 + (B′)2 + (C′)2

)
. (38.1)

In his “Sixth memoir on quantics,” published in the Transactions of the London Philo-
sophical Society in 1858, Cayley fixed a “quantic” (quadratic form)

∑
αijuiuj , whose zero

set was a quadric surface that he called the absolute, and defined angles by analogy with
Eq. (38.1) and other metric concepts by a similar analogy. In this way he obtained the
general projective metric, commonly called the Cayley metric. It allowed metric geometry
to be included in projective geometry. As Cayley said, “Metrical geometry is thus a part of
descriptive geometry and descriptive geometry is all geometry.” By suitable choices of the
absolute, one could obtain the geometry of all kinds of quadric curves and surfaces, includ-
ing the non-Euclidean geometries studied by Gauss, Lobachevskii, Bólyai, and Riemann,
all of which will be discussed in Chapter 40. Klein (1926, p. 150) remarked that Cayley’s
models were the most convincing proof that these geometries were consistent.

38.3. TOPOLOGY

Projections distort the shape of geometric objects, so that some metric properties are lost.
Some properties, however, remain because the number of intersections of two lines does
not change. The study of space focusing on such very general properties as connections and
intersections has been known by various names over the centuries. Latin has two words,
locus and situs, meaning roughly place and position. The word locus is one that we still use
today to denote the path followed by a point moving subject to stated constraints, although,
since the introduction of set theory, a locus is more often thought of statically as the set
of points satisfying a given condition. It was the translation of the Greek word tópos used
by Pappus for the same concept. Since locus was already in use, Leibniz fastened on situs
and mentioned the need for a geometry or analysis of situs in a 1679 letter to Huygens.8

The meaning of geometria situs and analysis situs evolved gradually. It seems to have
been Johann Benedict Listing (1808–1882) who, some time during the 1830s, realized that
the Greek root was available. The word topology first appeared in the title of his 1848
book Vorstudien zur Topologie (Prolegomena to Topology). Like geometry itself, topology
has bifurcated several times, so that one can now distinguish combinatorial, algebraic,
differential, and point-set topology.

38.3.1. Combinatorial Topology

The earliest result that deals with the combinatorial properties of figures is now known as
the Euler characteristic, although Descartes is entitled to some of the credit. In a work
on polyhedra that he never published, Descartes defined the solid angle at a vertex of a

8This letter was published in the 1888 edition of Huygens’ Œuvres complètes, Vol. 8, p. 216. From the context it
appears that Leibniz was calling for some simple way of expressing position “as algebra expresses magnitude.” If
so, perhaps we now have what he wanted, in the form of vector analysis.
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closed polyhedron to be the difference between a complete revolution (4 right angles) and
the sum of the angles at that vertex. He noted that the sum of the solid angles in any closed
polyhedron was exactly eight right angles. Descartes’ work was found among his effects
after he died. By chance, Leibniz saw it a few decades later and made a copy of it. When it
was found among Leibniz’ papers, it was finally published. In the eighteenth century, Euler
discovered that the sum of the angles at the vertices of a closed polyhedron was 4V − 8
right angles, where V is the number of vertices. Euler noted the equivalent fact that the
number of faces and vertices exceeded the number of edges by 2. That is the formula now
generally called Euler’s formula:

V − E + F = 2 .

Somewhat peripheral to the general subject of topology was Euler’s analysis of the
famous problem of the seven bridges of Königsberg9 in 1736. In Euler’s day there were two
islands in the middle of the River Pregel, which flows through Köngisberg (now Kaliningrad,
Russia). These islands were connected to each other by a bridge, and one of them was
connected by two bridges to each shore, the other by one bridge to each shore. The problem
was to go for a walk and cross each bridge exactly once, returning, if possible, to the starting
point. In fact, as one can easily see, it is impossible even to cross each bridge exactly once
without boating or swimming across the river. Returning to the starting point merely adds
another condition to a condition that is already impossible to fulfill. Euler proved this fact by
labeling the two shores and the two islands A, B, C, and D and representing a hypothetical
stroll as a “word,” such as ABCBD, in which the bridges are “between” the letters. He
showed that any such path as required would have to be represented by an 8-letter word
containing three of the letters twice and the other letter three times, which is obviously
impossible. This topic belongs to what is now called graph theory; it is an example of the
problem of unicursal tracing.

38.3.2. Riemann

The study of analytic functions of a complex variable turned out to require some
concepts from topology. These issues were touched on in Riemann’s 1851 doctoral
dissertation at Göttingen, “Grundlagen für eine allgemeine Theorie der Functionen einer
veränderlichen complexen Grösse” (“Foundations for a general theory of functions of a
complex variable”). Although all analytic functions of a complex variable, both algebraic
and transcendental, were encompassed in Riemann’s ideas, he was particularly interested
in algebraic functions—that is, functions w = f (z) that satisfy a nontrivial polynomial
equation p(z, w) = 0. Algebraic functions are essentially and unavoidably multivalued. To
take the simplest example, where z − w2 = 0, every complex number z = a + bi has two
distinct complex square roots:

w = ±(u + iv) , where u =
√√

a2 + b2 + a

2
and v = sgn (b)

√√
a2 + b2 − a

2
.

9This problem, because it is simple to state and has an elegant solution, is extremely popular in mathematics
survey courses for nonmajors. However, its significance in the wider world of topology is quite small, so that it
contributes to a generally distorted popular picture of what mathematicians have achieved.
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The square roots of the non-negative real numbers that occur here are assumed nonnegative.
There is no way of choosing just one of the two values at each point that will result in a
continuous function w = √

z. In particular, it is easy to show that any such choice must
have a discontinuity at some point of the circle |z| = 1.

One way to handle this multivaluedness was to take two copies of the z-plane, labeled
with subscripts as z1 and z2, and place one of the square roots in one plane and the other
in the other. This technique was used by Cauchy and had been developed into a useful way
of looking at complex functions by Victor Puiseux (1820–1883) in 1850. Indeed, Puiseux
seems to have had the essential insight—preventing z from making a complete circuit around
0—that can be found in Riemann’s work, although differently expressed. Riemann is known
to have seen the work of Puiseux, although he did not cite it in his own work. He generally
preferred to work out his own way of doing things and tended to ignore earlier work by
other people. The difficulty with choosing one square root and sticking to it is that a single
choice cannot be continuous on a closed path that encloses the origin but does not pass
through it. Somewhere on such a path, there will be nearby points at which the function
assumes two values that are close to being negatives of each other.

Riemann had the idea of cutting the two copies of the z-plane along a line running
from zero to infinity (both being places where there is only one square root, assuming a bit
about complex infinity). These two points are called branch points. Then if the lower edge
of each plane is imagined as being glued to the upper edge of the other,10 the result is a
single connected surface in which the origin belongs to both planes. On this new surface a
continuous square-root function can be defined. It was the gluing that was really new here.
Cauchy and Puiseux both had the idea of cutting the plane to keep a path from winding
around a branch point and of using different copies of the plane to map different branches
of the function.

Riemann introduced the idea of a simply connected surface, one that is disconnected
by any cut from one boundary point to another that passes through its interior without
intersecting itself. He stated as a theorem that the result of such a cut would be two simply
connected surfaces. In general, when a connected surface is cut by a succession of such
crosscuts, as he called them, the number of crosscuts minus the number of connected
components that they produce, plus 1, is a constant, called the order of connectivity of the
surface. A sphere, for example, can be thought of as a square with adjacent edges glued
together, as in Fig. 38.3. It is simply connected (has order of connectivity 0) because a
diagonal cut divides it into two components. The torus, on the other hand, can be thought
of as a square with opposite edges identified (see Fig. 38.4). To separate this surface into
two components, it is necessary to cut the square at least twice, for example, either along
both diagonals or through its center along two lines parallel to the sides. No single cut will
do. The torus is thus doubly connected, with order of connectivity 1).

38.3.3. Möbius

One fact that had been thought well established about polyhedra was that in any polyhedron
it was possible to direct the edges in such a way that one could trace around the boundary
of each face by following the prescribed direction of its edges. Each face would be always
to the left or always to the right as one followed the edges around it while looking at it from

10This gluing is shown in more detail in Chapter 41.
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Figure 38.4. Left: The sphere, regarded as a square with edges identified, is disconnected by a
diagonal cut. Right: Two cuts are required to disconnect the torus.

outside the polyhedron. This fact was referred to as the edge law (Gesetz der Kanten). The
first discovery of a polyhedron that violated this condition11 was due to Möbius, sometime
during the late 1850s. Möbius did not publish this work, although he did submit some of
it to the Paris Academy as his entry to a prize competition in 1858. This work was edited
and introduced by Curt Reinhardt (dates unknown) and published in Vol. 2 of Möbius’
collected works. There in the first section, under the heading “one-sided polyhedra,” is a
description of the Möbius band as we now know it (Fig. 38.5). After describing it, Möbius
went on to say that although a triangulated polyhedron whose surface was two-sided will
apparently contain only two-sided bands, nevertheless a triangulated one-sided polyhedron
can contain both one- and two-sided bands.

Möbius explored polyhedra and made a classification of them according to the number
of boundary curves they possessed. He showed how more complicated polyhedra could
be produced by gluing together a certain set of basic figures. He found an example of a
triangulated polyhedron consisting of 10 triangles, six vertices, and 15 edges, rather than
14, as would be expected from Euler’s formula for a closed polyhedron: V − E + F = 2.
This figure is the projective plane, and cannot be embedded in three-dimensional space. If
one of the triangular faces is removed, the resulting figure is the Möbius band, which can
be embedded in three-dimensional space.

38.3.4. Poincaré’s Analysis situs

Henri Poincaré (1854–1912) dealt with topological considerations frequently in his work
in both complex function theory and differential equations. To set everything that he dis-
covered down in good order, he wrote a treatise on topology called Analysis situs in 1895,
published in the Journal de l’Ecole Polytechnique. This paper has been regarded as the
founding document of modern algebraic topology.12 He introduced the notion of homolo-
gous curves—curves that (taken together) form the boundary of a surface. This notion could
be formalized, so that one could consider formal linear combinations (now called chains)
C = n1C1 + · · · + nrCr of oriented curves Ci with integer coefficients ni. The interpreta-
tion of such a combination came from analysis: A line integral over C was interpreted as the

11In fact, a closed nonorientable polyhedron cannot be embedded in three-dimensional space, so that the edge law
is actually true for closed polyhedra in three-dimensional space.
12Poincaré followed this paper with a number of supplements over the next decade.
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Figure 38.5. Left: the projective plane triangulated and cut open. If two opposite edges with cor-
responding endpoints are glued together, the figure becomes a Möbius band. In three-dimensional
space it is not possible to glue all the edges together as indicated. Right: the Möbius band as originally
described by Möbius.

number I = n1I1 + · · · + nrIr , where Ij was the line integral over Cj . When generalized
to k-dimensional manifolds (called variétés by Poincaré) and combined with the concept
of the boundary of an oriented manifold as a cycle, this idea was the foundation of homol-
ogy theory: The k-cycles (k-chains whose boundaries are the zero (k − 1)-chain—Poincaré
called them closed varieties—form a group, of which the k-cycles that are the boundary of
a (k + 1)-cycle form a subgroup. When two homologous cycles (cycles whose difference is
a boundary) are identified, the resulting classes of cycles form the kth homology group. For
example, in the sphere shown in Fig. 38.4, the diagonal that is drawn forms a cycle. This
cycle is the complete boundary of the upper and lower triangles in the figure, and it turns
out that any cycle on the sphere is a boundary. The first homology group of the sphere is
therefore trivial (consists of only one element). For the torus depicted in Fig. 38.4, a and b

are each cycles, but neither is a boundary, nor is any cycle ma + nb. On the other hand, the
cycle formed by adding either diagonal to a + b is the boundary of the two triangles with
these edges. Thus, the first homology group of the torus can be identified with the set of
cycles ma + nb. Any other cycle will be homologous to one of these.

Poincaré also introduced a second concept that has been of immense value in analyzing
manifolds. He had been led to algebraic topology partly by his work in differential equations.
In that connection, he imagined functions satisfying a set of differential equations and being
permuted as a point moved around a closed loop. He was thus led to consider formal sums
of loops starting and ending at a given point, two loops being equivalent if tracing them
successively left the functions invariant. The resulting set of permutations was what he called
the fundamental group or first homotopy group.13 He cautioned that, despite appearances, the
first homotopy group was not the same thing as the first homology group, since there was no
base point involved in the homology group. Moreover, he noted, while the order in which the
cycles in a chain were traversed was irrelevant, the fundamental group was not necessarily

13In informal terms, a homotopy is a continuous deformation of one curve into another.
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commutative. He suggested redefining the term simply connected to mean having a trivial
fundamental group. He gave examples to show that the homology groups do not determine
the topological nature of a manifold, exhibiting three three-dimensional manifolds all having
the same homology groups, but different fundamental groups and therefore not topologically
the same (homeomorphic). He then asked a number of questions about fundamental groups,
one of which has become famous. Given two manifolds of the same number of dimensions
having the same homotopy groups, are they homeomorphic? Like Fermat’s last theorem,
this question has been attacked by many talented mathematicians. Many cases of it were
settled, but not the important case of the sphere in three dimensions. For that case, many
partial results were produced, and many proofs were proposed for a positive answer to the
question, but until recently, all such proofs were found wanting. At last, in the first decade
of the twentieth century, the Russian mathematician Grigorii Perelman (b. 1966) of the
Steklov Institute in St. Petersburg gave a proof of the positive answer.14

38.3.5. Point-Set Topology

Topology is sometimes popularly defined as “rubber-sheet geometry,” in the sense that the
concepts it introduces are invariant under moving and stretching, provided that no tearing
takes place. In the kinds of combinatorial topology just discussed, those concepts usually
involve numbers in some form or other—the number of independent cycles on a manifold,
the Euler characteristic (the number V − E + F when a surface is partitioned), and so forth.
But there are also topological concepts not directly related to number. One of these concepts,
that of a Riemann surface, was designed for the needs of algebraic geometry and complex
analysis. A quite different kind of topology, known as point-set topology, arose in complex
and real analysis, but was mostly applied in real analysis, where it forms a large part of the
subject matter.

The simplest and most intuitive of these concepts is that of connectedness or continuity.
This word denotes a deep intuitive idea that was the source of many paradoxes in ancient
times, such as the paradoxes of Zeno. In fact, it is impossible to prove the fundamental
theorem of algebra without this concept.15 For analysts, it was crucial to know that if a
continuous function was negative at one point on a line and positive at another, it must assume
the value zero at some point between the two points (the intermediate-value property). That
property eventually supplanted earlier definitions of continuity, and the property now taken
as the definition of continuity is designed to make this proposition true. The clarification
of the ideas surrounding continuity occurred in the early part of the nineteenth century, as
mentioned in Chapter 34. Once serious analysis of this concept was undertaken, it became
clear that many intuitive assumptions about the connectedness of curves and surfaces had
been made from the beginning of deductive geometry. These continuity considerations
complicated the theory of functions of a real variable for some decades until adequate
explanations were found. A good example of such problems is provided by Dedekind’s

14For this achievement and a number of other brilliant papers, which Perelman chose to publish on the Word-Wide
Web rather than in a refereed journal, he was showered with honors, including a number of professorships, a prize
of one million dollars, and the Fields Medal, the most prestigious award in the mathematical profession. Perelman,
however, has refused to accept any of these honors.
15Even the second of the four proofs that Gauss gave, which is generally regarded as a purely algebraic proof,
required the assumption that an equation of odd degree with real coefficients has a real solution—a fact that relies
on connectedness.
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construction of the real numbers, which will be discussed in Chapter 42 and which he
presented as a solution to the problem of defining what is meant by a continuum.

PROBLEMS AND QUESTIONS

Mathematical Problems

38.1. How can Pascal’s theorem for an ellipse be deduced from the special case of a circle?
How do you interpret the situation when one pair of opposite sides is parallel?

38.2. Fill in the details of Plücker’s proof of Pascal’s theorem, as follows: Suppose that the
equation of the conic is q(x, y) = y2 + r1(x)y + r2(x) = 0, where r1(x) is a linear
polynomial and r2(x) is quadratic. Choose coordinate axes not parallel to any of the
sides of the inscribed hexagon and such that the x-coordinates of all of the vertices
of the hexagon will be different, and also choose the seventh point where t(x) = 0
to have x-coordinate different from those of the six vertices. Then suppose that the
polynomial generated by the three lines is s(x, y) = y3 + t1(x)y2 + t2(x)y + t3(x) =
0, where tj(x) is of degree j, j = 1, 2, 3. Then there are polynomials uj(x) of degree
j, j = 1, 2, 3, such that

s(x, y) = q(x, y)
(
y − u1(x)

) + (
u2(x)y + u3(x)

)
.

We need to show that u2 ≡ 0 and u3 ≡ 0. At the seven points on the conic where
both q(x, y) and s(x, y) vanish, it must also be true that u2(x)y + u3(x) = 0. Rewrite
the equation q(x, y) = 0 at these seven points as

(u2y)2 + r1u2(u2y) + u2
2r2 = 0

and observe that at these seven points u2y = −u3, so that the polynomial u2
3 −

r1u2u3 + u2
2r2, which is of degree 6, has seven distinct zeros. It must therefore vanish

identically, and that means that

(2u3 − r1u2)2 = u2
2(r2

1 − 4r2) .

This means that either u2 is identically zero, which implies that u3 also vanishes
identically, or else u2 divides u3. Prove that in the second case the conic must be a
pair of lines, and give a separate argument in that case.

38.3. Consider the general cubic equation

Ax3 + Bx2y + Cxy2 + Dy3 + Ex2 + Fxy + Gy2 + Hx + Iy + J = 0,

which has 10 coefficients. Show that if this equation is to hold for the 10 points (1, 0),
(2, 0), (3, 0), (4, 0), (0, 1), (0, 2), (0, 3), (1, 1), (2, 2), (1, −1), all 10 coefficients A,. . . ,
J must be zero. In general, then, it is not possible to pass a curve of degree 3 through
any 10 points in the plane. Use linear algebra to show that it is always possible to pass
a curve of degree 3 through any nine points, and that the curve is generally unique.
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On the other hand, two different curves of degree 3 generally intersect in 9 points,
a result known as Bézout’s theorem after Etienne Bézout (1730–1783), who stated
it around 1758, although Maclaurin had stated it earlier. How does it happen that
while nine points generally determine a unique cubic curve, two distinct cubic curves
generally intersect in nine points? [Hint: Suppose that a set of eight points {(xj, yj) :
j = 1, . . . , 8} is given for which the system of equations for A, . . . , J has rank 8.
Although the system of linear equations for the coefficients is generally of rank 9 if
another point is adjoined to this set, there generally is a point (x9, y9), namely the
ninth point of intersection of two cubic curves through the other eight points, for
which the rank will remain at 8.]

Historical Questions

38.4. What was the unique feature of Steiner’s approach to geometry that made it an
advance over previous work?

38.5. In what sense are the theorems of Pascal (Chapter 31) and Brianchon dual to each
other?

38.6. In what way did Cayley’s concept of the absolute unify geometry?

Questions for Reflection

38.7. Explain Cramér’s paradox, and why it is not a contradiction.

38.8. Why are Möbius transformations useful in algebraic geometry and complex analysis?

38.9. What underlying harmony and unity is responsible for the fact that Pascal’s theorem
can be proved both projectively (from the case of a circle) and algebraically, as
Plücker did it?



CHAPTER 39

Differential Geometry

Differential geometry is the study of curves and surfaces (from 1852 on, manifolds) using
the methods of differential calculus, such as derivatives and local series expansions. This
history falls into natural periods defined by the primary subject matter: first, the tangents
and curvatures of plane curves; second, the same properties for surfaces and curves in
three-dimensional space; third, minimal surfaces and geodesics on surfaces; fourth, the
application (conformal mapping) of surfaces on one another; fifth, extensions of all these
topics to n-dimensional manifolds and global properties instead of local.

39.1. PLANE CURVES

Besides the study of tangent and normal lines to plane curves, which was begun in connection
with analytic geometry, certain auxiliary curves were studied—in particular the involute,
which is defined below. Measures of curvature, such as the osculating circle (the circle that
fits a curve up to second order near a point) and the radius of curvature became a focus of
attention. As mentioned in Chapter 34, Brook Taylor used the assumption that the restorative
force on a stretched string is proportional to its curvature in order to study the vibrations
of strings. This assumption showed very good intuition, since the curvature is the second
derivative with respect to arc length; under the approximations used to get a linear model
for this phenomenon from Newton’s laws of motion, that assumption yields precisely the
correct equation.

39.1.1. Huygens

Struik (1933) and Coolidge (1940, p. 319) agree that credit for the first exploration of sec-
ondary curves generated by a plane curve—the involute and evolute—occurred in Christiaan
Huygens’ work Horologium oscillatorium (Of Pendulum Clocks) in 1673, even though cal-
culus had not yet been developed. The involute of a curve is the path followed by the
endpoint of a taut string being wound onto the curve or unwound from it. Huygens did not
give it a name; he simply called it the “line [curve] described by evolution.” There are as
many involutes as there are points on the curve to begin or end the winding process.

The History of Mathematics: A Brief Course, Third Edition. Roger L. Cooke.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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A cycloidal pendulum clock, from Huygens’ Horologium oscillatorium. Copyright © Stock Montage.

Huygens was seeking a truly synchronous pendulum clock, and he needed a pendulum
that would have the same period of oscillation no matter how great the amplitude of the
oscillation was.1 Huygens found the mathematically ideal solution of the problem in two
properties of the cycloid. First, a frictionless particle requires the same time to slide to
the bottom of a cycloid no matter where it begins (the tautochrone property); second,
the involute of a cycloid is another cycloid. He therefore designed a pendulum clock in
which the pendulum bob was attached to a flexible leather strap that is confined between
two inverted cycloidal arcs. The pendulum is thereby forced to fall along the involute of
a cycloid and hence to trace another cycloid. Reality being more complicated than our

1Despite the legend that Galileo observed a chandelier swinging and noticed that all its swings, whether wide or
short, required the same amount of time to complete, that observation holds true for circular arcs only approxi-
mately and only for small amplitudes, as anyone who has done the experiment in high-school physics will have
learned.



466 DIFFERENTIAL GEOMETRY

Figure 39.1. Newton’s construction of the radius of curvature, from his posthumously published
Fluxions.

dreams, however, this apparatus—like the mechanical drawing methods of Albrecht Dürer
discussed in Chapter 31—does not really work any better than a circular pendulum.2

39.1.2. Newton

In his Fluxions, which was first published in 1736 after his death, even though it appears
to have been written in 1671, Newton found the circle that best fits a curve. Struik (1933,
19, p. 99) doubted that this material was really in the 1671 manuscript. Be that as it may,
the topic occurs as Problem 5 in the Fluxions: At any given Point of a given Curve, to
find the Quantity of Curvature. Newton needed to find a circle tangent to the curve at a
given point, which meant finding its center. However, Newton wanted not just any tangent
circle. He assumed that if a circle was tangent to a curve at a point and “no other circle
can be interscribed in the angles of contact near that point,. . . that circle will be of the same
curvature as the curve is of, in that point of contact.” In this connection he introduced terms
center of curvature and radius of curvature still used today. His construction is shown in
Fig. 39.1, in which one unnecessary letter has been removed and the figure has been rotated
through a right angle to make it fit the page. The weak point of Newton’s argument was his
claim that, “If CD be conceived to move, while it insists [remains] perpendicularly on the
Curve, that point of it C (if you except the motion of approaching to or receding from the
Point of Insistence C,) will be least moved, but will be as it were the Center of Motion.”
Huygens had had this same problem with clarity. Where Huygens had referred to points

2The master’s thesis of Robert W. Katsma at California State University at Sacramento in the year 2000 was
entitled “An analysis of the failure of Huygens’ cycloidal pendulum and the design and testing of a new cycloidal
pendulum.” Katsma was granted patent 1992-08-18 in Walla Walla County for a cycloidal pendulum. However,
the theoretical consensus is that such devices only decrease the accuracy of a good clock.
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that can be treated as coincident, Newton used the phrase will be as it were. One can see
why infinitesimal reasoning was subject to so much doubt at the time.

Newton also treated the problem of the cycloidal pendulum in his Principia Mathematica,
published in 1687. Huygens had found the evolute of a complete arch of a cyloid. That is,
the complete arch is the involute of the portion of two half-arches starting at the halfway
point on the arch. In Proposition 50, Problem 33 of Book 1, Newton found the evolute for an
arbitrary piece of the arch, which was a much more complicated problem. It was, however,
once again a cycloid. This evolute made it possible to limit the oscillations of a cycloidal
pendulum by putting a complete cycloidal frame in place to stop the pendulum when the
thread was completely wound around the evolute.

39.1.3. Leibniz

Leibniz’ contributions to differential geometry began in 1684, when he gave the rules for
handling what we now call differentials. His notation is essentially the one we use today.
He regarded x and x + dx as infinitely near values of x and v and dv as the corresponding
infinitely near values of v on a curve defined by an equation relating x and v. At a maximum
or minimum point he noted that dv = 0, so that the equation defining the curve had a double
root (v and v + dv) at that point. He noted that the two cases could be distinguished by the
concavity of the curve, defining the curve to be concave if the difference of the increments
ddv (which we would now write as (d2v/dx2) dx2) was positive, so that the increments dv

themselves increased with increasing v. He defined a point where the increments changed
from decreasing to increasing to be a point of reversed bending (punctum flexus contrarii,
what we now call an inflection point), and remarked that at such a point (if it was a point
where dv = 0 also), the equation had a triple root. What he said is easily translated into the
language of today, by looking at the equation 0 = f (x + h) − f (x). Obviously, h = 0 is a
root. At a maximum or minimum, it is a double root. If the point x yields df = 0 (that is,
f ′(x) = 0) but is not a maximum or minimum, then h = 0 is a triple root (f ′′(x) = 0).

In 1686, Leibniz was the first to use the phrase osculating circle. He explained the matter
thus:

In the infinitely small parts of a curve it is possible to consider not only the direction or
inclination or declination, as has been done up to now, but also the change in direction or
curvature (flexura), and as the measures of the direction of curves are the simplest lines of
geometry having the same direction at the same point, that is, the tangent lines, likewise the
measure of curvature is the simplest curve having at the same point not only the same direction
but also the same curvature, that is a circle not only tangent to the given curve but, what is
more, osculating.3

Leibniz recognized the problem of finding the evolute as that of constructing “not merely
an arbitrary tangent to a single curve at an arbitrary point, but a unique common tangent4 of
infinitely many curves belonging to the same order.” That meant differentiating with respect
to the parameter and eliminating it between the equation of the family and the differentiated
equation. In short, Leibniz was the first to discuss what is now called the envelope of a

3Literally, kissing.
4The tangent was not necessarily to be a straight line.
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family of curves defined by an equation containing a parameter, that is, a curve tangent to
every curve in the family that it intersects.

39.2. THE EIGHTEENTH CENTURY: SURFACES

Compared to calculus, differential equations, and analysis in general, differential geometry
was not the subject of a large number of papers in the eighteenth century. Nevertheless,
there were important advances.

39.2.1. Euler

According to Coolidge (1940, p. 325), Euler’s most important contribution to differential
geometry came in a 1760 paper on the curvature of surfaces. In that paper he observed that
different planes cutting a surface at a point would generally intersect it in curves having
different curvatures, but that the two planes for which this curvature was maximal or minimal
would be at right angles to each other. For any other plane, making angle α with one of
these planes, the radius of curvature would be

r = 2fg

f + g + (g − f ) cos 2α
,

where f and g are the minimum and maximum radii of curvature at the point. Nowadays,
because of an 1813 treatise of Pierre Dupin (1784–1873), this formula is written in terms
of the curvature 1/r as

1

r
= cos2 α

g
+ sin2 α

f
,

where α is the angle between the given cutting plane and the plane in which the curvature
is minimal (1/g). The equation obviously implies that in a plane perpendicular to the given
plane the curvature would be the same expression with the cosine and sine reversed, or,
what is the same, with f and g reversed. Gauss used the formula in Dupin’s form, writing
it as a formula for the curvature:

1

T cos2 ϕ + V sin2 ϕ
,

where T and V are the maximal and minimal radii of curvature.
Another innovation due to Euler was now-familiar idea of a parameterized surface,

in a 1770 paper on surfaces that can be mapped into a plane. The canvas on which an
artist paints and the paper on which an engineer or architect draws plans are not only
two-dimensional but also flat, having curvature zero. Parameters allow the mathematician
or engineer to represent information about any curved surface in the form of functions
(t, u) �→ (

x(t, u), y(t, u), z(t, u)
)
. Quantities such as curvature and area are then expressed

as functions of the parameters (t, u).
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39.2.2. Lagrange

Another study of surfaces, actually a paper in the calculus of variations, was Lagrange’s
1762 work on extremal values of integrals.5 The connection with differential geometry is
in the problem of minimal surfaces and isoperimetric problems, although he began with
the brachistochrone problem (finding the curve of most rapid descent for a falling body).
Lagrange found a necessary condition for a surface z = f (x, y) to be the minimal surface
having a prescribed boundary.

39.3. SPACE CURVES: THE FRENCH GEOMETERS

After these “preliminaries” we finally arrive at the traditional beginning of differential
geometry, a 1771 paper of Gaspard Monge on curves in space and his 1780 paper on curved
surfaces. Monge elaborated Leibniz’ idea for finding the envelope6 of a family of lines,
considering a family of planes parameterized by their intersections with the z-axis, and
obtained the equation of the surface that is the envelope of the family of planes and can be
locally mapped into a plane without stretching or shrinking.

39.4. GAUSS: GEODESICS AND DEVELOPABLE SURFACES

With the nineteenth century, differential geometry entered on a period of growth and has
continued to reach new heights for two full centuries. The first mathematician to be men-
tioned is Gauss, who during the 1820s was involved in mapping the region of Hannover
in Lower Saxony, where Göttingen is located. This mapping had been ordered by King
George IV of England, who was also Elector of Hannover by inheritance from his great
grandfather George I. Gauss had been interested in geodesy for many years (Reich, 1977,
pp. 29–34) and had written a paper in response to a problem posed by the Danish Academy
of Sciences. This paper, which was published in 1825, discussed conformal mapping, that
is, mappings that are a pure magnification at each point, so that angles are preserved and
the limiting ratio of the actual distance between two points to the map distance between
them as one of them approaches the other is the same for approach from any direction.

Involvement with the mapping project inspired Gauss to reflect on the mathematical
aspects of developing a curved surface on a flat page and eventually, the more general
problem of developing one curved surface on another—that is, mapping the surfaces so that
the ratio that the distance from a given point P to a nearby point Q has to the distance between
their images P ′ and Q′ tends to 1 as Q tends to P . Gauss apparently planned a full-scale
treatise on geodesy but never completed it. Two versions of his major work Disquisitiones
generales circa superficies curvas (General Investigations of Curved Surfaces) were written
in the years 1825 and 1827. In the preface to the latter Gauss explained the problem he had
set: “to find all representations of a given surface upon another in which the smallest elements
remain unchanged.” He admitted that some of what he was doing needed to be made more
precise through a more careful statement of hypotheses, but wished to show certain results

5Œuvres de Lagrange, T. 1, pp. 335–362.
6The envelope of a family of surfaces is a surface that is tangent to each of them.
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of fundamental importance in the general problem of mapping. He mentioned three ways
of defining a surface: first, as the zero set of a function W(x, y, z) of three variables, second
as a parameterized mapping (p, q) �→ (

x(p, q), y(p, q), z(p, q)
)
, and third as the graph of

a function z = f (x, y). The third case, he pointed out, was merely a specialization of either
of the first two.

To determine the extent to which a surface curves, Gauss represented any line in space
by a point on a fixed sphere of unit radius: the endpoint of the radius parallel to the line.7

This idea, he said, was inspired by the use of the celestial sphere in geometric astronomy.
When the line is the normal line through a point of the surface, the result is a mapping from
the surface to the unit sphere, so that the sphere and the surface have parallel normal lines
at corresponding points. Obviously a plane maps to a single point under this procedure,
since all of its normal lines are parallel to one another. Gauss proposed to use the area of
the portion of the sphere covered by this map as a measure of curvature of the surface in
question. He called this area the total curvature of the surface. He then attached a sign to
this total curvature by specifying that it was to be positive if the surface was convex in both
of two mutually perpendicular directions and negative if it was convex in one direction and
concave in the other (like a saddle). Gauss gave an informal discussion of this question
in terms of the side of the surface on which an oriented normal line was pointing. When
the quality of convexity varied in different parts of a surface, Gauss said, a still more
refined definition was necessary, which he found it necessary to omit. Along with the total
curvature he defined what we would call its density function and he called the measure
of curvature, namely the ratio of the area of a local neighborhood on the sphere to the
area of the local neighborhood on the surface corresponding to the same parameter values
under the two mappings. He denoted this measure of curvature k, a positive or negative sign
being attached in accordance with the principles mentioned above. The simplest example is
provided by a sphere of radius R, any region of which projects to the similar region on the
unit sphere. The ratio of the areas is k = 1/R2, which is therefore the measure of curvature
of a sphere at every point.

Thus, in discussing curvature when the surface is given by parameters, Gauss used two
mappings from the parameter space (p, q) into three-dimensional space. The first was the
mapping onto the surface itself:

(p, q) �→ (
x(p, q), y(p, q), z(p, q)

)
.

The second was the mapping

(p, q) �→ (
X(p, q), Y (p, q), Z(p, q)

)

to the unit sphere, which takes (p, q) to the three direction cosines of the normal to the
surface at the point

(
x(p, q), y(p, q), z(p, q)

)
.

From these preliminaries, Gauss was able to derive very simply what he himself described
as “almost everything that the illustrious Euler was the first to prove about the curvature of
curved surfaces.” In particular, he showed that his measure of curvature k was the reciprocal
of the product of the two principal radii of curvature that Euler called f and g. He then went

7An oriented line is meant here, since there are obviously two opposite radii parallel to the line. Gauss surely knew
that the order of the parameters could be used to fix this orientation.
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on to consider more general parameterized surfaces. Here he introduced the now-standard
quantities E, F , and G, given by

E =
(∂x

∂p

)2 +
( ∂y

∂p

)2 +
( ∂z

∂p

)2
,

F = ∂x

∂p

∂x

∂q
+ ∂y

∂p

∂y

∂q
+ ∂z

∂p

∂z

∂q
,

G =
(∂x

∂q

)2 +
(∂y

∂q

)2 +
( ∂z

∂q

)2
,

and what is now called the first fundamental form for the square of the element of arc
length:

ds2 = E dp2 + 2F dp dq + G dq2.

It is easy to compute that the element of area—the area of an infinitesimal parallelogram
whose sides are

(
∂x
∂p

dp,
∂y
∂p

dp, ∂z
∂p

dp
)

and
(

∂x
∂q

dq,
∂y
∂q

dq, ∂z
∂q

dq
)
—is just � dp dq, where

� = √
EG − F2. Gauss denoted the analogous expression for the mapping into the unit

sphere ((p, q) �→ (
X(p, q), Y (p, q), Z(p, q)

)
), by

D dp2 + 2D′ dp dq + D′′ dq2 . (39.1)

This quadratic form—or a multiple of it, since definitions vary— is called the second
fundamental form. As just described, it is produced using the mapping into the unit sphere
to generate the element of surface area on that sphere in terms of the parameters. This
parameterization can be used to generate an oriented normal line, which must be parallel to
the line from the origin to the image point on the unit sphere where the normal is calculated.
If that normal points outward from the unit sphere, the curvature of the surface at the
corresponding point is positive. If it points inward, that curvature is negative.

The element of area on the unit sphere is
√

DD′′ − (D′)2 dp dq. Hence, up to the choice
of sign, the measure of curvature—what is now called the Gaussian curvature and denoted
k—is

√
DD′′ − (D′)2

EG − F2 .

In a very prescient remark that was later to be developed by Riemann, Gauss noted that
“for finding the measure of curvature, there is no need of finite formulæ, which express the
coordinates x, y, z as functions of the indeterminates p, q; but that the general expression
for the magnitude of any linear element is sufficient.” The idea is that the geometry of a
surface is to be built up from the infinitesimal level using the parameters, not derived from
the metric imposed on it by its position in Euclidean space. That is the essential idea of
what is now called a differentiable manifold.

Summary of the History up to this Point. From the work of Euler, it was clear that a
critical point of a function z = f (x, y) (a point (x, y) where the two partial derivatives are
zero) is an extremum if the two principal radii of curvature at the point have the same sign
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and a saddle point if they have opposite sign. Gauss gave an interpretation to the absolute
value of the product of these two curvatures as the limit of the ratio of the area of a small
patch of surface near the point to the area of the trace of its unit normal over that patch. Thus
geometry and analysis came together very fruitfully in this work. The connection between
area and curvature was to have profound consequences.

39.4.1. Further Work by Gauss

It is also clear from Gauss’ correspondence (Klein, 1926, p. 16) that Gauss already realized
that non-Euclidean geometry was consistent. In fact, the question of consistency did not
trouble him; he was more interested in measuring large triangles to see if the sum of their
angles could be demonstrably less than two right angles. If so, what we now call hyperbolic
geometry might be more convenient for physics than Euclidean geometry.

Gauss considered the possibility of developing one surface on another, that is, mapping
it in such a way that lengths are preserved on the infinitesimal level. If the mapping is
(x, y, z) �→ (u, v, w), then by composition, u, v, and w are all functions of the same param-
eters that determine x, y, and z, and they generate functions E′, F ′, and G′ for the second
surface that must be equal to E, F , and G at the corresponding points, since that is what is
meant by developing one surface on another. But since he had just derived an expression for
the measure of curvature that depended only on E, F , G and their partial derivatives, he was
able to state the profound result that has come to be called his theorema egregium (outstand-
ing theorem): If a curved surface is developed on any other surface, the measure of curvature
at each point remains unchanged. This theorem implies that surfaces that can be developed
on a plane, such as a cone or cylinder, must have Gaussian curvature 0 at each point.

With the first fundamental form Gauss was able to derive a pair of differential equations
that must be satisfied by geodesic lines, which he called shortest lines,8 and prove that a
geodesic circle—the set of endpoints of geodesics originating at a given point and having
a given length—intersects each geodesic at a right angle. This result was the foundation
for a generalized theory of polar coordinates on a surface, using p as the distance along
a geodesic from a variable point to a pole of reference and q as the angle between that
geodesic and a fixed geodesic through the pole. This topic very naturally led to the subject
of geodesic triangles, formed by joining three points to one another along geodesics. Since
he had shown earlier that the element of surface area was

dσ =
√

EG − F2 dp dq ,

and that this expression was particularly simple when one of the sets of coordinate lines
consisted of geodesics (as in the case of a sphere, where the lines of longitude are geodesics),
the total curvature of such a triangle was easily found for a geodesic triangle and turned out
to be

A + B + C − π ,

where A, B, and C are the angles of the triangle, expressed in radians. For a plane triangle
this expression is zero. For a spherical triangle it is, not surprisingly, the area of the triangle

8According to Klein (1926, Vol. 2, p. 148), the term geodesic was first used by Joseph Liouville (1809–1882) in
1850. Klein cites an 1893 history of the term by Paul Stäckel (1862–1919) as source.
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divided by the square of the radius of the sphere. In this way, area, curvature, and the sum
of the angles of a triangle were shown to be linked on curved surfaces. This result was
the earliest theorem on global differential geometry, since it applies to any surface that can
be triangulated. In its modern version, it relates curvature to the topological property of the
surface as a whole known as the Euler characteristic mentioned in the previous chapter. It is
called the Gauss–Bonnet theorem after Pierre Ossian Bonnet (1819–1892), who introduced
the notion of the geodesic curvature of a curve on a surface (that is, the tangential component
of the acceleration of a point moving along the curve with unit speed)9 and generalized the
formula to include this concept.

39.5. THE FRENCH AND BRITISH GEOMETERS

In France, differential geometry was of interest for a number of reasons connected with
physics. In particular, it seemed applicable to the problem of heat conduction, the theory
of which had been pioneered by such outstanding mathematicians as Jean-Baptiste Joseph
Fourier (1768–1830), Siméon-Denis Poisson (1781–1840), and Gabriel Lamé (1795–1870),
since isothermal surfaces and curves in a body were a topic of primary interest. It also
applied to the theory of elasticity, studied by Lamé and Sophie Germain (1776–1831),
among others. Lamé developed a theory of elastic waves that he hoped would explain light
propagation in an elastic medium called ether. Sophie Germain noted that the average of
the two principal curvatures derived by Euler would be the same for any two mutually
perpendicular planes cutting a surface. She therefore recommended this average curvature
as the best measure of curvature. Her idea is useful in elasticity theory,10 but turns out not
to be so useful for pure geometry.11 Joseph Liouville (1809–1882) proved that conformal
maps of three-dimensional regions are far less varied than those in two dimensions, being
necessarily either inversions or similarities or rigid motions. He published this result in the
fifth edition of Monge’s book on the applications of analysis to geometry. In contrast, a
mapping (x, y) �→ (u, v) is conformal if and only if one of the functions u(x, y) ± iv(x, y)
is analytic. As a consequence, there is a rich supply of conformal mappings of the plane.

After Newton, differential geometry languished in Britain until the nineteenth century,
when William Rowan Hamilton (1805–1865) published papers on systems of rays, building
the foundation for the application of differential geometry to differential equations. Another
British mathematician, George Salmon (1819–1904), made the entire subject more accessi-
ble with his famous textbooks Higher Plane Curves (1852) and Analytic Geometry of Three
Dimensions (1862).

39.6. GRASSMANN AND RIEMANN: MANIFOLDS

Once the idea of using parameters to describe a surface has been grasped, the develop-
ment of geometry can proceed algebraically, without reference to what is possible in three-

9According to Struik (1933, 20, pp. 163, 165), even this concept was anticipated by Gauss in an unpublished
paper of 1825 and followed up on by Ferdinand Minding (1806–1885) in a paper in the Journal für die reine und
angewandte Mathematik in 1830.
10In particular, her concept of the average curvature plays a role in the Navier–Stokes equations.
11The average curvature must be zero on a minimal surface, however.
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dimensional Euclidean space. This idea was developed in the mid-nineteenth century by a
number of German and Italian mathematicians.

39.6.1. Grassmann

One mathematician who took the algebraic point of view in geometry was Hermann
Grassmann (1809–1877), a secondary-school teacher, who wrote a philosophically oriented
mathematical work published in 1844 under the title Die lineale Ausdehnungslehre, ein
neuer Zweig der Mathematik (The Theory of Lineal Extensions, a New Branch of Mathemat-
ics). This work, which developed ideas Grassmann had conceived earlier in a work on the
ebb and flow of tides, contained much of what is now regarded as multilinear algebra. What
we call the coefficients in a linear combination of vectors Grassmann called the numbers by
means of which the quantity was derived from the other quantities. He introduced what we
now call the tensor product and the wedge product for what he called extensive quantities. He
referred to the tensor product simply as the product and the wedge product as the combi-
natory product. The tensor product of two extensive quantities

∑
αrer and

∑
βses was

[ ∑

r

αrer,
∑

s

βses

]
=

∑

r,s

αrβs[er, es] .

The combinatory product was obtained by applying to this product the rule that
[er, es] = −[es, er] (antisymmetrizing). The determinant is a special case of the combina-
tory product. Grassmann remarked that when the factors are “numerically related” (which
we call linearly dependent), the combinatory product would be zero. When the basic units er

and es were entirely distinct, Grassmann called the combinatory product the outer product
to distinguish it from the inner product, which is still called by that name today and amounts
to the ordinary dot product when applied to vectors in physics. Grassmann remarked that
parentheses have no effect on the outer product—in our terms, it is an associative operation.12

Working with these concepts, Grassmann defined the numerical value of an extended
quantity as the positive square root of its inner square, exactly what we now call the absolute
value of a vector in n-dimensional space. He proved that “the quantities of an orthogonal
system are not related numerically,” that is, an orthogonal set of nonzero vectors is linearly
independent.

39.6.2. Riemann

Historians of mathematics seem to agree that, because of its philosophical tone and unusual
nomenclature, Ausdehnungslehre did not attract a great deal of notice until Grassmann
revised it and published a more systematic exposition in 1862. If that verdict is correct,
there is a small coincidence in Riemann’s use of the term “extended,” which appears to
mimic Grassmann’s use of the word, and in his focus on a general number of dimensions
in his inaugural lecture at the University of Göttingen.

12To avoid confusing the reader who knows that the cross product is not an associative product, we note that the
outer product applies only when each of the factors is orthogonal to the others. In three dimensional space the
cross product of three such vectors, however they are grouped, is always zero. The wedge product, however, is
associative.
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Riemann’s most authoritative biographer Laugwitz (1999, p. 223) says that Grassmann’s
work would have been of little use to Riemann, since for him linear algebra was a trivial
subject.13 The inaugural lecture was read in 1854, with the aged Gauss in the audience.14

Although Riemann’s lecture “Über die Hypothesen die der Geometrie zu Grunde liegen”
(“On the hypotheses that form the basis of geometry”) occupies only 14 printed pages and
contains almost no mathematical symbolism—it was aimed at a largely nonmathematical
audience—it set forth ideas that had profound consequences for the future of both mathe-
matics and physics. As Hermann Weyl said:

The same step was taken here that was taken by Faraday and Maxwell in physics, the theory
of electricity in particular, . . . by passing from the theory of action at a distance to the theory
of local action: the principle of understanding the world from its behavior on the infinitesimal
level. [Narasimhan, 1990, p. 740]

In the first section, Riemann began by developing the concept of an n-fold extended
quantity, asking the indulgence of his audience for delving into philosophy, where he had
limited experience. He cited only some philosophical work of Gauss and of Johann Friedrich
Herbart, who was mentioned in the previous chapter, Riemann began with the concept of
quantity in general, which arises when some general concept can be defined (measured or
counted) in different ways. Then, according as there is or is not a continuous transformation
from one of the ways into another, the various determinations of it form a continuous or
discrete manifold. He noted that discrete manifolds (sets of things that can be counted, as
we would say) are very common in everyday life, but continuous manifolds are rare, the
spatial location of objects of sense and colors being almost the only examples.

The main part of the lecture was the second part, in which Riemann investigated the
kinds of metric relations that could exist in a manifold if the length of a curve was to be
independent of its position. Assuming that the point was located by a set of n coordinates
x1, . . . , xn (almost the only mathematical symbols that appear in the paper), he considered
the kinds of properties needed to define an infinitesimal element of arc length ds along a
curve. The simplest function that met this requirement was

ds =
√∑

aij(x1, . . . , xn) dxi dxj ,

where the coefficients aij were continuous functions of position and the expression under the
square root is always nonnegative. The next simplest case, which he chose not to develop,
occurred when the Maclaurin series began with fourth-degree terms. As Riemann said,

The investigation of this more general type, to be sure, would not require any essentially
different principles, but it would be rather time-consuming and cast relatively little new light
on the theory of space; and moreover the results could not be expressed geometrically.

13One can’t help wondering about the multilinear algebra that Grassmann was developing. The recognition of
this theory as an essential part of geometry is explicit in Felix Klein’s 1908 work on elementary geometry from a
higher viewpoint, but Riemann apparently did not make the connection.
14At the time of the lecture, Gauss had less than a year of life remaining. Yet his mind was still active, and he was
very favorably impressed by Riemann’s performance.
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For the case in which coordinates could be chosen so that aii = 1 and aij = 0 when
i /= j, Riemann called the manifold flat.

Having listed the kinds of properties space was assumed to have, Riemann asked to what
extent these properties could be verified by experiment, especially in the case of continuous
manifolds. What he said at this point has become famous. He made a distinction between the
infinite and the unbounded, pointing out that while space is always assumed to be unbounded
(that is, to have no border), it might very well not be infinite. Then, as he said, assuming
that solid bodies exist independently of their position, it followed that the curvature of space
would have to be constant, and all astronomical observation confirmed that it could only be
zero. But, if the volume occupied by a body varied as the body moved, no conclusion about
the infinitesimal nature of space could be drawn from observations of the metric relations
that hold on the finite level. “It is therefore quite conceivable that the metric relations of
space are not in agreement with the assumptions of geometry, and one must indeed assume
this if phenomena can be explained more simply thereby.” Such reasoning plays a role in
the theory of relativity, where the rigid body of classical mechanics does not exist.

Riemann evidently intended to follow up on these ideas, but his mind produced ideas
much faster than his frail body would allow him to develop them. He died before his 40th
birthday with this project one of many left unfinished. He did, however, send an essay to the
Paris Academy in response to a prize question proposed (and later withdrawn): Determine
the thermal state of a body necessary in order for a system of initially isothermal lines to
remain isothermal at all times, so that its thermal state can be expressed as a function of
time and two other variables. Riemann’s essay was not awarded the prize because its results
were not developed with sufficient rigor. It was not published during his lifetime.15

39.7. DIFFERENTIAL GEOMETRY AND PHYSICS

The work of Grassmann and Riemann was to have a powerful impact on the development
of both geometry and physics. One has only to read Einstein’s accounts of the development
of general relativity to understand the extent to which he was imbued with Riemann’s
outlook. The idea of geometrizing physics seems an attractive one. The Aristotelian idea of
force, which had continued to serve through Newton’s time, began to be replaced by subtler
ideas developed by the Continental mathematical physicists of the nineteenth century, with
the introduction of such principles as conservation of energy and least action. In his 1736
treatise on mechanics, Euler had shown that a particle constrained to move along a surface by
forces normal to the surface, but on which no forces tangential to the surface act, would move
along a shortest curve on the surface. And when he discovered the variational principles that
enabled him to solve the isoperimetric problem, he applied them to the theory of elasticity
and vibrating membranes. As he said,

Since the material of the universe is the most perfect and proceeds from a supremely wise
Creator, nothing at all is found in the world that does not illustrate some maximal or minimal
principle. For that reason, there is absolutely no doubt that everything in the universe, being
the result of an ultimate purpose, is amenable to determination with equal success from these
efficient causes using the method of maxima and minima. [Euler, 1744, p. 245]

15Klein (1926, Vol. 2, p. 165) notes that very valuable results were often submitted for prizes at that time, since
professors were so poorly paid.
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Riemann was searching for connections among light, electricity, magnetism, and grav-
itation at this time.16 In 1846, Gauss’ collaborator Wilhelm Weber (1804–1891) had in-
corporated the velocity of light in a formula for the force between two moving charged
particles. According to Hermann Weyl (Narasimhan, 1990, p. 741), Riemann did not make
any connection between that search and the content of his inaugural lecture. Laugwitz (1999,
p. 222), however, cites letters from Riemann to his brother which show that he did make
precisely that connection. Whatever the case, four years later Riemann sent a paper17 to the
Royal Society in Göttingen in which he made the following remarkable statement:

I venture to communicate to the Royal Society a remark that brings the theory of electricity
and magnetism into a close connection with the theory of light and heat radiation. I have found
that the electrodynamic effects of galvanic currents can be understood by assuming that the
effect of one quantity of electricity on others is not instantaneous but propagates to them with
a velocity that is constant (equal to that of light within observational error).

39.8. THE ITALIAN GEOMETERS

The political unification of Italy in the mid-nineteenth century was accompanied by a surge
of mathematical activity even greater than the sixteenth-century work in algebra. Gauss
had analyzed a general surface by using two parameters and introducing six functions: the
coefficients of the first and second fundamental forms. The question naturally arises whether
a surface can be synthesized from any six functions regarded as the coefficients of these
forms. Do they determine the surface, up to the usual Euclidean motions of translation,
rotation, and reflection that can be used to move a set of axes to a prescribed position
and orientation? Such a theorem does hold for curves, as was established by two French
mathematicians, Jean Frenet (1816–1900) and Joseph Serret (1818–1885), who gave a set
of equations—the Frenet–Serret18 equations—determining the curvature and torsion19 of
a curve in three-dimensional spaces. A curve can be reconstructed from its curvature and
torsion up to translation, rotation, and reflection. A natural related question is: Which sets
of six functions, regarded as the components of the two fundamental forms, can be used to
construct a surface? After all, one needs generally only three functions of two parameters
to determine a surface, so that the six given by Gauss cannot be independent of one another.

In an 1856 paper, Gaspare Mainardi (1800–1879) provided consistency conditions in
the form of four differential equations, now known as the Mainardi–Codazzi equations,20

which must be satisfied by the six functions E, F , G, D, D′, and D′′ if they are to be the
components of the first and second fundamental forms introduced by Gauss. Mainardi had

16His lecture was given nearly a decade before Maxwell discovered his famous equations connecting the speed of
light with the propagation of electromagnetic waves.
17This paper was later withdrawn, but was published after his death (Narasimhan, 1990, pp. 288–293).
18Frenet gave six equations for the direction cosines of the tangent and principal normal to the curve and its radius
of curvature. Serret gave the full set of nine now called by this name, which are more symmetric but contain no
more information than the six of Frenet.
19The torsion of a curve measures its tendency to move out of the plane of its tangential and principal normal
vectors.
20The Latvian mathematician Karl Mikhailovich Peterson (1828–1881) published an equivalent set of equations
in Moscow in 1853, but they went unnoticed for a full century.
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learned of Gauss’ work through a French translation, which had appeared in 1852. These
same equations were discovered by Delfino Codazzi (1824–1875) two years later, using
an entirely different approach, and helped him to win a prize from the Paris Academy of
Sciences. Codazzi published these equations only in 1883.

When Riemann’s lecture was published in 1867, the year after his death, it became the
point of departure for a great deal of research in Italy.21 One who worked to develop these
ideas was Riemann’s friend Enrico Betti, who tried to get Riemann a chair of mathematics
in Palermo. These ideas led Betti to the notion of the connectivity of a surface. On the
simplest surfaces, such as a sphere, every closed curve is the boundary of a region. On a
torus, however, the circles of latitude and longitude are not boundaries. These ideas belong
properly to topology, and were discussed in the preceding chapter. In his fundamental work
on this subject, Henri Poincaré named the maximum number of independent nonboundary
cycles in a surface the Betti number of the surface, a concept that is now generalized to n

dimensions. The nth Betti number is the rank of the nth homology group.
Another Italian mathematician who extended Riemann’s ideas was Eugenio Beltrami

(1835–1900), whose 1868 paper on spaces of constant curvature contained a model of a
three-dimensional space of constant negative curvature. Beltrami had previously given the
model of a pseudosphere to represent the hyperbolic plane, which will be discussed in the
next chapter. It was not obvious before his work that three-dimensional hyperbolic geometry
and a three-dimensional manifold of constant negative curvature were basically the same
thing. Beltrami also worked out the appropriate n-dimensional analogue of the Laplacian
∂2u
∂x2 + ∂2u

∂y2 + ∂2u
∂z2 , which plays a fundamental role in mathematical physics. By working with

an integral considered earlier by Jacobi (see Klein, 1926, Vol. 2, p. 190), Beltrami arrived
at the operator

�u = 1√
a

n∑

i=1

∂

∂xi

⎛

⎝√
a

n∑

j=1

aij

∂u

∂xj

⎞

⎠ ,

where, with the notation slightly modernized, the Riemannian metric is given by the usual
ds2 = ∑n

i,j=1 aij dxi dxj , and a denotes the determinant det(aij). The generalized operator
is now referred to as the Laplace–Beltrami operator on a Riemannian manifold.

39.8.1. Ricci’s Absolute Differential Calculus

The algebra of Grassmann and its connection with Riemann’s general metric on an
n-dimensional manifold was not fully codified until 1901, in “Méthodes de calcul différentiel
absolu et leurs applications” (“Methods of absolute differential calculus and their applica-
tions”), published in Mathematische Annalen in 1901, written by Gregorio Ricci-Curbastro
(1853–1925) and Tullio Levi-Civita (1873–1941). This article contained the critical ideas
of tensor analysis as it is now taught. The absoluteness of the calculus consisted in the
great generality of the transformations that it permitted, showing how differential forms
changed when coordinates were changed. Although Ricci-Curbastro competed in a prize

21Riemann went to Italy for his health and died of tuberculosis in Selasca. He was in close contact with Italian
mathematicians and even published a paper in Italian.
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contest sponsored that year by the Accademia dei Lincei, he was not successful. Some of the
judges regarded his absolute differential calculus as superfluous to the end it was designed
for.22

The following year, Luigi Bianchi (1873–1928) published “Sui simboli a quattro indice e
sulla curvatura di Riemann” (“On quadruply-indexed symbols and Riemannian curvature”),
in which he gave the relations among the covariant derivatives of the Riemann curvature
tensor, which he derived by a direct method for manifolds of constant curvature, not fol-
lowing the route of Ricci-Curbastro and Levi-Civita. The Bianchi identity was later to play
a crucial role in general relativity, assuring local conservation of energy when Einstein’s
gravitational equation is assumed.

PROBLEMS AND QUESTIONS

Mathematical Problems

39.1. Find the radius of curvature of the parabola y = x2 at the point (1, 1). (The center of
curvature lies along the normal line at that point, which has equation x + 2y = 3.)

39.2. Find the first fundamental form of the hyperbolic paraboloid z = (x2 − y2)/a at each
point using x and y as parameters.

39.3. Find the Gaussian curvature of the hyperbolic paraboloid described in the previous
problem.

Historical Questions

39.4. What motives did Huygens and Newton have for studying involutes, evolutes, and
curvature?

39.5. What significant increase in the algebraization of geometry was promoted by Euler?

39.6. In what ways did Riemann anticipate much of modern physics?

Questions for Reflection

39.7. We saw earlier (Chapter 27) that Omar Khayyam criticized ibn al-Haytham for dis-
cussing a line that moves while remaining perpendicular to another line. Yet Newton
used exactly the same language when discussing the center of curvature, and no one
seems to have objected. What difference in mathematical cultures does this contrast
in points of view signify?

39.8. Riemann raised the issue whether space was infinite or finite. In 1976, the math-
ematician John Milnor (b. 1931), in an address to the Northeastern Section of the
Mathematical Association of America, asked whether space is simply connected.
One way of investigating this question would be to look for doubly periodic star
patterns, such as one would see if the celestial sphere were actually a torus. In the

22The same sort of criticism was leveled by Weierstrass against the work of Hamilton in quaternions.
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discussion that followed, a member of the audience asked what reason we have for
thinking that space is even orientable. Might it not resemble a projective plane? How
could one investigate this question empirically?

39.9. How much of modern differential geometry could be cast in the language of Euclidean
geometry? How would you describe, for example, the hyperbolic paraboloid whose
equation is az = x2 − y2?



CHAPTER 40

Non-Euclidean Geometry

There are two opposite points of view that one might adopt when assessing the value of
Euclid’s axiomatic approach to geometry. On the one hand, one could argue that it was
precisely the attempt to spell out all assumptions explicitly that led to an explicit statement
of the parallel postulate and hence subjected it to scrutiny. Thus, Euclidean geometry really
generated non-Euclidean. That fact is underscored by the total absence of any speculation
along those lines by mathematical cultures not descended from Euclid. On the other hand,
it was the Hindu–Arabic algebra that immensely increased the power of geometry through
analytic, projective, algebraic, and differential geometry. This algebraic approach laid out
myriad examples of non-Euclidean geometries. All one had to do was look at them to see
the possibility of denying the parallel postulate. From that point of view, Euclid’s geometry
is merely one specimen among many, all of roughly equal value for science, and “non-
Euclidean” geometry is an unnecessary name for all the other surfaces and manifolds that
don’t happen to be Euclidean.

The hold that Euclid had over the intellectual imagination of the West was vast in its
extent. For centuries, the axiomatic approach to all kinds of knowledge was regarded as an
ideal in every area of intellectual endeavor. The philosopher Baruch Spinoza (1632–1677),
for example, wrote a book entitled Ethica ordine geometrico demonstrata.1 From the time
of Descartes on, mathematicians had found the algebra inherited from the Hindus and
Muslims and developed into a powerful symbolic method to be far superior, and they were
the first to turn to other methods and let Euclid fall into neglect. Yet even after differential
geometry was well established and a variety of exotic surfaces became amenable to study,
a few mathematicians were still treading the old Euclidean paths and trying to prove the
parallel postulate. In the nineteenth century, several of these people became the pioneers of
non-Euclidean geometry, developed axiomatically, just like Euclidean. However, they took
advantage of the metric point of view and developed the trigonometry of their non-Euclidean
planes. It was this infusion of algebra into their reasoning that eventually brought about the
acceptance of their work. At the same time, despite the repairs made to the Euclidean
system by Hilbert, the presence of other geometries with equal claim to validity at long
last settled not only the question of the provability of that postulate, but made the whole
edifice of Euclidean methodology irrelevant to mathematical progress. The work of Euclid,

1Ethics Demonstrated in Geometric Order. It was published a few months after Spinoza’s death.
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Archimedes, and Apollonius was no less remarkable for this shift in point of view. It remains
an imposing intellectual achievement, just as the great stone monuments that continue to
fascinate the imagination of modern people remain as a testimony to the genius of the
builders. But no architect nowadays looks to Egyptian building methods for ideas or holds
them up as a model to be imitated. Euclid and his contemporaries have a permanent place in
our culture. A liberal education that attempts to acquaint students with the greatest human
achievements should not neglect them. But they also should not be presented as the sum total
of mathematical achievement. Non-Euclidean geometry has traditionally meant geometry
with the parallel postulate replaced by some other postulate. It really should be taken to
mean geometry that is simply independent of, and draws on other sources in addition to,
Euclid, that is to say, 99% of what is now called geometry.

The centuries of effort by Hellenistic and Islamic mathematicians to establish the parallel
postulate as a fact of nature began to be repeated in early modern Europe, as mathematicians
tried to replace the postulate with some other assumption that seemed more obvious. Then,
around the year 1800, a change in attitude took place, as a few mathematicians began to
explore non-Euclidean geometries as if they might have some meaning after all. Within a few
decades the full light of day dawned on this topic, and by the late nineteenth century, models
of the non-Euclidean geometries inside Euclidean and projective geometry removed all
doubt as to their consistency. This history exhibits a sort of parallelism (no pun intended) with
the history of the classical construction problems and with the problem of solving higher-
degree equations in radicals, all of which were shown in the early nineteenth century to be
impossible tasks. In all three cases, group theory eventually played a role in understanding
the issues.

40.1. SACCHERI

The Jesuit priest Giovanni Saccheri (1667–1733), a professor of mathematics at the Uni-
versity of Pavia, published in the last year of his life the treatise Euclides ab omni nævo
vindicatus (Euclid Acquitted of Every Blemish), a good example of the creativity a very in-
telligent person will exhibit when trying to retain a strongly held belief. Some of his treatise
duplicated what had already been done by the Islamic mathematicians, including the study
of Thabit quadrilaterals, that is, quadrilaterals having a pair of equal opposite sides and
equal base angles or having having three right angles. Saccheri deduced with strict rigor
all the basic properties of Thabit quadrilaterals with right angles at the base (see Chap-
ter 27).2 He realized that the fundamental question involved the summit angles of these
quadrilaterals—Saccheri quadrilaterals, as they are now called. Since these angles were
equal, the only question was whether they were obtuse, right, or acute angles. He showed
in Propositions 5 and 6 that if one such quadrilateral had obtuse summit angles, then all of
them did likewise, and that if one had right angles, then all of them did likewise. It followed
by elimination and without further proof (Proposition 7, which Saccheri proved anyway)
that if one of them had acute angles, then all of them did likewise. Not being concerned to

2It is unlikely that Saccheri knew of the earlier work by Thabit ibn-Qurra and others. Although Arabic manuscripts
stimulated a revival of mathematics in Europe, not all of them became known immediately. Some of those who
did were neglected by historians of the subject. Coolidge (1940) gave the history of the parallel postulate, jumping
directly from Proclus and Ptolemy to Saccheri, never mentioning any of the Muslim mathematicians.
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eliminate the possibility of the right angle, which he believed was the true one, he worked
to eliminate the other two hypotheses.

He showed that the postulate as Euclid stated it is true under the hypothesis of the obtuse
angle. That is, two lines cut by a transversal in such a way that the interior angles on one
side are less than two right angles will meet on that side of the transversal. As we know, that
is because they will meet on both sides of the transversal, assuming it makes sense to talk
of opposite sides. Saccheri remarked that the intersection must occur at a finite distance.
Saccheri would soon be reasoning about points at infinity as if something were known about
them, even though he had no careful definition of them.

It is true, as many have pointed out, that his proof of this fact uses the exterior angle
theorem (Proposition 16 of Book 1 of Euclid) and hence assumes that lines are infinite.3 But
Euclid himself, as later edited, states explicitly that two lines cannot enclose an area, so that
Saccheri can hardly be faulted for dealing with only one Euclidean postulate at a time. Since
the parallel postulate implies that the summit and base of a Saccheri quadrilateral must meet
on both sides of the quadrilateral under the hypothesis of the obtuse angle, even a severe
critic should be inclined to give Saccheri a passing grade when he rejects this hypothesis.

Having disposed of the hypothesis of the obtuse angle, Saccheri then joined battle (his
phrase) with the hypothesis of the acute angle. Here again, he proved some basic facts
about what we now call hyperbolic geometry. Given any quadrilateral having right angles
at the base and acute angles at the summit, it follows from continuity considerations that the
length of a perpendicular dropped from the summit to the base must reach a minimum at
some point, and at that point it must also be perpendicular to the summit. Saccheri analyzed
this situation in detail, describing in the process some of the phenomena that must occur in
what is now called hyperbolic geometry. In terms of Fig. 40.1a,4 he considered all the lines
like AF through the point A such that angle BAF is acute. He wished to show that they all
intersected the line BE.

Saccheri proved that there must be at least one angle θ0 for which the line AL making that
angle neither intersects BE nor has a common perpendicular with it. This line, as Saccheri
showed in Proposition 23, must approach BE asymptotically as we would say. At that point
he made the small slip that had been warned against even in ancient times, assuming that
“approaching” implies “meeting.” His intuition for hyperbolic geometry was very good,
as he imagined a line UV perpendicular to BE moving away from AB to positions such
as HI and the lines AV , AI, and so on from A perpendicular to the moving line rotating
clockwise about A to make angles that decreased to θ0. He then—too hastily, as we now
know—drew the conclusion that θ0 would have the properties of both of the sets of angles
that it separated, that is, the line making this angle would intersect BE and would also have a
common perpendicular with it. In fact, it has neither property. But Saccheri was determined
to have both. As he described the situation, the hypothesis of the acute angle implied the

3Actually, the use of that proposition is confined to elaborations by the modern reader. The proof stated by Saccheri
uses only the fact that lines are unbounded, that is, can be extended to any length. It is not necessary to require
that the extension never overlap the portion already present.
4Since the flat page is not measurably non-Euclidean, and wouldn’t be even if spread out to cover the entire solar
system, the kinds of lines that occur in hyperbolic geometry cannot be drawn accurately on paper. Our convention
is the usual one: When asymptotic properties are not involved, draw the lines straight. When asymptotic properties
need to be shown, draw them as hyperbolas. Actually, if the radius of curvature of the plane were comparable to
the width of the page, two lines with a common perpendicular would diverge from each other like the graphs of
cosh x and − cosh x, very rapidly indeed.
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(a) (b)

Figure 40.1. (a) Lines like AC and AD through A that intersect BE and those like AF and AG

that share a common perpendicular with BE are separated by a line (AL) that is asymptotic to BE.
(b) The angle defect of �AB′C′ is more than twice the defect of �ABC.

existence of two straight lines that have a common perpendicular at the same point. In other
words, there could be two distinct lines perpendicular to the same line at a point, which is
indeed a contradiction. Unfortunately, the point involved was not a point of the plane, but
is infinitely distant, as Saccheri himself realized. But he apparently believed that points and
lines at infinity must obey the same axioms as those in the finite plane.

Once again, as in the case of Ptolemy, Thabit ibn-Qurra, and ibn al-Haytham, Saccheri
had glimpsed a new, non-Euclidean kind of geometry, but resorted to procrustean methods
to make it fit his Euclidean intuition.

40.2. LAMBERT AND LEGENDRE

The writings of the Swiss mathematician Johann Heinrich Lambert (1728–1777) seem
modern in many ways. For example, he proved that π is irrational (specifically, that tan x and
x cannot both be rational numbers), studied the problem of constructions with straightedge
and a fixed compass, and introduced the hyperbolic functions and their identities as they
are known today, including the notation sinh(x) and cosh(x). He wrote, but did not publish,
a treatise on parallel lines, in which he pointed out that the hypothesis of the obtuse angle
holds for great circles on a sphere and that the area of a spherical triangle is the excess of its
angle sum over π times the square of the radius. He concluded that in a sphere of imaginary
radius ir, whose area would be negative, the area of a triangle might be proportional to the
excess of π over the angle sum. What a sphere of imaginary radius looks like took some
time to discern, a full century, to be exact.

The hyperbolic functions that he studied turned out to be the key to trigonometry in
this imaginary world. Just as on the sphere there is a natural unit of length (the radius of
the sphere, for example), the same would be true, as Lambert realized, on his imaginary
sphere. Such a unit could be selected in a number of ways. The angle of parallelism θ0
mentioned above, for example, decreases steadily as the length AB increases. Every length
is associated with an acute angle, and a natural unit of length might be the one whose angle
of parallelism is half of a right angle. Or, it might be the length of the side of an equilateral
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triangle having a specified angle. In any case, Lambert at least recognized that he had not
proved the parallel postulate. As he said, it was always possible to develop a proof of the
postulate to the point that only some small, seemingly obvious point remained unproved,
but that last point nearly always concealed an assumption equivalent to what was being
proved.

Some of Lambert’s reasoning was recast in more precise form by Legendre, who wrote
a textbook of geometry used in many places during the nineteenth century, including (in
English translation) the United States. Legendre, like Lambert and Saccheri, refuted the
possibility that the angle sum of a triangle could be more than two right angles and attempted
to show that it could not be less. Since the defect of a triangle—the difference between
two right angles and its angle sum—is additive, in the sense that if a triangle is cut into
two smaller triangles, the defect of the larger triangle is the sum of the defects of the two
smaller ones, he saw correctly that if one could repeatedly double a triangle, eventually the
angle sum would have to become negative, which was surely impossible. Unfortunately,
the possibility of repeated doubling that he had in mind was just one of those small points
mentioned by Lambert that turn out to be equivalent to the parallel postulate. In fact, it
is rather easy to see that such is the case, since (Fig. 40.1b) asserting the possibility of
drawing a line B′C′ through a point A′ inside the angle CAB that intersects the extensions
of both AB and AC is another way of saying that the line AB cannot be parallel to every
line through A′ that intersects the extension of AC. (If it were, the limiting position of a line
through A′ intersecting the extension of AC, as the point of intersection tends to infinity in
the direction of C from A, would be a line parallel to both AB and AC, and there would
thus be two lines through A parallel to this limiting line.)

40.3. GAUSS

The parallel postulate was beginning to be understood by the end of the eighteenth century.
Gauss, who read Lambert’s work on parallels (which had been published posthumously),
began to explore this subject as a teenager, although he kept his thoughts to himself except
for letters to colleagues and never published anything on the subject. His work in this area
was published in Vol. 8 of the later edition of his collected works. It was summarized by
Klein (1926, pp. 58–59). In 1799, Gauss wrote to Farkas Bólyai (1775–1856), his class-
mate from Göttingen, that he could prove the parallel postulate provided that triangles of
arbitrarily large area were admitted. Such a confident statement can only mean that he had
developed the metric theory of hyperbolic geometry to a considerable extent. Five years
later he wrote again to explain the error in a proof of the parallel postulate proposed by
Bólyai. Gauss, like Lambert, realized that a non-Euclidean space would have a natural unit
of length, and mentioned this fact in a letter of 1816 to his student Christian Ludwig Ger-
ling (1788–1864), proposing as unit the side of an equilateral triangle whose angles were
59◦ 59′ 59.99999 . . .′′.5 To Gauss’ surprise, in 1818 he received from Gerling a paper written
by Ferdinand Karl Schweikart (1780–1859), a lawyer then in Marburg, who had developed
what he called astral geometry. It was actually hyperbolic geometry, and Schweikart had
gone far into it, since he knew that there was an upper bound to the area of a triangle in

5In comparison with the radius of curvature of space, this would be an extremely small unit of length. If space is
curved negatively at all, however, its radius of curvature is so enormous that this unit would be very large.
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this geometry, that its metric properties depended on an undetermined constant C (the dis-
tance, measured in units equal to the radius of curvature, at which the angle of parallelism
is half of a right angle), and that it contained a natural unit of length, which he described
picturesquely by saying that if that length were the radius of the earth, then the line joining
two stars would be tangent to the earth. Gauss wrote back to correct some minor points of
bad drafting on Schweikart’s part (for example, Schweikart neglected to say that the stars
were assumed infinitely distant), but generally praising the work. In fact, he communicated
his formula for the limiting area of a triangle6:

πC2

(
ln(1 + √

2)
)2 .

By coincidence, Schweikart’s nephew Franz Adolph Taurinus (1794–1874), also a
lawyer, who surely must have known of his uncle’s work in non-Euclidean geometry, sent
Gauss his attempt at a proof of the parallel postulate in 1824. Gauss explained the true situ-
ation to Taurinus under strict orders to keep the matter secret. The following year, Taurinus
published a treatise Geometriæ prima elementa (First Elements of Geometry) in which he
accepted the possibility of other geometries. Gauss wrote to the astronomer–mathematician
Friedrich Wilhelm Bessel (1784–1846) in 1829 that he had been thinking about the foun-
dations of geometry off and on for nearly 40 years (in other words, from the age of 12 on),
saying that his investigations were “very extensive,” but probably wouldn’t be published,
since he feared the controversy that would result. Some time during the mid-1820s, the
time when he was writing and publishing his fundamental work on differential geometry,
Gauss wrote a note—which, typically, he never published—in which he mentioned that
revolving a tractrix about its asymptote produced a surface that is the opposite of a sphere.
This surface turns out to be a perfect local model of the non-Euclidean geometry in which
the angle sum of a triangle is less than two right angles. It is now called a pseudosphere.
This same surface was discussed a decade later by Ferdinand Minding, who pointed out
that some pairs of points on this surface can be joined by more than one minimal path, just
like antipodal points on a sphere.

40.4. THE FIRST TREATISES

By 1820, the consistency of non-Euclidean geometry was beginning to become plain. As
more and more mathematicians worked over the problem and came to the same conclusion,
from which others gained insight little by little, all that remained was a slight push to tip
the balance from attempts to prove the parallel postulate to the acceptance of alternative
hypotheses. The fact that this extra step was taken by several people nearly simultaneously
can be expressed poetically, as it was by Felix Klein (1926, p. 57), who referred to “one of
the remarkable laws of human history, namely that the times themselves seem to hold the
great thoughts and problems and offer them to heads gifted with genius when they are ripe.”

6The coefficient of π in this expression represents a unit area and is numerically equal to the square of the radius of
curvature of the hyperbolic plane. However, there are no squares in hyperbolic geometry. An equiangular rhombus
has acute angles at all four corners.
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But we need not be quite so lyrical about a phenomenon that is entirely to be expected:
When many intelligent people who have received similar educations work on a problem, it
is not surprising when more than one of them makes the same discovery.

The credit for first putting forward hyperbolic geometry for serious consideration must
belong to Schweikart, since Gauss was too reticent to do so. However, credit for the first full
development of it, including its trigonometry, is due to the Russian mathematician Nikolai
Ivanovich Lobachevskii (1792–1856) and the Hungarian János Bólyai (1802–1860), son
of Farkas Bólyai. Their approaches to the subject are very similar. Both developed the
geometry of the hyperbolic plane and then extended it to three-dimensional space. In three-
dimensional space they considered the entire set of directed lines parallel to a given directed
line in a given direction. Then they showed that a surface (now called a horosphere) that
cuts all of these lines at right angles has all the properties of a Euclidean plane. By studying
sections of this surface they were able to deduce the trigonometry of their new geometry.
The triangle formulas fully justify Lambert’s assertion that this kind of geometry is that
of a sphere of imaginary radius. Here, for example, is the Pythagorean theorem for a right
triangle of sides a, b, c in spherical and hyperbolic geometry, derived by both Lobachevskii
and Bólyai, but not in the notation of hyperbolic functions. Since cos(ix) = cosh(x) the
hyperbolic formula can be obtained from the spherical formula by replacing the radius r

with ir, just as Lambert stated.

Spherical geometry Hyperbolic geometry

cos
(a

r

)
cos

(b

r

)
= cos

(c

r

)
cosh

(a

r

)
cosh

(b

r

)
= cosh

(c

r

)
.

40.5. LOBACHEVSKII’S GEOMETRY

Lobachevskii connected the parts of a hyperbolic triangle through his formula for the angle
of parallelism, which is the angle θ0 referred to above, as a function of the length AB. He
gave this formula as

tan

(
1

2
F (α)

)
= eα,

where α denotes the length AB and F (α) the angle θ0. Here e could be any positive
number, since the radius of curvature of the hyperbolic plane could not be determined.
However, Lobachevskii found it convenient to take this constant to be e = 2.71828 . . . . In
effect, he took the radius of curvature of the plane as the unit of length. Lobachevskii gave
the Pythagorean theorem, for example, as

sin F (a) sin F (b) = sin F (c).

Of the two nearly simultaneous creators of hyperbolic geometry and trigonometry,
Lobachevskii was the first to publish, unfortunately in a journal of limited circulation.
He was a professor at the provincial University of Kazan’ in Russia and published his work
in 1826 in the proceedings of the Kazan’ Physico-Mathematical Society. He reiterated this
idea over the next ten years or so, developing its implications. Like Gauss, he drew the
conclusion that only observation could determine if actual space was Euclidean or not. As
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it happened, astronomers were just beginning to attempt measurements on the interstellar
scale. By measuring the angles formed by the lines of sight from the earth to a given fixed
star at intervals of six months, one could get the base angles of a gigantic triangle and
thereby (since the angle sum could not be larger than two right angles, as everyone agreed)
place an upper bound on the size of the parallax of the star (the angle subtended by the
earth’s orbit from that star). Many encyclopedias claim that the first measurement of stellar
parallax was carried out in Königsberg by Gauss’ correspondent Bessel in 1838 and that
he determined the parallax of 61 Cygni to be 0.3 seconds. Russian historians credit an-
other Friedrich Wilhelm, namely Friedrich Wilhelm Struve (1793–1864), who emigrated to
Russia and is known there as Vasilii Yakovlevich Struve. He founded the Pulkovo Observa-
tory in 1839. Struve determined the parallax of the star Vega in 1837. Attempts to determine
stellar parallax must have been made earlier, since Lobachevskii cited such measurements
in an 1829 work and claimed that the measured parallax was less than 0.000372′′, which
is much smaller than any observational error.7 As he said (see his collected works, Vol. 1,
p. 207, quoted by S. N. Kiro, 1967, Vol. 2, p. 159):

At the very least, astronomical observations prove that all the lines amenable to our measure-
ments, even the distances between celestial bodies, are so small in comparison with the length
taken as a unit in our theory that the equations of (Euclidean) plane trigonometry, which have
been used up to now must be true without any sensible error.

Thus, the acceptance of the consistency of hyperbolic geometry was accompanied by
the rejection of any practical application of it in astronomy or physics. That situation was
to change in the early twentieth century, with the advent of relativity.

Lobachevskii was unaware of the work of Gauss, since Gauss kept it to himself and urged
others to do likewise. Had Gauss been more talkative, Lobachevskii would easily have found
out about his work, since his teacher Johann Martin Christian Bartels (1769–1836) had been
many years earlier a teacher of the 8-year-old Gauss and had remained a friend of Gauss.
As it was, however, although Lobachevskii continued to perfect his “imaginary geometry,”
as he called it, and wrote other mathematical papers, he made his career in administration,
as rector of the University of Kazan’. He at least won some recognition for his achievement
during his lifetime, and his writings were translated into French and German after his death.

Even though his imaginary geometry was not used directly to describe the world,
Lobachevskii found some uses for it in providing geometric interpretations of formulas
in analysis. In particular, his paper “Application of imaginary geometry to certain inte-
grals,” which he published in 1836, was translated into German in 1904, with its misprints
corrected (Liebmann, 1904). Just as we can compute the seemingly complicated integral

∫ r

0

√
r2 − x2 dx = π

4
r2

immediately by recognizing that it represents the area of a quadrant of a circle of radius r,
he could use the differential form for the element of area in rectangular coordinates in the

7The vast distances between stars make terrestrial units of length inadequate. The light-year (about 9.5 · 1012 km)
is the most familiar unit now used, particularly good, since it tells us “what time it was” when the star emitted
the light we are now seeing. Stellar parallax provides another unit, the parsec, which is the distance at which the
radius of the earth’s orbit subtends an angle of 1′′. A parsec is about 3.258 light-years.
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hyperbolic plane given by dS = (1/ sin y′) dx dy, where y′ is the angle of parallelism for the
distance y (in our terms sin y′ = sech y) to express certain integrals as the non-Euclidean
areas of simple figures. In polar coordinates the corresponding element of area is dS =
cot r′ dr dθ = sinh r dr dθ. Lobachevskii also gave the elements of volume in rectangular
and spherical coordinates and computed 49 integrals representing hyperbolic areas and
volumes, including the volumes of pyramids. Using the trigonometry of hyperbolic space,
Lobachevskii evaluated a number of integrals, showing, for example, that

∫ π

0

∫ ∞

0
2 sinh(x)F ′(2p cosh(x) + 2q cos(ω) sinh(x)

)
dx dω =

−πF
(

2
√

p2 − q2
)

√
p2 − q2

,

where F (x) is any continuously differentiable function on [0, ∞) such that lim
x→∞ F (x) = 0

and p2 > q2 (Liebmann, 1904, p. 21).

40.6. JÁNOS BÓLYAI

János Bólyai’s career turned out less pleasantly than Lobachevskii’s. Even though he had
the formula for the angle of parallelism in 1823, a time when Lobachevskii was still hop-
ing to vindicate the parallel postulate, he did not publish it until 1831, five years after
Lobachevskii’s first publication. Even then, he had only the limited space of an appendix
to his father’s textbook to explain himself. His father sent the appendix to Gauss for com-
ments, and for once Gauss became quite loquacious, explaining that he had had the same
ideas many years earlier, and that none of these discoveries were new to him. He praised
the genius of the young Bólyai for discovering it, nevertheless. Bólyai the younger was not
overjoyed at this response. He suspected Gauss of trying to steal his ideas. According to
Paul Stäckel (1862–1919), who wrote the story of the Bólyais, father and son (quoted in
Coolidge, 1940, p. 73), when Lobachevskii’s work began to be known, Bólyai thought that
Gauss was stealing his work and publishing it under the pseudonym Lobachevskii, since
“it is hardly likely that two or even three people knowing nothing of one another would
produce almost the same result by different routes.”

40.7. THE RECEPTION OF NON-EUCLIDEAN GEOMETRY

Some time was required for the new world revealed by Lobachevskii and Bólyai to attract
the interest of the mathematical community. Because it seemed possible—even easy—to
prove that parallel lines exist or, equivalently, that the sum of the angles of a triangle could
not be more than two right angles, one can easily understand why a sense of symmetry
would lead to a certain stubbornness in attempts to refute the opposite hypothesis as well.
Although Gauss had shown the way to a more general understanding with the concept of
curvature of a surface (which could be either negative or positive) in the 1825 paper on
differential geometry that was published in 1827, it took Riemann’s inaugural lecture in
1854 (published in 1867), which made the crucial distinction between the unbounded and
the infinite, to give the proper perspective. As Gray (2005, p. 514) says
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Figure 40.2. Projection of the Lobachevskii–Bólyai plane onto the interior of a Euclidean disk.

[N]ot only was Riemann hostile to the axiomatic treatment of geometry, he was also willing to
believe that space was not infinite in extent either.

In 1868, the year after the publication of Riemann’s lecture, Beltrami realized that
Lobachevskii’s theorems provide a model of the Lobachevskii–Bólyai plane in a Euclidean
disk. This model is described by Gray (1989, p. 112), as follows. Imagine a directed line
perpendicular to the Lobachevskii–Bólyai plane in Lobachevskii–Bólyai three-dimensional
space. The entire set of directed lines that are parallel (asymptotic) to this line on the same
side of the plane generates a unique horosphere tangent to the plane at its point of intersec-
tion with the line. Some of the lines parallel to the given perpendicular in the given direction
intersect the original plane, and others do not. Those that do intersect it pass through the
portion of the horosphere denoted � in Fig. 40.2. Shortest paths on the horosphere are
obtained as its intersections with planes passing through the point at infinity that serves as
its “center.” These paths are called horocycles. But there is only one horocycle through a
given point in � that does not intersect a given horocycle, so that the geometry of � is
Euclidean. As a result, we have a faithful mapping of the Lobachevskii–Bólyai plane onto
the interior of a disk � in a Euclidean plane, under which lines in the plane correspond
to chords on the disk. This model provides an excellent picture of points at infinity: They
correspond to the boundary of the disk �. Lines in the plane are parallel if and only if the
chords corresponding to them have a common endpoint. Lines that have a common per-
pendicular in the Lobachevskii–Bólyai plane correspond to chords whose extensions meet
outside the circle. It is somewhat complicated to compute the length of a line segment in the
Lobachevskii–Bólyai plane from the length of its corresponding chordal segment in � or
vice versa, and the angle between two intersecting chords is not simply related to the angle
between the lines they correspond to.8 Nevertheless these computations can be carried out
from the trigonometric rules given by Lobachevskii. The result is a perfect model of the
Lobachevskii–Bólyai plane within the Euclidean plane, obtained by formally reinterpreting

8It can be shown that two mutually perpendicular lines correspond to chords having the property that the extension
of each passes through the point of intersection of the tangents at the endpoints of the other. But it is far from
obvious that this property is symmetric in the two chords, as perpendicularity is for lines.
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Figure 40.3. The pseudosphere. Observe that it has no definable curvature at its cusp. Elsewhere its
curvature is constant and negative.

the words line, plane, and angle. If there were any contradiction in the new geometry, there
would be a corresponding contradiction in Euclidean geometry itself.

A variant of this model was later provided by Poincaré, who showed that the diameters
and the circular arcs in a disk that meet the boundary in a right angle can be interpreted as
lines, and in that case angles can be measured in the ordinary way. Distances are measured
using the cross-ratio.

Beltrami also provided a model of a portion of the Lobachevskii–Bólyai plane that could
be embedded in three-dimensional Euclidean space: the pseudosphere obtained by revolving
a tractrix about its asymptote, as shown in Fig. 40.3.

The pseudosphere is not a model of the entire Lobachevskii–Bólyai plane, since its
curvature has a very prominent discontinuity. The problem of finding a surface in three-
dimensional Euclidean space that was a perfect model for the Lobachevskii–Bólyai plane,
in the sense that its geodesics corresponded to straight lines and lengths and angles were
measured in the ordinary way, remained open until Hilbert, in an article “Über Flächen
von konstanter Gaußscher Krümmung” (“On surfaces of constant Gaussian curvature”),
published in the Transactions of the American Mathematical Society in 1901, showed that
no such surface exists.

In 1871, Felix Klein gave a discussion of the three kinds of plane geometry in his arti-
cle “Über die sogennante nicht-Euklidische Geometrie” (“On the so-called non-Euclidean
geometry”), published in the Mathematische Annalen. In that article, he gave the clas-
sification of them that now stands, saying that the points at infinity on a line were
distinct in hyperbolic geometry, imaginary in spherical geometry, and coincident in
parabolic (Euclidean) geometry.

40.8. FOUNDATIONS OF GEOMETRY

The problem of the parallel postulate was only one feature of a general effort on the part of
mathematicians to improve on the rigor of their predecessors. This problem was particularly
acute in the calculus, and the parts of calculus that raised the most doubts were those that
were geometric in nature. Euclid, it began to be realized, had taken for granted not only the
infinitude of the plane, but also its continuity, and in many cases, had not specified what
ordering of points was needed on a line for a particular theorem to be true. If one attempts
to prove these theorems without drawing any figures, it becomes obvious what is being
assumed. It seemed obvious, for example, that a line joining a point inside a circle to a point
outside the circle must intersect the circle in a point, but that fact could not be deduced from
Euclid’s axioms. A complete reworking of Euclid was the result, expounded in detail in
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Hilbert’s Grundlagen der Geometrie (Foundations of Geometry), published in 1903. This
book went through many editions and has been translated into English (Bernays, 1971). In
Hilbert’s exposition, the axioms of geometry are divided into axioms of incidence, order,
congruence, parallelism, and continuity, and examples are given to show what cannot be
proved when some of the axioms are omitted.

One thing is clear: No new comprehensive geometries are to be expected by pursuing
the axiomatic approach of Hilbert. In a way, the geometry of Lobachevskii and Bólyai was
a throwback even in its own time. The development of projective and differential geometry
would have provided—indeed, did provide—non-Euclidean geometry by a natural expan-
sion of the study of surfaces. It was Riemann, not Lobachevskii and Bólyai, who showed the
future of geometry. Earlier, we quoted Gray (2005) on Riemann’s hostility to the axiomatic
Euclidean approach to geometry, often called synthetic geometry to distinguish it from an-
alytic geometry, which presumes a metric and the use of numbers to express lengths and
areas. Gray also noted (p. 513) that earlier investigators had followed an approach similar
to Euclid’s, accepting all his axioms except the parallel postulate and then trying to deduce
the parallel postulate from the others, an approach that Riemann criticized in his inaugural
lecture.

The real “action” in geometry since the early nineteenth century has been in differential,
algebraic, and projective geometry. That is not to say that no new theorems can be produced
in Euclidean geometry, only that their scope is very limited. There are certainly many such
theorems. Coolidge, who undertook the herculean task of writing his History of Geometric
Methods in 1940, stated in his preface that the subject was too vast to be covered in a single
treatise and that “the only way to make any progress is by a rigorous system of exclusion.”
In his third chapter, on “later elementary geometry,” he wrote that “the temptation to run
away from the difficulty by not considering elementary geometry after the Greek period at
all is almost irresistible.” But to attempt to build an entire theory, as Apollonius did, on the
synthetic methods and limited techniques in the Euclidean tool kit, would be futile. Even
Lobachevskii and Bólyai at least used analytic geometry and trigonometry to produce their
results.

PROBLEMS AND QUESTIONS

Mathematical Problems

40.1. Find the Gaussian curvature of the pseudosphere (see Chapter 39 for the definition
of Gaussian curvature) obtained by revolving a tractrix about the x-axis. Its parame-
terization can be taken as

r(u, v) =
(

a sech
(u

a

)
cos(v), a sech

(u

a

)
sin(v), u − a tanh

(u

a

))
.

(The parameter u ranges over all real numbers, v over an interval of length 2π.)
Explain why the pseudosphere can be thought of as “a sphere of imaginary radius.”

40.2. Consider the two Pythagorean theorems in elliptic and hyperbolic geometry exhibited
above, and assume the radius of curvature r is 1 in both cases. How long is the
hypotenuse of an isosceles right triangle whose legs are each of length 3/2? Compare
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those lengths with the Euclidean length. Which of the three is smallest, and which
largest?

40.3. Suppose two chords on a circle, say AB and CD are such that the tangents to the circle
at A and B meet at a point on the extension of CD. (This means, in the Beltrami model
of hyperbolic geometry, that AB is perpendicular to CD.) Prove that the tangents to
the circle at C and D meet at a point on the extension of AB. In other words, if AB

is perpendicular to CD, then CD is perpendicular to AB.

Historical Questions

40.4. In what ways did Saccheri duplicate unknowingly earlier work by Thabit ibn-Qurra.
(See Chapter 27.)

40.5. Why did Gauss not publish his research in hyperbolic geometry?

40.6. What considerations finally led to the recognition by all practicing mathematicians
that non-Euclidean geometry was consistent?

Questions for Reflection

40.7. Gauss realized that the geometry of physical space could be determined by observa-
tion, measuring the angle sum of very large triangles. (Theory shows that if space is
homogeneous and non-Euclidean, then the larger a triangle is, the more its angle sum
will differ from two right angles.) While he was involved in the survey of Hannover,
he tried to determine the angles of a large triangle formed by three mountaintops.
The three that he used, however, were not far enough apart to show any significant
deviation from two right angles. If we use a radius or diameter of the earth’s orbit as
one side of the triangle and a nearby fixed star as the opposite vertex, the result is a
truly large triangle. Such measurements became feasible during the early nineteenth
century, and the two angles that can be measured from the earth (at opposite ends of
the radius or diameter turned out to be very nearly, but not quite, two right angles.
What is the proper conclusion? (1) Space is Euclidean, and the angle at the star (its
parallax) is the supplement of the sum of these two angles? (2) Space is hyperbolic,
and the angle at the star is smaller than that supplement? (3) Space is elliptic, and the
angle at the star is larger than that supplement? Can these alternatives be distinguished
by any observation from the earth?

40.8. Consistency and applicability are two very different issues in the world of mathe-
matics. Granted that the consistency of non-Euclidean geometry was accepted by all
mathematicians by the end of the nineteenth century, what applications have been
found for these new geometries?

40.9. A rear-guard battle against enlightenment can be maintained for a surprisingly long
time, even by people who have some scientific competence and even after there
is a general consensus as to the truth. The long history of circle squarers and an-
gle trisectors is a good example of this phenomenon. Most of those who work on
such problems are non-mathematicians who simply don’t understand the meaning of
infinite precision. They waste their time, but can be made to recognize that a partic-
ular effort has failed, even as they turn again with renewed vigor to engage in this
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hopeless enterprise. Only a few of them are so logic-impaired that they are com-
pletely incapable of coherent reasoning. In the case of non-Euclidean geometry, this
mathematical aberration sometimes expresses itself in attempts to prove the parallel
postulate. One such attempt, from 80 years ago, was made by a quite intelligent and
mathematically semi-literate scholar, the Rev. Dr. Jeremiah J. Callahan, president (at
the time) of Duquesne University. Dr. Callahan wrote a treatise entitled Euclid or
Einstein, in which he “proved” the parallel postulate by redefining parallel lines as
“lines that are equidistant at equidistant points,” not realizing that the assumption that
such lines exist is equivalent to the parallel postulate. He thought he had a proof that
his definition was equivalent to Euclid’s definition. One can have some sympathy for
him on this point, since Euclid’s definition of a line is “that which lies evenly along
itself,” hardly a happy effort, since it would apply equally well to a circle.9

These “mathematical cranks” very frequently attempt to publish their work in
newspapers or get them reported as news. What should mathematicians do when
confronted by reporters asking them to comment on such work? Which is the better
strategy: patient explanation or open contempt? Should the goal be to bring the crank
to recognize his (it’s almost always his, not her) errors? Or should it be to make
the public laugh at the crank? Or to get the public to understand the proper relation
between science and the nonspecialist citizen?

9The Greek word for a straight line is eutheı̂a, from eu- (good, well) and the root the- (put, set, as in our loan word
thesis).



CHAPTER 41

Complex Analysis

In the mid-1960s, the late Walter Rudin (1921–2010), the author of several standard graduate
textbooks in mathematics, wrote a textbook with the title Real and Complex Analysis,
aimed at showing the considerable unity and overlap between the two subjects. It was
necessary to write such a book because real and complex analysis, while sharing common
roots in the calculus, had developed quite differently. The contrasts between the two are
considerable. Complex analysis considers the smoothest, most orderly possible functions,
those that are analytic, while real analysis allows the most chaotic imaginable functions.
Complex analysis was, to pursue our botanical analogy, fully a “branch” of calculus, and
foundational questions hardly entered into it. Real analysis had a share in both roots and
branches, and it was intimately involved in the debate over the foundations of calculus.

What caused the two varieties of analysis to become so different? Both deal with func-
tions, and both evolved under the stimulus of the differential equations of mathematical
physics. The central point is the concept of a function. We have already seen the early
definitions of this concept by Leibniz and John Bernoulli. All mathematicians from the
seventeenth and eighteenth centuries had an intuitive picture of a function as a formula or
expression in which variables are connected by rules derived from algebra or geometry. A
function was regarded as continuous if it was given by a single formula throughout its range.
If the formula changed, the function was called “mechanical” by Euler. Although “mechan-
ical” functions may be continuous in the modern sense, they are not usually analytic. All the
“continuous” functions in the older sense are analytic. They have power-series expansions,
and those power-series expansions are often sufficient to solve differential equations. As a
general signpost indicating where the paths diverge, the path of power-series expansions
and the path of trigonometric-series expansions is a rough guide. A consequence of the
development was that real-variable theory had to deal with very irregular and “badly
behaved” functions. It was therefore in real analysis that the delicate foundational questions
arose. This chapter and the two following are devoted to exploring these developments.

41.1. IMAGINARY AND COMPLEX NUMBERS

Although imaginary numbers seem more abstract to modern mathematicians than negative
and irrational numbers, that is because their physical interpretation is more remote from
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everyday experience. One interpretation of i = √−1, for example, is as a rotation through
a right angle. (Since i2 = −1, the effect of multiplying a real number twice by i is to rotate
the real axis by 180◦. Hence multiplying once by i ought to rotate it by 90◦.)

We have an intuitive picture of the length of a line segment and decimal approximations
to describe that length as a number; that is what gives us confidence that irrational numbers
really are numbers. But it is difficult to think of a rotation as a number. On the other hand,
the rules for multiplying complex numbers—at least those whose real and imaginary parts
are rational—are much simpler and easier to understand than the definition of irrational
numbers. In fact, complex numbers were understood before real numbers were properly
defined; mathematicians began trying to make sense of them as soon as there was a clear
need to do so. That need came not, as one might expect, from trying to solve quadratic
equations such as x2 − 2x + 2 = 0, where the quadratic formula produces x = 1 ± √−1.
It was possible in this case simply to say that the equation had no solution.

To find the origin of imaginary numbers, we need to return to the algebraic solution
of cubic equations that we discussed in Chapters 30 and 37. Recall that the algorithm for
finding the solution had the peculiar property that it involved taking the square root of a
negative number precisely when there were three distinct real solutions. For example, the
algorithm gives the solution of x3 − 7x + 6 = 0 as

x = 3

√

3 −
√

−100

27
− 3

√

3 +
√

−100

27
.

We cannot say that the equation has no roots, since it obviously has 1, 2, and −3 as roots.
Thus the challenge arose: Make sense of this formula. Make it say “1, 2, and −3.”

This challenge was taken up by Bombelli, who wrote a treatise on algebra which he wrote
in 1560, but which was not published until 1572. In that treatise he invented the name “plus
of minus” to denote a square root of −1 and “minus of minus” for its negative. He did not
think of these two concepts as different numbers, but rather as the same number being added
in the first case and subtracted in the second. What is most important is that he realized
what rules must apply to them in computation: plus of minus times plus of minus makes
minus and minus of minus times minus of minus makes minus, while plus of minus times
minus of minus makes plus. Bombelli had an ad hoc method of taking the cube root of a
complex number, opportunistically taking advantage of any extra symmetry in the number
whose root was to be extracted. In considering the equation x3 = 15x + 4, for example,
he found by applying the formula that x = 3

√
2 + √−121 + 3

√
2 − √−121. In this case,

however, Bombelli was able to work backward, since he knew in advance that one root is 4;
the problem was to make the formula say “4.” Bombelli had the idea that the two cube roots
must consist of real numbers together with his “plus of minus” or “minus of minus.” Since
the numbers under the cube root sign are (as we would say) complex conjugates of each
other, it would seem likely that the two cube roots are as well. That is the real parts are equal,
and the imaginary parts are negatives of each other. Since the sum of the two cube roots is
four, it follows that the real parts must be 2. Thus 3

√
2 ± 11

√−1 = 2 ± t
√−1. The number

t is now easily found by cubing: 2 ± 11
√−1 = (8 − 6t2) ± (12t − t3)

√−1. Obviously,
t = 1, and so 3

√
1 ± 11

√−1 = 2 ± √−1. If we didn’t know a root, this approach would
lead nowhere; but if a solution is given, it explains how the imaginary numbers are to be
interpreted and used in computation.
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41.1.1. Wallis

In an attempt to make these numbers more familiar, the English mathematician John Wallis
(1616–1703) pointed out that while no positive or negative number could have a negative
square, nevertheless it is also true that no physical quantity can be negative, that is, less than
nothing. Yet negative numbers were accepted and interpreted as retreats when the numbers
measure advances along a line. Wallis thought that what was allowed in lines might also
apply to areas, pointing out that if 30 acres are reclaimed from the sea, and 40 acres are
flooded, the net amount “gained” from the sea would be −10 acres. Although he did not
say so, it appears that he regarded this real loss of 10 acres as an imaginary gain of a square
of land

√−435600 = 660
√−1 feet on a side.

What he did say in his 1673 treatise on algebra was that one could represent
√−ab as

the mean proportional between a and −b. The mean proportional is easily found for two
positive line segments a and b. Simply lay them end to end, use the union as the diameter of
a circle, and draw the half-chord perpendicular to that diameter at the point where the two
segments meet. That half-chord (sine) is the mean proportional. If only mathematicians had
used the Euclidean construction of the mean proportional, interpreting points to the left of
0 as negative, they would have gotten the geometric interpretation of imaginary numbers
as points on an axis perpendicular to the real numbers, as shown in the drawing on the left
in Fig. 41.1.

As things turned out, however, this idea took some time to catch on. Wallis’ thinking went
in a different direction. When one of the numbers was regarded as negative, he regarded the
negative quantity as an oppositely directed line segment. He then modified the construction
of the mean proportional between the two segments. When two oppositely directed line
segments are joined end to end, one end of the shorter segment lies between the point where
the two segments meet and the other end of the longer segment, so that the point where the
segments join up lies outside the circle passing through their other two endpoints. Wallis
interpreted the mean proportional as the tangent to the circle from the point where the
two segments meet. Thus, whereas the mean proportional between two positive quantities
is represented as a sine, that between a positive and negative quantity is represented as
a tangent. This approach is quite consistent, since the endpoint of b can move in either
direction without upsetting the numerical relationship between the lines. And indeed, it is
easy to verify that the length of Wallis’ tangent line is indeed the mean proportional between
the lengths of the two given lines.

Figure 41.1. (1) How it might have been: The mean proportional between a positive number a and
a negative number −b lies on an axis perpendicular to them. (2) How Wallis thought of it: The mean
proportional is a tangent instead of a sine.
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Figure 41.2. Wallis’ geometric solution of quadratic equation with real roots (left) and complex roots
(right).

Wallis applied this procedure in an “imaginary” construction problem. First he stated the
following “real” problem. Given a triangle having side AP of length 20, side PB of length
15, and altitude PC of length 12, find the length of side AB, taken as base in Fig. 41.2. Wallis
pointed out that two solutions were possible. Using the foot of the altitude as the reference
point C and applying the Pythagorean theorem twice, he found that the possible lengths of
AB were 16 ± 9, that is, 7 and 25. (In general PB = √

AP2 − PC2 ± √
PB2 − PC2.) He

then proposed reversing the data, in effect considering an impossible triangle having side
AP of length 20, side PB of length 12, and altitude PC of length 15. The two solutions would
thus appear to be 5

√
7 ± 9

√−1. Although the algebraic problem has no real solution, a fact
verified by the geometric figure (Fig. 41.1), one could certainly draw the two line segments
AB. These line segments could therefore be interpreted as the numerical solutions of the
equation, representing a triangle with one side (AB) having imaginary (actually complex)
length: AB = AC ± BC. In the figure AC = 5

√
7, and so the two sides drawn as BC

(which really do have length 9) represent ±9
√−1. Once again, the imaginary part of the

representation is oblique to the real part, but not perpendicular to it.
The rules given by Bombelli had made imaginary and complex numbers accessible, and

they turned out to be very convenient in many formulas. Euler made free use of them,
studying power series in which the variables were allowed to be complex numbers and
deriving a famous formula

ev
√−1 = cos v + √−1 sin v .

Euler derived this result in a paper on ballistics written around 1727 (see Smith, 1929, pp.
95–98), just after he moved to Russia. He had no thought of representing

√−1 as we now
do, on a line perpendicular to the real axis.

41.1.2. Wessel

Wallis’ work had given the first indication that complex numbers would have to be inter-
preted as line segments in a plane, a discovery made again 70 years later by the Norwegian
surveyor Caspar Wessel (1745–1818). The only mathematical paper he ever wrote was
delivered to the Royal Academy in Copenhagen, Denmark in 1797, but he had been in pos-
session of the results for about a decade at that time. In that paper (Smith, 1929, pp. 55–66),
he explained how to multiply lines in a plane by multiplying their lengths and adding the
angles they make with a given reference line, on which a length is chosen to represent +1:



IMAGINARY AND COMPLEX NUMBERS 499

Let +1 designate the positive rectilinear unit and +ε a certain other unit perpendicular to
the positive unit and having the same origin; the direction angle of +1 will be equal to
0◦, that of −1 to 180◦, that of +ε to 90◦, and that of −ε to −90◦ or 270◦. By the rule
that the direction angle of the product shall equal the sum of the angles of the factors, we
have: (+1)(+1) = +1; (+1)(−1) = −1; (−1)(−1) = +1; (+1)(+ε) = +ε; (+1)(−ε) = −ε;
(−1)(+ε) = −ε; (−1)(−ε) = +ε; (+ε)(+ε) = −1; (+ε)(−ε) = +1; (−ε)(−ε) = −1. From
this it is seen that ε is equal to

√−1. [Smith, 1929, p. 60]

Wessel noticed the connection of these rules with the addition and subtraction formulas
for sign and cosine and gave the formula (cos x + ε sin x)(cos y + ε sin y) = cos(x + y) +
ε sin(x + y). On that basis he was able to reduce the extraction of the nth root of a complex
number to extracting the same root for a positive real number and dividing the polar angle
by n.

41.1.3. Argand

The reaction of the mathematical community to this simple but profound idea was less than
overwhelming. Wessel’s work was forgotten for a full century. In the meantime, another
mathematician by avocation, the French accountant Jean Argand (1768–1822), published
the small book Essai sur une manière de représenter les quantités imaginaires dans les
constructions géométriques at his own expense in 1806, modestly omitting to name himself
as its author, in which he advocated essentially the same idea, thinking, as Wallis had done,
of an imaginary number as the mean proportional between a positive number and a negative
number. Through a complicated series of events this book and its author gradually became
known in the mathematical community.

There was resistance to the idea of interpreting complex numbers geometrically, since
they had arisen in algebra. Geometry was essential to the algebra of complex numbers, as
shown by the fact that a proof of the fundamental theorem of algebra by Gauss in 1799 is
based on the idea of intersecting curves in a plane. The lemmas that Gauss used for the
proof had been proved earlier by Euler using the algebra of imaginary numbers, but Gauss
gave a new proof using only real numbers, precisely to avoid invoking any properties of
imaginary numbers. Nevertheless, because he developed a good portion of the theory of
complex integrals and analytic function theory, the complex plane is now often called the
Gaussian plane.1

Even though he avoided the algebra of imaginary numbers, Gauss still needed the con-
tinuity properties of real numbers, which, as we just saw, were not fully arithmetized until
many years later.2 Continuity was a geometric property that occurred implicitly in Euclid,
but Gauss expressed the opinion that continuity could be arithmetized. In giving a fifth proof
of this theorem half a century later, he made full use of complex numbers.

1Hille (1959, p. 18) noted that the representation of complex numbers on the plane is called le diagramme d’Argand
in France and credited the Norwegians with “becoming modesty” for not claiming det Wesselske planet.
2The Czech scholar Bernard Bolzano (1781–1848) showed how to approach the idea of continuity analytically in
an 1817 paper. His work anticipated Dedekind’s arithmetization of real numbers, which will be discussed in the
next chapter.



500 COMPLEX ANALYSIS

41.2. ANALYTIC FUNCTION THEORY

Calculus began with a limited stock of geometry: a few curves and surfaces, all of which
could be described analytically in terms of rational, trigonometric, exponential, and loga-
rithmic functions of real variables. Soon, however, calculus was used to formulate problems
in mathematical physics as differential equations. To solve those equations, the preferred
technique was integration, but where integration failed, power series were the technique
of first resort. These series automatically brought with them the potential of allowing the
variables to assume complex values, since a series expansion in powers of x − x0 that con-
verges at x = x1, automatically converges for all complex numbers inside the circle through
x1 with center at x0. But then, integration and differentiation had to be defined for complex
functions of a complex variable. The result was a theory of analytic functions of a complex
variable involving complex integrals. The scope of this theory was much vaster than the
materials that led to its creation.

In his 1748 Introductio, Euler emended the definition of a function, saying that a function
is an analytic expression formed from a variable and constants. The rules for manipulating
symbols were agreed on as long as only finite expressions were involved. But what did
the symbols represent? Euler stated that variables were allowed to take on negative and
imaginary values. Thus, even though the physical quantities the variables represented were
measured as positive rational numbers, the algebraic and geometric properties of negative,
irrational, and complex numbers could be invoked in the analysis. The extension from finite
to infinite expressions was not long in coming.

Lagrange undertook to reformulate the calculus in his treatises Théorie des fonctions
analytiques (1797) and Leçons sur le calcul des fonctions (1801), basing it entirely on
algebraic principles and stating as a fundamental premise that the functions to be considered
are those that can be expanded in power series (having no negative or fractional powers
of the variable). With this approach, the derivatives of a function need not be defined as
ratios of infinitesimals, since they can be defined in terms of the coefficients of the series
that represents the function. Functions having a power series representation are known
nowadays as analytic functions from the title of Lagrange’s work.

41.2.1. Algebraic Integrals

Early steps toward complexification were taken only on a basis of immediate necessity. As
we have already seen, the applications of calculus in solving differential equations made
the computation of integrals extremely important. Now, computing the derivative never
leads outside the class of elementary functions and leaves algebraic functions algebraic,
trigonometric functions trigonometric, and exponential functions exponential; integrals,
however, are a very different matter. Algebraic functions often have nonalgebraic integrals,
as Leibniz realized very early. The relation we now write as

arccos(1 − x) =
∫ x

0

1√
2t − t2

dt

was written by him as

a =
∫

dx :
√

2x − x2 ,
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where x = 1 − cos a. Eighteenth-century mathematicians were greatly helped in handling
integrals like this by the use of trigonometric functions. It was therefore natural that they
would see the analogy when more complicated integrals came to be considered. Such
problems arose from the study of pendulum motion and the rotation of solid bodies in
physics, but we shall illustrate it with examples from pure geometry: the rectification of the
ellipse and the division of the lemniscate3 into equal arcs. For the circle, we know that the
corresponding problems lead to the integral

∫ x

0

1√
1 − t2

dt

for the length of the arc of the unit circle above the interval [0, x] and an equation

∫ y

0

1√
1 − t2

dt = 1

n

∫ x

0

1√
1 − t2

dt,

which can be written in differential form as

dx√
1 − x2

= n dy
√

1 − y2
,

for the division of that arc into n equal pieces.
Trigonometry helps to solve this last equation. Instead of the function arcsin(x) or

− arccos(x) that the integral actually represents, it makes more sense to look at an in-
verse of it, say the cosine function. This function provides an algebraic equation through
its addition formula,

a0y
n − a2y

n−2 + a3y
n−4 − · · · = x ,

relating the abscissas of the end of the given arc (x) and the end of the nth part of it (y). The
algebraic nature of this equation determines whether the division problem can be solved
with ruler and compass. In particular, for n = 3 and a 60-degree arc (x = 1/2), for which the
equation is 4y3 − 3y = 1/2, such a solution does not exist. Thus the problems of computing
arc length on a circle and equal division of its arcs lead to an interesting combination of
algebra, geometry, and calculus. Moreover, the periodicity of the inverse function of the
integral helps to find all solutions of this equation.

The division problem was fated to play an important role in study of integrals of alge-
braic functions. The Italian nobleman Giulio de’ Toschi Fagnano (1682–1766) studied the
problem of rectifying the lemniscate, whose polar equation is r2 = 2 cos(2θ). Its element
of arc is

√
2(1 − 2 sin2 θ)−1/2 dθ, and the substitution u = tan θ turns this expression into√

2(1 − u4)−1/2 du. Thus, the rectification problem involves evaluating the integral

∫ x

0

√
2√

1 − u4
du,

3The simplest lemniscate, first described by James Bernoulli in 1694, is the set of points the product of whose
distances from the points (+a, 0) and (−a, 0) is a2. It looks like a figure eight and has equation (x2 + y2)2 =
2a2(x2 − y2).
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while the division problem involves solving the differential equation

dz√
1 − z4

= n du√
1 − u4

.

Fagnano gave the solution for n = 2 as the algebraic relation

u
√

2√
1 − u4

= 1

z

√
1 −

√
1 − z4 .

Euler observed the analogy between these integrals and the circular integrals just discussed,
and suggested that it would be reasonable to study the inverse function. But Euler lived at
a time when the familiar functions were still the elementary ones. He found a large number
of integrals that could be expressed in terms of algebraic, logarithmic, and trigonometric
functions and showed that there were others that could not be so expressed.

41.2.2. Legendre, Jacobi, and Abel

The foundation for further work in integration was laid by Legendre, who invented the
term elliptic integral. Off and on for some 40 years between 1788 and 1828, he thought
about integrals like those of Fagnano and Euler, classified them, computed their values, and
studied their properties. He found their algebraic addition formulas and thereby reduced the
division problem for these integrals to the solution of algebraic equations. Interestingly, he
found that whereas the division problem requires solving an equation of degree n for the
circle, it requires solving an equation of degree n2 for the ellipse. After publishing his results
as exercises in integral calculus in 1811, he wrote a comprehensive treatise in the 1820s. As
he was finishing the third volume of this treatise he discovered a new set of transformations
of elliptic integrals that made their computation easier. (He already knew one set of such
transformations.) Just after the treatise appeared in 1827, he found to his astonishment that
Jacobi had discovered the same transformations, along with others, and had connected them
with the division problem. Jacobi’s results in turn were partially duplicated by those of Abel.

Abel, who admired Gauss, was proud of having achieved the division of the lemniscate
into 17 equal parts,4 just as Gauss had done for the circle. The secret for the circle was to use
the algebraic addition formula for trigonometric functions. For the lemniscate, as Legendre
had shown, the equation was of higher degree. Abel was able to solve it by using complex
variables, and in the process, he discovered that the inverse functions of the elliptic integrals,
when regarded as functions of a complex variable, were doubly periodic. The double period
accounted for the fact that the division equation was of degree n2 rather than n. Without
complex variables, the theory of elliptic integrals would have been a disconnected collection
of particular results. With them, a great simplicity and unity was achieved. Abel went on to
study algebraic addition formulas for very general integrals of the type

∫
R

(
x, y(x)

)
dx,

4Or, more generally, a Fermat prime number of parts.
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where R(x, y) is a rational function of x and y and y(x) satisfies a polynomial equation
P

(
x, y(x)

) = 0. Such integrals are now called abelian integrals in his honor. In so doing,
he produced one of the ground-breaking theorems of the early nineteenth century.

The model for Abel’s theorem, as for so much of algebraic function theory, comes from
the theory of trigonometric functions. The fact that

∫ x

0

1√
1 − t2

dt = arcsin(x)

combines with the addition law sin(u + v) = sin(u) cos(v) + sin(v) cos(u) to produce an
addition law for these integrals.

∫ x

0

1√
1 − t2

dt +
∫ y

0

1√
1 − t2

dt =
∫ z

0

1√
1 − t2

dt,

where z = x
√

1 − y2 + y
√

1 − x2. By induction, the sum of any number of such integrals
can be reduced to a single integral whose upper limit is an algebraic function of the upper
limits of the terms in the sum. In particular, because z is an algebraic function of x and
y the addition formula reduces the problem of trisecting an angle to a matter of solving
the equation 4u3 − 3u = v, where v = cos(θ) and u = cos(θ/3). In general, dividing an arc
into n equal pieces is a matter of solving an equation of degree n.

As Legendre discovered, the same is true for the elliptic integral:

∫ x

0

1
√

(1 − t2)(1 − c2t2)
dt +

∫ y

0

1
√

(1 − t2)(1 − c2t2)
dt =

∫ z

0

1
√

(1 − t2)(1 − c2t2)
,

where

z = x
√

(1 − y2)(1 − c2y2) + y
√

(1 − x2)(1 − c2x2)

1 − c2x2y2 .

Thus, the sum of any number of elliptic integrals can be reduced to a single integral whose
upper limit is an algebraic function of their upper limits. Again, this means that dividing
an arc of the lemniscate into n equal pieces is a matter of solving an algebraic equation.
However, because of the complexity of the addition formula for elliptic integrals, that
equation is of degree n2, not n.

Abel established a great generalization of this fact: For each polynomial P(x, y), there is
a number p, now called the genus of the curve P(x, y) = 0, such that a sum of any number of
integrals having R(x, y) as an integrand with different limits of integration can be expressed
in terms of just p integrals, whose limits of integration are algebraic functions of those in
the given sum.5 For elliptic integrals, p = 1, and that is the content of the algebraic addition
formulas discovered by Legendre. For a more complicated integral, say

∫
1√
q(x)

dx ,

5To avoid complications, we are not discussing Legendre’s three kinds of elliptic integrals. For those who know
what they are, the results we state here should be assumed to apply only to integrals of first kind.
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where q(x) is a polynomial of degree 5 or higher, the genus will be higher. If P(x, y) =
y2 − q(x), where the polynomial q is of degree 2p + 1 or 2p + 2, the genus is p.

After Abel’s premature death in 1829, Jacobi continued to develop algebraic function
theory. In 1832, he realized that for algebraic integrals of higher genus, the limits of inte-
gration in the p integrals to which a sum was reduced could not be determined, since there
were p integrals and only one equation connecting them to the variable in terms of which
they were to be expressed. He therefore had the idea of adjoining extra equations in order to
determine these limits. For example, if q(x) is of degree 5, he posed the problem of solving
for x and y in terms of u and v in the equations

u =
∫ x

0

1√
q(t)

dt +
∫ y

0

1√
q(t)

dt

v =
∫ x

0

t√
q(t)

dt +
∫ y

0

t√
q(t)

dt .

This problem became known as the Jacobi inversion problem. Solving it took a quarter of
a century and led to progress in both complex analysis and algebra.

41.2.3. Theta Functions

Jacobi himself gave this solution a start in connection with elliptic integrals. Although a
nonconstant function that is analytic in the whole plane cannot be doubly periodic (because
its absolute value cannot attain a maximum), a quotient of such functions can be, and Ja-
cobi found the ideal numerators and denominators to use for expressing the doubly periodic
elliptic functions as quotients: theta functions. The secret of solving the Jacobi inversion
problem was to use theta functions in more than one complex variable, but working out
the proper definition of those functions and the mechanics of applying them to the problem
required the genius of Riemann and Weierstrass. These two giants of nineteenth-century
mathematics solved the problem independently and simultaneously in 1856, but consid-
erable preparatory work had been done in the meantime by other mathematicians. The
importance of algebraic functions as the basic core of analytic function theory cannot be
overemphasized. Klein (1926, p. 280) goes so far as to say that Weierstrass’ purpose in life
was

to conquer the inversion problem, even for hyperelliptic integrals of arbitrarily high order, as
Jacobi had foresightedly posed it, perhaps even the problem for general abelian integrals, using
rigorous, methodical work with power series (including series in several variables). It was in
this way that the topic called the Weierstrass theory of analytic functions arose as a by-product.

41.2.4. Cauchy

Cauchy’s name is associated most especially with one particular approach to the study of
analytic functions of a complex variable, that based on complex integration. A complex
variable is really two variables, as Cauchy was saying even as late as 1821. But a function
is to be given by the same symbols, whether they denote real or complex numbers. When
we integrate and differentiate a given function, which variable should we use? Cauchy
discovered the answer, as early as 1814, when he first discussed such questions in print.
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The value of the function is a complex number that can also be represented in terms of two
real numbers u and v, as u + iv. If the derivative is to be independent of the real variable
on which it is taken, these must satisfy the equations we now call the Cauchy–Riemann
equations:

∂u

∂x
= ∂v

∂y
;

∂u

∂y
= −∂v

∂x
.

In that case, as Cauchy saw, if we are integrating u + iv in a purely formal way, separating
real and imaginary parts, over a path from the lower left corner of a rectangle (x0, y0) to
its upper right corner (x1, y1), the same result is obtained whether the integration proceeds
first vertically, then horizontally or first horizontally, then vertically. As Gauss had noted
as early as 1811, Cauchy observed that the function 1/(x + iy) did not have this property
if the rectangle contained the point (0, 0). The difference between the two integrals in
this case was 2πi, which Cauchy called the residue. Over the period from 1825 to 1840,
Cauchy developed from this theorem what is now known as the Cauchy integral theorem,
the Cauchy integral formula, Taylor’s theorem, and the calculus of residues. The Cauchy
integral theorem states that if γ is a closed curve inside a simply connected region6 in which
f (z) has a derivative then

∫

γ

f (z) dz = 0 .

If the real and imaginary parts of this integral are written out and compared with the
Cauchy–Riemann equations, this formula becomes a simple consequence of what is known
as Green’s theorem (the two-variable version of the divergence theorem), published in
1828 by George Green (1793–1841) and simultaneously in Russia by Mikhail Vasilevich
Ostrogradskii (1801–1862). When combined with the fact that the integral of 1/z over a
curve that winds once around 0 is 2πi, this theorem immediately yields as a consequence
the Cauchy integral formula

f (z0) = 1

2πi

∫

γ

f (z)

z − z0
dz.

When generalized, this formula becomes the residue theorem. Also from it, one can obtain
estimates for the size of the derivatives. Finally, by expanding the denominator as a geometric
series in powers of z − z1, where z1 lies inside the curve γ , one can obtain the Taylor series
expansion of f (z). These theorems form the essential core of modern first courses in complex
analysis. This work was supplemented by a paper of Pierre Laurent (1813–1854), submitted
to the Paris Academy in 1843, in which power series expansions about isolated singularities
(Laurent series) were studied.

Cauchy was aware of the difficulties that arise in the case of multivalued functions and
introduced the idea of a barricade (ligne d’arrêt) to prevent a function from assuming more
than one value at a given point. As mentioned in Section 38.3 of Chapter 38, his student

6See Chapter 38 for the definition of a simply connected region.
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Puiseux studied the behavior of algebraic functions in the neighborhood of what we now
call branch points, which are points where the distinct values of a multi-valued function
coalesce two or more at a time.

41.2.5. Riemann

The work of Puiseux on algebraic functions of a complex variable was to be subsumed in
two major papers of Riemann. The first of these, his doctoral dissertation, contained the
concept now known as a Riemann surface. It was aimed especially at simplifying the study
of an algebraic function w(z) satisfying a polynomial equation P

(
z, w(z)

) ≡ 0. In a sense,
the Riemann surface revealed that all the significant information about the function was
contained precisely in its singularities—the way it branched at its branch points. Information
about the surface was contained in its genus, defined as half the total number of branch points,
counted according to order, less the number of sheets in the surface, plus 1.7 The Riemann
surface of w = √

z, for example, has two branch points (0 and ∞), each of order 1, and two
sheets, resulting in genus 0.

The smooth transition from z1 to z2 is shown in Fig. 41.3.8 The two z-planes are cut
along the positive real axis or any other ray emanating from the “branch point” 0. Then
the lower side of each cut is glued to the upper side of the other. (This will be easiest to
visualize if you imagine the z2-plane picked up and turned over so that the dotted edge of
the z2-plane lies on the dotted edge of the z1 plane.) The result is the Riemann surface of the
function w = √

z. It consists of two “sheets” (copies of the complex plane) glued together
as just stated. You can easily make a model of this surface with two sheets of paper, a pair
of scissors, and cellophane tape. On such a model you can move your finger smoothly and
continuously over the entire Riemann surface, without any jumps when it moves from the
z1 sheet to the z2 sheet. In particular, if you describe a small circle about the branch point 0
at the end of the cut, you will see that it crosses over to the back of the paper when it moves
across the dotted edges that have been glued together, makes a whole circle on the back,
then crosses over again to the front when it moves across the solid line.

At every point on the Riemann surface except the branch point z = 0, the mapping
z �→ w is analytic; that is, it has a power-series representation. For example, near the point
z1 = 2, we can express w as a series of powers of z − 2 using the binomial theorem:

√
z = √

2 + z − 2 =
√

2
√

1 + (z − 2)/2

=
√

2
(

1 + 1

2
(z − 2) +

1
2 (− 1

2 )

222!
(z − 2)2 +

1
2 (− 1

2 )(− 3
2 )

233!
(z − 2)3 + · · ·

)

=
√

2
(

1 + 1

2
(z − 2) − 1

32
(z − 2)2 + 1

128
(z − 2)3 − 5

2048
(z − 2)4 + · · ·

)
.

Riemann’s geometric approach to the subject brought out the duality between surfaces
and mappings of them, encapsulated in a formula known as the Riemann–Roch theorem
(after Gustav Roch, 1839–1866). This formula connects the dimension of the space of
functions on a Riemann surface having prescribed zeros and poles (places where it becomes
infinite) with the genus of the surface.

7Klein (1926, p. 258) ascribes this definition to Alfred Clebsch (1833–1872).
8This figure is taken from the author’s Classical Algebra (Wiley, 2008).
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Figure 41.3. The Riemann surface of w = √
z. The solid z1 circle corresponds to the solid w1

semicircle, and the dashed z2 circle to the dashed w2 semicircle.

In 1856 Riemann used his theory to give a very elegant solution of the Jacobi inversion
problem. Since an analytic function must be constant if it has no poles on a Riemann surface,
it was possible to use the periods of the integrals that occur in the problem to determine the
function up to a constant multiple and then to find quotients of theta functions having the
same periods, thereby solving the problem.

41.2.6. Weierstrass

Of the three founders of analytic function theory, Weierstrass was the most methodical. He
had found his own solution to the Jacobi inversion problem and submitted it simultaneously
with Riemann. When he saw Riemann’s work, he withdrew his own paper and spent many
years working out in detail how the two approaches related to each other. Where Riemann
had allowed his geometric intuition to build castles in the air, so to speak, Weierstrass
was determined to anchor his ideas in a firm algebraic foundation. Instead of picturing
kinematically a point wandering from one sheet of a Riemann surface to another, Weierstrass
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preferred a static object that he called a Gebilde (structure). His Gebilde was based on the
set of pairs of complex numbers (z, w) satisfying a polynomial equation p(z, w) = 0, where
p(z, w) was an irreducible polynomial in the two variables. These pairs were supplemented
by certain ideal points of the form (z, ∞), (∞, w), or (∞, ∞) when one or both of w or z

tended to infinity as the other approached a finite or infinite value. Around all but a finite
set of points, it was possible to expand w in an ordinary Taylor series in nonnegative integer
powers of z − z0. For each of the exceptional points, there would be one or more expansions
in fractional or negative powers of z − z0, as Puiseux and Laurent had found. These power
series were Weierstrass’ basic tool in analytic function theory.

41.3. COMPARISON OF THE THREE APPROACHES

Cauchy’s approach seems to subsume the work of both Riemann and Weierstrass. Riemann,
to be sure, had a more elegant way of overcoming the difficulty presented by multivalued
functions, but Cauchy and Puiseux between them came very close to doing something
logically equivalent. Weierstrass began with the power series and considered only functions
that have a power-series development. That requirement appears to eliminate a large number
of functions from consideration at the very outset, whereas Cauchy assumed only that the
function is continuously differentiable and only later showed that in fact it must have a
power-series development.9

On the other hand, when this theory is applied to study a particular function, the appar-
ently greater generality of Cauchy’s approach seems less obvious. Before you can prove
anything about the function using Cauchy’s theorems, you must verify that the function is
differentiable. In order to do that, you have to know the definition of the function. How
is that definition to be communicated, if not through some formula like a power series or
other well-known function whose analyticity is known? Weierstrass saw this point clearly;
in 1884 he said, “No matter how you twist and turn, you cannot avoid using some sort of
analytic expressions such as power series” (quoted by Siegmund-Schultze, 1988, p. 253).

PROBLEMS AND QUESTIONS

Mathematical Problems

41.1. The formula cos θ = 4 cos3(θ/3) − 3 cos(θ/3), can be rewritten as the equation
p(cos θ/3, cos θ) = 0, where p(x, y) = 4x3 − 3x − y. Observe that cos(θ + 2mπ) =
cos θ for all integers m, so that

p

(
cos

(θ + 2mπ

3

)
, cos θ

)
≡ 0 ,

for all integers m. That makes it very easy to construct the roots of the equation
p(x, cos θ) = 0. They must be cos

(
(θ + 2mπ)/3

)
for m = 0, 1, 2. What is the anal-

ogous equation for dividing a circular arc into five equal pieces?

9Cauchy assumed that the derivative was continuous. It was later shown by Edouard Goursat (1858–1936) in 1900
that differentiability implies continuous differentiability on open subsets of the plane.
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41.2. Suppose (as is the case for elliptic functions) that f (x) is doubly periodic, that is,
f (x + mω1 + nω2) = f (x) for all m and n. Suppose also that there is a polynomial
p(x) of degree n2 such that p

(
f (θ/n)

) = f (θ) for all θ. Finally, suppose you know
a number say ϕ, such that f (ϕ) = C. Show that the roots of the equation p(x) = C

must be xm,n = f (ϕ/n + (k/n)ω1 + (l/n)ω2), where k and l range independently
from 0 to n − 1.

41.3. Use L’Hospital’s rule to verify that

lim
h→0

f (x + 2h) + f (x) − 2f (x + h)

h2 = f ′′(x)

for any function f (x) such that f ′′(x) is continuous. Then suppose that f (x) =∑
anx

n and g(x) = ∑
bnx

n are two analytic functions on the interval −1 < x < 1
such that f (x) = g(x) for some interval −ε < x < ε for some positive number ε,
no matter how small. Prove that f (0) = g(0), f ′(0) = g′(0), and f ′′(0) = g′′(0).
(Similarly, it can be shown by using higher-order difference quotients of the func-
tion f to get its derivatives at 0 that f (n)(0) = g(n)(0) for all n. It then follows
that an = f (n)(0)/n! = g(n)(0)/n! = bn, and therefore that f (x) = g(x) everywhere.
Thus, two analytic functions that coincide at all points in some interval around 0 must
coincide everywhere.)

Historical Questions

41.4. What mathematical problems forced mathematicians to take complex numbers seri-
ously instead of rejecting them as unusable?

41.5. What role did algebraic integrals play in the development of modern complex
analysis?

41.6. What differences exist among the approaches of Cauchy, Riemann, and Weierstrass
to the theory of analytic functions of a complex variable?

Questions for Reflection

41.7. We noted at the beginning of this chapter that convergent power series can represent
only the ultra-smooth functions we call analytic, while convergent trigonometric
series can represent functions that have very arbitrary breaks and kinks in their graphs.
Considering that every complex number z has a polar representation z = r(cos θ +
i sin θ), and zn = rn

(
cos(nθ) + i sin(nθ)

)
, how do you account for this difference?

41.8. What value is there in starting from Cauchy’s assumption that a function has a com-
plex derivative at every point of a domain and then using the Cauchy integral to prove
that it must then have a convergent power series expansion about each point? Weier-
strass saw none, and preferred merely to start with the convergent power series as the
definition of the function. Of course, it is easy to show that a convergent power series
has a complex derivative at each point, so that the two definitions are equivalent. Is
there an aesthetic or psychological reason for preferring one to the other?
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41.9. Lagrange championed the use of analytic functions in physics because of the property
that all the derivatives of an analytic function at a point can be computed (using higher-
order differences) from the values of the function in an arbitrarily small neighborhood
of the point. If the independent variable is time, this implies that the values the function
over any time interval, no matter how short, determine its value at all subsequent times.
In short, analytic functions are deterministic. How does this property mesh with the
assumptions of classical physics? How would today’s physicists look at it?



CHAPTER 42

Real Numbers, Series, and Integrals

In complex analysis attention is restricted from the outset to functions that have a complex
derivative. That very strong assumption automatically ensures that the functions studied
will have convergent Taylor series. If only mathematical physics could manage with just
such smooth functions, the abstruse concepts that fill up courses in real analysis would
not be needed. But the physical world is full of boundaries, where the density of matter
is discontinuous, temperatures undergo abrupt changes, light rays reflect and refract, and
vibrating membranes are clamped. For these situations the imaginary part of the variable,
which often has no physical interpretation anyway, might as well be dropped, since its
only mathematical role was to complete the analytic function. From that point on, anal-
ysis proceeds on the basis of real variables only. Real analysis, which represents another
extension of calculus, has to deal with very general, “rough” functions. All of the logical
difficulties about calculus poured into this area of analysis, including the important ques-
tions of convergence of series, existence of maxima and minima, allowable ways of defining
functions, continuity, and the meaning of integration. As a result, real analysis is so much
less unified than complex analysis that it hardly appears to be a single subject. Its basic
theorems do not follow from one another in any canonical order, and their proofs tend to be
a bag of special tricks, rarely remembered for long except by professors who lecture on the
subject constantly.

The subject arose in the attempts to solve the partial differential equations of mathe-
matical physics, the wave equation, the Laplace equation, and, later on, the heat equation.
Thus, to speak paradoxically, its roots are in the branches of the subject. At the same time,
real analysis techniques forced mathematicians to confront the issues of what is meant by
an integral, in what sense a series converges, and what, in the final analysis, a real number
actually is. Thus, the branches of real analysis extended into the roots of analysis in general.

The free range of intuition suffered only minor checks in complex analysis. In that subject,
what one wanted to believe very often turned out to be true. But real analysis almost seemed
to be trapped in a hall of mirrors at times, as it struggled to gain the freedom to operate
while avoiding paradoxes and contradictions. The generality of operations allowed in real
analysis has fluctuated considerably over the centuries. While Descartes had imposed rather
strict criteria for allowable curves (functions), Daniel Bernoulli attempted to represent very
arbitrary functions as trigonometric series, and the mathematical physicist André-Marie
Ampère (1775–1836) attempted to prove that a continuous function (in the modern sense,
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but influenced by preconceptions based on the earlier sense) would have a derivative at
most points. The critique of this proof was followed by several decades of backtracking, as
more and more exceptions were found for operations with series and integrals that appeared
to be formally all right. Eventually, when a level of rigor was reached that eradicated the
known paradoxes, the time came to reach for more generality. Georg Cantor’s set theory
played a large role in this increasing generality, while developing paradoxes of its own. In
the twentieth century, the theories of generalized functions and distributions restored some
of the earlier freedom by inventing a new object to represent the derivative of functions that
have no derivative in the ordinary sense.

42.1. FOURIER SERIES, FUNCTIONS, AND INTEGRALS

There is a symmetry in the development of real and complex analysis. Broadly speaking,
both arose from differential equations, and complex analysis grew out of power series, while
real analysis grew out of trigonometric series. These two techniques, closely connected
with each other through the relation zn = rn(cos nθ + i sin nθ), led down divergent paths
that nevertheless crossed frequently in their meanderings. The real and complex viewpoints
in analysis began to diverge with the study of the vibrating string problem in the 1740s by
d’Alembert, Euler, and Daniel Bernoulli.

For a string fastened at two points, say (0, 0) and (L, 0) and vibrating so that its dis-
placement above or below the point (x, 0) at time t is y(x, t), mathematicians agreed that the
best compromise between realism and comprehensibility to describe this motion was the
one-dimensional wave equation, which d’Alembert studied in 1747,1 publishing the results
in 1749:

∂2y

∂t2 = c2 ∂2y

∂x2 .

D’Alembert exhibited a very general solution of this problem in the form

y(x, t) = �(t + x) + �(t − x) ,

where for simplicity he assumed that c = 1. The equation alone does not determine the
function, of course, since the vibrations depend on the initial position and velocity of the
string.

The following year, Euler took up this problem and commented on d’Alembert’s solution.
He observed that the initial position could be any shape at all, “either regular or irregular
and mechanical.” D’Alembert found that claim hard to accept. After all, the functions �

and � had to have periodicity and parity properties. How else could they be defined except
as power series containing only odd or only even powers? Euler and d’Alembert were not
interpreting the word “function” in the same way. Euler was even willing to consider initial
positions f (x) with corners (a “plucked” string), whereas d’Alembert insisted that f (x)
must have two derivatives in order to to satisfy the equation.

1Thirty years earlier, Brook Taylor (1685–1731) had analyzed the problem geometrically and concluded that the
normal acceleration at each point would be proportional to the normal curvature at that point. That statement is
effectively the same as this equation, and it was quoted by d’Alembert.
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Three years later, Daniel Bernoulli tried to straighten this matter out, giving a solution
in the form

y(x, t) =
∞∑

n=1

an sin
(nπx

L

)
cos

(nπct

L

)
,

which he did not actually write out. Here the coefficients an were to be chosen so that the
initial condition was satisfied, that is,

f (x) = y(x, 0) =
∞∑

n=1

an sin
(nπx

L

)
.

Observing that he had an infinite set of coefficients at his disposal for “fitting” the function,
Bernoulli claimed that “any” function f (x) had such a representation. Bernoulli’s solu-
tion was the first of many instances in which the classical partial differential equations of
mathematical physics—the wave, heat, and potential equations—were studied by separat-
ing variables and superposing the resulting solutions. The technique was ultimately to lead
to what are called Sturm–Liouville problems.

Before leaving the wave equation, we must mention one more important intersection
between real and complex analysis in connection with it. In studying the action of gravity,
Pierre-Simon Laplace (1749–1827) was led to what is now known as Laplace’s equation
in three variables. The two-variable version of this equation in rectangular coordinates—
Laplace was using polar coordinates—is

∂2u

∂x2 + ∂2u

∂y2 = 0.

The operator on the left-hand side of this equation is known as the Laplacian. Since Laplace’s
equation can be thought of as the wave equation with velocity c = √−1, complex numbers
again enter into a physical problem. Recalling d’Alembert’s solution of the wave equation,
Laplace suggested that the solutions of his equation might be sought in the form f (x +
y
√−1) + g(x − y

√−1). Once again a problem that started out as a real-variable problem
led naturally to the need to study functions of a complex variable.

42.1.1. The Definition of a Function

Daniel Bernoulli accepted his father’s definition of a function as “an expression formed
in some manner from variables and constants,” as did Euler and d’Alembert. But those
words seemed to have different meanings for each of them. Daniel Bernoulli thought that
his solution met the criterion of being “an expression formed from variables and constants.”
His former colleague in the Russian Academy of Sciences,2 Euler, saw the matter differently.
This time it was Euler who argued that the concept of function was being used too loosely.
According to him, since the right-hand side of Bernoulli’s formula consisted of odd functions
of period 2L, it could represent only an odd function of period 2L. Therefore, he said, it

2Bernoulli had left St. Petersburg in 1733, Euler in 1741.
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did not have the generality of the solution he and d’Alembert had given. Bottazzini (1986,
p. 29) describes the situation concisely:

We are here facing a misunderstanding that reveals one aspect of the contradictions between
the old and new theory of functions, even though they are both present in the same man, Euler,
the protagonist of this transformation.

The difference between the old and new concepts is seen in the simplest example, the
function |x|, which equals x when x ≥ 0 and −x for x ≤ 0. We have no difficulty thinking
of this function as one function. It appeared otherwise to nineteenth-century mathemati-
cians. Fourier described what he called a “discontinuous function represented by a definite
integral” in 1822: the function

2

π

∫ ∞

0

cos qx

1 + q2 dq =
{

e−x if x ≥ 0,

ex if x ≤ 0.

Fifty years later, Gaston Darboux (1844–1918) gave the modern point of view, that this
function is not truly discontinuous but merely a function expressed by two different analytic
expressions in different parts of its domain.

The change in point of view came about gradually, but an important step was Cauchy’s
refinement of the definition in the first chapter of his 1821 Cours d’analyse:

When variable quantities are related so that, given the value of one of them, one can infer those
of the others, we normally consider that the quantities are all expressed in terms of one of them,
which is called the independent variable, while the others are called dependent variables.

Cauchy’s definition still does not specify what ways of expressing one variable in terms
of another are legitimate, but this definition was a step toward the basic idea that the value
of the independent variable determines (uniquely) the value of the dependent variable or
variables.

42.2. FOURIER SERIES

Daniel Bernoulli’s work introduced trigonometric series as an alternative to power series.
In a classic work of 1811, a revised version of which was published in 1821,3 Théorie
analytique de chaleur (Analytic Theory of Heat), Fourier established the standard formulas
for the Fourier coefficients of a function. For an even function of period 2π, these formulas
are

f (x) = 1

2
a0 +

∞∑

n=1

an cos nx, an = 1

π

∫ 2π

0
f (x) cos nx dx , n = 0, 1, . . . .

3The original version remained unpublished until 1972, when Grattan-Guinness published an annotated version
of it.
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A trigonometric series whose coefficients are obtained from an integrable function f (x) in
this way is called a Fourier series.

42.2.1. Sturm–Liouville Problems

After trigonometric series had become a familiar technique, mathematicians were encour-
aged to look for other simple functions in terms of which solutions of more general differ-
ential equations than Laplace’s equation could be expressed. Between 1836 and 1838 this
problem was attacked by Charles Sturm (1803–1855) and Joseph Liouville, who considered
general second-order differential equations of the form

[p(x)y′(x)]′ + [λr(x) + q(x)]y(x) = 0.

When a solution of Laplace’s equation is sought in the form of a product of functions of
one variable (the separation of variables technique), the result is an equation of this type for
the one-variable functions. It often happens that only isolated values of λ yield solutions
satisfying given boundary conditions. Sturm and Liouville found that in general there will
be an infinite set of values λ = λn, n = 1, 2, . . . , satisfying the equation together with
a pair of conditions at the endpoints of an interval [a, b], and that these values increase
to infinity. The values can be arranged so that the corresponding solutions yn(x) have
exactly n zeros in [a, b], and any solution of the differential equation can be expressed
as a series

y(x) =
∞∑

n=1

cnyn(x) .

The sense in which such series converge was still not clear, but it continued to be studied
by other mathematicians. It required some decades for all these ideas to be sorted out.

Proving that a Fourier series actually did converge to the function that generated it was
one of the first places where real analysis encountered greater difficulties than complex
analysis. In 1829 Peter Lejeune Dirichlet (1805–1859) proved that the Fourier series of
f (x) converged to f (x) for a bounded periodic function f (x) having only a finite number of
discontinuities and a finite number of maxima and minima in each period.4 Dirichlet tried
to get necessary and sufficient conditions for convergence, but that is a problem that has
never been solved. He showed that some kind of continuity would be required by giving the
famous example of the function whose value at x is one of two different values according
as x is rational or irrational. This function is called the Dirichlet function. For such a
function, he thought, no integral could be defined, and therefore no Fourier series could be
defined.5

4We would call such a function piecewise monotonic.
5The increasing latitude allowed in analysis, mentioned above, is illustrated very well by this example. When the
Lebesgue integral is used, this function is regarded as identical with the constant value it assumes on the irrational
numbers.



516 REAL NUMBERS, SERIES, AND INTEGRALS

42.3. FOURIER INTEGRALS

The convergence of the Fourier series of f (x) can be expressed as the equation

f (x) = 1

π

∫ π

0
f (y) dy + 2

π

∞∑

n=1

∫ π

0
f (y) cos(ny) cos(nx) dy.

That equation may have led to an analogous formula for Fourier integrals, which appeared
during the early nineteenth century in papers on the wave and heat equations written by
Poisson, Laplace, Fourier, and Cauchy. The central discovery in this area was the Fourier
inversion formula, which we now write as

f (x) = 2

π

∫ ∞

0

∫ ∞

0
f (y) cos(zy) cos(zx) dy dz.

The analogy with the formula for series is clear: The continuous variable z replaces the
discrete index n, and the integral on z replaces the sum over n. Once again, the validity of
the representation is much more questionable than the validity of the formulas of complex
analysis, such as the Cauchy integral formula for an analytic function. The Fourier inversion
formula has to be interpreted very carefully, since the order of integration cannot be reversed.
If the integrals make sense in the order indicated, that happy outcome can only be the result
of some special properties of the function f (x). But what are those properties?

The difficulty was that the integral extended over an infinite interval so that convergence
required the function to have two properties: It needed to be continuous, and it needed
to decrease sufficiently rapidly at infinity to make the integral converge. These properties
turned out to be, in a sense, dual to each other. Considering just the inner integral as a
function of z:

f̂ (z) =
∫ ∞

0
f (y) cos(zy) dy,

it turns out that the more rapidly f (y) decreases at infinity, the more derivatives f̂ (z) has,
and the more derivatives f (y) has, the more rapidly f̂ (z) decreases at infinity. The con-
verses are also, broadly speaking, true. Could one insist on having both conditions, so that
the representation would be valid? Would these assumptions impair the usefulness of these
techniques in mathematical physics? Alfred Pringsheim (1850–1941, father-in-law of the
writer Thomas Mann) studied the Fourier integral formula (Pringsheim, 1910), noting espe-
cially the two kinds of conditions that f (x) needed to satisfy, which he called “conditions in
the finite region” (“im Endlichen”) and “conditions at infinity” (“im Unendlichen”). Nowa-
days, they are called local and global conditions. Pringsheim noted that the local conditions
could be traced all the way back to Dirichlet’s work of 1829, but said that “a rather obvious
backwardness reveals itself” in regard to the global conditions.

[They] seem in general to be limited to a relatively narrow condition, one which is insufficient
for even the simplest type of application, namely that of absolute integrability of f (x) over an
infinite interval. There are, as far as I know, only a few exceptions.
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Thus, to the question as to whether physics could get by with sufficiently smooth functions
f (x) that decay sufficiently rapidly, the answer turned out to be, in general, no. Physics needs
to deal with discontinuous integrable functions f (y), and for these f̂ (z) cannot decay rapidly
enough at infinity to make its integral converge absolutely. What was to be done?

One solution involved the introduction of convergence factors, leading to a more gen-
eral sense of convergence, called Abel–Poisson convergence. In a paper on wave motion
published in 1818, Siméon-Denis Poisson (1780–1840) used the representation

f (x) = 1

π

∫ ∞

0

∫ +∞

−∞
f (α) cos a(x − α)e−ka dα da.

The exponential factor provided enough decrease at infinity to make the integral converge.
Poisson claimed that the resulting integral tended toward f (x) as k decreased to 0. (He was
right.)

Abel used an analogous technique with infinite series, multiplying the nth term by rn,
where 0 < r < 1, then letting r increase to 1. In this way, he was able to justify the natural
value assigned to some nonabsolutely convergent series such as

ln(2) = 1 − 1

2
+ 1

3
− 1

4
+ · · · and

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ · · · ,

which can be obtained by expanding the integrands of the following integrals as geometric
series and integrating termwise:

∫ 1

0

1

1 + r
dr ,

∫ 1

0

1

1 + r2 dr .

In Abel’s case, the motive for making a careful study of continuity was his having noticed
that a trigonometric series could represent a discontinuous function. From Paris in 1826 he
wrote to a friend that the expansion

x

2
= sin x − 1

2
sin 2x + 1

3
sin 3x − 1

4
sin 4x + · · ·

was provable for 0 ≤ x < π, although obviously it could not hold at x = π. Thus, while
the representation might be a good thing, it meant, on the other hand, that the sum of a
series of continuous functions could be discontinuous. Abel also believed that many of the
difficulties mathematicians were encountering were traceable to the use of divergent series.
He gave, accordingly, a thorough discussion of the convergence of the binomial series, the
most difficult of the elementary Taylor series to analyze.6

For the two conditionally convergent series shown above and the general Fourier integral,
continuity of the sum was needed. In both cases, what appeared to be a necessary evil—
the introduction of the convergence factor e−ka or rn—turned out to have positive value.

6Unknown to Abel, Bolzano had discussed the binomial series in 1816, considering integer, rational, and irrational
(real) exponents, admitting that he could not cover all possible cases, due to the incomplete state of the theory of
complex numbers at the time (Bottazzini, 1986, pp. 96–97). He performed a further analysis of series in general
in 1817, with a view to proving the intermediate value property).
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For the functions rn cos nθ and rn sin nθ are harmonic functions if r and θ are regarded as
polar coordinates, while e−ay cos(ax) and e−ay sin(ax) are harmonic if x and y are regarded
as rectangular coordinates. The factors used to ensure convergence provided harmonic
functions, at no extra cost.

42.4. GENERAL TRIGONOMETRIC SERIES

The study of trigonometric functions advanced real analysis once again in 1854, when
Riemann was required to give a lecture to qualify for the position of Privatdocent (roughly
what would be an assistant professor nowadays). As the rules required, he was to propose
three topics and the faculty would choose the one he lectured on. One of the three, based
on conversations he had had with Dirichlet over the preceding year, was the representation
of functions by trigonometric series.7 Dirichlet was no doubt hoping for more progress
toward necessary and sufficient conditions for convergence of a Fourier series, the topic he
had begun so promisingly a quarter-century earlier. Riemann concentrated on one question
in particular: Can a function be represented by more than one trigonometric series? That
is, can two trigonometric series with different coefficients have the same sum at every
point? The importance of this problem seems to come from the possibility of starting with
a general trigonometric series and summing it. One then has a periodic function which, if
it is sufficiently smooth, is the sum of its Fourier series. The natural question arises: Is that
Fourier series the trigonometric series that generated the function in the first place?

In the course of his study, Riemann was driven to examine the fundamental concept of
integration. Cauchy had defined the integral

∫ b

a

f (x) dx

as the number approximated by the sums

N∑

n=1

f (xn)(xn − xn−1)

as N becomes large, where a = x0 < x1 < · · · < xN−1 < xN = b. Riemann refined the
definition slightly, allowing f (xn) to be replaced by f (x∗

n) for any x∗
n between xn−1 and xn.

The resulting integral is known as the Riemann integral today. Riemann sought necessary
and sufficient conditions for such an integral to exist. The condition that he formulated led
ultimately to the concept of a set of measure zero,8 half a century later: For each σ > 0
the total length of the intervals on which the function f (x) oscillates by more than σ must
become arbitrarily small if the partition is sufficiently fine.

7As the reader will recall from Chapter 40, this topic was not the one Riemann did lecture on. Gauss preferred the
topic of foundations of geometry, and so Riemann’s paper on trigonometric series was not published until 1867,
after his death.
8A set of points on the line has measure zero if for every ε > 0 it can be covered by a sequence of intervals (ak, bk)
whose total length is less than ε.
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PROBLEMS AND QUESTIONS

Mathematical Problems

42.1. Show that if y(x, t) = (
f (x + ct) + f (x − ct)

)
/2 is a solution of the one-dimensional

wave equation that is valid for all x and t, and y(0, t) = 0 = y(L, t) for all t, then
f (x) must be an odd function of period 2L.

42.2. Show that the problem X′′(x) − λX(x) = 0, Y ′′(y) + λY (y) = 0, with boundary con-
ditions Y (0) = Y (2π), Y ′(0) = Y ′(2π), implies that λ = n2, where n is an integer,
and that the function X(x)Y (y) must be of the form

(
cne

nx + dne
−nx

)(
an cos(ny) +

bn sin(ny)
)

if n /= 0.

42.3. Show that Fourier series can be obtained as the solutions to a Sturm–Liouville problem
on [0, 2π] with p(x) = r(x) ≡ 1, q(x) = 0, with the boundary conditions y(0) =
y(2π), y′(0) = y′(2π). What are the possible values of λ?

Historical Questions

42.4. Why did the problem of the vibrating string force the consideration of nonanalytic
solutions of differential equations?

42.5. What problems arose in the use of trigonometric series that had not arisen in the use
of power series?

42.6. How did Sturm–Liouville problems come to be an area of particular interest in anal-
ysis?

Questions for Reflection

42.7. What is the value of harmonic functions, which are solutions of Laplace’s equation

0 = ∇2u(x) = ∂2u

∂x2 + ∂2u

∂y2 .

Consider that the classical linearized heat equation describes the temperatureu(t; x, y)
at point (x, y) of a plate at time t is

∂u

∂t
= k∇2u(x) = k

(
∂2u

∂x2 + ∂2u

∂y2

)
,

and that the classical linearized wave equation describes the vertical displacement of
a membrane u(t; x, y) over a point (x, y) of a plate at time t is

∂2u

∂t2 = c2∇2u(x) = c2
(

∂2u

∂x2 + ∂2u

∂y2

)
,

where c is the velocity of wave propagation in the membrane. (What does it mean
for the first or second derivative with respect to time to be zero?)
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42.8. The Cauchy–Riemann equations (see Chapter 41) and the equality of mixed partial
derivatives (∂2u/∂x∂y = ∂2u/∂y∂x easily imply that the real and imaginary parts of
an analytic function of a complex variable are harmonic functions. Does it follow
that if u(x, y) and v(x, y) are real-valued harmonic functions, then u(x, y) + iv(x, y)
is an analytic function? What further property is needed?

42.9. Why is it of interest to know whether two different trigonometric series can converge
to the same function?



CHAPTER 43

Foundations of Real Analysis

The uncritical use of limiting processes, which did little harm when applied to analytic
functions of a complex variable, led to acute problems in the case of general functions of
a real variable. The attempts to avoid self-contradictory results led to a close scrutiny of
the properties of the real line and the identification of certain hidden assumptions that were
needed to establish standard results, such as Cauchy’s “theorem” that the sum of an infinite
series of continuous functions is continuous. This close scrutiny, in turn, led to set theory.
Trigonometric series were involved at the beginning of set theory, although nowadays it is
developed without any reference to them. We shall discuss set theory in the next chapter.
The present chapter is devoted to that closer scrutiny of the real numbers.

43.1. WHAT IS A REAL NUMBER?

We have already alluded to the fact that our modern notion of a real number as an infinite
decimal expansion really goes back to the Eudoxan concept of a ratio. A great advance came
in the seventeenth century, when analytic geometry was invented by Descartes and Fermat.
In his Géométrie, Descartes showed how to replace a ratio in thought by a line, choosing a
line arbitrarily called a unit, and letting any other line stand for the number represented by
its ratio to that unit.

Euclid had not discussed the product of two lines. He spoke instead of the rectangle
on the two lines. Stimulated by algebra, however, and the application of geometry to it,
Descartes looked at the product of two lengths in a different way. As pure numbers, the
product ab is simply the fourth proportional to 1 : a : b. That is, ab : b :: a : 1. He therefore
fixed an arbitrary line that he called I to represent the number 1 and represented ab as the
line that satisfied the proportion ab : b :: a : I, when a and b were lines representing two
given numbers.

The notion of a real number had at last arisen, not as most people think of it today—an
infinite decimal expansion—but as a ratio of line segments. Only a few decades later Newton
defined a real number to be “the ratio of one magnitude to another magnitude of the same
kind, arbitrarily taken as a unit.” Newton classified numbers as integers, fractions, and surds
(Whiteside, 1967, Vol. 2, p. 7). Even with this clarification, however, mathematicians were
inclined to gloss over certain difficulties. For example, there is an arithmetic rule according
to which

√
ab = √

a
√

b. In Descartes’ geometric definition of the product of two real
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numbers, it is not obvious how this rule is to be proved. The use of the decimal system, with
its easy approximations to irrational numbers, soothed the consciences of mathematicians
and gave them the confidence to proceed with their development of the calculus. No one
even seemed very concerned about the absence of any good geometric construction of cube
roots and higher roots of real numbers. The real line answered the needs of algebra in that
it gave a representation of any real root there might be of any algebraic equation with real
numbers as coefficients. It was some time before anyone realized that geometry still had
resources that even algebra did not encompass and would lead to numbers for which pure
algebra had no use.

Those resources included the continuity of the geometric line, which turned out to be
exactly what was needed for the limiting processes of calculus. It was this property that
made it sensible for Euler to talk about the number that we now call e, that is,

e = lim
n→∞

(
1 + 1

n

)n

=
∞∑

n=0

1

n!
= 2.7182818284590 . . . ,

and the other Euler constant

γ = lim
n→∞

[( n∑

k=1

1

k

)
− log n

]
= 0.5772156649 . . . .

The intuitive notion of continuity assured mathematicians that there were points on the line,
and hence infinite decimal expansions, that must represent these numbers, even though no
one would ever know the full expansions. The geometry of the line provided a geometric
representation of real numbers and made it possible to reason about them without having
to worry about the decimal expansion.

The continuity of the line brought the realization that the real numbers had more to
offer than merely convenient representations of the solutions of equations. They could even
represent some numbers such as e and γ that had not been found to be solutions of any
equations. The line is richer than it needs to be for algebra alone. The concept of a real
number allows arithmetic to penetrate into parts of geometry where even algebra cannot go.
The sides and diagonals of regular figures such as squares, cubes, pentagons, pyramids, and
the like all have ratios that can be represented as the solutions of equations, and hence are
algebraic. For example, the diagonal D and side S of a pentagon satisfy D2 = S(D + S).
For a square the relationship is D2 = 2S2, and for a cube it is D2 = 3S2. But what about the
number we now call π, the ratio of the circumference C of a circle to its diameter D? In the
seventeenth century, Leibniz noted that any line that could be constructed using Euclidean
methods (straightedge and compass) would have a length that satisfied some equation with
rational coefficients. In a number of letters and papers written during the 1670s, Leibniz
was the first to contrast what is algebraic (involving polynomials with rational coefficients)
with objects that he called analytic or transcendental and the first to suggest that π might
be transcendental. In the preface to his pamphlet De quadratura arithmetica circuli (On the
Arithmetical Quadrature of the Circle), he explained that at least as a function of a variable,
the sine is not a polynomial:
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A complete quadrature would be one that is both analytic and linear; that is, it would be
constructed by the use of curves whose equations are of [finite] degrees. The illustrious [James]
Gregory, in his book On the Exact Quadrature of the Circle, has claimed that this is impossible,
but, unless I am mistaken, has given no proof. I still do not see what prevents the circumference
itself, or some particular part of it, from being measured [that is, being commensurable with
the radius], a part whose arc has a ratio to its sine [half-chord] that can be expressed by an
equation of finite degree. But to express the ratio of the arc to the sine in general by an equation
of finite degree is impossible, as I shall prove in this little work. [Gerhardt, 1971, Vol. 5, p. 97]

No representation of π as the root of a polynomial with rational coefficients was ever
found. This ratio had a long history of numerical approximations from all over the world,
but no one ever found any nonidentical equation with rational coefficients satisfied by the
circumference and diameter of a circle. The fact that π is transcendental was first proved
in 1881 by Ferdinand Lindemann (1852–1939). The complete set of real numbers thus
consists of the positive and negative rational numbers, all real roots of equations with integer
coefficients (the algebraic numbers), and the transcendental numbers. All transcendental
numbers and some algebraic numbers are irrational. Examples of transcendental numbers
turned out to be rather difficult to produce. The first well-known1 number to be proved
transcendental was the base of natural logarithms e, and this proof was achieved only in
1873, by the French mathematician Charles Hermite (1822–1901). It is still not known
whether the Euler constant γ ≈ 0.57712 is even irrational.

43.1.1. The Arithmetization of the Real Numbers

Not until the nineteenth century, when mathematicians took a retrospective look at the
magnificent edifice of calculus that they had created and tried to give it the same degree of
logical rigor possessed by algebra and Euclidean geometry, were attempts made to define
real numbers arithmetically, without mentioning ratios of lines. One such definition by
Richard Dedekind (1831–1916), a professor at the Zürich Polytechnikum, was inspired
by a desire for rigor when he began lecturing to students in 1858. He found the rigor he
sought without much difficulty, but did not bother to publish what he regarded as mere
common sense until 1872, when he wished to publish something in honor of his father. In
his book Stetigkeit und irrationale Zahlen (Continuity and Irrational Numbers) he referred
to Newton’s definition of a real number:

. . . the way in which the irrational numbers are usually introduced is based directly upon the
conception of extensive magnitudes—which itself is nowhere carefully defined—and explains
number as the result of measuring such a magnitude by another of the same kind. Instead of
this I demand that arithmetic shall be developed out of itself.

As Dedekind saw the matter, it was really the totality of rational numbers that defined
a ratio of continuous magnitudes. Although one might not be able to say that two contin-
uous quantities a and b had a ratio equal to, or defined by, a ratio m : n of two integers,
an inequality such as ma < nb could be interpreted as saying that the real number a : b

(whatever it was) was less than the rational number n/m. In fact, that interpretation of the

1Joseph Liouville had shown how to construct real numbers that are transcendental as early as 1844, using infinite
series and continued fractions, but none of the numbers so constructed had ever arisen naturally.
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inequality was the basis for the Eudoxan theory of proportion, although neither Eudoxus
nor Euclid was able to say precisely what a ratio of two lines is.

Thus a positive real number could be defined as a way of dividing the positive rational
numbers into two classes, those that were larger than the number and those that were equal
to it or smaller, and every member of the first class was larger than every member of the
second class. But, so reasoned Dedekind, once the positive rational numbers have been
partitioned in this way, the two classes themselves can be regarded as the number.2 They
are a well-defined object, and one can define arithmetic operations on such classes so that
the resulting system has all the properties we want the real numbers to have, especially
the essential one for calculus: continuity. Dedekind claimed that in this way he was able to
prove rigorously for the first time that

√
2
√

3 = √
6.3

The practical-minded reader who is content to use approximations will probably be
getting somewhat impatient with the discussion at this point and asking if it was really
necessary to go to so much trouble to satisfy a pedantic desire for rigor. Such a reader
will be in good company. Many prominent mathematicians of the time asked precisely that
question. One of them was Rudolf Lipschitz (1832–1903). Lipschitz didn’t see what the
fuss was about, and he objected to Dedekind’s claims of originality (Scharlau, 1986, p. 58).
In 1876 he wrote to Dedekind:

I do not deny the validity of your definition, but I am nevertheless of the opinion that it differs
only in form, not in substance, from what was done by the ancients. I can only say that I
consider the definition given by Euclid. . . to be just as satisfactory as your definition. For that
reason, I wish you would drop the claim that such propositions as

√
2
√

3 = √
6 have never

been proved. I think the French readers especially will share my conviction that Euclid’s book
provided necessary and sufficient grounds for proving these things.

Dedekind refused to back down. He replied (Scharlau, 1986, pp. 64–65):

I have never imagined that my concept of the irrational numbers has any particular merit;
otherwise I should not have kept it to myself for nearly fourteen years. Quite the reverse, I have
always been convinced that any well-educated mathematician who seriously set himself the task
of developing this subject rigorously would be bound to succeed. . . Do you really believe that
such a proof can be found in any book? I have searched through a large collection of works from
many countries on this point, and what does one find? Nothing but the crudest circular reasoning,

to the effect that
√

a
√

b = √
ab because

(√
a
√

b
)2 = (√

a
)2(√

b
)2 = ab; not the slightest

explanation of how to multiply two irrational numbers. The proposition (mn)2 = m2n2, which
is proved for rational numbers, is used unthinkingly for irrational numbers. Is it not scandalous
that the teaching of mathematics in schools is regarded as a particularly good means to develop
the power of reasoning, while no other discipline (for example, grammar) would tolerate such
gross offenses against logic for a minute? If one is to proceed scientifically, or cannot do so
for lack of time, one should at least honestly tell the pupil to believe a proposition on the word
of the teacher, which the students are willing to do anyway. That is better than destroying the
pure, noble instinct for correct proofs by giving spurious ones.

2Actually, since the two classes determine each other, one of them, say the one consisting of larger numbers, can
be taken as the definition of the real number. Thus

√
2 can be defined as the set of all positive rational numbers r

such that r2 > 2.
3In his paper (1992) David Fowler (1937–2004) investigated a number of approaches to the arithmetization of the
real numbers and showed how the specific equation

√
2
√

3 = √
6 could have been proved geometrically and also

how difficult this proof would have been using many other natural approaches.
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Mathematicians have accepted the need for Dedekind’s rigor in the teaching of math-
ematics majors, although the idea of defining real numbers as partitions of the rational
numbers (Dedekind cuts) is no longer the most popular approach to that rigor. More often,
students are now given a set of axioms for the real numbers and asked to accept on faith
that those axioms are consistent and that they characterize a set that has the properties of
a geometric line. Only a few books attempt to start with the rational numbers and con-
struct the real numbers. Those that do tend to follow an alternative approach, defining a
real number to be a sequence of rational numbers (more precisely, an equivalence class
of such sequences, one of which is the sequence of successive decimal approximations to
the number).

43.2. COMPLETENESS OF THE REAL NUMBERS

Dedekind’s arithmetization of the real numbers amounted to the statement that the real
numbers form a complete metric space. The concept now known as completeness of the real
numbers is associated with the Cauchy convergence criterion, which asserts that a sequence
of real numbers {an}∞n=1 converges to some real number a if it is a Cauchy sequence; that is,
for every ε > 0 there is an index n such that |an − ak| < ε for all k ≥ n. This condition was
stated somewhat loosely by Cauchy in his Cours d’analyse, published in the mid-1820s,
and the proof given there was also somewhat loose. The same criterion had been stated, and
for sequences of functions rather than sequences of numbers, a decade earlier by Bernhard
Bolzano (1741–1848). In imprecise language, this criterion says that there exists a number
that the sequence is getting close to, provided its terms are getting close to one another. The
point is that the criterion of getting close to one another makes no reference to anything
outside the sequence. Without this criterion, it would presumably be necessary to exhibit
the limit explicitly in order to prove that the sequence converges. That might be difficult to
do. Indeed, it is difficult in the case of such Dirichlet series as

∞∑

n=1

1

n3 ,

whose partial sums get close to one another, but whose sum has never been expressed in
finite terms using only known real numbers.

43.3. UNIFORM CONVERGENCE AND CONTINUITY

Cauchy was not aware at first of any need to make the distinction between pointwise and
uniform convergence, and he even claimed that the sum of a series of continuous functions
would be continuous, a claim contradicted by Abel, as we have seen. The distinction is a
subtle one. It is all too easy not to notice whether choosing n large enough to get a good
approximation when fn(x) converges to f (x) requires one to take account of which x is
under consideration. That point needed to be stated precisely. The first clear statement of
it is due to Philipp Ludwig von Seidel (1821–1896), a professor at Munich, who in 1847
studied the examples of Dirichlet and Abel, coming to the following conclusion:
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When one begins from the certainty thus obtained that the proposition cannot be generally
valid, then its proof must basically lie in some still hidden supposition. When this is subject
to a precise analysis, then it is not difficult to discover the hidden hypothesis. One can then
reason backwards that this [hypothesis] cannot occur [be fulfilled] with series that represent
discontinuous functions. [Quoted in Bottazzini, 1986, p. 202]

In order to reason confidently about continuity, derivatives, and integrals, mathematicians
began restricting themselves to cases where the series converged uniformly, that is, given a
positive number ε, one could find an index N such that |fn(x) − f (x)| < ε for all n > N and
all x. Weierstrass, in particular, provided a famous theorem known as the M-test for uniform
convergence of a series. But, although the M-test is certainly valuable in dealing with power
series, uniform convergence in general is too severe a restriction. The trigonometric series
exhibited by Abel, for example, represented a discontinuous function as the sum of a series
of continuous functions and therefore did not converge uniformly. Yet it could be integrated
term by term. One could provide many examples of series of continuous functions that
converged to a continuous function but not uniformly. Weaker conditions were needed that
would justify the operations rigorously without restricting their applicability too strongly.

43.4. GENERAL INTEGRALS AND DISCONTINUOUS FUNCTIONS

The search for less restrictive hypotheses and the consideration of more general figures
on a line than just points and intervals led to more general notions of length, area, and
integral, allowing more general functions to be integrated. Analysts began generalizing
the integral beyond the refinements introduced by Riemann. Foundational problems also
added urgency to this search. For example, in 1881, Vito Volterra (1860–1940) gave an
example of a continuous function having a derivative at every point, but whose derivative
was not Riemann integrable. What could the fundamental theorem of calculus mean for this
derivative, which had an antiderivative but no integral, as integrals were then understood?

New integrals were created by the Latvian mathematician Axel Harnack (1851–1888),
by the French mathematicians Emile Borel (1871–1956), Henri Lebesgue (1875–1941), and
Arnaud Denjoy (1884–1974), and by the German mathematician Oskar Perron (1880–1975).
By far the most influential of these was the Lebesgue integral, which was developed between
1899 and 1902. This integral was to have profound influence in the area of probability, due
to its use by Borel, and in trigonometric series representations, an application that Lebesgue
developed as an application of it. Lebesgue justified his more general integral in the preface
to a 1904 monograph in which he expounded it, saying,

[I]f we wished to limit ourselves always to these good [that is, smooth] functions, we would
have to give up on the solution of a number of easily stated problems that have been open for
a long time. It was the solution of these problems, rather than a love of complications, that
caused me to introduce in this book a definition of the integral that is more general than that of
Riemann and contains the latter as a special case.

Despite its complexity—to develop it with proofs takes four or five times as long as
developing the Riemann integral—the Lebesgue integral was included in textbooks as early
as 1907: for example, Theory of Functions of a Real Variable, by E. W. Hobson (1856–
1933). Its chief attraction was the greater generalilty of the conditions under which it allowed
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termwise integration. For example, one of the main theorems of this theory is the Lebesgue
dominated convergence theorem, which states that if fn(x) are measurable functions4 such
that |fn(x)| ≤ g(x), where g(x) is integrable (in the sense of Lebesgue), and fn(x) → f (x)
pointwise, then

∫
fn(x) dx → ∫

f (x) dx. (Part of the theorem is that f (x) is integrable. This
is the Lebesgue dominated convergence theorem.)

Following the typical pattern of development in real analysis, the Lebesgue integral
soon generated new questions. The Hungarian mathematician Frigyes Riesz (1880–1956)
introduced the classes now known as Lp-spaces, the spaces of measurable functions f

for which |f |p is Lebesgue integrable, p > 0. (The space L∞ consists of functions that
are bounded on a set whose complement has measure zero.) How the Fourier series and
integrals of functions in these spaces behave became a matter of great interest, and a number
of questions were raised. For example, in his 1915 dissertation at the University of Moscow,
Nikolai Nikolaevich Luzin (1883–1950) posed the conjecture that the Fourier series of a
(Lebesgue-) square-integrable function converges except on a set of measure zero. Fifty
years elapsed before this conjecture was proved by the Swedish mathematician Lennart
Carleson (b. 1928). Because a Riemann-integrable function is square-integrable in the sense
of Lebesgue, this theorem applies in particular to such functions. Luzin’s student Andrei
Nikolaevich Kolmogorov (1903–1987) showed that the Fourier series of a function that is
merely Lebesgue-integrable may diverge at every point.

43.5. THE ABSTRACT AND THE CONCRETE

The increasing generality allowed by the notation y = f (x) threatened to carry mathematics
off into stratospheric heights of abstraction. Although the mathematical physicist Ampère
(1775–1836) had tried to show that a continuous function is differentiable at most points,
the attempt was doomed to failure. Bolzano constructed a “sawtooth” function in 1817 that
was continuous, yet had no derivative at any point. Weierstrass later used an absolutely
convergent trigonometric series to achieve the same result,5 and a young Italian mathemati-
cian, Salvatore Pincherle (1853–1936), who took Weierstrass’ course in 1877–1878, wrote
a treatise in 1880 in which he gave a very simple example of such a function (Bottazzini,
1986, p. 286):

f (x) =
∞∑

n=1

sin(n!x)

n!
.

Volterra’s example of a continuous function whose derivative was not (Riemann) integrable,
together with the examples of continuous functions having no derivative at any point natu-
rally cast some doubt on the usefulness of the abstract concept of continuity and even the
abstract concept of a function. Besides the construction of more general integrals and the
consequent ability to “measure” more complicated geometric figures, it was necessary to
investigate differentiation in more detail as well.

4See below for the definition of measurable functions.
5This example was communicated by his student Paul Du Bois-Reymond (1831–1889) in 1875. The following
year Du Bois-Reymond constructed a continuous periodic function whose Fourier series failed to converge at a
set of points that came arbitrarily close to every point.
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43.5.1. Absolute Continuity

The secret of that quest turned out to be not continuity, but monotonicity. A continuous
function may fail to have a derivative, but in order to fail, it must oscillate very wildly, as
the examples of Bolzano and Weierstrass did. A function that did not oscillate, or oscillated
only a finite total amount, necessarily had a derivative except on a set of measure zero. The
ultimate result in this direction was achieved by Lebesgue, who showed that a monotonic
function has a derivative on a set whose complement has measure zero. Such a function might
or might not be the integral of its derivative, as the fundamental theorem of calculus states.
In 1902 Lebesgue gave necessary and sufficient conditions for the fundamental theorem of
calculus to hold; a function that satisfies these conditions, and is consequently the integral
of its derivative, is called absolutely continuous.

43.5.2. Taming the Abstract

It had been known at least since the time of Lagrange that any finite set of n data points
(xk, yk), k = 1, . . . , n, with xk all different, could be fitted perfectly with a polynomial of
degree at most n − 1. Such a polynomial might—indeed, probably would—oscillate wildly
in the intervals between the data points. Weierstrass showed in 1884 that any continuous
function, no matter how abstract, could be uniformly approximated by a polynomial over
any bounded interval [a, b]. Since there is always some observational error in any set of
data, this result meant that polynomials could be used in both practical and theoretical ways,
to fit data, and to establish general theorems about continuous functions. Weierstrass also
proved a second version of the theorem, for periodic functions, in which he showed that for
these functions the polynomial could be replaced by a finite sum of sines and cosines. This
connection to the classical functions freed mathematicians to use the new abstract functions,
confident that in applications they could be replaced by computable functions.

Weierstrass lived before the invention of the new abstract integrals mentioned above,
although he did encourage the development of the abstract set theory of Georg Cantor, which
provided the language in which these integrals were formulated. With the development of
the Lebesgue integral, a new category of functions arose, the measurable functions. These
are functions f (x) such that the set of x for which f (x) > c always has a meaningful
measure, although it need not be a geometrically simple set, as it is in the case of continuous
functions. It appeared that Weierstrass’ work needed to be repeated, since his approximation
theorem did not apply to measurable functions. In his 1915 dissertation, Luzin produced
two beautiful theorems in this direction. The first was what is commonly called by his name
nowadays, the theorem that for every measurable function f (x) and every ε > 0 there is a
continuous function g(x) such that g(x) /= f (x) only on a set of measure less than ε. As a
consequence of this result and Weierstrass’ approximation theorem, it followed that every
measurable function is the limit of a sequence of polynomials on a set whose complement
has measure zero. Luzin’s second theorem was that every finite-valued measurable function
is the derivative of a continuous function at the points of a set whose complement has
measure zero. He was able to use this result to show that any prescribed set of measurable
boundary values on the disk could be the boundary values of a harmonic function.

With the Weierstrass approximation theorem and theorems like those of Luzin, modern
analysis found some anchor in the concrete analysis of the “classical” period that ran from
1700 to 1850. But the striving for generality and freedom of operation still led to the invo-
cation of some strong principles of inference in the context of set theory. By mid-twentieth
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century mathematicians were accustomed to proving concrete facts using abstract tech-
niques. To take just one example, it can be proved that some differential equations have
a solution because a contraction mapping of a complete metric space must have a fixed
point. Classical mathematicians would have found this proof difficult to accept, and many
twentieth-century mathematicians have preferred to write in “constructivist” ways that avoid
invoking the abstract “existence” of a mathematical object that cannot be displayed explic-
itly. But most mathematicians are now comfortable with such reasoning.

43.6. DISCONTINUITY AS A POSITIVE PROPERTY

The Weierstrass approximation theorems imply that the property of being the limit of a
sequence of continuous functions is no more general than the property of being the limit of
a sequence of polynomials or the sum of a trigonometric series. That fact raises an obvious
question: What kind of function is the limit of a sequence of continuous functions? Du
Bois-Reymond had shown that it can be discontinuous on a set that is, as we now say,
dense. But can it, for example, be discontinuous at every point? That was one of the questions
that interested René-Louis Baire (1874–1932). If one thinks of discontinuity as simply the
absence of continuity, classifying mathematical functions as continuous or discontinuous
seems to make no more sense than classifying mammals as cats or noncats. Baire, however,
looked at the matter differently. In his 1905 Leçons sur les fonctions discontinues (Lectures
on Discontinuous Functions) he wrote

Is it not the duty of the mathematician to begin by studying in the abstract the relations
between these two concepts of continuity and discontinuity, which, while mutually opposite,
are intimately connected?

Strange as this view may seem at first, we may come to have some sympathy for it if we
think of the dichotomy between the continuous and the discrete, that is, between geometry
and arithmetic. At any rate, to a large number of mathematicians at the turn of the twentieth
century, it did not seem strange. The Moscow mathematician Nikolai Vasilevich Bugaev
(1837–1903, father of the writer Andrei Belyi) was a philosophically inclined scholar who
thought it possible to establish two parallel theories, one for continuous functions, the
other for discontinuous functions. He called the latter theory arithmology to emphasize its
arithmetic character. There is at least enough of a superficial parallel between integrals and
infinite series and between continuous and discrete probability distributions (another area in
which Russia has produced some of the world’s leaders) to make such a program plausible.
It is partly Bugaev’s influence that caused works on set theory to be translated into Russian
during the first decade of the twentieth century and brought the Moscow mathematicians
Luzin and Dmitrii Fyodorovich Egorov (1869–1931) and their students to prominence in
the area of measure theory, integration, and real analysis.

Baire’s monograph was single-mindedly dedicated to the pursuit of one goal: to give a
necessary and sufficient condition for a function to be the pointwise limit of a sequence
of continuous functions. He found the condition, building on earlier ideas introduced by
Hermann Hankel (1839–1873): The necessary and sufficient condition is that the discon-
tinuities of the function form a set of first category. A set is of first category if it is the
union of a sequence of sets Ak such that every interval (a, b) contains an interval (c, d)
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disjoint from Ak. All other sets are of second category.6 Although interest in the specific
problems that inspired Baire has waned, the importance of his work has not. The subject of
functional analysis rests on three main theorems. Two of them are direct consequences of
what is called the Baire category theorem, which asserts that a complete metric space is of
second category as a subset of itself. These fundamental pillars of functional analysis—the
closed graph theorem and the open mapping theorem—cannot be proved without the Baire
category theorem. Here we have an example of an unintended and fortuitous consequence,
in which a result turned out to be useful in an area not considered by its discoverer.

PROBLEMS AND QUESTIONS

Mathematical Problems

43.1. On the basis of the geometric series

1

1 + x
= 1 − x + x2 − x3 + · · ·

Euler was willing to say that 1 − 5 + 25 − 125 + · · · = 1
1+5 = 1

6 . Later analysts
rejected this interpretation of infinite series and confined themselves to series that
converge in the ordinary sense. (Such a series cannot converge unless its general
term tends to zero.) Kurt Hensel (1861–1941), showed in 1905 that it is possible to
define a notion of distance, the p-adic metric, by saying that an integer is close to
zero if it is divisible by a large power of the prime number p (in the present case
p = 5). Specifically, the distance from m to 0 is given by d(m, 0) = 5−k, where 5k

divides m but 5k+1 does not divide m. The distance between 0 and the rational number
r = m/n is then by definition d(m, 0)/d(n, 0). Show that d(1, 0) = 1. Show that, if
the distance between two rational numbers r and s is defined to be d(r − s, 0), then
in fact the series just mentioned does converge to 1

6 in the sense that d(Sn,
1
6 ) → 0,

where Sn is the nth partial sum.

43.2. Consider the functions

fn(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

n2x , if 0 ≤ x ≤ 1
n

,

2n − n2x , if 1
n

≤ x ≤ 2
n

,

0 , if 2
n

≤ x ≤ 1 .

Show that fn(x) → 0 as n → ∞ for each x satisfying 0 ≤ x ≤ 1, but
∫ 1

0 fn(x) dx =
1 for all n. Why does this sequence not satisfy the hypotheses of the Lebesgue
dominated convergence theorem?

6The sets Ak are said to be nowhere dense. In his famous treatise Mengenlehre (Set Theory), Felix Hausdorff
(1862–1942) criticized the phrase of first category as “colorless.”
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43.3. Show that on a finite interval [a, b] the space Lp([a, b]) is contained in Lq([a, b])
if q < p, while the opposite is true for the lp spaces of sequences. (The space lp
consists of all sequences {an}∞n=1 such that

∑∞
n=1 |an|p < ∞.) Which, if either, of

these statements is true for the interval [0, ∞)?

Historical Questions

43.4. Why was the concept of uniform convergence important in the application of the
principles of analysis to infinite series and integrals? Why was it too restrictive for
the needs of modern analysis?

43.5. How does the Lebesgue integral differ from the Riemann integral, and why is the
latter inadequate for the needs of modern analysis?

43.6. What is the Baire category theorem, and why is it important in modern analysis?

Questions for Reflection

43.7. What are the advantages, if any, of building a theory by starting with abstract def-
initions, then later proving a structure theorem showing that the abstract objects so
defined are really composed of familiar simple objects? (Recall that Cauchy preferred
to begin his discussion of analytic functions with the abstract property of differentia-
bility, while Weierstrass preferred the more concrete definition of an analytic function
as a power series. But it turns out that the two classes are the same.)

43.8. Why did the naive application of finite rules to infinite series lead to paradoxes?

43.9. One consequence of the Lebesgue dominated converge theorem is that if a uniformly
bounded sequence of continuous functions fn(x) tends to 0 at each point x ∈ [0, 1],
then

∫ 1
0 fn(x) dx → 0. This theorem is quite difficult to prove in the context of the

Riemann integral, but becomes a trivial consequence of a basic result when the
integrals are interpreted as Lebesgue integrals. What advantage does this fact point
to when the Riemann integral is compared with the Lebesgue integral?



CHAPTER 44

Set Theory

Set theory is the common language now used in all areas of mathematics. Because it is the
language everyone writes in, it is difficult to imagine a time when mathematicians did not
use the word set or think of sets of points. Yet that time is not long past; it was less than 150
years ago. Before that time, mathematicians spoke of geometric figures, or they spoke of
points and numbers having certain properties, without thinking of those points and numbers
as being assembled in a set.

44.1. TECHNICAL BACKGROUND

Although the founder of set theory, Georg Cantor (1845–1918), was motivated by both
geometry and analysis, for reasons of space we shall discuss only the analytic connection,
which was the more immediate one. It is necessary to introduce some technical details in
order to explain how a problem in analysis leads to the general notion of a set and an ordinal
number. We begin with the topic that Riemann developed for his 1854 lecture but did not use
because Gauss preferred his geometric lecture. That topic was uniqueness of trigonometric
series, and it was published in 1867, the year after Riemann’s death. Riemann aimed at
proving that if a trigonometric series converged to zero at every point, all of its coefficients
were zero. That is,

1

2
a0 +

∞∑

n=1

(an cos nx + bn sin nx) ≡ 0 =⇒ an = 0 = bn .

Riemann assumed that the coefficients an and bn tend to zero, saying that it was clear to him
that without that assumption, the series could converge only at isolated points.1 In order to
prove his uniqueness theorem, Riemann integrated twice to form the continuous function

F (x) = Ax + B + 1

4
a0x

2 −
∞∑

n=1

(an cos nx + bn sin nx)

n2 .

1Leopold Kronecker (1823–1891) pointed out later that this assumption could be omitted. Cantor showed, as
Riemann implied, that it was deducible from the mere convergence of the series.
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His object was to show that F (x) must be a linear function, so that G(x) = F (x) − Ax −
B − 1

4a0x
2 would be a quadratic polynomial that was also periodic, and hence itself a

constant, from which it would follow, first that a0 = 0 = A, and then that all the other an

and all the bn are zero. To that end, he showed that its generalized second derivative

F ′′
g (x) = lim

h→0

F (x + h) + F (x − h) − 2F (x)

h2

was zero wherever the original series converged to zero.2 Riemann proved that in any case

lim
h→0

(
F (x + h) − F (x)

) + (
F (x − h) − F (x)

)

h
= 0 .

The important implication of this last result is that the function F (x) cannot have a corner.
If it has a right-hand derivative at a point, it also has a left-hand derivative at the point, and
the two one-sided derivatives are equal. This fact was a key step in Cantor’s work.

44.2. CANTOR’S WORK ON TRIGONOMETRIC SERIES

In 1872, Cantor published his first paper on uniqueness of trigonometric series, finishing
the proof that Riemann had set out to give: that a trigonometric series that converges to
zero at every point must have all its coefficients equal to zero. In following the program
of proving that F (x) is linear and hence constant, he observed that it was not necessary to
assume that the series converged to zero at every point. A finite number of exceptions could
be allowed, at which the series either diverged or converged to a nonzero value. For F (x)
is certainly continuous, and if it is linear on [a, b] and also on [b, c], the fact that it has no
corners implies that it must be linear on [a, c]. Hence any isolated exceptional point b could
be discounted.

The question therefore naturally arose: Can one allow an infinite number of exceptional
points? Here one comes up against a theorem known as the Bolzano–Weierstrass theorem,
which asserts that the exceptional points cannot all be isolated. They must have at least
one point of accumulation.3 But exceptional points isolated from other exceptional points
could be discounted, just as before. That left only their points of accumulation. If these were
isolated—in particular, if there were only finitely many of them—the no-corners principle
would once again imply uniqueness of the series.

44.2.1. Ordinal Numbers

Cantor saw the obvious induction. Denoting the set of points of accumulation of a set P (what
we now call the derived set) by P ′, he knew that P ′ ⊇ P ′′ ⊇ P ′′′ ⊇ · · · . Thus, if at some
finite term in this non-increasing sequence of sets a finite set was obtained, the uniqueness

2Hermann Amandus Schwarz (1843–1921) later showed that if F (x) is continuous on a closed interval [a, b] and
F ′′

g (x) ≡ 0 on the open interval (a, b), then F (x) is linear on the closed interval [a, b].
3A point of accumulation of a set is a point, every neighborhood of which contains infinitely many points of the
set. It is also called a cluster point and (confusingly and more commonly) a limit point.
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theorem would remain valid. But the study of these sets of points of accumulation turned out
to be even more interesting than trigonometric series themselves. No longer dealing with
geometrically regular sets, Cantor was delving into point-set topology, as we now call it. No
properties of a geometric nature were posited for the exceptional points he was considering,
beyond the assumption that the sequence of derived sets contains a finite set as one of its
terms (and all subsequent sets in the sequence will be empty) . Although the points of any
particular set might be easily describable, Cantor needed to discuss the general case. He
needed the abstract concept of “set-hood.” Cantor felt compelled to dig to the bottom of
this matter and soon abandoned trigonometric series to write a series of papers on “infinite
linear point-manifolds.”4

Cantor noticed the possibility of defining the derived sets of transfinite order. If the nth-
level derived set is P (n), the nesting of these sets allows the natural definition of the derived
set of infinite order P (∞) as the intersection of all sets of finite order. But then one could
consider derived sets even at the transfinite level: the derived set of P (∞) could be defined
as P (∞+1) = (

P (∞)
)′. Cantor had discovered the infinite ordinal numbers. He did not at

first recognize them as numbers, but rather regarded them as “symbols of infinity” (see
Ferreirós, 1995).

44.2.2. Cardinal Numbers

Cantor was not only an analyst. He had written his dissertation under Kronecker and Ernst
Eduard Kummer (1810–1893) on number-theoretic questions. Only two years after he wrote
his first paper in trigonometric series, he noticed that his set-theoretic principles led to
another interesting conclusion. Transcendental numbers exist. The set of algebraic numbers
is a countable set (as we would now say, in the familiar language that we owe to Cantor),
but the set of real numbers is not. Cantor had proved this point to his satisfaction in a series
of exchanges of letters with Dedekind.

There are two versions of this proof, one due to Cantor and one due to Dedekind, but
both involve getting nested sequences of closed intervals that exclude, one at a time, the
elements of any given sequence {an} of numbers. The intersection of the intervals must then
contain a number not in the sequence. In his private speculations some 40 years later, Luzin
noted that Cantor was actually assuming more than the mere existence of the countable set
{an}. In order to construct a point not in it, one had to know something about each of its
elements, enough to find a subinterval of the previous closed interval that would exclude the
next element. On that basis, he concluded that Cantor had proved that there was no effective
enumeration of the reals, not that the reals were uncountable. Luzin thus raised the question
of what it could mean for an enumeration to “exist” if it was not effective. He too delved
into philosophy to find out the meaning of “existence.”

By showing in a seemingly constructive way how, given any countable enumeration of
real numbers, one can exhibit a real number not in the list, Cantor had shown (he thought)
that there must exist transcendental numbers. Given the complicated constructions of such
numbers by Liouville and the difficulty of the proofs by Hermite and Lindemann that e and

4The word manifold (Mannigfaltigkeit) does not denote the geometric object now called a manifold. It means a
multitude, which is also the earlier meaning of the English term. The modern German word for a set is Menge, also
used in the phrase eine Menge von. . . to mean lots of. . . . Russian mathematicians followed this German usage
and used the word mnozhestvo (multitude) to denote a set. The French use the word ensemble, which has the same
connotations as the English word.
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π are transcendental, this concise proof of their abstract existence seemed to have merit.
The property Cantor relied on in this proof led to the concept of a cardinal number, two
sets being of the same cardinality if they could be placed in one-to-one correspondence.
To establish such correspondences, Cantor allowed certain methods of defining sets and
functions that went beyond what mathematicians had been used to seeing. The result was a
controversy that lasted some two decades.

Grattan-Guinness (2000, p. 125) has pointed out that Cantor emphasized five different
aspects of point sets: their topology, dimension, measure, cardinality, and ordering. In the
end, point-set topology was to become its own subject, and dimension theory became part of
both algebraic and point-set topology. Measure theory became an important part of modern
integration theory and had equally important applications to the theory of probability and
random variables. Cardinality and ordering remained as an essential core of set theory, and
the study of sets in relation to their complexity rather than their size became known as
descriptive set theory.

Although descriptive set theory produces its own questions, it had at first a close relation
to measure theory, since descriptive set theory was needed to specify which sets could
be measured. Borel was conservative, allowing that the kinds of sets one could clearly
define would have to be obtained by a finite sequence of operations, each of which was
either a countable union or a countable intersection or a complementation, starting from
ordinary open and closed sets. Ultimately those of a less constructive disposition than Borel
honored him with the creation of the Borel sets, which is the smallest class that contains
all closed subsets and also contains the complement of any of its sets and the union of any
countable collection of its sets. This class, now called a σ-algebra by analysts and a σ-field
by probabilists, can be “constructed” only by a transfinite induction.

Set theory, while aiming to provide a foundation of clear and simple principles for all
of mathematics, soon threw up its own unanswered mathematical questions. The most
prominent of these was the continuum question. Cantor had shown that the set of all real
numbers could be placed in one-to-one correspondence with the set of all subsets of the
integers. He denoted the cardinality of the integers as ℵ0 and the cardinality of the real
numbers as c (where c stands for “continuum”). The question naturally arose whether
there was any subset of the real numbers that had a cardinality between these two. Can-
tor struggled for a long time to settle this issue. One major theorem of set theory, known
as the Cantor–Bendixson theorem,5 after Ivar Bendixson (1861–1935), asserts that ev-
ery closed set is the union of a countable set and a perfect set (a set that is equal to its
derived set). Since it is easily proved that a nonempty perfect subset of the real numbers
has cardinality c, it follows that every uncountable closed set contains a subset of car-
dinality c. Thus a set of real numbers having cardinality between ℵ0 and c cannot be a
closed set.

Many mathematicians, especially the Moscow mathematicians after the arrival of Luzin
as professor in 1915, worked on this problem. Luzin’s students Pavel Sergeevich Aleksan-
drov (1896–1982) and Mikhail Yakovlevich Suslin (1894–1919) proved that any uncount-
able Borel set must contain a nonempty perfect subset and thus must have cardinality c.
Indeed, they proved this fact for a slightly larger class of sets called analytic sets. Luzin

5Ferreirós (1995) points out that it was the desire to prove this theorem adequately, in 1882, that really led Cantor
to treat transfinite ordinal numbers as numbers. He was helped toward this discovery by Dedekind’s pointing out
to him the need to use finite ordinal numbers to define finite cardinal numbers.
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then proved that a set was a Borel set if and only if the set and its complement were both
analytic sets.

The problem of the continuum remained open until 1938, when Kurt Gödel (1906–1978)
partially closed it by showing that set theory is consistent with the continuum hypothesis
and the axiom of choice,6 provided that it is consistent without them. Closure came to
this question in 1963, when Paul Cohen (1934–2007)—like Cantor, he began his career by
studying uniqueness of trigonometric series representations—showed that the continuum
hypothesis and the axiom of choice are independent of the other axioms of set theory.

44.3. THE RECEPTION OF SET THEORY

Some mathematicians believed that set theory was an unwarranted intrusion of philosophy
into mathematics. One of those was Cantor’s teacher Leopold Kronecker. Although Cantor
was willing to regard the existence of transcendental numbers as having been proved just
because the real numbers were “too numerous” to be exhausted by the algebraic numbers,
Kronecker preferred a more constructivist approach. His most famous utterance,7 and one
of the most famous in the history of mathematics, is: “The good Lord made the integers;
everything else is a human creation.” (“Die ganzen Zahlen hat der liebe Gott gemacht; alles
andere ist Menschenwerk.”) That is, the only infinity he admitted was the series of positive
integers 1, 2, . . . . Beyond that point, everything was human-made and therefore had to be
finite. If you spoke of a number or function, you had an obligation to say how it was defined.
His 1845 dissertation, which he was unable to polish to his satisfaction until 1881, when
he published it as “Foundations of an arithmetical theory of algebraic quantities” in honor
of his teacher Kummer, shows how conservative he was in his definitions. Instead of an
arbitrary field defined axiomatically as we would now do, he wrote:

A domain of rationality is in general an arbitrarily bounded domain of magnitudes, but only to
the extent that the concept permits. To be specific, since a domain of rationality can be enlarged
only by the adjoining of arbitrarily chosen elementsR, each arbitrary extension of its boundary
requires the simultaneous inclusion of all quantities rationally expressible in terms of the new
element.

In this way, while one could enlarge a field to make an equation solvable, the individual
elements of the larger field could still be described constructively. Kronecker’s concept of
a general field can be described as “finitistic.” It is the minimal object that contains the
elements necessary to allow arithmetic operations. Borel took this point of view in regard
to measurable sets, and Hilbert was later to take a similar point of view in describing formal
languages, saying that a meaningful formula must be obtained from a specified list of
elements by a finite number of applications of certain rules of combination. This approach
was safer and more explicit than, for example, John Bernoulli’s original definition of a
function as an expression formed “in some manner” from variables and constants. The
“manner” was limited in a very definite way.

6Gödel actually included four additional assumptions in his consistency proof, one of the other two being that
there exists a set that is analytic but is not a Borel set.
7He made this statement at a meeting in Berlin in 1886 (see Grattan-Guiness, 2000, p. 122).
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44.3.1. Cantor and Kronecker

Cantor believed that Kronecker had conspired against him to delay the publication of his first
paper on infinite cardinal numbers. Whether that is the case or not, it is clear that Kronecker
would not have approved of some of Cantor’s principles of inference. As Grattan-Guinness
points out, much of what is believed about the animosity between Cantor and Kronecker
is based on Cantor’s own reports, which may be unreliable. Cantor was subject to periodic
bouts of depression, probably caused by metabolic imbalances having nothing to do with
his external circumstances. In fact, he had little to complain of in terms of the acceptance
of his theories. It is true that there was some resistance to it, notably from Kronecker (until
his death in 1891) and then from Poincaré. But there was also a great deal of support,
from Weierstrass, Klein, Hilbert, and many others. In fact, as early as 1892, the journal
Bibliotheca mathematica published a “Notice historique” on set theory by Giulio Vivanti
(1859–1949), mentioning that there had already been several expositions of the theory, and
that it was still being developed by mathematicians, applied to the theory of functions of a
real variable, and studied from a philosophical point of view.

44.4. EXISTENCE AND THE AXIOM OF CHOICE

In the early days, Cantor’s set theory seemed to allow a remarkable amount of freedom in
the “construction” or, rather, the conjuring into existence, of new sets. Cantor seems to have
been influenced in his introduction of the term set by an essay that Dedekind began in 1872,
but did not publish until 1887 (see Grattan-Guinness, 2000, p. 104), in which he referred
to a “system” as “various things a, b, c. . . comprehended from any cause under one point
of view.” Dedekind defined a “thing” to be “any object of our thought.” Just as Descartes
was able to conceive many things clearly and distinctly, mathematicians seemed to be able
to form many “things” into “systems.” For example, given any set A, one could conceive
of another set whose members were the subsets of A. This set is nowadays denoted 2A and
called the power set of A. If A has a finite number n of elements, then 2A has 2n elements,
counting the improper subsets ∅ and A.

It was not long, however, before the indiscriminate use of this freedom to form sets led
to paradoxes. The most famous of these is Russell’s paradox, which will be discussed in
the next chapter. In modern set theory, this paradox is avoided by distinguishing between
a set, which is a class that may or may not have members but at least is itself a member
of some other class, and a proper class, which has members, but is not itself the member
of any class. Admission to the elite company of sets is carefully controlled by the axioms.
The empty class is declared to be a set by fiat. Other sets arise from operations on classes
known to be sets.

One source of the paradoxes is that “existence” has a specialized mathematical meaning
in set theory, which has the consequence that much of the action in a proof takes place
“offstage.” That is, certain objects needed in a proof are simply declared to exist by saying,
“Let there be. . . ,” but no procedure for constructing them is given. Proofs relying on the
abstract existence of such objects, when it is not possible to choose a particular object
and examine it, became more and more common in the twentieth century. Indeed, much of
measure theory, topology, and functional analysis would be impossible without such proofs.
The principle behind these proofs later came to be known as Zermelo’s axiom, after Ernst
Zermelo (1871–1953), who first formulated it in 1904 to prove that every set could be well
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ordered.8 It was also known as the principle of free choice (in German, Auswahlprinzip) or,
more commonly in English, the axiom of choice. In its broadest form this axiom states that
there exists a function f defined on the class of all nonempty sets such that f (A) ∈ A for
every nonempty set A. Intuitively, if A is nonempty, there exist elements of A, and f (A)
chooses an element from every nonempty set A.

This axiom is used in many proofs. Probably the earliest (see Moore, 1982, p. 9) is
Cantor’s proof that a countable union of countable sets is countable. The proof goes as
follows. Assume that A1, A2,. . . are countable sets, and let A = A1 ∪ A2 ∪ · · · . Then A is
countable. For, let the sets Aj be enumerated, as follows:

A1 = a11, a12, . . . ,

A2 = a21, a22, . . . ,

...

An = an1, an2, . . . ,

... .

Then the elements of A can be enumerated as follows: a11, a12, a21, a13, a22, a31, . . . , where
the elements whose ranks are larger than the triangular number Tn = n(n + 1)/2 but not
larger than Tn+1 = (n + 1)(n + 2)/2 are those for which the sum of the subscripts is n + 2.
There are n + 1 such elements and n + 1 such ranks. It is a very subtle point to notice
that this proof assumes more than the mere existence of an enumeration of each of the
sets, which is given in the hypothesis. It assumes the simultaneous existence of infinitely
many enumerations, one for each set. The reasoning appears to be so natural that one would
hardly question it. If a real choice exists at each stage of the proof, why can we not assume
that infinitely many such choices have been made? As Moore notes, without the axiom of
choice, it is consistent to assume that the real numbers can be expressed as a countable
union of countable sets.9

Zermelo made this axiom explicit and showed its connection with ordinal numbers.
The problem then was either to justify the axiom of choice, or to find a more intuitively
acceptable substitute for it, or to find ways of doing without such “noneffective” concepts.
A debate about this axiom took place in 1905 in the pages of the Comptes rendus of the
Paris Academy of Sciences, which published a number of letters exchanged among Borel,
Lebesgue, Baire, and Jacques Hadamard (1865–1963).10 Borel had raised objections to
Zermelo’s proof that every set could be well-ordered on the grounds that it assumed an
infinite number of enumerations. Hadamard thought it an important distinction that in some
cases the enumerations were all independent, as in Cantor’s proof above, but in others each
depended for its definition on other enumerations having been made in correspondence with
a smaller ordinal number. He agreed that the latter should not be used transfinitely. Borel

8A set is well-ordered if any two elements can be compared and every nonempty subset has a smallest element.
The positive integers are well ordered by the usual ordering. The positive real numbers are not, since there is no
smallest positive number.
9Not every countable union of countable sets is uncountable, however; the rational numbers remain countable,
because an explicit counting function can be constructed.
10These letters were translated into English and published by Moore (1982, pp. 311–320).
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had objected to using the axiom of choice nondenumeratively, but Hadamard thought that
this usage brought no further damage, once a denumerable infinity of choices was allowed.
He also mentioned the distinction due to Jules Tannery (1848–1910) between describing
an object and defining it. To Hadamard, describing an object was a stronger requirement
than defining it. To supply an example for him, we might mention a well-ordering of the
real numbers, which is defined by the phrase itself, but effectively indescribable. Hadamard
noted Borel’s own work on analytic continuation and pointed out how it would change if the
only power series admitted were those that could be effectively described. The difference,
he said, belongs to psychology, not mathematics.

Hadamard received a response from Baire, who took an even more conservative position
than Borel. He said that once an infinite set was spoken of, “the comparison, conscious or
unconscious, with a bag of marbles passed from hand to hand must disappear completely.”11

The heart of Baire’s objection was Zermelo’s supposition that to each (nonempty) subset of
a set M there corresponds one of its elements.” As Baire said, “all that it proves, as far as I
am concerned, is that we do not perceive a contradiction” in imagining any set well-ordered.

Responding to Borel’s request for his opinion, Lebesgue gave it. He said that Zermelo
had very ingeniously shown how to solve problem A (to well-order any set) provided one
could solve problem B (to choose an element from every nonempty subset of a given set). He
remarked, probably with some irony, that, “Unfortunately, problem B is not easy to resolve,
it seems, except for the sets that we know how to well-order.” Lebesgue mentioned a concept
that was to play a large role in debates over set theory, that of “effectiveness,” roughly what
we would call constructibility. He interpreted Zermelo’s claim as the assertion that a well-
ordering exists (that word again!) and asked a question, which he said was “hardly new”:
Can one prove the existence of a mathematical object without defining it? One would think
not, although Zermelo had apparently proved the existence of a well-ordering (and Cantor
had proved the existence of a transcendental number) without describing it. Lebesgue and
Borel preferred the verb to name (nommer) when referring to an object that was defined
effectively, through a finite number of uses of well-defined operations on a given set of
primitive objects.

After reading Lebesgue’s opinion, Hadamard was sure that the essential distinction was
between what is determined and what is described. He compared the situation with the
earlier debate over the allowable definitions of a function. But, he said, uniqueness was
not an issue. If one could say “For each x, there exists a number satisfying. . . . Let y be
this number,” surely one could also say “For each x, there exists an infinity of numbers
satisfying. . . . Let y be one of these numbers.” In that statement, he had put his finger
squarely on one of the paradoxes of set theory (the Burali-Forti paradox, discussed in the
next section). “It is the very existence of the set W that leads to a contradiction. . . the general
definition of the word set is incorrectly applied.” What is the definition of the word set?

The validity and value of the axiom of choice remained a puzzle for some time. It leads to
short proofs of many theorems whose statements are constructive. For example, it proves the
existence of a nonzero translation-invariant Borel measure on any locally compact abelian
group. Since such a measure is provably unique (up to a constant multiple), there ought to
be effective proofs of its existence that do not use the axiom of choice (and indeed there are).
One benefit of the 1905 debate was a clarification of equivalent forms of the axiom of choice

11Luzin said essentially the same in his journal: “What makes the axiom of choice seem reasonable is the picture
of reaching into a set and helping yourself to an element of it.”
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and an increased awareness of the many places where it was being used. A list of important
theorems whose proof used the axiom was compiled for Luzin’s seminar in Moscow in
1918. The list showed, as Luzin wrote in his journal, that “almost nothing is proved without
it.” Luzin was horrified, and spent some restless nights pondering the situation.

The axiom of choice is ubiquitous in modern analysis; little would remain of functional
analysis or point-set topology if it were omitted entirely, although weaker assumptions
might suffice. The Baire category theorem mentioned in the previous chapter cannot be
proved without it. It is fortunate, therefore, that its consistency with, and independence
of, the other axioms of set theory has been proved. The consequences of this axiom are
suspiciously strong. In 1924 Alfred Tarski (1901–1983) and Stefan Banach (1892–1945)
deduced from it that any two sets A and B in ordinary three-dimensional Euclidean space,
each of which contains some ball, can be decomposed into pairwise congruent subsets. This
means, for example, that a cube the size of a grain of salt (set A) and a ball the size of the
sun (set B) can be written as disjoint unions of sets A1, . . . , An and B1, . . . , Bn respectively
such that Ai is congruent to Bi for each i. This result (the Banach–Tarski paradox) is very
difficult to accept. It can be rationalized only by realizing that the notion of existence in
mathematics has no metaphysical content. To say that the subsets Ai, Bi “exist” means only
that a certain formal statement beginning ∃ . . . is deducible from the axioms of set theory.

PROBLEMS AND QUESTIONS

Mathematical Problems

44.1. Bertrand Russell pointed out that some applications of the axiom of choice are easier
to avoid than others. For instance, given an infinite collection of pairs of shoes,
describe a way of choosing one shoe from each pair. Could you do the same for an
infinite set of pairs of socks?

44.2. Let k = k(m) denote the largest integer less than the number

√
8m + 1 − 1

2
.

(The greatest integer less than a positive real number x can be described as [x] − [1 −
x + [x]], where [x] is the standard greatest-integer function.) Show that the mapping

f (m) = k2 + 3k + 4 − 2m

2m − k(k + 1)
.

is an enumeration of all positive rational numbers and in fact, each positive rational
number occurs an infinite number of times in this enumeration. (Show that the num-
ber p

q
occurs as f (n), where n = 1 + 1

2

(
(p + q)2 − 3p − q)

)
. Thus, for example, 3

2

occurs at n = 8 and its reciprocal 2
3 at n = 9.)

44.3. According to the axioms of set theory, every set can be well-ordered. By the con-
tinuum hypothesis, there is a one-to-one correspondence x ↔ ξ between the real
numbers x such that 0 ≤ x ≤ 1 and the countable ordinal numbers ξ. Suppose such
a correspondence is given and we define a function f (x, y) on pairs of real numbers
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between 0 and 1 by specifying that f (x, y) = 1 if ξ < υ, where x ↔ ξ and y ↔ υ,
and f (x, y) = 0 otherwise. Show that

∫ 1

0

∫ 1

0
f (x, y) dy dx = 1 ,

∫ 1

0

∫ 1

0
f (x, y) dx dy = 0 .

Why does this result not contradict the principal from calculus whereby a double
integral can be evaluated as an iterated integral in either order. In Lebesgue integration,
this principle that a double integral can be evaluated as an iterated integral still holds
and is known as Fubini’s theorem, after Guido Fubini (1879–1943).

Historical Questions

44.4. What was Cantor’s original motive for studying sets of points on the real line?

44.5. On what philosophical grounds did Kronecker object to Cantor’s methods?

44.6. What consensus did the mathematical community reach regarding set theory, espe-
cially the axiom of choice?

Questions for Reflection

44.7. In what sense do mathematical entities exist? When we prove the existence of a
root of an equation or a minimal curve having a certain property without exhibiting
it explicitly in terms of more familiar mathematical entities, what is the effective,
practical meaning of that proof?

44.8. What does the Banach–Tarski paradox suggest about the meaning of mathematical
concepts and their application to the physical world?

44.9. The philosopher Immanuel Kant (1724–1804) described mathematical knowledge
(of arithmetic and geometry) as something innate, what he called synthetic, a priori
knowledge. It was synthetic because propositions like the equality 5 + 7 = 12 did
not follow from pure logic, that is, the definition of the concepts of 5, 7, 12, and
addition. It was a priori because it was not learned from experience. We “just know”
it; it’s part of the way our brains are wired, as we would now say. This view, which
possibly Kronecker would have agreed with, conflicts with the aims of set theory,
in which arithmetic is to be derived logically from more primitive concepts. Where
would you place the rock-bottom foundation layer of mathematics: in the simple
arithmetic of the positive integers (with Kant and Kronecker), or in the intuitive idea
of a set or class (with Cantor, Hilbert, and others)? Or is there a third possibility that
seems better to you?



CHAPTER 45

Logic

The mathematization of logic has a prehistory that goes back to Leibniz (not published in his
lifetime), but we shall focus on mostly the nineteenth-century work. After a brief discussion
of the preceding period, we examine the period from 1847 to 1931. This period opens with
the treatises of Boole and De Morgan and closes with Gödel’s famous incompleteness
theorem. Our discussion is not purely about logic in the earlier parts, since the earlier
writers considered both logical and probabilistic reasoning.

45.1. FROM ALGEBRA TO LOGIC

Leibniz was one of the first to conceive the idea of creating an artificial language in which to
express propositions. He compared formal logic to the lines drawn in geometry as guides to
thought. If the language encoded thought accurately, thought could be analyzed in a purely
mechanical manner:

“. . . when disagreements arise, there will be no more need for two philosophers to argue than
for two accountants to do so. For it will suffice for them to take pen in hand, sit at their
counting-boards, and say to each other, ‘Let us calculate.’ [Gerhardt, 1971, Bd. 7, p. 200]

In another place he wrote:

Ordinary languages, though mostly helpful for the inferences of thought, are yet subject to
countless ambiguities and cannot do the task of a calculus, which is to expose mistakes in
inference. . . This remarkable advantage is afforded up to date only by the symbols of arith-
meticians and algebraists, for whom inference consists only in the use of characters, and a
mistake in thought and in the calculus is identical. [Quoted by Bochenski, 1961, p. 275]

Thus did Leibniz begin to extend the application of Euclidean formalism to all of phi-
losophy. But it was not the Euclidean axioms that led him to do this. It was the spectacular
development of algebra in his own time. This transition from the visual to the verbal, from
intuition to language, was one of the prominent features of modern mathematics. It works
quite well in arithmetic and other discrete systems and fairly well even with continuous
systems such as the real numbers and the objects of geometry.

The History of Mathematics: A Brief Course, Third Edition. Roger L. Cooke.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

542



FROM ALGEBRA TO LOGIC 543

The ideal enunciated by Leibniz remains largely unfulfilled when it comes to settling
philosophical disagreements. It reflects an oversimplified and optimistic view of human be-
ings as basically rational creatures. This sort of optimism continued into the early nineteenth
century, as exemplified by the Handbook of Political Fallacies by the philosopher Jeremy
Bentham (1748–1832). But while the complex questions of the world of nature and soci-
ety could not be mastered through logic alone, mathematics proved more amenable to the
influence of logic. The influence, however, was bidirectional. In fact, there is a paradox, if
one thinks of logic as being the rudder that steers mathematical arguments and keeps them
from going astray. As the American philosopher/mathematician Charles Sanders Peirce
(1839–1914) wrote in 1896, reviewing a book on logic:

It is a remarkable historical fact that there is a branch of science in which there has never been a
prolonged dispute concerning the proper objects of that science. It is mathematics. . . Hence, we
homely thinkers believe that, considering the immense amount of disputation there has always
been concerning the doctrines of logic, and especially concerning those which would otherwise
be applicable to settle disputes concerning the accuracy of reasonings in metaphysics, the safest
way is to appeal for our logical principles to the science of mathematics. [Quoted in Bochenski,
1961, pp. 279–280]

Peirce seemed to believe that, far from sorting out the mathematicians, logicians should
turn to them for guidance. But we may dispute his assertion that there has never been a
prolonged dispute about the proper objects of mathematics. Zeno’s paradoxes concern that
very question. In Peirce’s own day, Kronecker and Cantor were at opposite ends of a dispute
about what is and is not proper mathematics, and that discussion continues, politely, down
to the present day. See, for example, the book (1997) by Reuben Hersh (b. 1927).

Leibniz noted in the passage quoted above that algebra had the advantage of a precise
symbolic language, which he held up as an ideal for clarity of communication. Algebra was
one of the sources of mathematical logic. When De Morgan translated a French algebra
textbook into English in 1828, he defined algebra as “the part of mathematics in which
symbols are employed to abridge and generalize the reasonings which occur in questions
relating to numbers.” Thus, for De Morgan at the time, the symbols represented numbers,
but unspecified numbers, so that reasoning about them applied to any particular numbers.
Algebra was a ship anchored in numbers, but it was about to slip its anchor.

Only two years later (in 1830) George Peacock (1791–1858) wrote a treatise on algebra in
which he proposed that algebra be a purely symbolic science independent of any arithmetical
interpretation. This step was a radical innovation at the time, considering that abstract
groups, for example, were not to appear for several more decades. The assertion that the
formula (a − b)(a + b) = a2 − b2 holds independently of any numerical values that replace
a and b, for example, almost amounts to an axiomatic approach to mathematics. De Morgan’s
ideas on this subject matured during the 1830s, and at the end of the decade he wrote:

When we wish to give the idea of symbolical algebra. . . we ask, firstly, what symbols shall
be used (without any reference to meaning); next, what shall be the laws under which such
symbols are to be operated upon; the deduction of all subsequent consequences is again an
application of common logic. Lastly, we explain the meanings which must be attached to the
symbols, in order that they may have prototypes of which the assigned laws of operation are
true. [Quoted by Richards, 1987, pp. 15–16]
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This set of procedures is still the way in which mathematical logic operates, although the
laws under which the symbols are to be operated on are now more abstract than De Morgan
probably had in mind. To build a formal language, you first specify which sequences of
symbols are to be considered “well-formed formulas,” that is, formulas capable of being
true or false. The criterion for being well-formed must be purely formal, one that could in
principle be used by a computer. Next, the sequences of well-formed formulas that are to
be considered deductions are specified, again purely formally. The syntax of the language
is specified by these two sets of rules, and the final piece of the construction, as De Morgan
notes, is to specify its semantics, that is, the interpretation of its symbols and formulas. Here
again, the modern world takes a more formal and abstract view of “interpretation” than De
Morgan probably intended. For example, the semantics of propositional calculus consists
of truth tables. After specifying the semantics, one can ask such questions as whether
the language is consistent (incapable of proving a false proposition), complete (capable
of proving all true propositions), or categorical (allowing only one interpretation, up to
isomorphism).

In his 1847 treatise Formal Logic, De Morgan went further, arguing that “we have power
to invent new meanings for all the forms of inference, in every way in which we have power
to make new meanings of is and is not. . . .” This focus on the meaning of is was very much
to the point. One of the disputes that Peirce overlooked in the quotation above is the question
of what principles allow us to infer that an object “exists” in mathematics. We have seen this
question in the eighteenth-century disagreement over what principles are allowed to define a
function. In the case of symbolic algebra, where the symbols originally represented numbers,
the existence question was still not settled to everyone’s liking in the early nineteenth century.
That is why Gauss stated the fundamental theorem of algebra in terms of real factorizations
alone. Here De Morgan was declaring the right to create mathematical entities by fiat,
subject to certain restrictions. That enigmatic “exists” is indispensable in first-order logic,
where the negation of “For every x, P” is “For some x, not-P .” But what can “some” mean
unless there actually exist objects x? This defect was to be remedied by De Morgan’s friend
George Boole (1815–1864).

In De Morgan’s formal logic, this “exists” remains hidden: When he talks about a class
X, it necessarily has members. Without this assumption, even his very first example is not
a valid inference. He gives the following table by way of introduction to the symbolic logic
that he is about to introduce:

Instead of :

All men will die

All men are rational beings

Therefore some rational beings will die

Write:

Every Y is X

Every Y is Z

Therefore some Zs are X’s

De Morgan’s notation in this work was not the best, and very little of it has caught on.
He used a parenthesis in roughly the same way as the modern notation for implication. For
example, X ) Y denoted the proposition “Every X is a Y .” Nowadays we would write X ⊃ Y

(read “X horseshoe Y”) for “X implies Y .” (To add to the confusion, if x is the set of objects
for which X is true and y the set for which Y is true, then X ⊃ Y actually means x ⊂ y.)
The rest of his notation—X : Y for “Some X’s are not Ys,” X.Y for “No X’s are Ys,” and
X Y for “Some X’s are Ys”—is no longer used. For the negation of these properties he used
lowercase letters, so that x denoted not-X. De Morgan introduced the useful “necessary”
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and “sufficient” language into implications: X ) Y meant that Y was necessary for X and
X was sufficient for Y . He gave a table of the relations between X or x and Y or y for the
relations X ) Y , X.Y , Y ) X, and x . y. For example, given that X implies Y , he noted that this
relation made Y necessary for X, y an impossible condition for X, y a sufficient condition
for x, and Y a contingent (not necessary, not sufficient, not impossible) condition for x.

For compound propositions, he wrote PQ for conjunction (his word), meaning both P

and Q are asserted, and P , Q for disjunction (again, his word), meaning either P or Q. He
then stated what are still known as De Morgan’s laws:

The contrary of PQ is p , q. Not both is either not one or not the other, or not either. Not either
P nor Q (which we might denote by : P , Q or .P , Q) is logically ‘not P and not Q’ or pq:
and this is then the contrary of P , Q.

45.2. SYMBOLIC CALCULUS

An example of the new freedom in the interpretation of symbols actually occurred somewhat
earlier than the time of De Morgan, in Lagrange’s algebraic approach to analysis. Thinking
of Taylor’s theorem as

�hf (x) = f (x + h) − f (x) = hDf (x)h + 1

2!
h2D2f (x) + 1

3!
h3D3f (x) + . . . ,

where Df (x) = f ′(x), and comparing with the Taylor series of the exponential function,

et = 1 + t + 1

2!
t2 + 1

3!
t3 + · · · ,

Lagrange arrived at the formal equation

�h = ehD − 1 .

Although the equation is purely formal and should perhaps be thought of only as a convenient
way of remembering Taylor’s theorem, it does suggest a converse relation

Df (x) = 1

h

(
ln(1 + �h)

)
f (x) = 1

h

(
�hf (x) + 1

2
�2

hf (x) + · · ·
)

,

and this relation is literally true for polynomials f (x). The formal use of this symbolic
calculus may have been merely suggestive, but as Grattan-Guinness remarks (2000, p. 19),
“some people regarded these methods as legitimate in themselves, not requiring foundations
from elsewhere.”
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45.3. BOOLE’S MATHEMATICAL ANALYSIS OF LOGIC

One such person was George Boole. In a frequently quoted passage from the introduction
to his brief 1847 treatise The Mathematical Analysis of Logic, Boole wrote

[T]he validity of the processes of analysis does not depend upon the interpretation of the
symbols which are employed but solely upon the laws of their combination. Every system of
interpretation which does not affect the truth of the relations supposed is equally admissible,
and it is thus that the same process may under one scheme of interpretation represent the
solution of a question or the properties of number, under another that of a geometrical problem,
and under a third that of optics.

Here Boole, like De Morgan, was arguing for the freedom to create abstract systems and
attach an interpretation to them later. This step was still something of an innovation at the
time. It was generally accepted, for example, that irrational and imaginary numbers had a
meaning in geometry but not in arithmetic. One could not, or should not, simply define them
into existence. Cayley raised this objection shortly after the appearance of Boole’s treatise
(see Grattan-Guinness, 2000, p. 41), asking whether it made any sense to write 1

2x. Boole
replied by comparing the question to the existence of

√−1, which he said was “a symbol
(i) which satisfies particular laws, and especially this: i2 = −1.” In other words, when we
are inventing a formal system, we are nearly omnipotent. Whatever we prescribe will hold
for the system we define. If we want a square root of −1 to exist, it will exist (whatever
“exist” may mean).

45.3.1. Logic and Classes

Although set theory had different roots on the Continent, we can see its basic concept—
membership in a class—in Boole’s work. Departing from De Morgan’s notation, he denoted
a generic member of a class by an uppercase X and used the lowercase x “operating on
any subject,” as he said, to denote the class itself. Then xy was to denote the class “whose
members are both X’s and Ys.” This language rather blurs the distinction between a set, its
members, and the properties that determine what the members are; but we should expect
that clarity would take some time to achieve. The connection between logic and set theory
is an intimate one and one that is easy to explain. But the kind of set theory that logic alone
would have generated was different from the geometric set theory of Georg Cantor, which
was intimately connected with the topology of the real line.

The influence of the mathematical theory of probability on logic is both extensive and
interesting. The subtitle of De Morgan’s Formal Logic is The Calculation of Inference,
Necessary and Probable, and, as noted above, three chapters (some 50 pages) of Formal
Logic are devoted to probability and induction. Probability deals with events, whereas logic
deals with propositions. The connnection between the two was stated by Boole in his later
treatise, An Investigation of the Laws of Thought, as follows:

[T]here is another form under which all questions in the theory of probabilities may be viewed;
and this form consists in substituting for events the propositions which assert that those events
have occurred, or will occur; and viewing the element of numerical probability as having
reference to the truth of those propositions, not to the occurrence of the events.
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Two events can combine in four different ways. Neither may occur, or E may occur
but not F , or F may occur but not E, or E and F may both occur. If the events E and F

are independent, the probability that both E and F occur is the product of their individual
probabilities. If the two events cannot both occur, the probability that at least one occurs is
the sum of their individual probabilities. More generally,

P(E or F ) + P(E and F ) = P(E) + P(F ) .

When these combinations of events are translated into logical terms, the result is a logical
calculus.

The idea of probability 0 as indicating impossibility and probability 1 as indicating
certainty must have had some influence on Boole’s use of these symbols to denote “nothing”
and “the universe.” He expressed the proposition “all X’s are Y ’s,” for example, as xy = x

or x(1 − y) = 0. Notice that 1 − y appears, not y − 1, which would have made no sense.
Here 1 − y corresponds to the things that are not-y. From there, it is not far to thinking
of 0 as false and 1 as true. The difference between probability and logic here is that the
probability of an event may be any number between 0 and 1, while propositions are either
true or false.1 These analogies were brought out fully in Boole’s major work, to which we
now turn.

45.4. BOOLE’S LAWS OF THOUGHT

Six years later, after much reflection on the symbolic logic that he and others had developed,
Boole wrote an extended treatise, An Investigation of the Laws of Thought, which began
by recapping what he had done earlier. The Laws of Thought began with a very general
proposition that laid out the universe of symbols to be used. These were:

1st. Literal symbols, as x, y, &c., representing things as subjects of our conceptions.

2nd. Signs of operation, as +, −, ×, standing for those operations of the mind by which the
conceptions of things are combined or resolved so as to form new conceptions involving the
same elements.

3rd. The sign of identity, =.

And these symbols of Logic are in their use subject to definite laws, partly agreeing with and
partly differing from the laws of the corresponding symbols in the science of Algebra.

Boole used + to represent disjunction (or) and juxtaposition, used in algebra for mul-
tiplication, to represent conjunction (and). The sign − was used to stand for “and not.” In
his examples, he used + only when the properties were, as we would say, disjoint; and he

1Classical set theory deals with propositions of the form x ∈ E, which are either true or false: Either x belongs to
E, or it does not, and there is no other possibility. The recently created fuzzy set theory restores the analogy with
probability, allowing an element to belong partially to a given class and expressing the degree of membership by
a function ϕ(x) whose values are between 0 and 1. Thus, for example, whether a woman is pregnant or not is a
classical set-theory question; whether she is tall or not is a fuzzy set-theory question. Fuzzy-set theorists point
out that their subject is not subsumed by probability, since it deals with the properties of individuals, not those of
large sets.
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used − only when the property subtracted was, as we would say, a subset of the property
from which it was subtracted. He illustrated the equivalence of “European men and women”
(where the adjective European is intended to apply to both nouns) with “European men and
European women” as the equation z(x + y) = zx + zy. Similarly, to express the idea that
the class of men who are non-Asiatic and white is the same as the class of white men who are
not white Asiatic men, he wrote z(x − y) = zx − zy. He attached considerable importance
to what he was later to call the index law, which expresses the fact that affirming a property
twice conveys no more information than affirming it once. That is to say, xx = x, and he
adopted the algebraic notation x2 for xx. This piece of algebraization led him, by analogy
with the rules x0 = 0 and x1 = x, to conclude that “the respective interpretations of the
symbols 0 and 1 in the system of Logic are Nothing and Universe.” From these considera-
tions he deduced the principle of contradiction: x2 = x ⇒ x(1 − x) = 0, that is, no object
can have a property and simultaneously not have that property.2

Boole was carried away by his algebraic analogies. Although he remained within the
confines of his initial principles for a considerable distance, when he got to Chapter 5 he
introduced the concept of developing a function. That is, for each algebraic expression f (x),
no matter how complicated, finding an equivalent linear expression ax + b(1 − x), one that
would have the same values as f (x) for x = 0 and x = 1. That expression would obviously
be f (1)x + f (0)(1 − x). Boole gave a convoluted footnote to explain this simple fact by
deriving it from Taylor’s theorem and the idempotence property.

45.5. JEVONS

Both De Morgan and Boole used the syllogism or modus ponens (inferring method) as the
basis of logical inference, although De Morgan did warn against an overemphasis on it.
William Stanley Jevons (1835–1882) formulated this law algebraically and adjoined to it
a principle of indirect inference, which amounted to inference by exhaustive enumeration
of cases. The possibility of doing the latter by sorting through slips of paper led him to
the conclusion that this sorting could be done by machine. Since he had removed much
of the mathematical notation used by Boole, he speculated that the mathematics could
be entirely removed from it. He also took the additional step of suggesting, rather hesi-
tantly, that mathematics was itself a branch of logic. According to Grattan-Guinness (2000,
p. 59), this speculation apparently had no influence on the mathematical philosophers who
ultimately developed its implications.

45.6. PHILOSOPHIES OF MATHEMATICS

Other mathematicians besides Cantor were also considering ways of deriving mathematics
logically from simplest principles. Gottlob Frege (1848–1925), a professor in Jena, who
occasionally lectured on logic, attempted to establish logic on the basis of “concepts” and

2Nowadays, a ring in which every element is idempotent—that is, the law x2 = x holds—is called a Boolean
ring. It is an interesting exercise to show that such a ring is always commutative and of characteristic 2; that is,
x + x = 0 for all x. The subsets of a given set form a Boolean ring when addition is interpreted as symmetric
difference; that is, A + B means “either A or B but not both.”
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“relations” to which were attached the labels true or false. He was the first to establish a com-
plete predicate calculus, and in 1884 wrote a treatise called Grundgesetze der Arithmetik
(Principles of Arithmetic). Meanwhile in Italy, Giuseppe Peano (1858–1939) was axioma-
tizing the natural numbers. Peano took the successor relation as fundamental and based his
construction of the natural numbers on this one relation and nine axioms, together with a
symbolic logic that he had developed. The work of Cantor, Frege, and Peano attracted the
notice of a young student at Cambridge, Bertrand Russell (1872–1969), who had written his
thesis on the philosophy of Leibniz. Russell saw in this work confirmation that mathematics
is merely a prolongation of formal logic. This view, that mathematics can be deduced from
logic without any new axioms or rules of inference, is now called logicism. Gödel’s work
was partly a commentary on this program and the formalist program of Hilbert (discussed
below) and can be interpreted as a counterargument to its basic thesis—that mathematics
can be axiomatized. Logicism had encountered difficulties still earlier, however. Even the
seemingly primitive notion of membership in a set turned out to require certain caveats.

45.6.1. Paradoxes

In 1897, Peano’s assistant Cesare Burali-Forti (1861–1931), apparently unintentionally,
revealed a flaw in the ordinal numbers.3 To state the problem in the clear light of hindsight,
if two ordinal numbers satisfy x < y, then x ∈ y, but y /∈ x. In that case, what are we to
make of the set of all ordinal numbers? Call this set A. Like any other ordinal number, it has
a successor A + 1 and A ∈ A + 1. But since A + 1 is an ordinal number, we must also have
A + 1 ∈ A, and hence A < A + 1 and A + 1 < A. This was the first paradox of uncritical
set theory, but others were to follow.

The most famous paradox of set theory arose in connection with cardinal numbers rather
than ordinal numbers. Cantor had defined equality between cardinal numbers as the ex-
istence of a one-to-one correspondence between sets representing the cardinal numbers.
Set B has larger cardinality than set A if there is no function f : A → B that is “onto,”
that is, such that every element of B is f (x) for some x ∈ A. Cantor showed that the set
of all subsets of A, which we denote 2A, is always of larger cardinality than A, so that
there can be no largest cardinal number. If f : A → 2A, the set C = {t ∈ A : t /∈ f (t)} is
a subset of A, hence an element of 2A, and it cannot be f (x) for any x ∈ A. To see why,
assume the opposite, that is, C = f (x) for some x. Then either x ∈ C or x /∈ C. If x ∈ C,
then x ∈ f (x) and so by definition of C, x /∈ C. On the other hand, if x /∈ C, then x /∈ f (x),
and again by definition of C, x ∈ C. Since the whole paradox results from the assump-
tion that C = f (x) for some x, it follows that no such x exists, that is, the mapping f is
not “onto.” This argument was at first disputed by Russell, who wrote in an essay entitled
“Recent work in the philosophy of mathematics” (1901) that “the master has been guilty of
a very subtle fallacy.” Russell thought that there was a largest set, the set of all sets. In a
later reprint of the article he added a footnote explaining that Cantor was right.4 Russell’s
first attempt at a systematic exposition of mathematics as he thought it ought to be was

3Moore (1982, p. 59) notes that Burali-Forti himself did not see any paradox and (p. 53) that the difficulty was
known earlier to Cantor.
4Moore (1982, p. 89) points out that Zermelo had discovered Russell’s paradox two years before Russell discovered
it and had written to Hilbert about it. Zermelo, however, did not consider it a very troubling paradox. To him it
meant only that no set should contain all of its subsets as elements.
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his 1903 work Principles of Mathematics. According to Grattan-Guinness (2000, p. 311),
Russell removed his objection to Cantor’s proof and published his paradox in this work, but
kept the manuscript of an earlier version, made before he was able to work out where the
difficulty lay.

To explain Russell’s mistake (as Russell later explained it to himself), consider the set
of all sets. We must, by its definition, believe it to be equal to the set of all its subsets.
Therefore the mapping f (E) = E should have the property that Cantor says no mapping
can have. Now if we apply Cantor’s argument to this mapping, we are led to consider
S = {E : E /∈ E}. By definition of the mapping f we should have f (S) = S, and so, just as
in the case of Cantor’s argument, we ask if S ∈ S. Either way, we are led to a contradiction.
This result is known as Russell’s paradox.

After Russell had straightened out the paradox with a theory of types, he collaborated
with his teacher Alfred North Whitehead (1861–1947) on a monumental derivation of
mathematics from logic, published in 1910 as Principia mathematica.

45.6.2. Formalism

A different view of the foundations of mathematics was advanced by Hilbert, who was
interested in the problem of axiomatization (the axiomatization of probability theory was
the sixth of his famous 23 problems) and particularly interested in preserving as much as
possible of the freedom to reason that Cantor had provided while avoiding paradoxes. The
essence of this position, now known as formalism, is the idea stated by De Morgan and
Boole that the legal manipulation of the symbols of mathematics and their interpretation
are separate issues. Hilbert is famously quoted as having claimed that the words point, line,
and plane should be replaceable by table, chair, and beer mug when a theorem is stated.
Grattan-Guinness (2000, p. 208) notes that Hilbert may not have intended this statement in
quite the way it is generally perceived and may not have thought the matter through at the
time. He also notes (p. 471) that Hilbert never used the name formalism. Characteristic of
the formalist view is the assumption that any mathematical object whatever may be defined,
provided only that the definition does not lead to a contradiction. Cantor was a formalist in
this sense (Grattan-Guinness, 2000, p. 119). In the formalist view, mathematics is the study
of formal systems, but the rules governing those systems must be stated with some care.
Formalism detaches the symbols and formulas of mathematics from the meanings attached
to them in applications, making a distinction between syntax and semantics.

Hilbert had been interested in logical questions in the 1890s and early 1900s, but his
work on formal languages such as propositional calculus dates from 1917. In 1922, when the
intuitionists (discussed below) were publishing their criticism of mathematical methodolo-
gies, he formulated his own version of mathematical logic. In it, he introduced the concept
of metamathematics, the study whose subject matter is the structure of a mathematical sys-
tem.5 To avoid infinity in creating a formal language while preserving sufficient generality,
Hilbert resorted to a “finitistic” device called a schema. Certain basic formulas are declared
to be legitimate by fiat. Then a few rules are adopted, such as the rule that if A and B are
legitimate formulas, so is [A ⇒ B]. This way of defining legitimate (well-formed) formulas
makes it possible to determine in a finite number of steps whether or not a formula is well

5This distinction had been introduced by L. E. J. Brouwer in his 1907 thesis, but not given a name and never
developed (see Grattan-Guinness, 2000, p. 481).
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formed. It replaces the synthetic constructivist approach with an analytic approach (which
can be reversed, once the analysis is finished, to synthesize a given well-formed formula
from primitive elements).

The formalist approach makes a distinction between statements of arithmetic and state-
ments about arithmetic. For example, the assertion that there are no positive integers x, y, z
such that x3 + y3 = z3 is a statement of arithmetic. The assertion that this statement can be
proved from the axioms of arithmetic is a statement about arithmetic. The metalanguage,
in which statements are made about arithmetic, contains all the meaning to be assigned
to the propositions of arithmetic. In particular, it becomes possible to distinguish between
what is true (that is, what can be known to be true from the metalanguage) and what is
provable (what can be deduced within the object language). Two questions thus arise in the
metalanguage: (1) Is every deducible proposition true? (the problem of consistency); (2) Is
every true proposition deducible? (the problem of completeness). As we shall see below,
Gödel showed that the answer, for first-order recursive arithmetic and more generally for
systems of that type, is very pessimistic. This language is not complete and is incapable of
proving its own consistency.

45.6.3. Intuitionism

The most cautious approach to the foundations of mathematics, known as intuitionism,
was championed by the Dutch mathematician Luitzen Egbertus Jan Brouwer (1881–1966).
Brouwer was one of the most mystical of mathematicians, and his mysticism crept into
his early work. He even published a pamphlet in 1905, claiming that true happiness came
from the inner world and that contact with the outer world brought pain (Franchella, 1995,
p. 305). In his dissertation at the University of Amsterdam in 1907, he criticized the logicism
of Russell and Zermelo’s axiom of choice. Although he was willing to grant the validity
of constructing each particular countable ordinal number, he questioned whether one could
meaningfully form the set of all countable ordinals.6 In a series of articles published from
1918 to 1928, Brouwer laid down the principles of intuitionism. These principles include
the rejection not only of the axiom of choice beyond the countable case, but also of proof
by contradiction. That is, the implication “A implies not-(not-A)” is accepted, but not its
converse, “Not-(not-A) implies A.”

A specimen of Brouwer’s philosophy may give some idea of the general trend of his
thought. In lectures delivered at Cambridge University in 1946 (van Dalen, 1981), he defined
a fleeing property7 to be a property f such that, for any given positive integer n it is possible
to determine (via an algorithm) whether or not n has the property f , yet there is no known
way of calculating any number possessing property f , and no known way of proving that
no number has this property (van Dalen, 1981, pp. 6–7). As an example (not Brouwer’s) let
us take the property f for an integer n to mean that n is an odd perfect integer.

Brouwer recognized that the quality of being fleeing is not intrinsic to a property of
the integers. It depends both on the definition of the property and on human history, and

6This objection seems strange at first, but the question of whether an effectively defined set must have effectively
defined members is not at all trivial.
7Had English been his native language, Brouwer would probably have called this a fugitive property. In contrast
to the English written by most of his compatriots, which is polished and elegant, Brouwer’s was barbarous. He
coined such atrocities as noncontradictority and supposable.
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a property that is fleeing at one moment may cease to be fleeing at a later moment. For
example, a positive integer that was a fifth power and simultaneously the sum of four
other fifth powers was not known until the mid-twentieth century. These two conditions
constituted a fleeing property until that time. They no longer do, since it is known that
275 + 845 + 1105 + 1335 = 1445. Proceeding from this definition, Brouwer defined the
critical number κf for a fleeing property to be the smallest number having that property.
(This is a number that is unknowable in principle as long as the property remains fleeing.
If anyone ever produces even one example of a number with the property, it ceases to be
fleeing.) He then further separates the positive integers into “up-numbers” of f , which are
those at least as large as κf , and “down-numbers,” which are those that are smaller than
κf . By the first part of the definition of a fleeing property, one can presumably establish
that some initial segment of the positive integers consists of down-numbers. Brouwer then
defines aν = 2−ν if ν is a down-number and aν = 2−κf if ν is an up-number. Finally, he
defines the number sf to be the limit of aν as ν → ∞. According to Brouwer, this example
refutes the principle that one of p or not-p must be true. For, he says,

. . . neither is [sf ] equal to zero nor is it different from zero and, although its irrationality is
absurd, it is not a rational number.

For a person accustomed to ordinary logic, this last statement is extraordinary. Brouwer
appears to be conflating what is known with what is true, asserting, like the baseball umpire
who says “They aren’t anything until I call them,” that this number does not have any
properties until we know what those properties are. By ordinary logic, it is far from obvious
that κf is defined. Indeed, in order to know what it is, we would have to annihilate it, since
presumably κf is defined only while the property f is fleeing, and it ceases to be that once
we know an integer that has property f . One is very much inclined to object that Brouwer
has not really defined anything corresponding to the symbol κf , since the possibility exists
that there are no numbers at all having property f , hence no smallest number with that
property, and Brouwer has made no definition for κf in that case. In any case, the reader can
see why intuitionism has not attracted a large number of adherents among mathematicians.

Intuitionists reject any proof whose implementation leaves choices to be made by the
reader. Thus it is not enough in an intuitionist proof to say that objects of a certain kind exist.
One must choose such an object and use it for the remainder of the proof. This extreme
caution has rather drastic consequences. For example, the function f (x) defined in ordinary
language as

f (x) =
{

1 , x ≥ 0 ,

0 , x < 0 ,

is not considered to be defined by the intuitionists, since there are ways of defining numbers
x that do not make it possible to determine whether the number is negative or positive.
For example, is the number (−1)n, where n is the trillionth decimal digit of π, positive or
negative? This restrictedness has certain advantages, however. The objects that are accept-
able to the intuitionists tend to have pleasant properties. For example, every rational-valued
function of a rational variable is continuous.

The intuitionist rejection of proof by contradiction needs to be looked at in more detail.
Proof by contradiction was always used somewhat reluctantly by mathematicians, since such
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proofs seldom give insight into the structures being studied. For example, the modern proof
that there are infinitely many primes proceeds by assuming that the set of prime numbers
is a finite set P = {p1, p2, . . . , pn} and showing that in this case the number 1 + p1 · · · pn

must either itself be a prime number or be divisible by a prime different from p1, . . . , pn,
which contradicts the original assumption that p1, . . . , pn formed the entire set of prime
numbers.

The appearance of starting with a false assumption and deriving a contradiction can be
avoided here by stating the theorem as follows: If there exists a set of n primes p1, . . . , pn,
there exists a set of n + 1 primes. The proof is exactly as before. Nevertheless, the proof is
still not intuitionistically valid, since there is no way of saying whether or not 1 + p1 · · · pn

is prime. In intuitionistic logic, if “p or q” is a theorem, then either p is a theorem or q is a
theorem.

In 1928 and 1929, a quarter-century after the debate over Zermelo’s axiom of choice, there
was debate about intuitionism in the bulletin of the Belgian Royal Academy of Sciences.
Two Belgian mathematicians, M. Barzin (dates unknown) and A. Errera (dates unknown),
had argued that Brouwer’s logic amounted to a three-valued logic, since a statement could be
true, false, or undecidable. The opposite point of view was defended by two Russian math-
ematicians, Aleksandr Yakovlevich Khinchin (1894–1959) and Valerii Ivanovich Glivenko
(1897–1940). Barzin and Errera had suggested that to avoid three-valued logic, intuitionists
ought to adopt as an axiom that if p implies “q or r,” then either p implies q or p implies
r, and also that if “p or q” implies r, then p implies r and q implies r. Starting from these
principles of Barzin and Errera and the trivial axiom “p or not-p” implies “p or not-p,”
Khinchin deduced that p implies not-p and not-p implies p, thus reducing the suggestions
of Barzin and Errera to nonsense. Glivenko took only a little longer to show that, in fact,
Brouwer’s logic was not three-valued. He proved that the statement “p or not-p is false” is
false in Brouwer’s logic, and ultimately derived the theorem that the statement “p is neither
true nor false” is false (see Novosyolov, 2000).

A more “intuitive” objection to intuitionism is that intuition by its nature cannot be
codified as a set of rules. In adopting such rules, the intuitionists were not being intuitionistic
in the ordinary sense of the word. In any case, intuitionist mathematics is obviously going
to be somewhat sparser in results than mathematics constructed on more liberal principles.
That may be why it has attracted only a limited group of adherents.

45.6.4. Mathematical Practice

The paradoxes of naive set theory (such as Russell’s paradox) were found to be avoidable
if the word class is used loosely, as Cantor had previously used the word set, but the word
set is restricted to mean only a class that is a member of some other class. (Classes that are
not sets are called proper classes.) Then to belong to a class A, a class B must not only
fulfill the requirements of the definition of the class A but must also be known in advance
to belong to some (possibly different) class.

This approach avoids Russell’s paradox. The class C = {x : x /∈ x} is a class; its elements
are those classes that belong to some class and are not elements of themselves. If we now
ask the question that led to Russell’s paradox—Is C a member of itself?—we do not reach a
contradiction. If we assume C ∈ C, then we conclude that C /∈ C, so that this assumption is
not tenable. However, the opposite assumption, that C /∈ C, is acceptable. It no longer leads
to the conclusion that C ∈ C. For an object x to belong to C, it no longer suffices that x /∈ x;
it must also be true that x ∈ A for some class A, an assumption not made for the case when x
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is C. A complete set of axioms for set theory avoiding all known paradoxes was worked out
by Paul Bernays (1888–1977) and Adolf Fraenkel (1891–1965). It forms part of the basic
education of mathematicians today. It is generally accepted because mathematics can be
deduced from it. However, it is very far from being a clear, concise, and therefore obviously
consistent, foundation for mathematics. The axioms of set theory are extremely complicated
and nonintuitive and are far less obvious than many things deduced from them. Moreover,
their consistency is not only not obvious, it is even unprovable. In fact, one textbook of set
theory, Introduction to Set Theory, by J. Donald Monk (McGraw-Hill, New York, 1969, p.
22), asserts regarding these axioms: “Naturally no inconsistency has been found, and we
have faith that the axioms are, in fact, consistent”! (Emphasis added.)

45.7. DOUBTS ABOUT FORMALIZED MATHEMATICS: GÖDEL’S THEOREMS

The powerful and counterintuitive results obtained from the axiom of choice naturally led
to doubts about the consistency of set theory. Since it was being inserted under the rest of
mathematics as a foundation, the consistency question became an important one. A related
question was that of completeness. Could one provide a foundation for mathematics, that
is, a set of basic objects and rules of proof, that would allow any meaningful proposition to
be proved true or false? The two desirable qualities of consistency and completeness are in
the abstract opposed to each other, just as avoiding disasters and avoiding false alarms are
opposing goals.

The most influential figure in mathematical logic during the twentieth century was Kurt
Gödel (1906–1978). The problems connected with consistency and completeness of arith-
metic, the axiom of choice, and many others all received a fully satisfying treatment at his
hands that settled many old questions and opened up new areas of investigation. In 1931, he
astounded the mathematical world by producing a proof that any consistent formal language
in which arithmetic can be encoded is necessarily incomplete, that is, contains statements
that are true according to its metalanguage but not deducible within the language itself. The
intuitive idea behind the proof is a simple one, based on the following statement:

This statement cannot be proved.

Assuming that this statement has a meaning—that is, its context is properly restricted
so that “proved” has a definite meaning—we can ask whether it is true. The answer must
be positive if the system in which it is made is consistent. For if this statement is false, by
its own content, it can be proved; and in a consistent deductive system, a false statement
cannot be proved. Hence we agree that the statement is true, but, again by its own content,
it cannot be proved.

The example just given is really nonsensical, since we have not stated the axioms and
rules of inference that provide the context in which the statement is made. The word “proved”
that it contains is not really defined. Gödel, however, took an accepted formalization of the
axioms and rules of inference for arithmetic and showed that the metalanguage of arithmetic
could be encoded within arithmetic. In particular each formula can be numbered uniquely,
and the statement that formula n is (or is not) deducible from those rules can itself be
coded as a well-formed formula of arithmetic. Then, when n is chosen so that the statement
“Formula number n cannot be proved” happens to be formula n, we have exactly the
situation just described. Gödel showed how to construct such an n. Thus, if Gödel’s version
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of arithmetic is consistent, it contains statements that are formally undecidable. They are
true (based on the metalanguage) but not deducible. This is Gödel’s first incompleteness
theorem. His second incompleteness theorem is even more interesting: The assertion that
arithmetic is consistent is one of the formally undecidable statements.8 If the formalized
version of arithmetic that Gödel considered is consistent, it is incapable of proving itself so.
It is doubtful, however, that one could truly formalize every kind of argument that a rational
person might produce. For that reason, care should be exercised in drawing inferences from
Gödel’s work to the actual practice of mathematics.

PROBLEMS AND QUESTIONS

Mathematical Problems

45.1. Suppose that the only allowable way of forming new formulas from old ones is to
connect them by an implication sign; that is, given that A and B are well formed,
[A ⇒ B] is well formed, and conversely, if A and B are not both well formed, then
neither is [A ⇒ B]. Suppose also that the only basic well-formed formulas are p, q,
and r. Show that

[
[p ⇒ r] ⇒ [

[p ⇒ q] ⇒ r
]]

is well formed but

[
[p ⇒ r] ⇒ [r ⇒]

]

is not. Describe a general algorithm for determining whether a finite sequence of
symbols is well formed.

45.2. Consider the following theorem. There exists an irrational number that becomes

rational when raised to an irrational power. Proof: Consider the number θ = √
3
√

2
.

If this number is rational, we have an example of such a number. If it is irrational,

the equation θ
√

2 = √
3

2 = 3 provides an example of such a number. Is this proof
intuitionistically valid?

45.3. Prove that C = {x : x /∈ x} is a proper class, not a set, that is, it is not an element of
any class. (The assumption that it is an element of some class means it is a set, and
then Russell’s paradox results.)

Historical Questions

45.4. How did algebra influence the interaction of mathematics and logic starting in the
nineteenth century?

8Detlefsen (2001) has analyzed the meaning of proving consistency in great detail and concluded that the generally
held view of this theorem—that the consistency of a “sufficiently rich” theory cannot be proved by a “finitary”
theory—is incorrect.
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45.5. What was Charles Sanders Peirce’s view of the relation between mathematics and
logic?

45.6. What are the three major twentieth-century views of the philosophy of mathematics,
and how do they differ from one another?

Questions for Reflection

45.7. Are there true but unknowable propositions in everyday life? Suppose that your
class meets on Monday, Wednesday, and Friday. Suppose also that your instructor
announces one Friday afternoon that you will be given a surprise exam at one of the
regular class meetings the following week. One of the brighter students then reasons
as follows. The exam will not be given on Friday, since if it were, having been told
that it would be one of the three days, and not having had it on Monday or Wednesday,
we would know on Thursday that it was to be given on Friday, and so it wouldn’t be
a surprise. Therefore it will be given on Monday or Wednesday. But then, since we
know that it can’t be given on Friday, it also can’t be given on Wednesday. For if it
were, we would know on Tuesday that it was to be given on Wednesday, and again
it wouldn’t be a surprise. Therefore it must be given on Monday, we know that now,
and therefore it isn’t a surprise. Hence it is impossible to give a surprise examination
next week.

Obviously something is wrong with the student’s reasoning, since the instructor
can certainly give a surprise exam. Most students, when trying to explain what is
wrong with the reasoning, are willing to accept the first step. That is, they grant that
it is impossible to give a surprise exam on the last day of an assigned window of days.
Yet they balk at drawing the conclusion that this argument implies that the originally
next-to-last day must thereby become the last day. Notice that, if the professor had
said nothing to the students, it would be possible to give a surprise exam on the last day
of the window, since the students would have no way of knowing that there was any
such window. The conclusion that the exam cannot be given on Friday therefore does
not follow from assuming a surprise exam within a limited window alone, but rather
from these assumptions supplemented by the following proposition: The students
know that the exam is to be a surprise and they know the window in which it is to be
given.

This fact is apparent if you examine the student’s reasoning, which is full of
statements about what the students would know. Can they truly know a statement
(even a true statement) if it leads them to a contradiction?

Explain the paradox in your own words, deciding whether the exam would be a
surprise if given on Friday. Can the paradox be avoided by saying that the conditions
under which the exam is promised are true but the students cannot know that they are
true?

How does this puzzle relate to Gödel’s incompleteness result?

45.8. Brouwer, the leader of the intuitionist school of mathematicians, is also known for
major theorems in topology, including the invariance of geometric dimension un-
der homeomorphisms. One of his results is the Brouwer fixed-point theorem, which
asserts that for any continuous mapping f of a closed disk into itself there is a point
x such that x = f (x). To prove this theorem, suppose there is a continuous mapping
f for which f (x) /= x at every point x. Construct a continuous mapping g by drawing
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Figure 45.1. The Brouwer fixed-point theorem.

a line from f (x) to x and extending it to the point g(x) at which it meets the bound-
ary circle (see Fig. 45.1). Then g(x) maps the disk continuously onto its boundary
circle and leaves each point of the boundary circle fixed. Such a continuous mapping
is intuitively impossible (imagine stretching the entire head of a drum onto the rim
without moving any point already on the rim and without tearing the head) and can be
shown rigorously to be impossible (the disk and the circle have different homotopy
groups). How can you explain the fact that the champion of intuitionism produced
theorems that are not intuitionistically valid?

45.9. Suppose that you prove a theorem by assuming that it is false and deriving a con-
tradiction. What you have then proved is that either the axioms you started with are
inconsistent or the assumption that the theorem is false is itself false. Why should
you conclude the latter rather than the former? Is this why some mathematicians have
claimed that the practice of mathematics requires faith?
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ics/Société Canadienne d’Histoire et Philosophie des Mathématiques
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Cambridge University Library Ms. ii.vi.5,” Historia Mathematica, 17, No. 2, 103–131.

Cullen, Christopher, 1996. Astronomy and Mathematics in Ancient China: The Zhou Bi Suan Jing,
Cambridge University Press.



562 LITERATURE

Cuomo, Serafina, 2000. Pappus of Alexandria and the Mathematics of Late Antiquity, Cambridge
University Press.

al-Daffa, Ali Abdullah, 1977. The Muslim Contribution to Mathematics, Humanities Press, Atlantic
Highlands, NJ.

Dahan, Amy, 1980. “Les travaux de Cauchy sur les substitutions; Étude de son approche du concept
de groupe,” Archive for History of Exact Sciences, 23, No. 4, 279–319.
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Friberg, Jöran, 1981. “Methods and traditions of Babylonian mathematics: Plimpton 322, Pythagorean
triples and the Babylonian triangle parameter equations,” Historia Mathematica, 8, No. 3, 277–318.

Fried, Michael N.; Unguru, Sabetai, 2001. Apollonius of Perga’s Conica. Text, Context, Subtext, Brill,
Boston.

von Fritz, Kurt, 1945. “The discovery of incommensurability by Hippasus of Metapontum,” Annals
of Mathematics, 46, 242–264.

Fu Daiwie, 1991. “Why did Lui Hui fail to derive the volume of a sphere?”, Historia Mathematica,
18, No. 3, 212–238.

Fukugawa Hidetoshi, ed., 2005. Sho Min No San Jutsu Ten (Exhibit of Popular Computational Art),
Nagoya City Museum of Science.

Fukagawa Hidetoshi; Pedoe, D., 1989. Japanese Temple Geometry Problems: San Gaku, Winnipeg,
Manitoba.

Fukagawa Hidetoshi; Rothman, T. 2008. Sacred Mathematics: Japanese Temple Geometry, Princeton
University Press. Sho Min No San Jutsu Ten (Exhibit of Popular Computational Art

Fuson, Karen, 1988. Children’s Counting and Concepts of Number, Springer-Verlag, New York.

Gandz, Solomon, 1926. “The origin of the term ‘algebra’,” American Mathematical Monthly, 33, No.
9, 437–440.

Gauss, Carl Friedrich, 1799. “Demonstratio nova theorematis omnem functionem algebraicam ratio-
nalem integralam unius variabilis in factores reales primi vel secundi gradus resolvi posse,” in:
Werke, Vol. 3, Königlichen Gesellschaft der Wissenschaften, Göttingen, 1866, pp. 3–31.

Gauss, Carl Friedrich, 1965. General Investigations of Curved Surfaces, translated from the Latin and
German by Adam Hiltebeitel and James Morehead, Raven Press, Hewlett, NY.

Geijsbeek, John B., ed. and transl., 1914. Ancient Double-Entry Bookkeeping. Lucas Pacioli’s Treatise
(A.D. 1494—The Earliest Known Writer on Bookkeeping), Denver, CO.

Gerdes, Paulus, 1985. “Three alternate methods of obtaining the ancient Egyptian formula for the
area of a circle,” Historia Mathematica, 12, No. 3, 261–268.

Gerhardt, C. J., ed., 1971. Leibniz: Mathematische Schriften, G. Olms Verlag, Hildesheim.

Gericke, Helmut, 1996. “Zur Geschichte der negativen Zahlen,” in: Dauben, Folkerts, Knobloch, and
Wussing, eds., History of Mathematics: States of the Art, Academic Press, New York, pp. 279–306.

Gericke, Helmut; Vogel, Kurt, 1965. De Thiende von Simon Stevin, Akademische Verlagsgesellschaft,
Frankfurt am Main.

Gillings, Richard J., 1972. Mathematics in the Time of the Pharaohs, MIT Press, Cambridge, MA.
Reprint: Dover, New York, 1982.

Gold, David; Pingree, David, 1991. “A hitherto unknown Sanskrit work concerning Mādhava’s deriva-
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arithmétiques,” Bulletin de la Société Mathématique de France, 24, 199–220.
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Hayashi Takao, 1991. “A note on Bhāskara I’s rational approximation to sine,” Historia Scientiarum,
No. 42, pp. 45–48.

Heath, T. L., 1910. Diophantus of Alexandria: A Study in the History of Greek Algebra, 2nd ed.,
Cambridge University Press, 1910.

Heath, T. L., 1897–1912. The Works of Archimedes Edited in Modern Notation with Introductory
Chapters, Reprint: Dover, New York, 1953.

Heath, T. L., 1921. A History of Greek Mathematics, Clarendon Press, Oxford.

Hersh, Reuben, 1997. What is Mathematics, Really? Oxford University Press, New York.
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ematics, Birkhäuser, Boston.
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Islam Heritage Foundation, London.

R¯ashid, Rushd¯i, 1994. The Development of Arabic Mathematics: between Arithmetic and Algebra,
translated by Angela Armstrong, Kluwer Academic, Dordrecht and Boston.

Reich, Karin, 1977. Carl Friedrich Gauss: 1777/1977, Inter Nationes, Bonn–Bad Godesberg.

Richards, Joan, 1987. “Augustus de Morgan and the history of mathematics,” Isis, 78, No. 291,
7–30.

Robins, Gay; Shute, Charles, 1987. The Rhind Mathematical Papyrus: An Ancient Egyptian Text,
British Museum Publications, London.

Robson, Eleanor, 1995. Old Babylonian coefficient lists and the wider context of mathematics in
ancient Mesopotamia 2100–1600 BC. Dissertation, Oxford University.

Robson, Eleanor, 1999. Mesopotamian Mathematics, 2100–1600 BC: Technical Constants in Bureau-
cracy and Education, Clarenden Press, Oxford and Oxford University Press, New York.

Robson, Eleanor, 2001. “Neither Sherlock Holmes nor Babylon: A reassessment of Plimpton 322,”
Historia Mathematica, 28, No. 3, 167–206.

Robson, Eleanor, 2008. Mathematics in Ancient Iraq, Princeton University Press.

Robson, Eleanor, 2009. “Mathematics education in an Old Babylonian scribal school,” in: Robson
and Stedall, 2009, pp. 199–227.

Robson, Eleanor; Stedall, Jacqueline, eds., 2009. The Oxford Handbook of the History of Mathematics,
Oxford University Press.

Rosen, Frederic, 1831. The Algebra of Mohammed ben Musa, Oriental Translation Fund, London.

Russell, Bertrand, 1945. A History of Western Philosophy, Simon and Schuster, New York.

Sabra, A. I., 1969. “Simplicius’s proof of Euclid’s parallel postulate,” Journal of the Warburg and
Courtauld Institute, 32, 1–24.

Sabra, A. I., 1998. “One ibn al-Haytham or two? An exercise in reading the bio-bibliographical
sources,” Zeitschrift für Geschichte der Arabisch-Islamischen Wissenschaft, 12, 1–50.

Sarkor, Ramatosh, 1982. “The Bakhshali Manuscript,” Ganita-Bharati (Bulletin of the Indian Society
for the History of Mathematics), 4, Nos. 1–2, 50–55.

Scharlau, W., 1986. Rudolf Lipschitz, Briefwechsel mit Cantor, Dedekind, Helmholtz, Kronecker,
Weierstraß, Vieweg, Deutsche Mathematiker-Vereinigung, Braunschweig–Wiesbaden.

Scharlau, Winfried; Opolka, Hans, 1985. From Fermat to Minkowski: Lectures on the Theory of
Numbers and Its Historical Development, Springer-Verlag, New York.

Servos, John W., 1986. “Mathematics and the physical sciences in America, 1880–1930,” Isis, 77,
611–629.

Sesiano, Jacques, 1982. Books IV to VII of Diophantus’ Arithmetica in the Arabic Translation At-
tributed to Qusta ibn Luqa, Springer-Verlag, New York.

Shen Kangshen, 1988. “Mutual-subtraction algorithm and its applications in ancient China,” Historia
Mathematica, 15, 135–147.
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Wantzel, Laurent, 1845. “Démonstration de l’impossibilité de résoudre toutes les équations
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Poisson, Siméon-Denis, 427, 428, 473, 516, 517
Pollux, 135
Polybius, 178
Poncelet, Jean-Victor, 451
Price, D. J., 51
Pringsheim, Alfred, 516
Proclus, 81, 83, 85, 86, 96, 103, 105, 113, 116,

119, 123, 126, 130, 136, 149, 161, 171, 482
Psellus, Michael, 98
Pseudo-Boethius, 314
Ptolemy (Egyptian ruler), 118
Ptolemy Euergetes, 160
Ptolemy Soter, 29, 87, 116
Ptolemy, Claudius, 8, 33, 77, 79, 81–83, 89,

136, 161, 172, 174, 177–190, 220, 225,
238, 286, 290, 304, 306, 308, 315, 317,
320, 482, 484

Puiseux, Victor, 458, 506
Pythagoras, 46, 80, 82–85, 97, 104, 197,

293, 315
Pytheas, 178

Qin Jiushao, 258, 260, 271
ibn-Qurra, Thabit, 287, 293, 294, 302, 309, 318,

482, 484, 493

Rajagopal, P., 358
Ramanujan, Srinivasa, 210, 244
Ramses II, 68
al-Raschid, Harun, 284
Rashed, Roshdi, 305, 306
R¯ashid, Rushd¯i, 288
Rawlinson, Sir Henry, 29
Recorde, Robert, 328, 340
Regiomontanus, 309, 320, 331, 337
Reich, Karen, 426, 469
Reinhardt, Curt, 459
Reisner, George Andrew, 57
Rhind, Alexander Henry, 57
Ricci, Matteo, 240, 243
Ricci-Curbastro, Gregorio, 478
Richards, Joan, 543
Richer, 316
Riemann, Bernhard, 137, 385, 387, 395, 451,

456–458, 471, 474–476, 478, 479, 489,
492, 504, 506–507, 518, 526, 532

Ries, Adam, 328
Riesz, Frigyes, 412, 527
Robert of Chester, 318, 324
Robertson, E. F., 196
de Roberval, Gilles Personne, 365, 366,

372, 382
Robins, Gay, 58, 71, 74
Robinson, Abraham, 399
Robson, Eleanor, 29, 46, 48
Roch, Gustav, 506
Rogers, Douglas, 54
Rolle, Michel, 379, 381
Rosen, Frederic, 294, 297
Rothman, T., 278
Rudin, Walter, 495
Ruffini, Paolo, 4, 5, 258, 440–442
ibn Rushd, 291
Russell, Bertrand, 291, 372, 375, 540, 549

Sabra, A. I., 305
Saccheri, Giovanni, 303, 482–484, 493
ibn Sahl, Abu Saad, 306, 393
Salmon, George, 473
Santayana, George, 3, 11
Sargon, 28
Sarkor, Ramatosh, 206
Sawaguchi Kazuyuki, 271, 273
Scharlau, Winfried, 524
Schwarz, Hermann Amandus, 533
Schweikart, Ferdinand Karl, 485, 487
“Scorpion”, 56
Scott, Charlotte, Angas, 409
von Seidel, Philipp Ludwig, 525
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Bengali language, 203
Bergama, 88
Berkeley, 379, 431
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Berlin, 43, 72, 386, 406, 412
Berlin papyrus 6619, 67, 72
Bernoulli number, 422
Bernoulli trials, 421–423
Betelgeuse, 285
Betti number, 478
Bhagabati Sutra, 206, 217
bhuja, 220
Bianchi identity, 479
bias, 431
Bible, 28, 70
Bibliotheca mathematica, 537
Bibliothèque Nationale, 320
bicylinder, 263
Bijapur, 209
binary operations, 39
binary system, 31
binomial, 228
binomial distribution, 428
binomial series, 517
binomial theorem, 371, 373, 378, 421, 506
birds, 14
bisection, 276
bisector, 146, 170, 173, 180, 187, 199, 215, 309
Bisutun, Iran, 29
bit (binary digit), 31
Black Sea, 27
Blessed Islands, 179
block printing, 239
BM 13901, 46, 55
BM 85194, 49, 228
BM 85196, 47, 54
Bobbio, 316
Bodhayana Sutra, 213, 215, 216
Bodleian Library, 294
Bologna, 321, 413
Bolzano–Weierstrass theorem, 533
Bombay (Mumbai), 210
Book of Changes, 255
Book of Completion and Reduction, 287
Book of Lemmas, 149
Book of Squares, 326
Book on the Resolution of Doubts, 306
Book on Unknown Arcs of a Sphere, 308
Boolean ring, 548
Borel sets, 535
boson, 427
Boston Museum of Fine Arts, 57
botany, 239
boundary, 511
bowstring, 221, 249, 305, 318
Boxer Rebellion, 240

brachistochrone, 392, 469
“Brahmagupta’s identity”, 230
Brahmagupta’s theorem, 227
Brahman, 208
Brahmasphutasiddhanta, 209, 227–229, 285
branch, 352
branch point, 458, 506
bread, 58, 67
Brescia, 321
Brianchon’s theorem, 449
bricks, 213
Britain, 178, 315
British Museum, 38, 57
Brooklyn Museum of Art, 57
Brouwer fixed-point theorem, 556
Bryn Mawr College, 405, 409, 413, 414
bu, 253
buckminsterfullerene, 350
buckyball, 351
Buddha, 409
Buddhism, 202, 204, 206, 267, 269, 277, 290
Burali-Forti paradox, 539, 549
Bushoong, 17
buyer, 425
Byzantine Empire, 81, 283, 291, 313

c, 535
Cabo Delgado, 179
Cairo, 58, 141
Caius College, 425
calculating devices, 267–268
calculating machines, 345
calculator, 30, 39, 184, 329
calculus, 8, 157, 195, 201, 205, 258, 274–277,

311, 358–401, 406, 448, 464, 468, 491,
500, 502

barycentric, 452
foundations, 383, 397–399
fundamental theorem, 370, 377, 526
integral, 235, 377
priority dispute, 381–382

calculus of residues, 505
calculus of variations, 312, 374, 379, 387,

391–397, 400
Calcutta, 210, 411
calendar, 12, 80, 150, 230, 241, 244, 320

Gregorian, 373
proleptic, 373

Julian, 373, 406
lunar, 285
lunisolar, 241, 285
Muslim, 285
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California, 379
California State University, 466
Caliphate of Cordoba, 283, 308
calligraphy, 242
Cambridge University, 100, 370, 373, 408, 425
Cambridge University Press, 411
camel, 219
canal, 68, 248, 250, 287
Canary Islands, 179
cancelation, 92, 234
Candide, 375
Cantor–Bendixson theorem, 535
Cardano formula, 338, 436
cardinal number, 534
cardinality, 535
Carolingian Empire, 313, 315
carpentry, 220
carrying, 38
Cartesian product, 9
Carthage, 148
carts, 246, 253
casino, 9
Caspian Sea, 27
Catch-22, 415
categoricity, 544
cathedral school, 315, 318
Cauchy convergence criterion, 525
Cauchy integral formula, 505, 516
Cauchy integral theorem, 505
Cauchy sequence, 525
Cauchy–Riemann equations, 505, 520
Cavalieri’s principle, 154, 243, 263, 274,

365–384
Cayley metric, 456
“celestial element method”, 271
celestial equator, 224
celestial sphere, 177, 180, 224, 317, 479
censo, 320, 335
center, 163, 215, 348
center of curvature, 466, 479
center of gravity, 193
central limit theorem, 424, 428–429
Centrobaryca, 195
centroid, 195, 198, 262
centuria, 174
Ceyuan Haijing, 271
chain, 459
chain of being, 204
Chaldean (astrologer), 84
Chaldean Empire, 28
chance, 427
Chandahsutra, 205

change of variable
fractional-linear, 45
linear, 41

charioteership, 242
Chebyshëv’s inequality, 428, 430
chemistry, 239, 373
cheng, 245
chi, 251, 252
Chicago, 290, 410
children, 15
Chiliades, 129
China, 6, 22, 30, 37, 46, 179, 201, 204, 206,

218, 219, 239–267, 284, 290, 300, 308,
310, 338, 447

number system, 32
Chinese language, xxvi, 203, 221, 241, 267
Chinese remainder theorem, 224, 246, 294
Chinese writing, 267
Ching (Manchu) Dynasty, 240
chong cha, 251
ch’onwonsul, 271
chord, 152, 165, 166, 177, 180, 184, 220, 276,

304, 333, 490
of half-angle, 186

chords
table, 184–187

Christians, 197
CHŪ, 267
circle, xxv, 6, 16, 30, 33, 48, 68, 70–71, 79, 106,

122, 123, 131, 136, 143, 151, 160, 162,
165, 168, 169, 177, 180, 181, 183, 211,
216, 251, 262, 348, 350, 359, 371, 462

circumscribed, 48, 173, 216
equal to a given square, 215, 228
equatorial, 224
generating, 366
great, 219, 235
inscribed, 173, 216, 263, 278
measurement, 150
osculating, 464, 467
quadrature, 106, 115–117, 131, 139, 147,

153, 215, 219, 323, 377, 445
Egyptian approximation, 70

rectification, 275, 277
circumference, 48, 169, 184, 216, 219, 251,

261, 279, 372
“practical”, 227

citizenship, 248
citra kardinem, 174
Civil War, English, 373
classical problems, 127
clay tablets, 27
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clock, 31, 178, 393
cloth, 336
Cloyne, 379
cluster point, 533
Cnidus, 129, 130
co-declination, 224
co-latitude, 224, 235
coefficient, 266, 433
coin, 206
coin-tossing, 424
Collection, 140, 161, 172, 190–196, 199
collinearity, 453
color, 234
Columbia University, 49
combination, 233, 421
Combination Book, 275
combinatorial coefficients, 217
combinatorics, 205, 217–218, 233–234, 239
combinatory product, 474
comet, 426
Commentaries of Pythagoras, 197
Commentarii, 424, 438
Commentary on the Premises to Euclid’s Book

The Elements, 306
commentator, 80–82, 90, 102, 153,

190–199
commerce, 30, 58, 79, 80, 287, 296
common divisor, 92
Communism, 240
commutative, 548
compass, 186, 191, 242, 305, 444, 484, 522
Compendium, 377
completeness, 544, 551, 554
completing the square, 235, 295
complex analysis, 8, 387, 463, 495–510
complex number, 340, 346, 379, 389, 445, 448,

453, 495–496, 513
complex plane, 449, 452
complex variable, 401, 500
component, 458
composite number, 93
composite ratio, 133, 138, 145, 193, 194
composition, 444
compound interest, 44
Comptes rendus, 387, 538
computation, 6, 209

Egyptian, xxiv, xxv
computer, 6, 18, 225
computer algebra, 1, 6, 45
concavity, 467
conchoid, 123, 125–169
conditional probability, 23, 419

conditioning, 16
cone, xxv, 118, 131, 144, 169, 352, 472

acute-angled, 161
nappe, 164
obtuse-angled, 161
right-angled, 161
slant height, 152

cones, similar, 144
conformal mapping, 464, 469, 473
Confucianism, 239
Congrès scientifique de France, 325
congruence, 201, 492
congruent, 235
congruent triangles, 21
conic section, xxv, 88, 103, 118, 123, 160–166,

169, 193, 298, 308, 353, 359, 377, 449,
453, 454

subcontrary, 162
conical projection, 180
Conics, 140, 192, 286, 305, 308
conjugate points, 395
conjunction, 547
connectedness, 461
connectivity, 458, 478
conoid, 150
Conoids and Spheroids, 150
conservation law, 387
conservation of energy, 476, 479
consistency, 544, 551, 554
constant, 347, 359

Euler’s, 522
constant of proportionality, 163
Constantinople, 82, 153, 197, 284, 285
constrained extremum, 394
constructivism, 536
Continuation of Ancient Mathematics, 257
continued fraction, 101
continuity, 8, 400, 461, 492, 495, 499, 522

absolute, 528
continuous medium, 6
continuous quantity, 5, 6
continuum, 107, 108, 129, 462
continuum hypothesis, 535, 540
convergence

Abel–Poisson, 517
in measure, 422
in probability, 422
pointwise, 525–526
uniform, 525–526

convergence factor, 517
converging lines, 307
convexity, 470
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coordinate
radial, 181

coordinate lines, 361
coordinate system, 17
coordinates, 174, 311

barycentric, 452
Cartesian, 359
homogeneous, 454
line, 455
point, 455
polar, 368, 518
rectangular, 368, 518
spherical, 181

Copenhagen, 498
Cordoba, 302
Cornell University, 409
corner (Egyptian square root), 67
corner condition, 396
Corpus Agrimensorum Romanorum, 174
cosa, 20, 320, 335
cosecant, 221
coset, 444
cosine, 188, 221, 224, 225, 237, 275, 335, 337,

342, 358, 501
hyperbolic, 484

cosmimetry, 317
cotangent, 221
countable set, 538
counting, 14–16, 80
counting board, 18, 38, 245, 256, 268, 274
counting rods, 18, 245, 268
Cours d’analyse, 514, 525
cousinhood, 7
covariant, 455
crafts, 16
Cramér’s paradox, 453, 463
Cramér’s rule, 453
credit, 336
Crest Jewel of the Siddhantas, 235
Crete, 118
cross product, 446, 474
cross-ratio, 351, 491
crosscut, 458
Croton, 84, 128, 197
Crusades, 284
crystal ball, 19
crystallography, 325
cube, 38, 96, 97, 106, 117, 130, 144, 218, 228,

254, 264
doubling, 106, 107, 116–122, 139, 147, 342,

444
cube root, 38, 229, 257, 347, 496

cubic curve, 449
cubic equation, 40, 234, 257, 261, 265, 286,

289, 296, 298, 308, 321, 338–340, 346,
433, 438, 496

irreducible case, 340, 342–343
two-variable, 462

cubic polynomial, 407
cubit, 69, 70, 73
cun, 252
cuneiform, 19, 22, 27, 29, 31, 36, 38, 47–49, 54,

58, 65, 82, 83, 109, 142, 228
current, 477
curvature, 251, 374, 464, 466, 477, 489

center, 479
Gaussian, 470, 471, 479
geodesic, 473
normal, 512
radius, 464, 468, 479, 483, 487

curvature tensor, 479
curve, 193, 205, 360

algebraic, 293, 453
bell-shaped, 399
length, 475
plane, 162, 464–468
space, 464, 469
space-filling, xxiii
transcendental, 453

curves, homologous, 459
curvilinear problem, 123
Cutting Off of a Ratio, 161
cycle, 460
cyclic quadrilateral, 173, 227
cycloid, 364–365, 372, 374, 393, 453, 465

area, 366
curtate, 453
prolate, 453
tangent to, 364

cycloidal pendulum, 465, 467
Cyclops, 94
cyclotomic equation, 443
cylinder, 80, 118, 131, 144, 148, 150, 154–155,

191, 195, 253, 262, 352, 472
area, 72

cylinders, similar, 144
Cyzicus, 130

Daniel (book of the Bible), 28
dār al-‘ilm, 286
Dark Ages, 291
Dasagitika Sutra, 208
Data, 87, 140, 144, 192, 286, 307, 330
day, 12, 33
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day-circle, 224
daylight, 178
De arte combinatoria, 421
De configurationibus qualitatum motuum, 331
De divina proportione, 349
De institutione musica, 315
De Morgan’s laws, 545
De motu stellarum, 318
De numeris datis, 329
De pictura, 321
De quadratura arithmetica circuli, 522
De ratiociniis in ludo aleæ, 420
De revolutionibus, 309
De Thiende, 328
De triangulis omnimodis, 309, 320, 331
decagon, 185
decimal expansion, 12, 522

infinite, 329
decimal system, 31, 37, 59, 188, 207, 212,

213, 292
declination, 177, 180, 224
Decline and Fall of the Roman Empire, 198
decorum, 242
decumanus maximus, 174
Dedekind cut, 525
Dedoména, 144
defect, 104, 163, 485
deferent, 181, 188
deficient number, 94
deficit, 352
definition, 82, 90, 244
degree, 33, 49, 79, 184, 211, 222
Della pittura, 321, 352
Delos, 117, 130
demonstration, 6
denarius, 206
density, 133, 511
dependent trials, 429
dependent variable, 514
derivative, 299, 358, 363, 370, 373, 374, 376,

382, 384, 464, 512
partial, 520
second, 464

derived set, 533, 535
Desargues’ theorem, 192, 354
descriptive set theory, 535
Deatiled Analysis of the Mathematical Rules

in the Jiu Zhang Suan Shu, 243
determinant, 272, 453
determinate problem, 99
determinism, 432
developing a function, 548

dextra decumani, 174
diagonal, 47, 109, 113, 122, 130, 144, 146, 184,

214, 216, 249, 273, 309, 384
diameter, 48, 71, 117, 123, 132, 144, 152, 161,

185, 216, 219, 227, 237, 252, 254, 261,
275, 279, 309

dice, 419, 430
Dichotomy paradox, 107
Dictionary of Scientific Biography, 289
differentiability, 411
differentiable manifold, 471
differential, 376, 378, 394
differential equation, 312, 379, 382, 383, 387,

401, 407, 459, 460, 468, 473, 495
exact, 387
ordinary, 387–389
partial, 390–391, 425

normal form, 391
differential form, 478
differential geometry, 486, 492
differentiation, 382, 500
difformly difform, 330
digit, 234
dimension, 41, 69, 96, 144, 193, 337, 359,

361, 535
fourth, 308
invariance, 556

dı̄nāra, 206
Diophantine equation, 99, 213, 229, 230,

254
dirhem, 295
Dirichlet function, 515
Dirichlet’s principle, 395
discontinuity, 529
Discourse on Method, 360
Discourses on the Seven Sages, 82
discrete, 107
discriminant, 342
discrimination, 431
Discussion of difficulties in Euclid, 307
disjunction, 547
disk, 68, 179, 255

equatorial, 235
dispersion, 425
Disquisitiones arithmeticæ, 247
Disquisitiones generales circa superficies

curvas, 469
dissection, 201, 262, 264
distance, 253, 320
distribution, 512

binomial, 428
Gaussian, 427
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normal, 427, 428, 430
Poisson, 428

dividend, 34, 329
divination, 19, 24, 241, 255, 427
Divine Comedy, 317
Divine Proportion, 349
divisibility, 97, 246

infinite, 108
division, 12, 19, 34, 38, 59, 101, 199, 245, 322

Egyptian, 61
polynomial, 445

divisor, 329
common, 92

Doctrine of Chances, 423
dodecahedron, 144
dogs, 20

perception of shape, 16
dominated convergence theorem, 527, 530
Doric, 118
dot product, 446
double difference, 251
double square umbrella, 263
doubling, 59
doubling a square, 47, 214
doubling the cube, 106, 107, 116–122, 130,

139, 147, 342, 444
doubly periodic function, 504
dozen, 30
drachma, 206
dram, 30
dramma, 206
duality, 449, 452
Duquesne University, 494
Dutch, 270
dyad, 72

e, 12, 31, 423, 425, 445, 522
earth, 84, 96, 177–180, 188, 208, 211, 220, 251,

289, 317, 488
earth–moon system, 182
Easter, 19
eccentric, 181
eccentricity, 418
Eccclesiastical History, 197
eclipse, 181, 190, 238, 244

lunar, 82
solar, 82

ecliptic, 180, 183
Ecole Normale, 444
Ecole Polytechnique, 398, 450
economics, 425
ecu, 336

edge law, 459
Edict of Nantes, 423
education, 209, 210
effective enumeration, 534
Egypt, 18, 19, 22, 25, 28–30, 32, 37, 56–77, 79,

80, 83, 84, 90, 98, 116, 130, 138, 140,
141, 179, 205, 235, 244, 283, 317,
319, 376

Lower, 56
Upper, 56

Egyptian computation, xxiv, xxv
Egyptian Museum, 58
Egyptian numeration, 95
eı́da (species), 98
Eighteenth Dynasty, 68
Elamite language, 29
elasticity, 394, 473, 476
electricity, 477
element, 84
Elements, 7, 77, 81, 86, 91, 94, 97, 103, 112,

116, 117, 130, 132, 136, 140–147, 152,
158, 165, 169, 171, 176, 185, 194, 196,
198, 210, 214, 243, 286, 288, 290, 302,
307, 318, 327, 348, 373

ellipse, 16, 17, 118, 161, 165, 183, 348, 352,
372, 455, 462, 501

definition, 162
eccentricity, 16
equation, 163
rectification, 270
string property, 166, 168

elliptic function, 97, 386
elliptic integral, 407, 445, 502
emolumentum, 425
Emperor Yu, 255
empirical knowledge, 360
empty place, 207, 213
Encyclopédie, 386, 397
energy

conservation, 476
engineering, 53, 56, 88, 174–175, 322, 329,

387, 448
England, 211, 318, 411, 423
English language, 28, 31, 39, 59, 160, 163, 204,

217, 241, 247, 351, 374, 412, 417,
485, 538

entropy, 428
enumerable number, 217
envelope, 468, 469
epanthēma, 98
Ephesus, 85
epicycle, 181, 188
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epistemology, 8, 85
equalation, 352
equality

exact, 129
equation, 40, 44, 76, 163, 205, 218, 265, 287,

401, 433–447
approximate solution, 255
cubic, xxv, 40, 234, 257, 265, 286, 289, 296,

298, 308, 321, 338–340, 346, 433,
438, 496

irreducible case, 340, 342–343
two-variable, 462

cyclotomic, 443
differential, 312, 382, 387, 401
Diophantine, 99, 229, 230, 254
Euler’s, 394, 395
gravitational, 479
heat, 390, 399, 519
Laplace’s, 513, 519
linear, 40, 219, 230, 242, 272, 296
linear system, 256
numerical solution, xxiv, 258, 266
Pell’s, 229, 237

greater solution, 230
lesser solution, 230

quadratic, xxv, 19, 40, 69, 99, 105, 228, 233,
256, 272, 296, 301, 329, 338, 359, 433,
447

quartic, 234, 260, 308, 322, 338–340, 346,
433, 438

quintic, 4, 439, 442, 445
solution by radicals, 338
wave, 390, 512, 513, 519

equations
Cauchy–Riemann, 505, 520
Frenet–Serret, 477
Mainardi–Codazzi, 477
Navier–Stokes, 473

Equator, 179, 235
equatorial circle, 224
equidistant curve, 307, 309
equilateral number, 110
equilateral triangle, 279, 316
Equilibrium of Planes, 149
equinox, 224

vernal, 180
Erbil, Iraq, 178
Erlangen, 412
Essai sur une manière de representer les

quantités imaginaires dans les
constructions géométriques, 499

Ethiopia, 179

Euclidean algorithm, 92–93, 101, 110, 144,
146, 231, 245, 264, 445

Euclidean geometry, xxv, 6, 348, 367, 372, 376,
480

Euclides ab omni nævo vindicatus, 482
Euler characteristic, 456, 461, 473
Euler constant, 523
Euler’s equation, 394, 395
Euler’s formula, 459
Euphrates River, 27, 28, 288
Eureka College, 410
Europe, 81, 96, 179, 187, 247, 266, 267, 270,

284, 311–338, 358, 406, 482
European Union, 30
even number, 72, 93, 110, 255
evenly even number, 93
event, 23, 419, 547
evolute, 464, 467, 479
evolution, 24
exceedence, 352
excess, 104
excluded middle, 9
existence, 8, 145, 529, 534, 544, 546
expectation, 420, 428
exponent, 44, 97, 218, 336
exponential function, 347, 378, 500, 545
exterior-angle principle, 137
extremal

strong, 397
weak, 395, 397

extremes, 143

face, 17
faction, 434
fairness, 248, 301
Fakhri, 327
falconry, 319
false position, 66
fathom, 30
fen, 251, 253
Fermat’s last theorem, 89, 91, 100, 461
Fermat’s principle, 392, 394
fermion, 427
Fertile Crescent, 29
Fibonacci Quarterly, 325
Fibonacci sequence, 324–326
field, 4, 247, 443, 536

algebraically closed, 433, 447
non-Archimedean, 383
ordered, 383

Fields Medal, 461
figurate number, 77, 91, 95–118
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figure, 17
finger reckoning, 292
finite difference, 379
fire, 84, 96
first category, 529
First Crusade, 284
first fundamental form, 471, 477, 479
first ratio, 397
five-line locus, 193
flat manifold, 476
flat surface, 468
flavor, 217
Floating Bodies, 150
floating-point number, 6
floating-point system, 32
Florida, 54
Flos, 327
fluent, 374, 382
fluxion, 373–374, 379, 381, 382
Fluxions, 374, 388, 466
focal property, 165–167
focus, 165–167
FOIL, xxv
folding, 272
folium of Descartes, 364
foot, 30
force, 476
form, 188

Platonic, 85
Formal Logic, 544, 546
formalism, 550–551
formula, xxv

Guldin’s, 195, 198
quadratic, xxv, 147, 234
Stirling’s, 423
well-formed, 555

four-line locus, 165–166, 168, 193, 361
Fourier coefficients, 514
Fourier integral, 391, 512–513, 516
Fourier inversion formula, 516
Fourier series, 11, 391, 512–514, 519
fourth proportional, 521
fraction, 39, 59, 209, 242, 245–246

continued, 101
Horus-eye, 58, 62, 67
improper, 245
sexagesimal, 38

fractional-linear transformation, 449
France, 192, 318, 338, 376, 411, 423, 473
Franks, 283
French language, xxvi, 31, 298, 351, 352,

412, 452

Frenet–Serret equations, 477
frequency, 10
frustum, 55, 74, 228, 252

of a cone, 150
of a pyramid

volume, 49, 74
fu, 245
fukudai, 272
fukudai license, 272
function, 8, 389, 391

absolutely continuous, 528
algebraic, 387, 457
analytic, 389, 500–508, 511, 521
continuous, 495
definition, 512, 513, 536
development, 548
Dirichlet, 515
doubly periodic, 504
elementary, 382
elliptic, 97, 386
exponential, 347, 378, 500, 545
generalized, 512
harmonic, 425, 518, 528
hyperbolic, 6, 484
logarithmic, 347, 500
“mechanical”, 495
monotonic, 528
multivalued, 457, 458, 505
piecewise monotonic, 515
quadratic, 306
rational, 383, 438, 441, 500
theta, 407, 504
transcendental, 169, 457
trigonometric, 6, 184, 221, 226, 308, 323,

378, 500
wave, 427

functional, 400
functional analysis, 530, 537, 540
fundamental form

first, 471, 477, 479
second, 477

fundamental group, 460
fundamental theorem of algebra, 433, 439–445,

461, 544
fundamental theorem of calculus, 370
furlong, 30

gallon, 30
Galois group, 445
Galois theory, 4
gambling, 9
Ganesh, 209
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ganita, 209
Ganitapada, 219
GAR, 46
Gauss–Bonnet theorem, 473
Gaussian curvature, 470, 479
Gaussian distribution, 427
Gebilde, 508
geese, 233
Gemini, 183
general relativity, 394, 412
General Source of Computational Methods, 243
generalized function, 512
generalized hyperbola, 367
Genesis, 294
genus, 293, 503, 506
geocentric astronomy, 181, 189
geodesic, 394, 464, 472, 476
geodesic curvature, 473
geodesy, 469
Geography, 286
geography, 78, 80, 177–189, 285
Geometria organica, 453
geometria situs, 456
Geometriæ prima elementa, 486
geometric algebra, 105, 113, 142, 147
geometric progression, 343
Géométrie, 360, 363, 521
geometry, 5–6, 8, 13, 17, 25, 46–56, 66–77, 95,

98, 117, 128, 190, 201, 205, 210,
219–226, 255–266, 270–277, 302–310,
313, 323, 340, 386, 411, 532

algebraic, 453–463, 481, 492
analytic, 163, 166, 167, 199, 205, 288, 330,

337, 358–362, 373, 382, 448
Chinese, 249–253
descriptive, 448, 450
differential, 448, 464–481, 486, 492
Euclidean, xxv, 6, 68, 103–114, 172, 177,

201, 225, 252, 348, 367, 372, 376,
480

Greek, 191, 199
Hellenistic, 169–176
hyperbolic, 307, 472, 478, 483, 487
imaginary, 488
metric, 88, 172
metric-free, 160, 177, 193, 199, 201
non-Euclidean, 13, 137, 172, 309, 311, 448,

456, 472, 481–494
plane, 86, 142, 220, 227–228
projective, 348–357, 448–463, 481, 492
Roman, 169–176
solid, 86, 129, 144, 227–228, 262

spherical, 220
synthetic, 451

German language, xxvi, 72, 452, 538
Germany, 376, 387, 410, 412
Gesetz der Kanten, 459
Gettysburg Address, 31
Gibbs random field, 390
Gibraltar, 283
GIMPS, 95
Girton College, 408
global positioning system, 178
gnomon, 41, 219, 242
Gnomon of the Zhou, 241
goats, 57, 294
Golden Ratio, 113
Golden Section, 349
goods, 425
Göttingen, 410, 469, 477, 485
Göttingen Royal Society, 477
Göttinger Gesellschaft der Wissenschaften, 413
gou, 249
gougu theorem, 249, 252, 253
government, 36, 85
grain, 253
gram, 430
Grammelogia, 345
grandparent, 7
graph, 169, 320
graph theory, 17
gravitation, 477
gravitational equation, 479
Great Books of the Western World, 160
great circle, 87, 219, 235, 308, 317, 484
Great Pyramid, 82
greatest common divisor, 101, 231
greatest common factor, 92, 97
greatest common measure, 92
Greece, 6, 19, 28, 32, 77, 148, 197, 211, 319
Greek civilization, 49
Greek language, xxvi, 28, 57, 79, 81, 88, 89,

144, 161, 196, 203, 287, 292, 313, 317,
323, 417

Greek mathematics, 72, 216, 283
Greek numeration, 95
Greenwich, 178
gross, 30
group, 4, 443, 444

abelian, 443
fundamental, 460
homology, 460
locally compact abelian, 539

Grundgesetze der Arithmetik, 549
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Grundlagen der Geometrie, 492
gu, 249
Gujarati language, 203
Guldin’s formula, 195, 198
Guldin’s theorem, 262

Habilitation, 412
Hai Dao Suan Jing, 243, 250
half-chord, 118, 221
Halle, 414
Halys River, 82
Han Dynasty, 201, 239, 241, 242
Handbook of Political Fallacies, 543
Hannover, 376, 469, 493
Hanoi, 179
Harappa, 203
harmonic function, 425, 518, 528
harmonic series, 331, 383
harpedonáptai, 68
Harran, 287, 288
harvest, 68
hau computation, 64
heat equation, 390, 399, 519
Hebrew language, 285, 286
hectare, 30
Heidelberg, 334, 406
height, 205
hekat, 67, 74
heliocentric astronomy, 182, 189
Helios, 115
helix, 326
Hellenic Era, 79
Hellenistic civilization, 57
Hellenistic Era, 79, 87, 197, 482
Hellenistic mathematics, 286
hemisphere, 68, 80, 235

area, 72
northern, 223

heptagon, 122, 286
heptagonal number, 95
heptakaidecagon, 122
heritage, 3, 4, 11, 147
Heron’s formula, 172, 227
hexagon, 48, 143, 191, 252, 349
hexagonal number, 95
hieratic, 57, 59, 95
hieroglyphics, 57, 58, 65, 95
Higher Plane Curves, 473
Hilbert basis theorem, 412
Himalaya Mountains, 204
Hindi language, 203
Hindu mathematics, 101

Hindu–Arabic numerals, 206, 292–293,
328–329

Hinduism, 203, 205, 208, 211, 213, 216, 285,
287, 291, 292, 308

Hisab al-Jabr w’al-Muqabalah, 287
historical ordering, 17
History of Herodotus, 68
history, 486

political, 3
Hittite civilization, 28
holes, 17
Homeric poems, 204
homogeneous coordinates, 454
homologous curves, 459
homology, 460
homology group, 460
homotopy, 557
honeycomb, 191
horizon, 224, 225
horizontal, 180
Horner’s method, 258, 300
horocycle, 490
Horologium oscillatorium, 464
horosphere, 487, 490
horse

draft, 219
thoroughbred, 219

horseshoe, 544
Horus-eye fraction, 58, 67
Horus-eye parts, 62
l’Hospital’s rule, 379
hour, 33
House of Cancer, 183
House of Wisdom, 286
Huguenot, 423
Hungary, 320
hydrostatics, 150
Hyksos, 56
Hypatia, or New Foes with an Old Face, 198
hyperbola, 118, 126, 161–163, 165,

171, 352
branch, 164, 166
equation, 164
generalized, 367
nappe, 119
rectangular, 121, 297

hyperbolic cosine, 484
hyperbolic function, 6, 484
hyperbolic geometry, 307, 472, 483, 485, 487
hyperbolic paraboloid, 479
hyperbolic plane, 478
hyperbolic sine, 484
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hyperelliptic integral, 407
hypotenuse, 47, 53, 152, 173, 185, 198,

221, 257

i, 496
Iceland, 178
icosahedron, 144, 445
idea, 188

Platonic, 85
idempotence, 548
ideogram, 39
Iliad, 107, 117
Ilkhan, 290
Illinois, 410
Illustrated London News, 15
imaginary geometry, 488
imaginary number, 340, 495–496, 500
incidence, 492
inclusion-exclusion principle, 419
incommensurable, 130, 139
incommensurables, 86, 92, 106–113, 116, 146,

372, 384
quadratic, 141, 144

incompleteness theorem, 542, 554–555
independent trials, 419, 428
independent variable, 514
indeterminate problem, 99
India, 6, 20, 22, 28, 30, 46, 201, 203–213, 218,

233, 239, 267, 274, 275, 283, 284, 290,
292, 310, 358

Indian languages, 204
Indian Statistical Institute, 210
Indiana, 70
indivisible, 363
Indo-European language, 27, 28, 205
induction, 546

transfinite, 535
Indus River, 203, 204
inequality

isoperimetric, 176, 186, 191
infimum, 440
infinite, 137, 476
infinite number, 217
infinite precision, 6, 337
infinite series, 157, 205, 258, 277
infinitely infinite space, 217
infinitesimal, 206, 237, 271, 274, 312, 358, 376,

378, 397, 400, 467, 500
infinity, 8, 206, 211, 216, 353, 367, 451

actual, 217, 369
potential, 217

inflection point, 467

inheritance, 287
initial condition, 390
inscribed circle, 278
Institute for Advanced Study, 414
Institutiones calculi, 382
insula, 174
insurance, 9, 425, 427
integer, 6, 38, 59, 109, 217
integer part, 34
integers

sum of initial segment, 44
divisibility, 91, 100

integral, 358, 374, 377, 382, 511–520
abelian, 407, 444, 503
algebraic, 500–504
elliptic, 407, 445, 502
Fourier, 391, 512–513, 516
hyperelliptic, 407
Lebesgue, 515, 531
nonelementary, 382
Riemann, 518, 531

integrating factor, 388
integration, 383, 397, 437, 500

complex, 504
Lebesgue, 541

interest, 248
intermediate-value property, 461
International Congress of Mathematicians,

240, 413
interpolation, 30
Introductio in analysin infinitorum, 382, 500
Introduction to Mathematical Studies, 269
Introduction to Plane and Solid Loci, 361
Introduction to Set Theory, 554
intuition, 316, 511
intuitionism, 9, 551–553
invariance, 145

of dimension, 556
invariant, 455
involute, 464, 479
involution, 209
Ionia, 77, 80, 84, 115, 126
Iran, 288
Iraq, 27, 109, 178, 284, 285, 289, 292
Ireland, 315, 379
irrational number, 6, 12, 109–113, 216, 302,

329, 555
irrational root, 235
irrigation, 248, 284
Isis and Osiris, 71
Islam, 204, 240, 266, 281, 283–311, 313,

318, 482
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isoperimetric inequality, 169, 176, 186, 191
isoperimetric problem, 78, 191, 469, 476
isosceles triangle, 278
isotherms, 473, 476
Istituzioni analitiche, 382
Italian language, 20, 478
Italy, 77, 320, 328, 338, 349, 408, 477, 478

Jabal Tarik, 283
Jacobi inversion problem, 504, 507
jadhr, 295
Jainism, 204, 206, 211, 216–218, 225
Japan, 201, 240, 267–280, 310, 447
Japanese names, 267
jayb, 305, 318
Jena, 548
Jeremiah (book of the Bible), 28
Jerusalem, 28
Jesuit, 195, 240, 243
Jews, 197
Jinkō-ki, 269, 273
Jiu Zhang Suan Shu, 242–244, 247–253, 256,

262, 265
Jiu Zhang Suanshu, 201
jiva, 221, 305, 318
Journal de l’Ecole Polytechnique, 459
Journal für die reine und angewandte

Mathematik, 406, 442
Journal of the Warburg and Courtauld

Institute, 149
Judah, 28
Julian calendar, 406
Jupiter, 178, 181
jya, 305

KŌ, 267
Kaballah, 19
Kai Fukudai no Ho, 272
Kaiser, 412
Kaliningrad, 457
kalpa, 217
Kalpa Sutras, 217
kanji, 267
Kansas State Agricultural College, 410
karat, 30
kardo maximus, 174
Kattı́gara, 179
Katyayana Sutra, 215, 216
Kazan’ Physico-Mathematical Society, 487
Ketsugi-shō, 275
khar, 73
khet, 69

Khorasan, 288
Kievan Rus, 308
Kingdom of Wei, 242
Kings (books of the Bible), 28, 70
Kitab al-Manazir, 305
Kitab al-Zij, 288, 318
knitting, 17
knot, 13
knowledge

a posteriori, 7
a priori, 7, 541
analytic, 7
synthetic, 7, 541

Kokon Sampō-ki, 271
Königsberg, 320, 397, 457
Königsberg bridge problem, 17, 457
Korea, 239, 267, 268, 271
koti, 219
Kuba, 17
kun reading, 267
Kusumapura, 207, 208
kuttaka, xxiv, 224, 229–233, 238, 254

L’invention nouvelle en l’algèbre, 434
La perspective de Mr Desargues, 354
Lagrange multiplier, 394
Lambert quadrilateral, 303
language, 18

Indo-European, 205
invented, 542

Laplace’s equation, 513, 519
Laplace–Beltrami operator, 478
Laplacian, 478, 513
Larsa, 38
last ratio, 397
Latin alphabet, 218
Latin language, xxvi, 79, 81, 144, 161, 178,

226, 285, 286, 294, 305, 313, 323, 352,
374, 377, 393, 456

Latin square, 255
latitude, 174, 177–180, 188, 224, 225, 235, 478
latitude of forms, 337
latus rectum, xxv, 162, 163, 165, 168
Laurent series, 505
law, 5, 287, 296, 376

excluded middle, 9
Roman, 291

law of cosines, 337
law of large numbers, 419, 422, 428–429

weak, 429
law of sines, 308, 332, 362
Laws, 86
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Laws of Thought, 546–548
Le progrès de l’est, 408
league, 30
“leaning-ladder” problem, 47, 54
least action, 476
least common multiple, 97
least-squares, 387, 426
leather roll, 57
Lebesgue integral, 515, 526, 531
Leçons sur le calcul des fonctions, 500
Leçons sur les fonctions discontinues, 529
Lectiones geometricae, 370
leg, 152, 185, 198, 257
legacy, 296–297, 300, 301
legislated value of π, 70
Leipzig, 320, 376, 377
lemma, 145
lemniscate, 501, 502
length, xxv, 6, 19, 30, 41, 42, 46, 69, 129, 142,

150, 172, 176, 184, 194, 195, 205, 224,
242, 249, 526

lens grinding, 275
Let’s Make a Deal, 23
lever, 150, 198
Leyden, 208, 360
li, 247, 251, 253
Liber abaci, 316, 324–326
Liber calculatorum, 331
Liber de ludo, 419
Liber quadratorum, 326, 341
liberal arts, 241
liberal education, 209
Library at Alexandria, 116, 140, 196, 286
Libya, 197
Liège, 316
life expectancy, 418
light, 392, 477
light ray, 137, 166
light-year, 488
lightning, 20
Lilavati, 209, 233, 238
limit, 153, 157, 375, 381
limit point, 533
line, 84, 85, 96, 106–108, 122, 136, 137, 160,

162, 169, 176, 192, 199, 211, 220, 298,
332, 350, 359

directed, 487
infinite, 353, 357
transversal, 139

line at infinity, 451, 484
line coordinates, 455
linear algebra, 247

linear dependence, 474
linear equation, 40, 230, 272, 296
linear independence, 474
linear number, 96
linear system, 453
lines

converging, 307
parallel, 136, 171, 224, 340, 352, 353,

462, 484
perpendicular, 177, 220

linkage, 310, 361
Lisieux, 288, 319
literature, 217
Lives of Eminent Philosophers, 81, 82, 197
Lo River, 255
loan, 248
local solar time, 178
Loci, 140
locus, 124, 162, 191, 192, 199, 302, 359

five-line, 193
four-line, 161, 162, 165–166, 168, 193, 361
plane, 359, 379
six-line, 193, 359
solid, 359
three-line, 161, 165, 168, 193, 361
two-line, 167, 193

locus, 456
log, 279
logarithm, 31, 169, 323, 338, 343–344, 346,

378, 388
Briggsian, 31, 344
hyperbolic, 423
natural, 425

logarithmic function, 347, 500
logic, 6, 7, 13, 21, 211, 216, 315, 360, 427,

542–557
three-valued, 553

logical relation, 8
logicism, 7, 549
London, 225, 345, 376, 381, 408
London Mathematical Society, 410
longevity, 421
longitude, 174, 177, 179, 180, 188, 235, 478
lottery, 24
lotus, 59
Louvre, 39, 41
Lower Egypt, 56
Lower Saxony, 469
lowest terms, 97
Lp-spaces, 527
lune, 116, 138, 144
Luo-chu-shu, 255
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Luo-shu, 255
Luxor, Egypt, 57
Lyceum, 116, 135
Lydia, 82
Lyons, 320

Maclaurin series, 382, 388
MacTutor website, 229
Madagascar, 19
Madras, 211
magic square, 19, 255
magnetism, 477
magnitude, 302, 313
Mahabharata, 203, 233
Mainardi–Codazzi equations, 477
Mainz, 376
major axis, 372
major fifth, 13
Malagasy, 19, 24
al-Mamun, 284
man height, 205
Manchu (Ching) Dynasty, 240, 244
manifold, 464, 475, 534

flat, 476
map, 177, 179
Maple, 6
mapping

conformal, 464, 469, 473
degree-preserving, 449

Maragheh, 290
Marburg, 485
market, 425
Markov chain, 429
marriage, 71, 406, 415
Mars, 181, 188
Masillia (Marseille), 178
Mathematica, 6, 45, 263
Mathematical Analysis of Logic, 546
Mathematical Association of America,

415, 479
Mathematical Classic of Sun Zi, 242
mathematical cranks, 126
mathematical expectation, 424
Mathematical Institute, 412
mathematical logic, 8
mathematical reasoning, 8, 20–22
mathēmatikoı́, 84
Mathematische Annalen, 413, 478, 491
Mathematische Keilschrifttexte, 29
matrix, 256, 258

transition, 429
Matsya Purana, 208

maximum, 363
Maya, 197
mean and extreme ratio, 142, 349
mean position, 183
mean proportional, 97, 118, 123, 128, 143, 147,

166, 497
mean solar time, 31
means, 143
measure, 242, 535

Borel, 539
measure of curvature, 470
measure of precision, 427
measure space, 422
measure theory, 411, 537
measure zero, 528
measurement, 6, 68, 80, 172, 320
Measurement of a Circle, 150, 172
Mecca, 285, 290
mechanical drawing, 451
mechanics, 89, 150, 288, 314, 319, 359, 383,

386, 389, 476
Medes, 82
medicine, 217, 320, 411
Medieval Era, 311–323
Mediterranean Sea, 27, 28, 79, 201, 203,

283, 318
membrane, 511
Memoir on Some Traditions of the

Mathematical Art, 255
Memorandum for Friends Explaining the Proof

of Amicability, 294
Menelaus’ theorem, 353, 356
Mengenlehre, 530
Meno, 47, 111
Mercury, 181
meridian, 326

prime, 178
meridian of longitude, 179
Meróē, 179
Mersenne prime, 95
Merton College, 320, 331
Merton rule, 320, 331
Meru Prastara, 218
Mesopotamia, 6, 19, 22, 25, 27–55, 65, 76, 79,

82, 84, 90, 98, 138, 142, 203, 211, 216,
274, 283, 290, 292

metalanguage, 551, 554
metamathematics, 9
Metaphysics, 109
metaphysics, 8, 85, 211, 216, 239
meter, 234
Method, 150, 153–155, 263, 266, 365



602 SUBJECT INDEX

method of exhaustion, 131–132, 153, 217, 235,
365, 367–368, 376, 397

method of indivisibles, 363, 384
Method of Interpolation, 243
Method of Solving Fukudai Problems, 272
Methodus inveniendi lineas curvas, 393
metric

Cayley, 456
p-adic, 530
projective, 456
Riemannian, 478

metric geometry, 78
metric space, 530
metric system, 30, 32
metric-free, 235
Metrica, 154, 172
microgram, 430
Middle Ages, 96, 148
Middle East, 30, 79, 81, 187
Middle Kingdom, 56
midpoint, 125, 139, 309
Miletus, 80
millet, 247
Ming Dynasty, 204, 240
minimal surface, 394, 469
minimum, 363, 440
minus of minus, 496
minute, 30, 33, 236
Mirifici logarithmorum canonis descriptio,

323, 343
Miscellanies, 68
missionary, 243
Möbius band, 452, 459
Möbius transformation, 449, 452
model, 482
modern algebra, 4
modulus, 110
modus ponens, 548
Mogul Empire, 204
Mohenjo Daro, 203
monads, 84
monasteries, 313, 315
monastery schools, 313
Mongol Empire, 240, 284
Mongols, 240, 284, 289
month, 12, 30, 230, 248
moon, 48, 180

full, 230
phases, 178

moral certainty, 422
Moravia, 15
Morley’s theorem, 199

Morocco, 216
Moscow, 74, 406, 477, 535, 540
Moscow Museum of Fine Arts, 57
Moscow papyrus, 72, 74, 252
mosque, 285
motion, 162, 169, 196, 304, 307, 313

retrograde, 188
uniformly accelerated, 320, 331

Mount Meru, 218
Mount Olympus, 218
Mozambique, 179
multilinear algebra, 474
multilinearity, 272
multiplication, 12, 34, 38, 59, 199, 209, 245,

292, 322
Egyptian, 61

multiplication table, 38
multivalued function, 458, 505
Mumbai (Bombay), 210
Murchiston, 323, 343
Museum of Alexandria, 196
music, 9–11, 210, 242, 313, 315
Musica Humana, 315
Musica Instrumentalis, 315
Musica Mundana, 315
Muslim civilization, 57, 207
Muslim conquest, 81
mustard seed, 211
mutual-subtraction algorithm, 264
mythology

Greek, 218
Hindu, 218

n-gon, 122
Nagoya, 277
naka, 267
nameable number, 211
nappe, 119, 164
Natural History, 178
natural logarithm, 425
natural number, 84
Navarre, 341
Navier–Stokes equations, 473
navigation, 80
Nazism, 413
necessity, 427
negative number, 216, 234, 245, 285, 321, 336,

340, 500
square root of, 322

neûsis, 124, 127, 297
New Kingdom, 56
New Testament, 81
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New York Historical Society, 57
Newnham College, 409
Newton’s laws, 464
Newton’s method, 384
Newton–Raphson approximation, 36, 39
Nicomachean Ethics, 293
Nile River, 57, 116, 179
Nine Chapters on the Mathematical Art,

242
Nine Symposium Books, 103
Nine-Chapter Mathematical Treatise, 201
Noetherian ring, 413
non-Euclidean geometry, 13, 137, 311, 472,

481–494
nonorientable surface, 459
nonstandard analysis, 376, 399
normal distribution, 427, 428, 430
normal form, 391
normal subgroup, 444
North Africa, 81
North China Herald, 247
North Pole, 179
northern hemisphere, 223
Norway, 382
notation, 338, 340
notebooks, Ramanujan’s, 211
nothing, 547
number, 6, 8, 25, 172, 313

algebraic, 295, 523, 534
Avogadro, 430
Bernoulli, 422
cardinal, 534
complex, 340, 346, 379, 389, 445,

448, 453, 495–496, 500, 513
composite, 93
critical, 552
deficient, 94
enumerable, 211, 217
equilateral, 110
even, 72, 93, 255
evenly even, 93
figurate, 77, 91, 95–118
floating-point, 6
heptagonal, 95
hexagonal, 95
imaginary, 340, 495–496, 500

interpretation, 498
infinite, 206, 217
irrational, 6, 12, 109–113, 302, 329, 555
linear, 96
nameable, 211
natural, 84

negative, 216, 234, 245, 285, 321, 336,
340, 500

oblong, 110
odd, 72, 93, 113, 255
ordinal, 532, 533, 540, 549

countable, 551
pentagonal, 91, 95, 109
perfect, 72, 91, 94, 97, 102, 293
plane, 96
polygonal, 97
polyhedral, 95
positive, 295
prime, 93, 122, 553
rational, 98, 109, 216, 245, 295, 327, 555
real, 6, 109, 193, 199, 288, 295, 337, 340,

347, 383, 445, 499, 511–523
square, 72, 91, 95, 98
superabundant, 94
transcendental, 445, 522, 536
triangular, 91, 95, 109, 316
unenumerable, 217, 225

number system, 32
Chinese, 32, 244–246
sexagesimal, 33–35

conversion, 33–35
number theory, 6, 8, 31, 77, 100, 143, 190,

228–233, 238, 255, 288, 292–294, 386
Greek, 91–102

numbers
amicable, 293
divisibility, 97
relatively prime, 93, 97

numerals
Hindu–Arabic, 204, 206, 284, 292–293, 316,

319, 328–329
numeration system, 213
numerology, 24
Nürnberg, 320, 412

oblong number, 110
observational error, 426
obtuse angle, 308
octahedron, 144
octave, 13
odd number, 72, 93, 110, 113, 255
Odyssey, 94
Oedipus the King, 117
oikuménē, 179
Old Babylonian language, 27, 38, 46, 48, 55,

58, 65
Old Kingdom, 56
Old Persian language, 29
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On Burning Mirrors, 169
On Exile, 117
On General Triangles, 331
On Isoperimetric Figures, 169
ON reading, 267
On Socrates’ Daemon, 130
On the Pythagorean Life, 84
one-dimensional π, 216, 219, 227, 251,

262, 264
one-dimensional space, 217
one-sided surface, 459
operation

algebraic, 5
Opium War, 240
opposition, 189
optative mood, 417
Optics, 87, 140, 171
optics, 150, 286, 359, 394, 406
oracle, 19
order, 353, 355
ordering, 535
ordinal number, 532, 533, 540, 549

countable, 551
ordinate, 163, 164, 367, 377, 389
organic chemistry, 350
Origine, trasporto in Italia, primi

profressi in essa dell’ algebra,
295

ornamental geometry, 285
orthogonal vectors, 474
orthotomē, 119
ostracon, 80, 141
Ottoman Empire, 284, 376
outer product, 474
Owari, 277
oxen, 57
Oxford, 294, 320, 331
Oxyrhynchus, 141
oxytomē, 119

pagans, 197
Paingloss, Dr., 375
painting, 323, 348–352, 357, 448
Pakistan, 201, 203, 206, 209
Palermo, 326, 478
Palestine, 28, 81, 284
palimpsest, 149
palmistry, 19, 24
panda, 7
Pappus’ theorem, 81, 193
papyrus, 57, 66, 80, 141, 244

Moscow, 72, 74

Reisner, 57
Rhind, 22, 57–65, 69

parabola, 118, 126, 161–163, 165, 352,
363–364, 367, 479

quadrature, 150, 155–157
segment, 87

paradox, 139, 461, 511
arrow, 375
Banach–Tarski, 540, 541
Burali-Forti, 539, 549
Cramér’s, 463
Petersburg, 424–425
Russell’s, 537, 549, 550, 553
Zeno’s, 107–108, 113

Achilles, 107
arrow, 108
dichotomy, 107
stadium, 108

parallax, 488, 493
parallel lines, 136, 165, 224, 352, 353, 462, 484
Parallel Lives, 81
parallel of latitude, 177
parallel postulate, 13, 103, 171–172, 193, 286,

302–309, 448, 481
parallelepiped, 144, 194
parallelism, 492
parallelogram, 104, 113, 134, 141, 191, 198

infinitesimal, 471
parameter, 426, 477
parameterized surface, 468
Paris, 39, 41, 317, 320, 330, 354, 376, 386,

408, 420
Parma, 295
Parmenides, 134
parrots

counting ability, 15
parsec, 488
part (divisor), 94
part (unit fraction), 76

double, 65, 76
partial derivative, 520
partial differential equation, 390–391, 425

normal form, 391
partial fraction, 437, 438
partial reinforcement, 20
parts (unit fractions), 58, 59, 62–65

double, 62
Pascal’s theorem, 355, 449, 454, 462
Pascal’s triangle, 218, 434
Pasch’s theorem, 303
Pataliputra, 207
Patna, 207
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Paul (Alexandrian astrologer), 206
Paulisha Siddhanta, 206
Peaucellier linkage, 124
pebbles, 18, 38
peck, 30
pedagogical ordering, 17
pedagogy, 54, 243, 451
Peleset, 28
Pell’s equation, 229, 237

greater solution, 230
lesser solution, 230

Pella, 29
Peloponnesian War, 28, 115, 116
Peloponnesus, 115
pencil, 353
pendulum, 383, 407, 501
Pensées, 355
pentagon, 113, 122, 130, 143, 144, 146,

185, 349
pentagonal number, 91, 95, 109
pentakaidecagon, 143
people, 246
perfect number, 91, 94, 97, 102, 293
perfect set, 535
Perga, 161
Pergamon Museum, 43
Pergamum, 88
perigee, 182
perihelion, 182
perimeter, 19, 48, 169
Period of Warring States, 239
permutation, 5, 233, 421, 439, 442, 444
perpendicular lines, 177
Persia, 283, 284, 289, 290
Persian Empire, 28, 115, 116, 178
Persian Gulf, 27, 28
Persian language, 204, 285, 288
perspective, 348, 350, 352, 450
Peshawar, 206
pesu, 67, 69, 76, 247, 248
Petersburg paradox, 424–425
Phænomena, 87, 140, 286
pharaoh, 18
pharmacy, 335
phase, 10
�, 12, 113, 325, 337
Philistines, 28
philosophy, 3, 6, 77, 80, 129, 198, 241, 286,

291, 314, 359, 384, 400, 405, 427–428
Greek, 82
neo-Platonic, 86, 91, 190, 198
Platonic, 85–87, 97

pre-Socratic, 81
Pythagorean, 91, 97, 115
Stoic, 171

phyllotaxis, 325
Physics, 107, 131
physics, 80, 196, 307, 412, 425, 476–477, 479,

495, 510, 511
physikoı́, 84
π, 6, 12, 30, 48, 55, 227, 251, 276, 279, 318,

370, 423, 484, 522
“biblical” value, 70
Archimedes’ estimate, 153
Egyptian value, 70
irrationality, 484
legislated value, 70
“neat” value, 227
one-dimensional, 48, 73, 216, 219, 227, 251,

262, 264
three-dimensional, 219, 265
transcendence, 445, 522
two-dimensional, 73, 216, 219, 227, 251

piece, 298, 301
pigeons, 20
pint, 30
pipe, 248
Piraeus, 130
Pisa, 319
pitch, 315
� (pitchfork), 98
place-value system, 32–33, 37, 38, 59, 65, 109,

207, 212, 213, 292
plague, 117
planar problem, 123, 193
Planck’s constant, 6
plane, 84, 96, 107, 144, 169, 191, 348

complex, 449, 452
projective, 459

plane geometry, 86
plane locus, 359, 379
plane number, 96
plane region, 195
plane trigonometry, 308
planet, 48, 180, 181, 208, 418
planting, 68
Platonicus, 117
Platonism, 85
Playfair’s axiom, 171
Plimpton 322, 49–54
Plimpton collection, 49
plucked string, 512
plus of minus, 496
Poincaré conjecture, 461
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point, 96, 107, 108, 162
cluster, 533
limit, 533

point coordinates, 455
point of accumulation, 533
point-set topology, 534
points

collinear, 354
conjugate, 395

pointwise convergence, 525–526
Poisson distribution, 428
Poland, 406
polar coordinates, 368, 518
polarization identity, 48, 142
pole, 507
polis, 135
political history, 3
politics, 115
polygon, 68, 84, 104, 116, 131, 141, 145,

150, 216
17-sided, 443
circumscribed, 143
inscribed, 143
of 192 sides, 252
regular, 169, 220

polygonal number, 97
polygons

similar, 143, 198
polyhedral number, 95
polyhedron, 84, 262, 458–459

closed, 459
regular, 150

polynomial, 98, 169, 258, 383,
445, 453

cubic, 407
irreducible, 445
prime, 445
quadratic, 407
symmetric, 434

polytheism, 205
pope, 318
population, 253
Porisms, 140
Portugal, 244
positive number, 295
postulate, 244

parallel, 171–172, 193
pound, 30
Power Ball, 432
power series, 210, 382, 398, 495, 526
power set, 537
Practica geometriae, 317, 323

Prague Scientific Society, 442
Prasum, 179
prayer, 285
pre-Socratic philosophy, 81
precision

infinite, 6
predicate, 135
predicate calculus, 549
Pregel River, 457
premise, 9
prime, 51

Mersenne, 95
prime decomposition, 294
prime meridian, 178
prime number, 93, 122, 553
prime numbers

infinitude, 97
Princeton University, 414
Principia mathematica (Newton), 373, 374,

393, 467
Principia mathematica (Whitehead–Russell),

550
Principia mathematica, 8
Principles of Mathematics, 550
Prior Analytics, 135
prism, 74, 131, 144, 191
prisoners, 57
Privatdozent, 407, 412
probability, 8, 9, 311, 379, 386, 417–432,

526, 546
conditional, 23, 419

probability space, 422
problem

“leaning-ladder”, 47, 54
planar, 193
Sturm–Liouville, 513, 515
vibrating string, 519

product, 38, 40, 142, 361
infinite, 370

projection, 224, 456
conical, 180

projective geometry, 348–357, 492
projective metric, 456
projective plane, 459, 480
proof, 13, 82, 327
proof by contradiction, 552
proper class, 553, 555
proportion, xxv, 12, 66, 68, 82, 97, 101, 109,

112, 130–134, 141, 142, 144, 147, 150,
160, 163, 176, 177, 194, 195, 242, 248,
254, 397

Eudoxan theory, 143
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proposition, 244
universal, 85

propositional calculus, 544
prosthaphæresis, xxiv, 4, 333–335, 337, 346
Provence, 319
pseudosphere, 478, 486, 492
Psychologie als Wissenschaft, 451
psychology, 3, 14, 16, 539
Ptolemais, 197
Ptolemy’s theorem, 184
Pulkovo Observatory, 488
pulley, 149
pulverizer, 224, 229, 231
purana, 208
pure magnification, 469
pure mathematics, 8
Putnam Examination, 415
pyramid, 6, 55, 68, 74, 80, 83, 131, 144, 228,

252, 265
Pythagorean comma, 13
“Pythagorean” geometry, 103–106
Pythagorean theorem, 6, 46–48, 67, 71–72, 81,

84, 104, 113, 141, 142, 152, 185, 191,
198, 201, 214, 243, 249, 252, 271, 309,
487, 492

generalizations, 143, 304
Pythagorean triple, 213, 229
Pythagoreanism, 315
Pythagoreans, 19, 81, 103, 113, 128, 197

qian, 248
Qin Dynasty, 239
quadrant, 235
quadratic equation, 19, 40, 69, 99, 105, 228,

233, 256, 272, 296, 301, 329, 338, 359,
433, 447

quadratic form, 456
quadratic formula, xxv, 147, 234, 260
quadratic function, 306
quadratic incommensurables, 141, 144
quadratrix, 107, 117, 123, 124, 126, 169, 361,

364, 377, 453
quadrature, 367
Quadrature of the Parabola, 149
quadric surface, 450, 454
quadrilateral, 184, 227, 273

area, 227
cyclic, 173, 227
Lambert, 303
Saccheri, 303, 309, 482
semi-Thabit, 303
Thabit, 303, 307–309, 482

quadrilateral problem, 274, 279
quadrivium, 210, 313, 315
quaestor, 148
quantic, 456
quantity

continuous, 5, 6
quantum mechanics, 427
quartic, xxv
quartic equation, 234, 260, 261, 308, 322,

338–340, 346, 433, 438
quartic polynomial, 407
quaternion, 447, 479
Quatrains, 289
quinquenove, 421
quintic equation, 4, 439, 442, 445
quotient, 34, 92, 101, 231, 329

radial coordinate, 181
radian, 221
radian measure, 30
radiator, 76
radical, 234
radio, 178
radioactive decay, 432
radium-228, 430
radius, 48, 49, 79, 117, 123, 144, 151, 179,

184, 185, 216, 227, 236, 261, 275, 278,
298, 372

imaginary, 484
radius of curvature, 466, 479, 483, 487

principal, 470
radix, 335
railroad, 309
rainbow, 286
Ramayana, 203
random variable, 418, 428
al-Raqqa, 288
ratio, xxv, 12, 92, 97, 109, 112, 130, 133, 145,

147, 176, 195, 199, 216, 220, 288, 332,
354, 362

anharmonic, 351
composite, 133, 138, 145, 193, 194
duplicate, 133
final, 374
initial, 374
mean and extreme, 142

rational function, 383, 438, 441, 500
rational number, 98, 109, 216, 245, 295,

327, 555
ravens

counting ability, 15
real analysis, 387, 511–531
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Real and Complex Analysis, 495
real number, 6, 109, 193, 199, 288, 295, 337,

340, 347, 383, 445, 499, 511–523
real numbers

completeness, 525–527
real variable, 500
Recherches sur la probabilité des jugemens, 427
reciprocal, 38

terminating, 38, 50
reciprocals, 38
recombination, 264
rectangle, 6, 19, 21, 41, 49, 68–69, 74, 104,

138, 142, 152, 163–166, 179, 184, 194,
214, 247, 249, 251, 303

infinitesimal, 377
rectangular coordinates, 368, 518
rectangular hyperbola, 121, 297
rectification, 369
recursion, 225
reflection, 511
refraction, 306, 393, 511
regular solid, 144, 349
Reims, 316
reincarnation, 208
Reisner papyrus, 57
relation

logical, 8
relative minimum, 299
relative rate, 373
relatively prime, 51, 93, 97, 113
relativity, 476
religious rites, 30
remainder, 34, 92, 101, 254
Renaissance, 349, 357, 448
Republic, 71, 86, 128
residue, 505
resolvent, 339, 438, 439
retrograde motion, 161, 188
revolution, 169, 193
Revue scientifique, 408
Rhind papyrus, 22, 57–76, 242, 247, 251
Rhodes, 179
rhythm, 10
rice, 247
Riemann integral, 518, 531
Riemann mapping theorem, 395
Riemann surface, 458, 461, 506
Riemann–Roch theorem, 506
Riemannian manifold, 478
Riesz–Fischer theorem, 412
right angle, 122, 146, 185, 220, 303, 308
right ascension, 180, 183

right triangle, 152, 216, 221, 247, 249, 257,
261, 371

rigid body, 307, 407
rigle des premiers, 336
ring, 4, 443

Boolean, 548
Roman Empire, 29, 79, 87, 177, 302, 311, 323

Eastern, 291
Roman law, 291
Roman numerals, 31
Rome, 19, 32, 70, 148, 177, 313, 316, 320
root, 5, 218, 240, 245–246, 265, 295, 322, 330,

335, 433, 438
rope fixers (surveyors), 71
rotation, 302, 501
Rough Draft of an Essay on the Consequences

of Intersecting a Cone with a Plane, 352
Royal Society, 371, 376, 381
RSA codes, 102
Rubaiyat, 289
rug, 288
rule of inference, 9
Rule of Three, 19, 65, 67, 248, 324
ruler, 444
Russell’s paradox, 537, 549, 550, 553
Russia, 19, 240, 284, 289, 329, 406, 407,

451, 457
Russian language, xxvi
Rv, 335

Sabian, 287, 288
Saccheri quadrilateral, 303, 309, 482
Sacramento, 466
sagitta, 275
St. Gerald Monastery, 316
St. Petersburg, 386, 406, 461, 513
St. Victor Abbey, 317
Sakhalin, 31
Salamis, 115
Samarkand, 287, 302
Samos, 80, 84, 189
SAN, 268
sanbob, 268
Sand-reckoner, 150, 211
sangaku, 202, 268, 274, 277–280
Sanskrit language, xxvi, 203–205, 207, 217,

218, 221, 284, 294, 305, 318
Saturn, 181
scaling, 184
schema, 550
Science, 431
science, 203, 211
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score, 31
Scotland, 178, 322, 338, 343, 409
scroll, 352
sculpture, 323
Scythians, 178
Sea Island Mathematical Manual, 242, 250
Sea Mirror of Circle Measurements, 271
Sea Peoples, 28
secant, 143, 221, 226, 305
second, 30, 33, 186
second category, 529
second fundamental form, 477
Second Punic War, 87, 148
Section (Golden Ratio), 142, 143
section (square mile), 30
sector, 179
segment, 367

of a parabola, 87
Segovia, 318
seked, 69, 76
Selasca, 478
Seleucid Kingdom, 29
Seljuks, 284, 289
seller, 425
semantics, 544, 550
semiaxis, 372
semicircle, 82, 116, 185, 224, 262, 298, 330
semidifference, 39–41, 44, 50, 51, 55, 142, 252
semiregular solid, 349
Semitic language, 27
senator, 21
Senkereh, 38
senses, 217
Sēres, 179
series, 358, 372–374, 382, 383, 388, 464, 495,

511–520
binomial, 517
Dirichlet, 525
Fourier, 11, 391, 512–514, 519
geometric, 358, 367, 530
harmonic, 383
infinite, 370
Laurent, 505
Maclaurin, 382, 429, 475
power, 382, 398, 509, 526
Taylor, 378, 379, 511, 517, 545
trigonometric, 390, 509, 518

uniqueness, 532–533
Serpent, 418
services, 425
set, 162

analytic, 536

countable, 538
derived, 533, 535
perfect, 535
uncountable, 535, 538

set theory, 7, 8, 411, 448, 521, 528, 532–541
descriptive, 535
fuzzy, 547

Seven Years War, 204
sexagesimal notation, xxv
sexagesimal number, 109
sexagesimal system, 31, 37, 49, 83, 184,

186, 292
shadow, 82, 219, 250, 253
Shang Dynasty, 239, 241, 244
Shang numerals, 245
Shanghai, 179
shape, 6, 14, 16–18
sheaf, 353
sheep, 294
Sheikh Abd el-Qurna, 68
Shetland Islands, 178
Shimura–Taniyama conjecture, 100
Shintō, 202, 269, 277
shoes, 540
shogun, 270, 277
shoot, 352
Shushu Jiyi, 255
Sicily, 29, 77, 115, 128, 148, 178, 210, 283,

286, 319, 324
siddhanta, 205, 206, 285
Siddhanta Siromani, 209, 235
sieve of Eratosthenes, 93
signal

band-limited, 10
silk, 247
silkworm, 247
silo, 70
similar polygons, 132, 143
similar triangles, 82, 261, 317
simply connected, 458, 479, 505
Simpson’s paradox, 431
simultaneity, 307
Sind, 209
sind-hind, 285
sine, 169, 188, 221, 225, 235, 236, 288, 305,

323, 335, 343, 358, 393, 497, 523
hyperbolic, 484

sine wave, 10
singularity, 506
sinistra decumani, 174
sinus, 305, 318, 323
situs, 456
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six-line locus, 193, 359
size, 6
skepticism, 360
slide rule, 344, 345

circular, 345
slope, 67, 69–70, 363

of pyramids, 69
Smolensk, 414
Snell’s law, 306
soccer, 350
sociology, 3, 9
socks, 540
solar system, 483
solid, 107, 195, 302

of revolution, 154, 193, 262
regular, 144
revolution, 81

solid geometry, 86, 129
solid locus, 359
solid problem, 123
solution by radicals, 439–445
Song Dynasty, 239, 255
Sophist, 116
soroban, 268
Soviet Union, 414
space, 217

measure, 422
metric, 530
three-dimensional, 459
vector, 4

space-filling curve, xxiii
Spain, 81, 244, 283, 285, 286, 290, 318
Sparta, 115
Spartans, 28
special relativity, 307
specific gravity, 149
speed, 6

average, 196
sphere, xxv, 6, 48, 68, 118, 144, 148, 150,

169, 172, 208, 219, 262, 271, 274, 317,
458, 486

area, 150–155, 235–237, 279
celestial, 177, 180, 224, 317, 479
sector, 235
segment, 251
surface, 87
volume, 150–155, 262

Sphere and Cylinder, 150
spherical coordinates, 181
spherical mapping, 470
spherical triangle, 308, 317, 332, 484
spherical trigonometry, 184, 305

spheroid, 150
spiral, 107, 150, 169, 360, 364, 374, 453
Spirals, 150
spring, 223
Springer-Verlag, 29
square, 6, 17, 38, 40, 41, 46, 47, 50, 53, 71, 72,

91, 95, 97, 98, 104, 109, 116, 118, 122,
130, 132, 141, 146, 163, 164, 166, 176,
191, 198, 213, 214, 216, 219, 227, 251,
263, 279, 327, 384

completing, 235
doubling, 47, 214
Latin, 255
magic, 19, 255

square root, 36, 38, 39, 41, 51, 67, 110, 144,
185, 206, 216, 218, 219, 226, 245, 261,
264, 336, 340, 346, 361

irrational, 44
second, 218
third, 218

squaring the circle, 106, 115–117, 131, 139,
147, 153, 215, 275, 323, 377, 445

stade, 179
Stadium paradox, 108
standard deviation, 423, 427
standard time, 31
standard unit, 6
star, 48, 177, 180
statics, 319
statistics, 8, 9, 20, 417, 421, 427
Steiner–Lehmus theorem, 199
Steinmetz solid, 263
Steklov Institute, 461
stem, 352
Step Pyramid, 56
Stetigkeit und irrationale Zahlen, 523
Sthananga Sutra, 206
Stirling’s formula, 423
Stockholm, 407
stonemasonry, 220
story problems, 8
straightedge, 186, 191, 484, 522
streamlining, 393
string, 279, 315

plucked, 512
vibrating, 400, 519

string property, 166, 168
strip, 279
Stromata, 68
strong extremal, 397
Sturm–Liouville problem, 513, 515, 519
Suan Fa Tong Zong, 243, 244, 269
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Suan Jing Shishu, 241
suan pan, 268
Suan Shu Chimeng, 269
subgroup, 444

normal, 444
subject, 135
subjunctive mood, 417
subtangent, 363, 370, 382, 389

Fermat’s construction, 363–364
subtraction, 12, 31, 38, 59, 245
successor, 549
Suda, 190, 196–198
Sulva Sutras, 205, 211, 213–216, 225
sum of sines, 368
Sumerian civilization, 27
Sumerian language, 29, 39
Summa de arithmetica, geometrica, proportioni

et proportionalita, 320, 335
summer, 223
summit angle, 482
sun, 48, 180, 187, 189, 190, 223–225, 250, 251,

253, 317
orbit, 182–183

Sun Zi Suan Jing, 242, 245–247, 253
sundial, 68, 249
sunrise, 224
sunya, 207
superabundant number, 94
supernova, 418
superposition, 304
superstition, 21
surface, 17, 96, 468–469

curvature, 468
curved, 80, 243
flat, 468
minimal, 464, 469
nonruled, 73
one-sided, 459
parameterized, 468
quadric, 450, 454
Riemann, 461
simply connected, 458

surveying, 5, 30, 68–69, 174–175, 220, 221,
241, 250, 285, 287, 317

surveyor, 36
Surya Siddhanta, 206, 221
Susa, 48
Sushu Jiu Zhang, 258
Svayambhu, 208
Switzerland, 411
Syene, 179
syllable, 234

syllogism, 135, 360
symbol, 18–20, 77, 91, 98–99, 218
symbolism, 98
symmetric polynomial, 436
symmetry, 191
Symposium Discourses, 128
Synagōgē, 89, 123, 140, 190–196, 359
syntax, 544, 550
Sýntaxis, 88, 89, 286
synthesis, 192
Syracuse, 87, 128, 148–159, 210
Syria, 288, 289, 319
Syriac language, 287
System of the Sun, 206

table of chords, 184–187
tablespoon, 30
Taiwan, 240
taka, 267
Talmud, 70
Tang Dynasty, 239
tangent, 53, 143, 165, 221, 226, 261, 305, 363,

374, 376, 384, 455, 497
Tarentum, 98, 128
tarot cards, 19, 24
Tata Institute, 210
tatamu, 272
tautochrone, 393
taxation, 253
taxes, 248
Taylor series, 379, 389, 511, 517
Taylor’s theorem, 398, 505, 545
teaspoon, 30
temperature, 391, 399, 511, 519
Ten Canonical Mathematical Classics, 241
tengen jutsu, 271
tensor analysis, 478
tensor product, 474
tensor, curvature, 479
terminating reciprocal, 38, 50
tetrahedron, 74, 96, 106, 144, 219
Thabit quadrilateral, 303, 307–309, 482
The Analyst, 379, 385
The Decline of the West, 414
The New Yorker, 10
The Origins of Algebra and its Transmission to

Italy and Early Advancement There, 295
The Utility of Mathematics, 117
Theatetus, 110
Thebes, 68
Thebes, Egypt, 56
theology, 5, 313
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theorem, 9, 13, 82
Baire category, 530, 531, 540
binomial, 373, 378, 421, 506
Bolzano–Weierstrass, 533
Brouwer fixed-point, 556
Cantor–Bendixson, 535
central limit, 428–429
Desargues’, 192, 354
dominated convergence, 530
Fermat’s last, 89, 91, 100
Fubini’s, 541
Gauss–Bonnet, 473
gougu, 249
incompleteness, 554–555
Menelaus’, 353, 356
Morley’s, 199
Pappus’, 81, 193
Pascal’s, 355
Pasch’s, 303
Ptolemy’s, 184
Pythagorean, 6, 46–48, 71–72, 81,

104, 113, 141, 142, 152, 185, 191,
198, 201, 214, 249, 252, 271,
309, 492

Riemann–Roch, 506
Riesz–Fischer, 412
Steiner–Lehmus, 199
uniqueness, 145
Whittaker–Shannon, 11

theorema egregium, 472
Théorie analytique de chaleur, 514
Théorie analytique des probabilités, 425
Théorie des fonctions analytiques, 500
Theory of Functions of a Real

Variable, 526
thermodynamics, 428
theta function, 407, 504
thing, 20
Thoúlē, 178, 180
Thousand and One Nights, 284
thread, 247
three-body problem, 407
three-dimensional π, 219, 265
three-dimensional space, 217
three-line locus, 168, 193, 361
three-valued logic, 553
thumb, 59
thunder, 20
tian yuan shu, 271
Tigris River, 27, 284
tiling, 191
Timaeus, 96

time, 6, 12, 30, 31, 208, 224, 320, 374,
389–390, 401

local solar, 178, 225
mean solar, 31
standard, 31

Tokugawa Era, 202, 268, 277
topology, 8, 13, 17, 162, 440, 456–463, 535,

537, 540
algebraic, 448
combinatorial, 448, 456–457
differential, 448
point-set, 448, 461–462, 534

tópos, 456
torsion, 477
torus, 118, 458, 479
total curvature, 470
Toulouse, 420
Tours, 318
Tours, battle of, 283
town, 257, 261
Tractatus de latitudinibus formarum, 330
tractrix, 486, 491, 492
Transactions of the London Philosophical

Society, 456
Transactions of the American Mathematical

Society, 491
Transactions of the Royal Irish Academy,

443
transcendental extension, 443
transcendental function, 169
transcendental number, 445, 522, 536
transfinite, 534
transfinite induction, 535
transformation

linear, 452
Möbius, 463
orthogonal, 455

transformation groups, 285
transformation of area, 114, 117, 141, 215
transformation of volume, 117
transition matrix, 429
translation, 318, 452
transportation, 248
Transvaal, 409
transversal, 139, 172
trapezoid, 22, 49, 69, 251

curvilinear, 235
Trattato d’algebra, 335
Treatise of Fluxions, 382
Treatise on Large and Small Numbers, 269
Treatise on Optics, 305
Treatise on the Latitude of Forms, 330
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Treatise on the Projective Properties of
Figures, 451

tree, 253, 257, 261, 352
Treviso, 328
triad, 72
triangle, 6–8, 22, 47, 53, 68–69, 85, 87,

88, 104, 112, 117, 121, 138, 145,
176, 177, 191, 219, 220, 227,
251, 362

angle sum, 103
axial, 119, 162
curvilinear, 235
equilateral, 123, 279, 316
isosceles, 82, 199, 215, 229, 278, 365
Pascal’s, 218, 434
right, 72, 152, 198, 216, 221, 247, 249, 257,

261, 365, 371
integer-sided, 172

spherical, 308, 317, 332, 484
triangles

congruent, 21, 137, 173, 175,
278, 304

similar, 224, 261, 317
triangular number, 91, 95, 109, 316
trichotomy, 130, 157
Trigonometriæ sive de dimensione

triangulorum libri quinque, 332
trigonometric function, 6, 184, 308, 323,

378, 500
trigonometric series, 390, 495, 518, 526

uniqueness, 532–533
trigonometric tables, 30
trigonometry, 53, 205, 209, 219–226, 235, 238,

250, 261, 271, 288, 304, 320, 329, 342,
358, 382, 406, 484, 487, 492

plane, 290, 308, 320
spherical, 184, 290, 305, 308, 320

Triparty en la science des nombres, 320, 335
Tripos Examination, 409
trisecting the angle, 116, 139, 147, 286, 297,

333, 342
trisection, 106, 122–125, 305, 444
trisector, 199
trochoid, 453
Troy, 107
truncated icosahedron, 349
trunk, 352
truth tables, 544
Tschirnhaus transformation, 434–436, 438, 439
tuning fork, 10
turbot, 59
Turkey, 27–29, 88, 287

Turks, 204
Tusculan Disputations, 148
Twelfth Dynasty, 58
two mean proportionals, 118, 166, 342
two-dimensional π, 216, 219, 227, 251
two-dimensional space, 217
two-line locus, 167, 193
Tyre, 177, 179

Ujjain, 208
ultima Thule, 178
ultra kardinem, 174
Umayyad Dynasty, 283–285
Umayyad Empire, 204
unbounded, 476, 483
uncountable set, 538
undecidability, 555, 556
unenumerable number, 217, 225
unicursal graph, 17, 22
uniform, 330
uniform convergence, 525–526
uniformly accelerated motion, 320
uniformly difform, 330
unique factorization, 110
unit, xxv, 6, 30, 55, 179, 184, 195, 242,

249, 484
unit price, 248
United Kingdom, 30, 240
United Nations, 240
United States, 30, 329, 409, 485
Universal Arithmetick, 453
universe, 208, 211, 241, 547
universities

Indian, 210
University of Amsterdam, 551
University of Berlin, 387
University of Bonn, 454
University of California, 431
University of Erlangen, 412
University of Freiburg, 14
University of Göttingen, 387, 406, 409,

412, 457
University of Geneva, 16
University of Hawaii, 54
University of Jena, 407
University of Kansas, 410
University of Kazan’, 487, 488
University of London, 241, 405
University of Madras, 211
University of Moscow, 527
University of Padua, 321
University of Pavia, 482
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University of St Andrews, xxvi, 229, 409
University of Wisconsin, 149
Upanishads, 204
Upper Egypt, 56
Ur, 28
urn model, 422
utility, 424
Uzbekistan, 287, 289

Valmiki Ramayana, 213
Vandermonde determinant, 442
vanishing point, 352
variable, 311, 347, 359, 383, 495

complex, 401, 500
dependent, 514
independent, 514
random, 428
real, 500

variance, 425
variation, 394

second, 394
variety, 460

closed, 460
VAT 8402, 45
Vatican Library, 196
vector, 452, 474
vector space, 4, 452
vectors, orthogonal, 474
Vedas, 201, 204, 205, 213–218
Vedic mathematics, 205
Vega, 488
velocity, 320, 330, 374

instantaneous, 375
Venus, 181
vernal equinox, 180, 225
verse, 233
versed sine, 275
versiera, 399
vertex, 173, 184
Věstonice wolf bone, 15
vibrating membrane, 394, 476
vibrating string, 394, 400, 512–513
vicious circle, 109
Vienna, 320, 406, 414
Viet Nam, 239
vigesimal system, 31
Vigevano, 322
Vija Ganita, 209, 233
vikalpa, 217
Vikings, 315
vine, 253
virtual certainty, 422

volume, xxv, 6, 46, 49, 58, 73–76, 80, 150, 169,
193, 195, 219, 238, 243, 251, 254, 262,
271, 274, 328

“neat”, 228
“practical”, 228
“rough”, 228

Vorderasiatisches Museum, 43
Vorstudien zur Topologie, 456
Vulgate, 81
vyayam, 214

WA, 268
Walla Walla County, 466
wasan, 202, 268–270, 280, 289
water, 84
wave equation, 390, 512, 513, 519
wave function, 427
wave, sine, 10
weak extremal, 395, 397
weather forecasting, 418
weaving, 17
Weber–Fechner law, 425
wedge product, 474
Weierstrass approximation theorem, 528, 529
Weierstrass M-test, 526
weight, 6, 30, 129, 242
well-defined, 145
well-ordered, 537
well-formed formula, 555
wheat, 256, 265
Whittaker-Shannon theorem, 11
width, 19, 41, 42, 69, 142, 249
wine, 328
witch of Agnesi, 399
wolf bone, 15
women mathematicians, xxiv, 405–416
Woolsthorpe, 373
World War I, 411, 412
World War II, 204, 240, 411
World’s Columbian Exposition, 410
Worldwide Web, 149, 461

xian, 221, 249
Xiangjie Jiuzhang Suan Fa, 243
Xugu Suanjing, 257

Yale Babylonian Collection, 29, 36, 48, 109
yang, 255
Yang Hui Suan Fa, 243
Yang Hui’s Computational Methods, 243
Yangtze River, 250
yard, 30
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YBC 11120, 48
YBC 4652, 29
YBC 7289, 36, 39, 109
YBC 7302, 48
year, 12, 30, 180, 187, 230
Yellow River, 250
yen, 274
yenri, 274
ying, 255
Yuan Dynasty, 240

Zaire, 17
zenith, 224, 285

Zeno, 461
Zermelo’s axiom, 537
zero, 33, 59, 213, 216, 232, 245, 323, 378

division by, 234, 235
zetetics, 341
zhang, 252
Zhou Bi Suan Jing, 201, 241, 249–251, 253
Zhou Dynasty, 239, 241
Zhui Shu, 243
zij, 288
zoology, 239
Zürich, 413
Zürich Polytechnikum, 523
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