

Nuclear District Heating Warm the World, Guard the Globe

(<u>Deep-pool Low-temperature Heating Reactor---DHR</u>)

LIU Xingmin

China National Nuclear Corporation

Nov. 2018

Outlines

Introduction

Design Scheme and Technical Features

R&D of DHR Project

Remarks

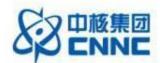
Global Warming

- Any human activity leave a Carbon Footprint
- Massive uses of fossil fuels leads to GHG emission, global warning and extreme weather
- Frequent haze in recent years in China

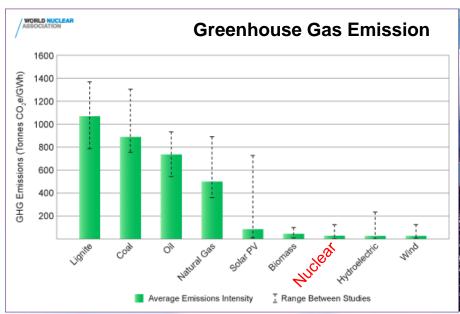
China's Efforts

* CHINA CONTINUES ITS COMMITMENT TO CLIMATE LEADERSHIP

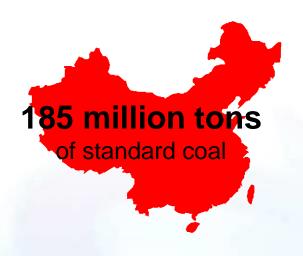
Chinese President Xi Jinping delivers a speech at the opening ceremony of the United Nations (UN) climate change conference in Paris, France, Nov. 30, 2015.

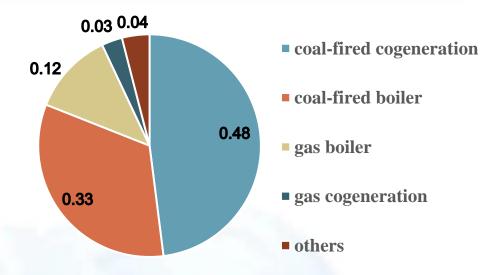

China has pledged to peak CO₂ emissions by 2030

China will increase non-fossil energy sources in the total primary energy supply to around 20% by 2030



Contribution of NPPS to GHG reduction




- Nuclear energy plays an important role in world electricity supply and contributes a lot in carbon dioxide emission reduction
- The world's NPPs have reduced 6 billion tons of carbon emission, equivalent to 15million hectares afforestation

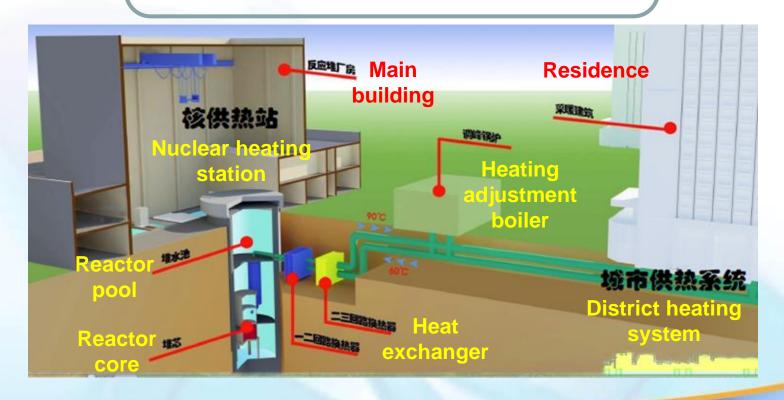
Nuclear & Heat Supply



Energy used in central heat supply in China during 2015

The proportions of different heat sources in central heating supply in china in 2016

- There exists a huge demand for green energy in the market of central heat supply in China
- Nuclear provides an ideal alternative to fossil fuel heating



Nuclear Heating

Nuclear Heating

Using the heat generated by a nuclear reactor for heat supply

Overall schematic of District Heating System

Origin of DHR

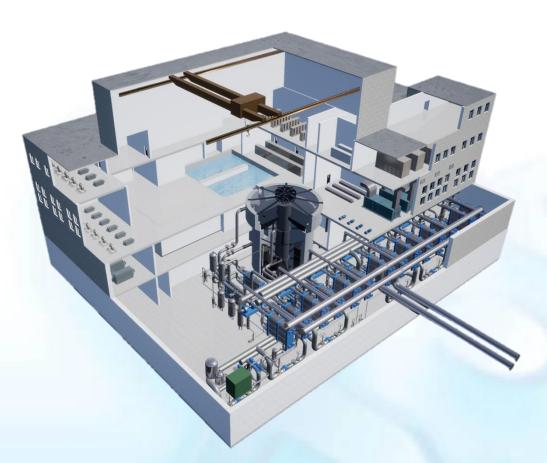
- CNNC has developed a <u>Deep-pool</u> Low-temperature <u>Heating Reactor</u> (DHR, Yan Long, 燕龙) on the basis of a pool type research reactor.
- The prototype of DHR(Yan Long) is the swimming pool reactor (SPR IAE) located at CIAE of CNNC.

Outlines

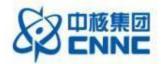
Introduction

Design Scheme and Technical Features

R&D of DHR Project

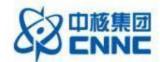

Remarks

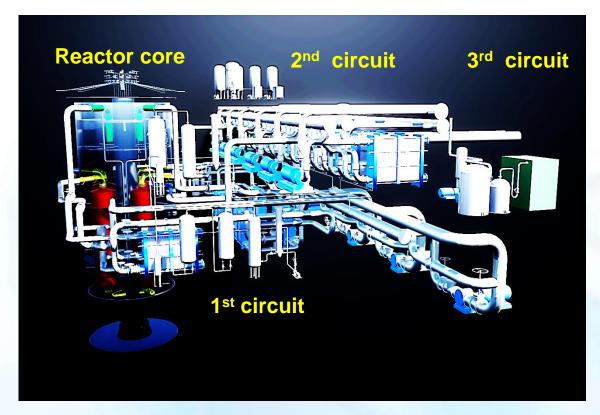
DHR Schematic



- The reactor core is placed in the bottom of an atmosphericpressure pool
- A proper core outlet TEMP is achieved by increasing the static pressure of the water layer

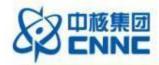
Schematic view of DHR




Technical Parameters

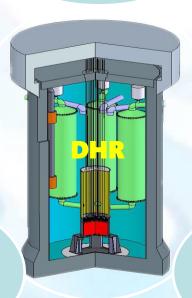
Item	Parameter	Item	Parameter
thermal power /MW	400	enrichment of equilibrium refueling	3.1%
cooling type	forced	refueling period /EFPD	450
diameter of pool /m	10.0	average discharge burnup /GWD/tU	~30
depth of pool /m	26	refueling number per year /assembly	24
height of active zone /m	2.15	temperature of pool water /°C	68
equivalent diameter of core /m	2.02	inlet/outlet of core /°C	68/98
type of assembly	truncated PWR assembly(CF3-S)	inlet/outlet of secondary circuit /°C	63.5/93.5
number of assemblies	69	inlet/outlet of heating loop /°C	60/90
form of assembly	17×17 ₋₂₅	pressure of primary /MPa	0.6
diameter of fuel rod /mm	9.5	pressure of secondary /MPa	1.2
fuel loading of core /t	23.45	pressure of heating loop /MPa	1.8
average linear power density /kW/m	8.87	type of heat exchanger for primary circuit and secondary circuit	Plate-type

Configuration of circuit system



- Setting up the 2nd isolation circuit
- P₃>P₂>P₁, to ensure radioactivity will not enter heating pipe

3(1st,2nd and 3rd) circuits layout, 2 times heat exchange



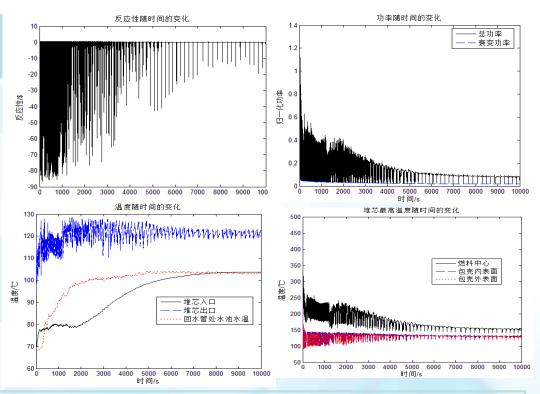
Main Technical Features

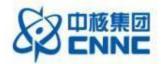
High safety and environment-friendly

Multi-purpose and adaptable

Less investment and better economy

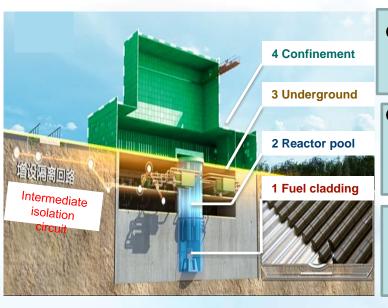
Inherent safety




The most serious credible accident

Nearly "zero" meltdown

Time (s)	Accident sequences
0	SBO ATWS,FP
0~6000	ρ, P, T _c ,T _f , oscillating not beyond the limit
6000	Smooth change, stabilizing at 10% P
3.1E7(1 0d)	Core uncover



 Automatic shutdown only relying on the negative reactivity feedback, without any intervention.

Almost none release

Multiple means to reduce radioactive release

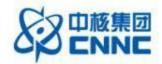


- DHR is equipped with four barriers, effectively isolating radioactivity
- An intermediate isolation circuit with higher pressure ensure that the coolant does not enter the heating loop.
- Equipped with a gaseous and liquid effluence collection and treatment system

Environmental Benefits

No carbon emission, no emission of NO_X , SO_2 , dust, ash, etc. DHR400 can replace 320,000 tons of coal per year, equivalent to 1300 hectares afforestation.

Heat source	CO ₂ (tons/y)	SO ₂ (tons/y)	NO _X (tons/y)	Dust (tons/y)	Ash (tons/y)	Radioactivity (mSv/person)
Coal	520000	6000	2000	3200	100000	0.013
Gas	260000		1000			
Nuclear	0	0	0	0	0	0.005


Multi-purpose

Energy application

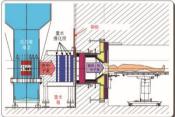
- District heating supply
- Refrigeration(lithium-bromide absorption-type refrigerating machine)
- Desalination of Sea Water(low temp. multiple effect distillation(MED)
- Supply hot water for green-house, farming, cultivation, etc.

Non-heating season

Multi-purpose

Neutron application

- > Irradiation testing for fuel assemblies and material
- Production of RIs, NTD silicon, gem, topaz, pearl, nuclear membrane, etc.
- Neutron analysis, NAA, NRG, Neutron scattering, etc.
- Medicine, BNCT,FNT, etc.



Outlines

Introduction

Design Scheme and Technical Features

R&D of **DHR** Project

Remarks

Roadmap of DHR

2nd step

Demo **Project**

2020-12

3rd step

Commercial promotion

After 2020

1st step

Principle verification

2017-12



Demonstration Project

Remarks

- O DHR is safe, environment friendly and economical
- O DHR provides ah ideal alternative to coal-fired heating.
- DHR would make important contributions to CO₂ emission reduction and environment protection.

