

o INTEL HPC DEVELOPER CONFERENCE
@Xﬁiﬂﬁ;‘f&w FUEL YOUR INSIGHT

IMPROVE VECTORIZATION EFFICIENCY USING INTEL
SIMD DATA LAYOUT TEMPLATE (INTEL SDLT)

Alex M Wells
Anoop Madhusoodhanan Prabha

Intel Corporation
November 2016

Long Story Short..

= Object-Oriented code involves modeling collections as Array of Structures
(AoS).

= AoS data layout leads to lower vectorization efficiency.

»= |ntel SIMD Data Layout Template (Intel SDLT) helps developers stick to their
Object-Oriented Design but still get better vectorization efficiency.

INTEL" HPC DEVELOPER CONFERENCE

Agenda

= Performance Problems posed by Object-Oriented Design
= Why Intel SDLT?

» Components of Intel SDLT

= How to use Intel SDLT in your application?

= Q&A

INTEL" HPC DEVELOPER CONFERENCE

QuantLib Performance data

Comparison of data
optimization methods

(higher is better)

8
6
4
2
" - —
Test 1 100k/2048 Test 2 100k/4096 Test 3 1M /2048 Test 4 1M/4096
Test cases
m C++ unoptimized version mC++ vectorized version mC++ SDLT version C Flattened optimized version

https://software.intel.com/en-us/articles/data-layout-optimization-using-simd-data-layout-templates

INTEL" HPC DEVELOPER CONFERENCE

Performance Problems posed by Object-Oriented Design

= Applications are designed as interaction between objects (Object-Oriented
Design).

= Every real world entity is modeled as an object (user defined data type like
struct or class).

= Collection of this above entity will become an Array of Structures (AoS).

Heap Array

YourStruct * input = new YourStruct[count];
YourStruct * result = new YourStruct[count];

struct YourStruct Stack Array

{
float x; YourStruct input[count];
float y; YourStruct result[count];
float z;

%

Vector

typedef std::ivector<YourStruct> Container;
Container input(count);
Container result(count);

INTEL" HPC DEVELOPER CONFERENCE

What's wrong with AoS?.... SIMD s vector_register_1

s vector_register_2

= SIMD -“Single Instruction Multiple Data” SIMD +=
operation
= Vectorization with AOS in memory data layout vr1[0]+=vr2[0]
. . . vr1[1]+=vr2[1]
requires multiple load/shuffle/insert or gather vri[2]+=vr2[2]
instructions. vri[3]+=vr2[3]

= |ncrease in vector width demands more
instructions for vector construction.

= Reduced CPU frequency in SIMD mode might
not overcome SIMD improvement over the
scalar code operating at a higher frequency.

Ali+0] Ali+1] Ali+2] A[i+3]

INTEL" HPC DEVELOPER CONFERENCE

SIMD is effective with Unit Stride Access

SOA in Memory Layout

X[+0] X[i#] X[+2] X[H3]

* If memory layout has multiple instances of a data [\ E———————
member adjacent in memory and aligned on a byte Zea z A 2w

boundary matching the vector register width :
sz vector_register_1
— Single load/store instruction to move the data into or out ot a vector
register

— Many SIMD operations can reference an aligned unit-stride memory
access as part of the instruction, avoiding a separate load/store instruction

altogether

« A properly aligned Structure of Arrays (SOA) in memory data layout provides
SIMD compatible Unit-Stride memory accesses

» SIMD efficiency & speedup can be restored

INTEL" HPC DEVELOPER CONFERENCE

Issues with SoA integration

= Demands for change of the data structure and deviate from Object Oriented
Design.

= Demands for change of C++ algorithms.

= Explicitly handle allocation/freeing of SOA arrays and make sure they they
are aligned.

INTEL" HPC DEVELOPER CONFERENCE

What is Intel SDLT?

« A C++11 template library providing concepts of Containers, accessors and
Offsets

— Containers encapsulate the in memory data layout of an Array of “Plain
Old Data“ objects.

— SIMD loops use accessors with an array subscript operator (just like C++
arrays) to read from or write to the objects in the Containers.

— Offsets can be embedded in accessors or applied to a Index passed to the
accessors array subscript operator.

* Since these concepts are abstracted out, multiple concrete versions can
exist and can encapsulate best known methods, thus avoiding common
pitfalls in generating efficient SIMD code.

INTEL" HPC DEVELOPER CONFERENCE

Why Intel SDLT?

 SDLT provides a means to preserve the Array of Structure (AoS) interface for the
developers but lays out the data in Structure of Array (SoA) format which is more
SIMD friendly and increases the vectorization efficiency.

« SDLT provides 1D containers which provides the same interface as std::vector
making the ease of integration and interoperability easy.

— push_back, resize, etc.
— iterator support: begin(), end(), etc.

* Works well with all STL algorithms
— for_each, find, search, etc.

* Multi-Dimensional Container Support
* Enabled in SDLT version 2 shipped with Intel C++ Compiler Version 17.0

INTEL" HPC DEVELOPER CONFERENCE

SDLT Containers

* What if that std::vector could store data SOA
internally while exposing an AOS view to the
programmer?

Ai+0] A[i+1] Afi+2] A[.]

X Y z X Y z X Y z X Y 4

— Primary goal of SDLT Containers is to meet AOS (Array of Structures)
the requirement above.

 SDLT Containers abstract the in memory data

. X[i+0] X[i+1] X[i+2] X[...]
layOUt tO. A Y[i+0] Y[i+1] Y[i+2] Y[...]
— AOS (Array of Structures) —
— SOA (Structure of Arrays) SOA (Structure of Arrays)

INTEL" HPC DEVELOPER CONFERENCE

SDLT 1D container

typedef sdlt::soald_container<YourStruct> Container;
Container inputContainer(count);
Container resultContainer(count);

* Intentis data be keptin an SOA or ASA Container the entire time instead of
converting from AOS.

* SDLT's container will internally store the members of YourStruct in a one
dimensional "Structure of Arrays" (SOA) layout.

— Places aligned arrays inside a single allocated buffer vs. a separate
allocation per array

» Just like std:ivector the Containers own the array data and its scope controls
the life of that data.

INTEL" HPC DEVELOPER CONFERENCE

SDLT Primitives

* How do the Containers discover the data struct YourStruct
members of your struct? U
oat x;
« C++ lacks compile time reflection, so the oo ¥
user must provide SDLT with some };

information on the layout of YourStruct.
struct AABB

* This is easily done with the ! Yourstruct toplLeft;
SDLT_PRIMITIVE helper macro that accepts YourStruct bottomR’ight;
a struct type followed by a list of its data 2
members. SDLT_PRIMITIVE(YourStruct, x, y,)

— A struct must be declared as a primitive SOLT_PRIMITIVEIAABB, topLeft, bottomRight)

before it is used as template parameter to
a Container.

INTEL" HPC DEVELOPER CONFERENCE

SDLT Accessor

« To separate data ownership semantics from data access, a separate class
called an accessor is used to access the transformed data that is owned by
the Container.

Container:const_accessor<> input = inputContainer.const_access();
Container:accessor<> result = resultContainer.access();

 Usethe C++11 keyword "auto" to let the compiler deduce the type.

auto input = inputContainer.const access();
auto result = outputContainer.access();

INTEL" HPC DEVELOPER CONFERENCE

SDLT Accessor Contd..

Embedded Offset

auto input = inputContainer.const_access();

auto input2 = inputContainer.const access(256);

auto input3 = inputContainer.const_access(sdlt::aligned<8>(256));
auto input4 = inputContainer.const access(sdlt::fixed<256>());

Subscript operator

void setAllValuesTo(
Container::accessor iValues,
const YourStruct &iDefautValue)

{
for(int i=0; i < iValues.get_size_di();
++1)
{
ivalues[i] = iDefaultValue;
}

INTEL" HPC DEVELOPER CONFERENCE

SDLT Accessor Contd..

= The subscript operator[index] returns a Proxy Object
= The main use of the Proxy Objects is to import/export data to/from a local variable

= (Can assign local stack instance of YourStruct to the Proxy

YourStruct result = ..
ivalues[index] = result;

= Can retrieve YourStruct from the Proxy to a local stack object

iValues[index].y()
YourStruct local =

= new_y value;
ivalues[index];

= SDLT's design makes use of local objects and the compiler's dead code elimination features.

» Overloaded +=, -=, *=, etc. operators.

INTEL" HPC DEVELOPER CONFERENCE

Multiple Dimensions with sdlt::n container

using namespace sdlt;

auto shape = n_extents[128][256][512];
typedef n_container<YourStruct, layout::soa, decltype(shape)> Container3d;

Container3d input(shape), output(shape);
auto inputs = input.const_access();
auto outputs = output.access();

for(int z = 0; z < 128; ++z) {
for(int y = 9; y < 256; ++y) {
#pragma omp simd
for(int x = @; x < 512; ++x) {
YourStruct val = inputs[z][y][x];
YourStruct result = .. // compute result
outputs[z][y][x] = result;

* The shape is described with the sdlt::n_extents generator object

* Use accessors with multiple array subscript operators, just like multi-dimensional C arrays

INTEL" HPC DEVELOPER CONFERENCE

Issues with Large Arrays with SOA

Memory layout of a 3d SOA * For any given element:

* al[z index][y_index][x_index]
n_container<YourStruct,
layout: :soa,

decltype(n_extents[128][256][512])> ® D|Stance between data memberS
« >=65mb ~ 128*256*512*sizeof(data_member)

X[0][0][0] X[OJ[O]L..] X[0][0][512] Each data member:

X[...1L...100] X[-AL-- -] X[15121 * Possibly in different virtual memory pages.
X[128][256][512] X[128][256][...] X[128][256][512]

* Appears as a separate data stream to hardware
Y{oj[oj[o] Y[oJ[o]L...] Y[0J[0][512] prefetchers

YI...1[...][0] Y[...I[...][] Y[...1[...1[512]
S ———E [——— E—— . As # data members or hyper threads

Z{oj[o][0] Z[0][0]L...] Z[o][0][512] increase, so does

Z[...][...1[0] Z[00 Z[...1[..11512] « DTLB pressure
Z[128][256][0] Z[128][256][...] Z[128][256][512]

» Hardware prefetcher pressure

INTEL" HPC DEVELOPER CONFERENCE

SOA Per Row Memory Layout

n_container<YourStruct,

layout: :s0a_per_row, « For any given element:

decltype(n_extents[128][256][512])>

* a[z_index][y_index][x_index]

X[0] X[...]

Row[0][0] Yol o 3"~ Distance between data members:

Z[0] Z... ’.

X[0] X[...
Rowl...][...] Yol Y. « Each data member:

Z[0] z... * Likely in same virtual memory page.

» >=2kb ~ 512*sizeof(data_member)

X[0] X[... * Likely appears as a separate data stream to
Row[128][256] Y[0] YL... hardware prefetchers

Z[0] Z[...

* As # data members or hyper
threads increase

Reduced DTLB
pressure

INTEL® HPC DEVELOPER CONFERENCE

* Hardware prefetcher pressure

Adding Xtra Blocking Dimension

constexpr int vec_width=8;

n_container<YourStruct,
layout: :soa_per_row,
decltype(n_extents[128][256][512/vec_width][vec_width])>

* For any given element:
* af[z index][y_index][x_index/8][x index%8&]

Row[0][0][0]

Distance between data members:

+ >=32b ~ 8*sizeof(data_member)

Rowl[...][...][...
Sl Each data member:
. * IS in the same same virtual memory page.

Row[128][256][512/8] * Appears as a segment of a single linear data
stream to hardware prefetchers

W

ardware prefetcher
friendly

INTEL" HPC DEVELOPER CONFERENCE

By Hand, Combine AoS with Fixed Size SoA

constexpr int lane_count=8;
struct SimdYourStruct {

lanelndex float x[lane_count];
float y[lane_count];
X[... float z[lane_count];
ASA[0] i } __attribute__((aligned(32)));
Z[... int count = 4096;
int structCount = count/lane_count;
X[... SimdYourStruct inputASA[structCount];
- SimdYourStruct outputASA[structCount];
Z... for(int structIndex=0; structIndex < structCount; ++structIndex) {
#pragma omp simd
X[-.. for(int laneIndex=0; laneIndex < lane_count; ++laneIndex) {
ASA[512] YL... YourStruct val;
val.x = inputASA[structIndex].x[laneIndex];
Z[... val.y = inputASA[structIndex].y[laneIndex];
val.z = inputASA[structIndex].x[laneIndex];
YourStruct result = .. // compute result

outputASA[structIndex].x[laneIndex] = val.x;
outputASA[structIndex].y[laneIndex] val.y;
outputASA[structIndex].x[laneIndex] val.z;

INTEL" HPC DEVELOPER CONFERENCE

With SDLT, Combine AoS with Fixed Size SoA

constexpr int lane_count=8;

int count = 4096;

auto shape = n_extents[count/lane_ count][fixed<lane_count>()];

typedef n_container<YourStruct, layout::soa_per_row, decltype(shape)> Container;

Container inputASA(shape), outputASA(shape);
auto inputs = input.const_access();
auto outputs = output.access();

for(int structIndex=0; structIndex < extent_d<@>(inputs); ++structIndex) {
#pragma omp simd
for(int laneIndex=0; laneIndex < extent_d<1>(inputs); ++lanelndex) {
YourStruct val = inputs[structIndex][laneIndex];
YourStruct result = .. // compute result
outputs[structIndex][laneIndex] = result;
}
}

« sdlt:fixed<int> represents an integral constant known at compile time

« Template function sdlt::extent_d<int> determines the extent of a dimension
for a multi-dimensional object

INTEL" HPC DEVELOPER CONFERENCE

Before Intel SDLT enablin

class CartesianPoint{
public:
float x, y, z;
CartesianPoint(){
x =y =12 = 0.0f;
}
explicit CartesianPoint(float x1, float y1, float z1){
x = xlj;
y = yl;
z =71
}
CartesianPoint(const CartesianPoint& other)
¢ x(other.x)
» y(other.y)
z(other.z)

-

CartesianPoint& operator=(float n){
X=y=2Z-=n;
return *this;

}
}s
class CartesianPointImage{
public:
vector<CartesianPoint> cartpoints;
int num_of_points() const { return static_cast<int>(cartpoints.size()); }
CartesianPointImage(size t num of elements){
cartpoints.resize(num_of elements);
for (unsigned int i = @; i < num_of _elements; i++)
{
cartpoints[i] = CartesianPoint(i, i, i);
) }
}s

INTEL" HPC DEVELOPER CONFERENCE

¥ Check memory access patterns in your application &2

@ Vectonzed | | @8 Not Vectornzed | -~

D Refinement Reports

Site Location Strides Distribution Access Pattem

F6R /2% 1250 ved s ces

Loop-Carried Dependencies
[loop in SphencalPoint at Pointh .. No information available

Site Name

loop_site_34

i Memory Access Patterns Repont v
s} @ Stide Type Source Site Name Nested Function | Modules

onstant stride Point k50 loop_site_34 operator Cartesian_to_Spherical exe
Constant stride Point k51 Canesian_to_Spherical exe
Constant stride Point k52 Cartesian_to_Spherical exe
Gather stride Point k56 Canesian_t0_Spherical exe
Gather stride Point 57 Cantesian_to_Spherical axe
Gather stride Point k58 Cantesian_to_Spherical exe
Parallel site information Point 56 loop_site_34 Canesian_to_Spherical exe
Uniform stride Cartesian_to_Spherical.exex7b16 loop_site_34 _svmi_atanfd Cartesian_to_Spherical.exe
Uniform stride math k1040 34 atan Cantesian_10_Spherical exe
iz e TS T i

After Intel SDLT enablin

™ Check memory access patterns in your application ©

D Retinement Reports
class CartesianPointImage{

Site Location Loop-Carried Depencencies Strides Distribution Access Pattern Site Name
public: [loop in move <& float> at exporter il . No information avaslable A0ORFORFORIN Al unt stndes loop_site_7
CartesianPointContainer cartpoints; //This is the key change
int num_of_points() const { return static_cast<int>(cartpoints.size()); }
CartesianPointImage(size t num_of elements){
cartpoints.resize(num of elements);
auto a = cartpoints.begin(); N Aty i PaSdant Rt -
for (unsigned int 1 = 9; 1 < num of elements; i"’*) @ Swide |Type Source Site Name Nested Function | Modules
{ Parallel site information exporter.h 134)_site Cartesian_to_Spherical exe
a[i] = CartesianPoint(i, i, i); B B o Uniform stride Cartesian_to_Spherical exe 7912 _svml_atanf Cartesian_to_Spherical exe
} M @0 Uniform stride Pointh171 site 7 sqn Cartesian_to_Spherical axe
} s @ 0 Uniform stride exporterh134 loop_site.7 SphericalPoint Cartesian_to_Spherical exe
i @ o0 Uniform stride importer 121 loop_site .7 sqnt Cartesian_10_Spherical exe
}; 7 @ 0 Uniform stnde mathh:1040 loop_site 7 atan Cartesian_to_Sphercal exe
#P @ o Uniform stride mathh1136 loop_site 7 sqnt Cartesian_to_Spherical exe
P @ o Uniform stride svml_dispmd ditOx231444 loop_site 7 _svml_atanf4_mask svml_dispmd il
PO @ o Uniform stnde svml_dispmd ditOn23144a loop_site_7 svml_atand4_mask svml_dispmd.d

http://bit.ly/intelsdlt-wp?2

INTEL" HPC DEVELOPER CONFERENCE

ector Advisor's Recommendation for Intel SDLT

S—— © N
FILTER: | AllModules ~|[AllSources +|[Loops +|[All Threads ~ INTEL ADVISOR 2017
’ Summary A% Survey Report @ Refinement Reports

| Vectorized Loops Trip nstruction Set Analysis A

Efficiency Gain...| VL (Vector Le... Counts

[=] Function Call Sites and Loops

@ [loop in test_scatter at main.cpp:302] | Vectorized (B... |

51O [loop in test_scatter at main.cpp:268] Scalar @ vector dependence... 1000000

51O [loop in test_gather at main.cpp:33] Scalar @ vector dependence... 1000000

51O [loop in test_gather at main.cpp:65] BB Scalar & inner loop was alre.... 100000 Int32

51O [loop in std::basic_ios<char,struct std::cha... Scalar @ vector dependence... 31

5D [loop in std:num_put<char,class std::ostr... Scalar B vector dependence... 8 v
< >« >
Source TopDown Code Analytics ly | @ Rec dati & Why No

All recommendations: C++. FORTRAN

Issue: Inefficient memory access patterns present
There is a high of percentage memory instructions with irregular (variable or random) stride accesses. Improve performance by investigating and handling

accordingly.
) Recommendation: Use SoA instead of AoS Confidence: @ Low
o An array is the most common type of data structure containing a contiguous collection of data items that can be accessed by an ordinal index. You can
: organize this data as an array of structures (AoS) or as a structure of arrays (SoA). While AoS organization is excellent for encapsulation, it can hinder
effective vector processing. To fix: Rewrite code to organize data using SoA instead of AoS.
Read More:

® Programming Guidelines for Vectorization
® Case study: Comparing Arrays of Structures and Structures of Arrays Data Layouts for a Compute-Intensive Loop and Vectorization Resources for
Intel® Advisor Users

2 Recommendation: Use Intel SDLT Confidence: ¢ Low
The cost of rewriting code to organize data using SoA instead of AoS may outweigh the benefit. To fix: Use Intel SIMD Data Layout Templates (Intel
SDLT), introduced in version 16.1 of the Intel compiler, to mitigate the cost. Intel SDLT is a C++11 template library that may reduce code rewrites to just
a few lines.
Read More:

® Introduction to the Intel® SIMD Data Layout Templates (Intel® SDLT)
® Vectorization Resources for Intel® Advisor Users

INTEL" HPC DEVELOPER CONFERENCE

Case Study

e Efficient SIMD in Animation with SDLT and Data preconditioning

e DreamWorks Animation (DWA): How We Achieved a 4x Speedup of Skin
Deformation with SIMD

INTEL" HPC DEVELOPER CONFERENCE

Resources

Intel SIMD Data Layout Template Info

* Introducing the Intel SIMD Data Layout Template (Intel
SDLT) to boost efficiency in your vectorized C++ code

— http://bit.ly/intelsdlt

= |ntroduction to the Intel SDLT
— https://software.intel.com/en-us/node/684050

= Averaging Filter with Intel SDLT
— http://bit.ly/intelsdlt-wp1

= Intel Xeon Phi Processor High Performance Programming
book, Chapter 11 — Vectorization with SDLT, ISBN:
0128091959

* Boosting the performance of Cartesian to Spherical co-
ordinates conversion using Intel SDLT

— http://bit.ly/intelsdlt-wp2

Code Modernization Links

Modern Code Developer Community
— https://software.intel.com/modern-code

Intel Code Modernization Enablement Program

— https://software.intel.com/code-modernization-
enablement

Intel Parallel Computing Centers

— https://software.intel.com/ipcc

Technical Webinar Series Registration
— http://bit.ly/spring16-tech-webinars

Intel Parallel Universe Magazine

— https://software.intel.com/intel-parallel-universe-
magazine

INTEL" HPC DEVELOPER CONFERENCE

Questions?

INTEL" HPC DEVELOPER CONFERENCE

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF
ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific
computer systems, components, software, operations and functions. Any change to any of those
factors may cause the results to vary. You should consult other information and performance tests to
assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products.

Copyright © 2016, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk,

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction

sets covered by this notice.
Notice revision #20110804

INTEL" HPC DEVELOPER CONFERENCE

INTEL HPC DEVELOPER CONFERENCE
FUEL YOUR INSIGHT

THANK YOU FOR YOUR TIME

Alex M Wells & Anoop Madhusoodhanan Prabha

www.intel.com/hpcdevcon

(l I te,l ®experience

what's inside”

Possible Overhead When Storing Objects

for(int i=0; i < count; ++i) {
const Point3ds point = points[i];

* We are assigning a newBoundary object oot bointads boundany < bourdatils

toa Container. if(point.y > boundary.y) {
Point3ds newBoundary(boundary.x, newpoint.y, boundary.z);
« We only want to change the "y") bounds[1] = newBoundary;

component of the bounds, }

— Because we can only import entire objects
— We must initialize a new Point3ds

— Transfer the entire object into the container.
— Willinclude the "x" and "z" components despite the fact they haven't changed.

— Because it's and assignment, the compiler can't figure out the values haven't
changed.
— Perhaps another thread had changed the values, and we are reassigning them back.

* The pointis that it won't eliminate the assignments to the "x" and "z" inside the
container.

INTEL" HPC DEVELOPER CONFERENCE

SDLT Proxy Objects Provide Interface to Data
Members

« The proxy objects SDLT returns from the [i] operator provide an interface to
access the individual data members of the primitive.

* The interface provides a method using each data member's name and
returns a proxy to that data member for element [i] inside the Container.

for(int i=0; i < count; ++i) {
const Point3ds point = points[i];
const Point3ds boundary = bounds[i];
if(point.y > boundary.y) {
bounds[1].y() = point.y;
}
}

* Now only the "y" component will be updated and the loop is much more
efficient.

INTEL" HPC DEVELOPER CONFERENCE

