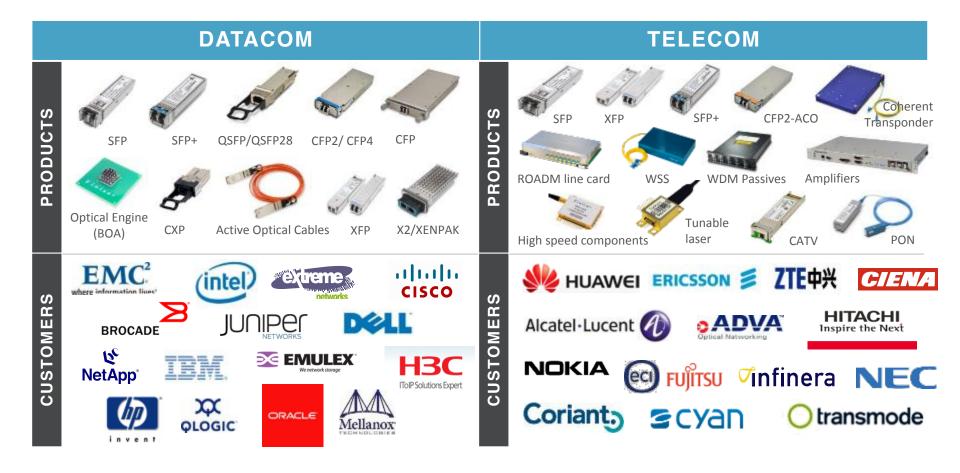
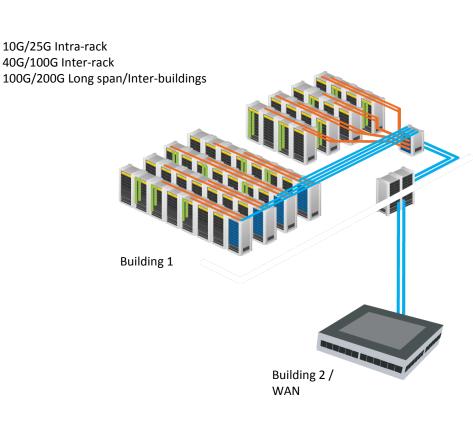

FINISAR[°]

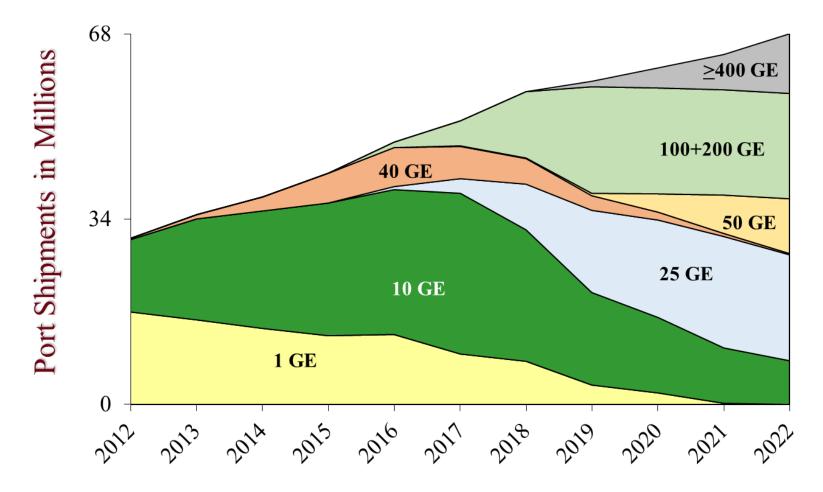
Trends in 400G Optics for the Data Center

Christian Urricariet André Guimarães LACNIC 31 Punta Cana, May 2019



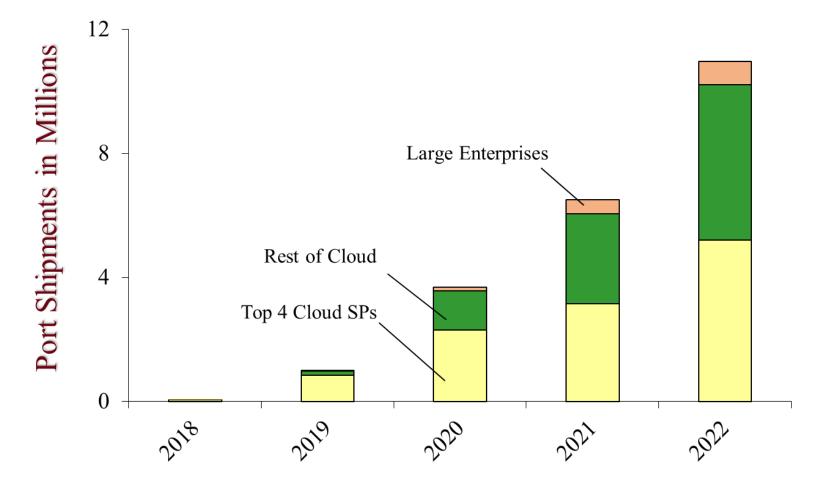
Finisar Corporation


Finisar Facilities Worldwide



Data Center Connections are High Volume Drivers

- Due to the ongoing large increases in bandwidth demand, Data Center connections are expected to move from 25G/100G to 100G/400G
- Within the Data Center Racks
 - 10GE still being deployed
 - 25GE starting to be deployed in volume
 - **100GE** (or 50G) will follow
- Between Data Center Racks
 - 40GE still being deployed
 - 100GE starting to be deployed in volume
 - 400GE will follow at large Cloud Service Providers
- Long Spans/DCI & WAN
 - 10G DWDM/Tunable still being deployed
 - 100G/200G Coherent starting to be deployed
 - 400G will follow Then 600G or 800G



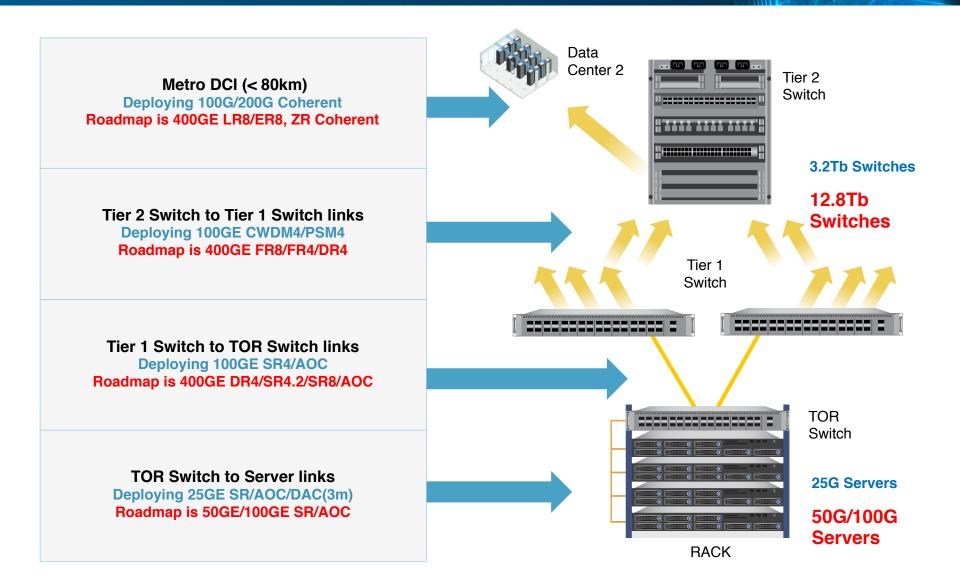
Forecasted Data Center Ethernet Port Shipments

Source: Dell'Oro, 2018

Forecasted 400GE Shipments by Market Segment

Source: Dell'Oro, 2018

Mainstream 1RU Ethernet Switch Roadmap


First Deployed	Electrical I/O [Gb/lane]	Switching Bandwidth	TOR/Leaf Data Center Switch Configuration		
~2010	10G	1.28T	32xQSFP+ (40G)		
~2015	25G	3.2T	32xQSFP28 (100G)	3.2Tb/s switches based on 100G QSFP28 modules being deployed in cloud data centers today.	
~2019	50G	6.4T	32 ports of 200G	Given the multiple switching ICs expected to be available, the market is likely to be fragmented in the future.	
~2020	50G	12.8T	32 ports of 400G		

Large growth in bandwidth demand is pushing the industry to work on technologies and standards to support future 12.8T switches.

400G and Next-Gen 100G Ethernet Optical Standardization

			7
Interface	Link Distance	Media type	Optical Technology
400GBASE-SR16	100 m (OM4)	32f Parallel MMF	SR16 not expected 16x25G NRZ Parallel VCSEL to be deployed 400GE interfaces
400GBASE-DR4	500 m	8f Parallel SMF	4x100G PAM4 Parallel (SiP) standardized in IEEE
400GBASE-FR8	2 km	2f Duplex SMF	8x50G PAM4 LAN-WDM (DML) 802.3bs
400GBASE-LR8	10 km	2f Duplex SMF	8x50G PAM4 LAN-WDM (DML)
Interface	Link Distance	Media type	Optical Technology
100GBASE-SR2	100 m (OM4) 4f Parallel MMF Ox50G PAM4 850nm (VCSEL)		2x50G PAM4 850nm (VCSEL) Next-Gen 100GE standardized in IEEE
100GBASE-DR	500 m	2f Duplex SMF	• 100G PAM4 1310nm (EML) 802.3cd
Interface	Example And Andrew Media type Optical Technology		Optical Technology Multimode 400GE
400GBASE-SR8	100 m (OM4)	16f Parallel MMF	8x50G PAM4 850nm (VCSEL) standardized in IEEE
400GBASE-SR4.2	100 m (OM4)	8f Parallel MMF	8x50G PAM4 BiDi 850 / 910nm (VCSEL) P802.3cm
Interface	Link Distance	Media type	Optical Technology
400G-FR4	400G-FR4 2 km 2f I 400G-LR4 10 km 2f I		4x100G PAM4 CWDM (EML) 100GE/400GE interfaces
400G-LR4			4x100G PAM4 CWDM (EML) standardized in IEEE P802.3cu
100G-FR	2 km	2f Duplex SMF	• 100G PAM4 1310nm (EML)
100G LR	10 km	2f Duplex SMF	• SWDM to enable
 VCSEL technology to be used <100m Silicon Photonics to be used <1km DML/EML technology to be used <40km 			400GE over Duplex MMF in the future

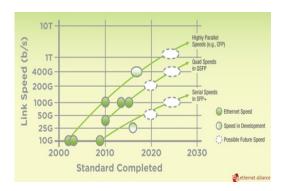
400G Ethernet Is Taking Shape in the Cloud Data Center

400GE Optical Transceiver Form Factor MSAs

CFP8 is the *1st-generation 400GE* module form factor, to be used in core routers and DWDM transport client interfaces. **QSFP-DD and OSFP** modules being developed as *2nd-generation 400GE*, for **high port-density data center switches**.

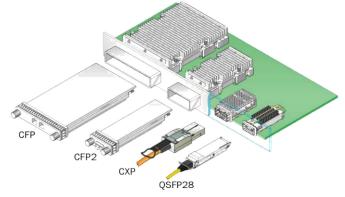
Module dimensions are slightly smaller than CFP2

Supports either CDAUI-16 (16x25G NRZ) or CDAUI-8 (8x50G PAM4) electrical I/O


Enable **12.8Tb/s** in 1RU via 32 x 400GE ports Support **CDAUI-8** (8x50G PAM4) electrical I/O only QSFP-DD host is backwards compatible with QSFP28

General Trends in Data Center Optical Interconnects

- Continuous increase in bandwidth density
- Increasing adoption of optics in Server-to-TOR Switch links
- Low-latency optics for certain niche cognitive-computing applications
- Maturity of key technologies
 - High-speed VCSELs
 - Silicon photonics
- Arrival of coherent optics for data center interconnects


The Market Demands Continuous Improvement in Bandwidth Density

Module Type	# of I/O lanes	Electrical I/O	I/O Baud Rate	Module BW	Width (mm)
SFP+	1	10Gb/s-NRZ	10G	10Gb/s	13
QSFP+	4	10Gb/s-NRZ	10G	40Gb/s	18
QSFP28	4	25Gb/s-NRZ	25G	100Gb/s	18
QSFP56	4	50Gb/s-PAM4	25G	200Gb/s	18
QSFP-DD / OSFP	8	50Gb/s-PAM4	25G	400Gb/s	18
Form factor?	8	100Gb/s-PAM4	50G	800Gb/s	?

256 x 25G Switch System – 2 RU (64 x QSFP28 interfaces)

Optical Technologies for Next-Generation Data Centers

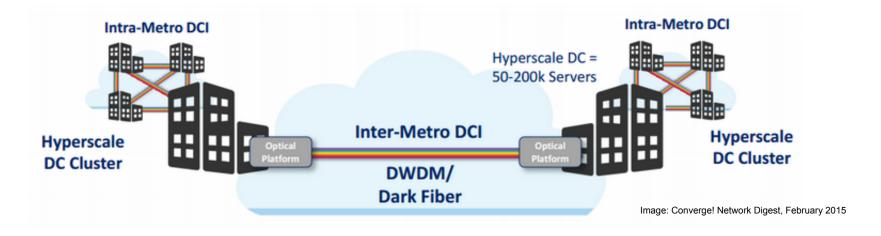
- Short Reach (0 to 100 meters)
 - Higher bandwidth VCSELs
 - VCSELs with sparing capability
 - VCSELs with low RIN
- Intermediate Reach (500 meters to 2 km)
 - Silicon photonics
- Long Reach (10 km and beyond)
 - DML/EMLs
 - Low-power coherent optics

400G, 200G & 100G PAM4 Transceiver Demos at OFC/ECOC

400G QSFP-DD LR8/FR8 (10km)

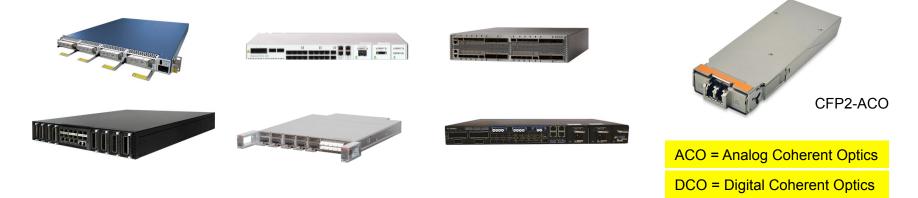
400G QSFP-DD AOC (70m)

100G QSFP28 DR/FR (2km)



200G QSFP56 FR4 (2km) 2x200G OSFP FR4 (2km) 400G QSFP-DD DR4 (500m) 400G QSFP-DD FR4 (2km) 400G OSFP SR8 (100m)

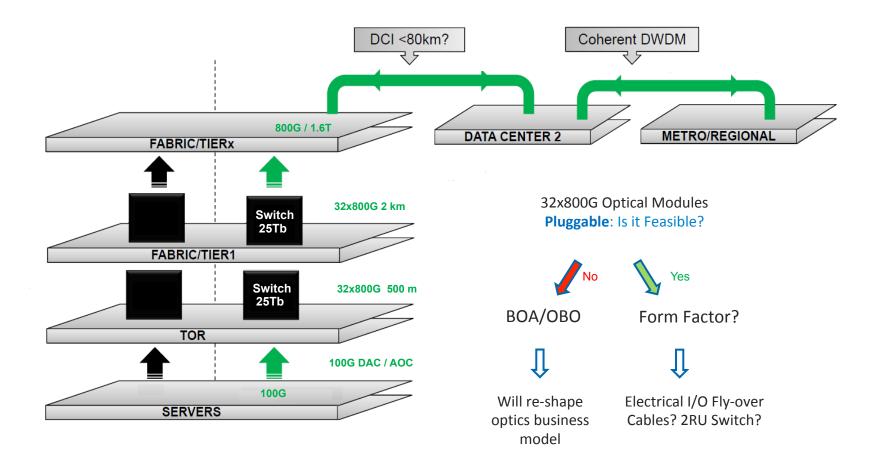
Additionally, several interoperability demos were done by the MSAs


80km DCI Space: Coherent vs. Direct Detection

- Coherent interfaces are likely to capture the 80km market at 400Gb/s and higher rates.
- For 40km and shorter reaches, direct detection may be lower power and cost than coherent for the next few years. Example: 8x50Gb/s (PAM4) 400GBASE-ER8 modules.
- Currently coherent technology is about 2x higher power and cost relative to 100Gb/lane direct detection.
- Standardization work by OIF 400ZR IA and IEEE P802.3ct Task Force (400GBASE-ZR).
- Aggressive innovation will be required to maintain long-term trends to support 1.6 Tb/s ~2024.

Coherent Transmission for DCI Applications

- 100G/200G links require a transponder box to convert to coherent optical transmission in order to support 80~100km and beyond.
- Several system OEMs provide a 1RU transponder box for DCI applications, most of which use pluggable Coherent CFP2-ACO optical transceivers.


 Expected coherent transceiver evolution is driven by improvements in optical packaging and DSP power dissipation:

200G CFP2-ACO \rightarrow 400G CFP2-DCO \rightarrow 400G QSFP-DD DCO

400G DCO transceivers are expected to be plugged directly into switches and routers

Coming Next: What Shape Will 800G Ethernet Take?

100G PAM4 electrical I/O being standardized in IEEE P802.3ck

FINISAR[°]

Thank You

Christian Urricariet christian.urricariet@finisar.com

André Guimarães

andre.guimaraes@finisar.com

