
  Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to The American 
Mathematical Monthly.

http://www.jstor.org

On Arccotangent Relations for π 
Author(s): D. H. Lehmer 
Source:   The American Mathematical Monthly, Vol. 45, No. 10 (Dec., 1938), pp. 657-664
Published by:  Mathematical Association of America
Stable URL:  http://www.jstor.org/stable/2302434
Accessed: 09-03-2015 18:13 UTC

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/
 info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content 
in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. 
For more information about JSTOR, please contact support@jstor.org.

This content downloaded from 158.135.191.86 on Mon, 09 Mar 2015 18:13:29 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org
http://www.jstor.org/action/showPublisher?publisherCode=maa
http://www.jstor.org/stable/2302434
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp


1938] ON ARCCOTANGENT RELATIONS FOR r 657 

ON ARCCOTANGENT RELATIONS FOR 7r 

D. H. LEHMER, Lehigh University 

In a recent number of the MONTHLY, J. W. Wrench* has brought up again 
the subject of arccotangent relations for 7r. This topic, despite the transcendence 
of 7r and of the arccotangent function, is actually a chapter of diophantine equa- 
tions, and has always held a fascination for the devotees of that difficult but 
entertaining field. 

The problem of expressing a rational multiple of 7r as a sum of arccotangents, 
however, can be solved in an infinite number of ways, most of them uninterest- 
ing. While I do not presume to set down any hard and fast rules for this indoor 
sport, still I should like to point out certain possibilities as well as certain in- 
escapable facts which should not be overlooked by those seeking interesting 
new relations for 7r, and to give a rough scheme for comparing such relations 
with each other. I take this opportunity to subjoin a list of familiar and unfa- 
miliar relations. This list is not guaranteed to contain all previously published 
relations, as there are most certainly a few others scattered through the litera- 
ture which have escaped the writer's notice. 

In such a relation as the famous Machin formula 
7r 
- = 4 arccot 5 - arccot 239 
4 

it is intended that the arccotangents be evaluated by the Gregory series 

1 1 1 
arccot x = - - ? - - 

x 3x3 5x5 

Now it is clear that the coefficients, 1, 1/3, 1/5, etc., cannot be depended upon 
to help a great deal in making the terms tend to zero, and that for practical pur- 
poses these coefficients furnish only enough additional accuracy to take care of 
the few extra figures beyond those planned in advance to which one would pru- 
dently carry the calculation. In short, it is not far from the truth to say that 
the number of terms of the series which need to be taken to obtain a specified 
accuracy varies inversely as the common logarithm of x. Moreover, if one has a 
relation of n terms of the type 

k7r n 
(1) - = E ai arccot mi 

4 i==1 

then the amount of labor required by such a relation is proportional to 
n1 

(2) E i=J logm; 
a quantity which we shall call the measure of the relation (1), and which we 

* This MONTHLY, vol. 45, 1938, pp. 108-109. 
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658 ON ARCCOTANGENT RELATIONS FOR 7r [December, 

shall adopt (with modifications, as mentioned later) as a guide to the discovery 
of more efficient arccotangent relations. For simplicity in calculation we use 
common logarithms in (2), although it is clear that any other logarithms would 
given proportional values to the measure. 

Considerable typographical simplicity is achieved by writing 

arccot x = [x]. 

Thus Machin's formula becomes simply 

[1] = 4[5]- [239], 

and it has a measure of 1/log 5+1/log 239=1.8511. 
It is generally required that we deal only with angles whose cotangents are 

integers. This requirement is not imposed in the theorems that follow. 
One of the methods commonly employed to derive one arccotangent relation 

from another is to replace one arccotangent by the sum of two arccotangents 
of larger numbers. Our first theorem shows that in general this only makes mat- 
ters worse since this device produces a relation with a still higher measure. 
More precisely the theorem is: 

THEOREM 1. Let x, y, z be any positive real numbers such that 

(3) [X] = [y] + [z], 
then 

(4) (y-x)(z-x) =X2 + 1, 

and 

1 1 1 
(5) + ,< - if x > 2.88200803. 

log x log y log z 

Proof. The relation (4) is well known* and is only another way of expressing 
the fact that if we take the cotangent of both members of (3) we obtain 

x = (yz-l)/(y + z) 

To prove (5) we need the following lemma: 

LEMMA. If a, b, and t are positive, then 

(6) log(1 +-,) log (1 + ) <- 

where the logarithms are natural. 

Proof. If the left member of (6) is denoted by c we have on taking expo- 
nentials 

* This formula has been attributed to Lewis Carroll. 
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1938] ON ARCCOTANGENT RELATIONS FOR 7r 659 

b \lot (1+ fa) 

(7) = 1 +-) 

Noting that 

t t2 
e /a=l+~+ -+~ > 1+- 

a 2a2 a 
so that 

log (1 + t/a) < t/a, 

and replacing t by bu, (7) becomes 
/ b \t/a I \u bla 

e0 < I+ +1 = +_) b 

Now it is well known that the quantity in the { }i's is less than e for all positive u. 
Hence e0 < ebla or 4 < b/a, which proves the lemma. 

Returning now to the proof of (5) we set y-x-= so that t>0, and we have 
by (4) 

y = x + t, log y = log x + log (1 +1), 

z log z = log + ( log 1 + +x) 

Using the identity 

(8) 1 + 1 1 p2-qr 

p + q p + r p p(p + q)(P + r) 
with 

p = log x, q = log (1 +_), r = log (1 + x ) 

we find 

+1log2 X log ( + log ( + ( + ) 
+ . , 

log y log z log x log x log y log z 

where the denoninator on the right is positive. Hence it suffices to show that 
the numerator is positive in case x >2.88200803. Applying the lemma with 

a = x, b = x + x-l, 

we find at once that the numerator in question is greater than 

log2 x- = log2 x-(1 + x-2). 
x 
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660 ON ARCCOTANGENT RELATIONS FOR 7r [December, 

This function, which is obviously an increasing function of the positive variable 
x, has its real root at 

x = 2.882008028. 

This proves the theorem, at least for natural logarithms. But it is seen at once 
that if (5) holds for any system of logarithms, it holds for all others. 

While condemning in general the substitution of the sum of two* arccotan- 
gents for a single arccotangent, we should, nevertheless, point out that in some 
special cases it is very desirable. In fact if one of the new arccotangents say [y] 
appears elsewhere in the relation, then the measure is decreased by the positive 
amount 

1 1 
log x log z 

by this elimination of [x]. For example, in general, it would increase the measure 
of a relation containing [70] by .3796 if this arccotangent were replaced by 
[99 ] + [239 ]. However relation (33) contains both [70 ] and [99 ] and therefore 
when we eliminate [70 ] to obtain (34) there is a consequent decrease in measure. 
Another device commonly employed is to eliminate a term [x] of an arccotan- 
gent relation by means of the identity 

(9) [x] = 2[2x] - [4x3 + 3x]. 

This scheme is of limited use only, as the following theorem shows: 

THEOREM 2. The measure of the left member of (9) is less than that of the right 
member if and only if x > 6.6760135. 

In fact 

1 1 1 1 1 1 

log 2x log (4X3+ 3x) log x log x + log 2 log x + log (4x2 + 3) log x 

In view of (8) this will be of the same sign as 

log2 x - log 2 log (4x2 + 3), 

a function whose only positive zero is at x=6.6760135. 
Again, a relation may contain both [x] and [2x ], as for instance (28), then 

the use of (9) for x >6.676 is justified, and we get (29) with a substantial reduc- 
tion in measure. A generalization of (9) is 

(10) [x] = 2 [(2x + h] - [(4x3 + 4x2h + 3x + h2x + 2h)/(1 - 2xh -h)], 

which is sometimes useful, as for instance in 

(11) [x] = 2[2x + 1/(2x)] + [16x5 + 20X3 + 5x], 

* It is of course even worse to replace an arcotangent by the sum of three or more arccotan- 
gents. 
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1938] ON ARCCOTANGENT RELATIONS FOR 7r 661 

but their use is again limited, depending on h. Further useful formulas are 

(12) [x] = 3[3x] - [(27x4 + 18x2 - 1)/8x], 

(13) [x] = 4[4x] - [(256x5 + 160x3 - 15x)/(80x2 - 1)]. 

These may be used to reduce the measure of a relation when x does not exceed 
14.797 and 91.464 respectively. In general one may easily prove that as n - oo 

n[nx] - [x] -,. [3x2]. 

Hence we have the theorem which follows: 

THEOREM 3. Replacing [x] by introducing the appropriate formula involving 
n [nx], where n is large, will only serve to increase the measure in case x>n2+11 

wheree= =\1 +log 3/logn-1 --> 0. 

Formulas (10)-(13) bring up the subject of arccotangents of rational num- 
bers. At first thought their use would appear undesirable. However some ra- 
tional numbers like 433.1 which appears in (31) are really no more difficult to 
handle than integers. Secondly, the arccotangent of a rational number may be 
expanded in many ways as a finite sum of arccotangents of integers. Moreover, 
it is possible by a certain algorithm* to obtain expansions whose measure is less 
than twice that of the original arccotangent. Thus in Euler's relation 

[1] = 5[7] + 2[79/3] 

the last term has a measure of .70407. But we may observe that 

[79/3] = [26] - [2057], 

where the measure of the right member is 1.0085. Finally, if the calculation of 
the terms of the Gregory series is done on a computing machine in the most 
efficient manner, there is hardly any difference between the calculation of the 
arccotangents of integers and of rationals. In the past, the terms 

1 
(2n + 1)x2n+l 

of the Gregory series have been calculated by first computing a table of odd 
powers of 1 /x, formed by successive divisions by X2, and then dividing by 2n + 1. 
This double calculation can be replaced by a single one by use of the recursion 
formula 

- (2n + 1)un(x) 

(2n + 3) x2 

In case x =p/q, this becomes simply 

Un+I(p/q) = q2(2n + 1)u,n(p/q) 
p2(2n + 3) 

* Duke Mathematical Journal, vol. 4, 1938, pp. 323-340. 
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662 ON ARCCOTANGENT RELATIONS FOR w [December, 

In either case the value of un+1 is obtained directly by the machine from the 
previous un. 

In many of the relations given below there occurs [10]. This term, whose 
measure is I is, of course, much easier to calculate than another arccotangent 
of nearly the same size. For this reason we have modified the definition of meas- 
ure so as to assign to [10] the measure 1/2. Furthermore, some relations include 
besides [10] the arccotangents of other powers of 10. In this case, since the addi- 
tional arccotangents can be computed by merely recopying the significant fig- 
ures in the terms of the series for [10], we have assigned to these arccotangents 
the measure* 0. Other modifications of the definition of measure might be given. 
For example. Rutherford considered it easier to compute [70]- [99] rather than 
[239], in spite of the fact that their measures are 1.0431 and .4205 respectively, 
because of the ease with which the odd powers of 1/70 and 1/99 can be obtained 
by hand. However, these considerations must be ruled out if a machine is used. 

In the following list the relations are arranged according to the size of the 
smallest cotangent. With each series is given its measure (modified if necessary). 

(14) [1] =[2] + [3], (5.4178) (Hutton, Euler) 
(15) [1] =[2] + [5] + [8], (5.8599) (Daze) 
(16) [1]=2[3]+[7], (3.2792) (Clausen) 
(17) [1]= 3 [4] + [19.8], (2.4322) 
(18) [1]= 4 [5] -[239], (1.8511) (Machin) 
(19) [1] =4 [5]- [70] + [991, (2.4737) (Euler, Rutherford) 
(20) [1]= 5 [6] -[31.4375] -[117], (2.4364) 
(21) [1] =5 [7]+2 [79/3], (1.8873) (Hutton, Euler) 
(22) [1]= 6 [8] + [19.8] - 3 [268], (2.2904) 
(23) [1] = 8 [10] - [239] - 4 [515], (1.2892) (Klingenstierna) 
(24) [1]=8[10]+3[18]+2[100]+2[307]-3[515]+2[9901], (2.3177) 
(25) [1] = 8 [10] - 2 [452761/2543] - [1393], (1.2624) 
(26) [1]=8[10]- [100] - [515] - [371498882/3583], (1.0681) 
(27) [1] = 8 [10]- [100] - 2 [1000] +5 [100000] - [719160] - * * I ( <.8414) 
(28) [1] = 7 [10]+2 [50] +4 [100]+ [682] +4 [1000] +3 [1303] -4 [90109], 

(1.9644) (Wrench) 
(29) [1]=7[10]+8[o100]+[682]+4[1000]+3[1303]-4[90109]-2[500150], 

(1.5513) (Wrench) 
(30) [1]= 8 [10.1]- [239] +4 [52525], (1.6280) 
(31) [1] =12 [15] -[239] - 4 [433.1], (1.6500) 
(32) [1]=12[18]+8[57]-5[239], (1.7866) (Gauss) 
(33) [1]=12[18]+3[70]+5[99]+8[307], (2.2418) (Bennett) 
(34) [1]=12[18]+8[99]+3[239]+8[307], (2.1203) 
(35) [1] = 16 [20.05] - [239] - 4 [515] +8 [1620050], (1.7182) 
(36) [1] =22[26]-2[2057]-5[3240647/38479], (1.5279) 

* In the same way if a relation contained both [x] and [x * 10k] the measure of the latter should 
be taken as zero. 
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(37) [1] =22[28]+2[443]-5[1393]-10[11018], (1.6343) (Escott) 
(38) [1]=12[38]+20[57]+7[239]+24[268], (2.0348) (Gauss) 
(39) [1]=44[57]+7[239]-12[682]+24[12943], (1.5860) (Wrench) 
(40) [1]=78[100]-2[682]+3[5396/3]+10[345737/243]-17[62575] 

-34[500150], (1.6112) 
(41) [1]=160[200]-[239]-4[515]-8[4030]-16[50105]-16[62575] 

-32[500150]-80[4000300], (2.2494) (Bennett) 
(42) [1] =3[239]+236[307]-12[19703]+240[93943]+8[10099/3] 

-24[36101879/272]-80[2922754103/816], (1.8878) 
(43) [1] =2805[5257]-398[9466]+1950[12943]+1850[34208]+2021 [44179] 

+2097 [85353]+1484 [114669]+1389 [330182] +808 [485298], 
(1.9568) (Gauss) 

(44) [1] =7854 [10000]- [545261]- ,(<.5986) 

A few remarks may be made about the above list. In the first place it is noted 
that the relations with many terms have large measures in spite of the fact that 
they involve arccotangents of large numbers. The most striking example of this 
is Gauss's remarkable (43), where a desperate effort has been made to eliminate 
arccotangents of small numbers. It would be rash to conclude from this that to 
discover relations of minimum measure, one should restrict the number of terms 
in the relation. In fact (44) is given merely to show that there exist relations 
whose measure are smaller than any preassigned positive number, but which 
contain a great many terms. It is clear that the sequence represented by the 
three dots of (44) is the arccotangent of a rational number, and it may be proved 
that this arccotangent has an expansion in a finite series of arccotangents of 
integers, whose total measure is less than that of [545261]. By replacing 10000 
by a sufficiently larger number, the total measure of the relation thus obtained 
may be made as small as one pleases. As to the relation (27), if only 10 more 
terms were written down the resulting expression would differ from wX/4 by less 
than 10-12000. Nevertheless, (27) contains only a finite number of terms, in fact 
at most 108. Of course neither (27) nor (41) are of any practical use since they 
involve arccotangents of very large numbers indeed. 

Wrench gives the following relation for 3 [1] = 37r/4, 

3 [1] = 56 [23] - [182]- 25 [500] - 20 [924] + 5 [99557] + 10 [298307], (2.2673), 

and raises the question of the existence of primitive relations for k7r/4 where 
k > 3. It is easy to see that they may be obtained in unlimited numbers. In fact 
if the reader will select, for example, any 7 relations given above and add them 
together, he is almost certain to obtain a primitive relation for 77r/4, that is one 
in which not all the coefficients of the arccotangents are divisible by 7. 

Since the cotangent of k7r/n is an algebraic number, it is possible to give 
finite expressions for k7r/n in terms of arccotangents of algebraic integers. The 
following is an example of such a relation 
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664 EXTENSIONS OF ALGEBRAIC SYSTEMS TO FORM FIELDS [December, 

- = 17[38] + 6[273] + 18 [323.25] + [853] - 4[2072] - 2[14633] - [19703] 
6 

+ [12545V/3 + 21728], (2.7732). 

The successive terms in the Gregory series for this last arccotangent can be com- 
puted in the form Ak + V3Bk in which the A's and the B's satisfy second order 
linear recurrence formulas with integer coefficients. 

The practical-minded reader will naturally ask which of the 33 relations 
given above is the best to use for actually computing w to a very great number 
of decimals. This question is a hard one to answer; moreover, it is not exactly 
the question which interests the- practical computer. The question should be: 
What pair of independent relations should we use to make two independent 
calculations of wr to a very great number of places? This question is answered in 
the writer's opinion by (23) and (32). To be sure, both of these involve [239] 
but with different coefficients. That is to say, after one has computed the five 
arccotangents, [x], for x = 10, 18, 57, 239, and 515, one has this equation of con- 
dition: 

2[10] + [239] = 3[18] + 2[57] + [515] 

as a final check on the whole work. 

EXTENSIONS OF ALGEBRAIC SYSTEMS TO FORM FIELDS* 

L. M. GRAVES, University of Chicago 

The process of constructing the rational number system out of the natural 
numbers has been discussed by many authors. Some of these writers make the 
process seem unnecessarily complicated. The kernel of the construction consists 
of two applications of the process of extending a commutative semi-group to 
form a group. In order to see this clearly it is desirable to consider the process 
entirely abstractly, that is, on the basis of suitable postulates. 

We shall let G denote a class of elements denoted by a, b, * * * , which con- 
tains at least two elements. We consider also a binary operation o "on GG to 
G," that is, o makes correspond to each pair a, b of elements of G an element 
a o b of G. Among the postulates to be considered are the following: 

POSTULATE 1. The commutative law: a o b = b o a. 

POSTULATE 2. The associative law: (a o b) o c =a o (b o c). 

POSTULATE 3. If a o b =a o c then b =c. 

* Presented for the Slaught Memorial Volume. The author desires to acknowledge suggestions 
obtained from notes taken by R. W. Barnard in a course of lectures of E. H. Moore entitled 
"Fundamental number systems of analysis, " given at the University of Chicago in the summer of 
1922. 
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