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Abstract

In the paper [Blo10], Block constructed a dg-category PA0,•(X)

using cohesive modules which is a dg-enhancement of Db
Coh(X), the

bounded derived category of complexes of analytic sheaves with coher-
ent cohomology. In this article, we construct natural superconnections
on cohesive modules and use them to define characteristic classes with
values in Bott-Chern cohomology. In addition, we generalize the dou-
ble transgression formulas in [BGS88a] [BC65] [Don87] and prove the
invariance of these characteristic classes under derived equivalences.
This provides an extension of Bott-Chern characteristic classes to co-
herent sheaves on complex manifolds.
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1 Introduction

Traditionally, the complex structure of a complex manifold X is encoded in
the sheaf of holomorphic functions OX . For applications to noncommutative
geometry, such local constructions are not available and we are forced to use
global differential geometric constructions. When the manifold is projective,
every coherent sheaf S admits a global resolution by holomorphic vector
bundles

0→ En → En−1 → ...→ E1 → E0 → S → 0

and we can apply the theory of holomorphic vector bundles to study S .
However, for a general compact complex manifold that is not projective,
there may not exist a global resolution by holomorphic vector bundles and
alternative methods are required.

Even though the sheaf of holomorphic sections of S does not admit global
resolution by holomorphic vector bundles, the underlying sheaf of real ana-
lytic sections does admit a global resolution by real analytic vector bundles,
see [AF61]. In [Blo10][Blo06], Block constructed higher order differentials
on such resolutions and the resulting geometric objects are called cohesive
modules. He further showed that they form a dg-category PA0,•(X) whose
homotopy category is equivalent to Db

Coh(X). Using the theory of supercon-
nections defined in [Qui85], it’s natural to extend the classical constructions
for holomorphic bundles to cohesive modules. The organization of the paper
is as follows.

In section 2, we review the theory of cohesive modules and then construct
the analog of Chern connections on a Hermitian cohesive module in the
following sense.

Theorem 1.1. Given a cohesive module (E•,E′′) with a Hermitian structure
hE, there exist an unique ∂X-superconnection E′′ of total degree −1 such that
the superconnection E = E′′ + E′ is unitary. That is, E satisfies:

(−1)|s|dXhE(s, t) = −hE(Es, t) + hE(s,Et) (1.1)
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for all s, t ∈ A•(X,E•).

We then study the basic properties of the curvature RE of the Chern
superconnection E. Though it is no longer a (1, 1) form on X, if we define
a new grading on Ap,q(X,Endd(E•)) by −p+ q + d, then the curvature R is
of exotic degree zero. Applying the Chern-Weil theory for superconnections,
we obtain characteristic forms with values in Bott-Chern cohomology, which
is a refinement of deRham cohomology. We prove the deRham cohomol-
ogy classes of a cohesive module only depends on the Z2-graded topological
bundle structure by transgressing the characteristic forms defined by Chern
superconnection to forms defined by the connection component.

In section 3, we prove the characteristic classes in Bott-Chern cohomology
are independent of the Hermitian metric by establishing several transgression
formulas. These formulas were first obtained by Bott and Chern in [BC65].
To generalize them to cohesive modules, we study the universal cohesive
module Ẽ on the space of Hermitian metrics M on E.

Theorem 1.2 (Bott-Chern transgression formula.). For any convergent power
series f(T ), the M-directional derivative of the Bott-Chern characteristic
form Trsf(Rh) is given by:

dMTrsf(Rh) = ∂X ∂̄XTrs(f
′(Rh) · θ) (1.2)

where θ is the Maruer Cartan form on M defined by θ = h−1 · dMh.

The forms Trs(f
′(Rh) · θ) appeared in the above double transgression

formula is the holomorphic analog of Chern-Simons forms. In [Don87], Don-
aldson studied these secondary characteristic forms their relation to stability.
Following Donaldson, the technical computations in section 3 will establish
the following formula which generalizes Donaldson’s result.

Theorem 1.3 (Donaldson transgression formula for secondary class). If g(T )
is a convergent power series in T , the M-directional derivative of the sec-
ondary forms Trs(g(Rh) · θ) is given by

dMTrs(g(Rh) · θ) =
1

2
∂̄XTrs(g(Rh; [E′h, θ]) · θ)−

1

2
∂XTrs(g(Rh; [E′′, θ]) · θ)

(1.3)

In the last section, we prove the invariance of characteristic classes under
homotopy equivalences between cohesive modules. By a criteria proved by
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Block in [Blo10], two cohesive modules E,F are homotopy equivalent if and
only if there is a degree zero closed morphism φ ∈ P0

A0,•(X)(E,F ) that induces

a quasi-isomorphism between (E•,E′′0) and (F •,F′′0). Using this result, we
prove the invariance in two steps. First, we show that characteristic classes
of an acyclic cohesive module are trivial.

Proposition 1.4. Assume (E•,E′′) is a cohesive module such that (E•,E′′0) is
an acyclic complex. Let E′′t =

∑
k t

(1−k)/2E′′k be the rescaled cohesive structure
with parameter t ∈ R+ with associated curvature Rt and NE be the grading
operator on E. Then the integral

IE =

∫ ∞
1

Trs{exp(−Rt) ·NE
dt

t
} (1.4)

is finite and we have

ch(E) = Trs exp(−R) = ∂X ∂̄XIE (1.5)

Then we show that the characteristic classes are additive with respect to
short exact sequences of mapping cone.

Proposition 1.5. If 0→ E
φ−→ F → Cone(φ) is the mapping cone sequence

for a morphism φ ∈ PA0,•(X)(E,F ), then the Bott-Chern cohomology classes
are additive in the sense that the equality

f(E•,E′′)− f(F •,F′′) + f(Cone•(φ),Cφ) = 0 (1.6)

holds in Bott-Chern cohomology.

As a corollary, the characteristic classes defined for cohesive modules
descend to Db

Coh(X) and extend Bott-Chern cohomology to coherent sheaves.

2 Cohesive Modules and Chern superconnec-

tions

2.1 Dg-category of cohesive modules

Let X be a complex compact manifold, and let (A0,•(X), ∂̄X) be its Dolbeault
differential graded algebra (dga). PA0,•(X) is the dg-category of cohesive
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modules over (A0,•(X), ∂̄X). We recall the definition of this dg-category
from [Blo10] below. Through this article, we work with double or triple Z-
graded objects and we write |•| for the total degree. The commutators and
traces are taken in the sense of superspaces.

Definition 2.1. A cohesive module E = (E•,E′′) on X consists of two data:

1. A finite dimensional Z-graded complex vector bundle E•.

2. A flat Z-graded ∂̄X-superconnection E′′ on E•. That is a C-linear map
E′′ : A0,•(X,E•) → A0,•(X,E•) of total degree 1 which satisfies both
the ∂̄X-Leibniz formula:

E′′(e⊗ ω) = (E′′e) ∧ ω + (−1)|e|e⊗ ∂̄Xω,∀ω ∈ A0,•(X), e ∈ A0(X,E•)
(2.1)

and the flatness equation:

E′′ ◦ E′′ = 0 (2.2)

Remark 2.2. In equation (2.1), we view the space of smooth sections of E•

as a right module over A0(X). If we consider it as a left module by the
isomorphism I(e ⊗ ω) = (−1)|e||ω|ω ⊗ e, the induced superconnection I(E′′)
satisfies the usual Leibniz formula:

I(E′′)(ω ⊗ e) = ∂̄Xω ⊗ e+ (−1)|ω|ω ∧ I(E′′)e (2.3)

We continue to work with the right module convention as in [Blo10] so that
the shift operation on the dg-category is simply taking (E•,E) to (E•+1,−E).

Definition 2.3. The objects in the dg-category PA0,•(X) are cohesive mod-
ules defined above. The degree k morphisms PkA0,•(X)(E,F ) between two

cohesive modules E = (E•,E′′), F = (F •,F′′) are A0,•(X)-linear maps
φ : A0,•(X,E•) → A0,•(X,F •) of total degree k. The differential d :
PkA0,•(X)(E,F )→ Pk+1

A0,•(X)(E,F ) is defined by the commutator:

d(φ) = F′′ ◦ φ− (−1)kφ ◦ E′′ (2.4)

It’s simple to verify d2 = 0 and therefore PA0,•(X) is a dg-category.
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Example 2.4. If (E•, δ) is a complex of holomorphic vector bundles on X, it
defines a cohesive module with cohesive structure defined by setting E′′0 = δ,
E′′1 = (−1)•∂̄E

•
and E′′k = 0 for k > 1. The flatness condition is equivalent to

the following set of equations:

δ ◦ δ = 0 (δ defines a complex of vector bundles) (2.5)

δ ◦ ∂̄E• = ∂̄E
•+1 ◦ δ (δ are holomoprhic homomorphisms) (2.6)

∂̄E
• ◦ ∂̄E• = 0 (∂̄E

•
defines a holomorphic structure on E•) (2.7)

Remark 2.5. More generally, Block proved that the homotopy category of
PA0,•(X) is equivalent to Db

Coh(X) in [Blo10]. That is, any complex of sheaves
of OX-modules with coherent cohomology is represented by a cohesive mod-
ule. In particular, any coherent sheaf is represented by (E•,E′′) such that
the underlying complex (E•,E′′0) is exact except at the end.

Definition 2.6. A Hermitian form h on a cohesive module E is a Hermitian
form on the Z-graded bundle E• such that the Ek is orthogonal to El if k 6= l.
We denote by (E,E′′, h) a Hermitian cohesive module.

We define a conjugate linear involution on differential forms that is differ-
ent from complex conjugation. It is motivated by the involution on Clifford
algebras.

Definition 2.7. For ω ∈ Ak(X) a complex differential form in degree k, we
define

ω∗ = (−1)
(k+1)k

2 ω (2.8)

Lemma 2.8. The ∗-operation is the unique operation on A•(X) such that
f ∗ = f̄ if f is a smooth function, ω∗ = −ω if ω is one form and in general,

(ω ∧ η)∗ = η∗ ∧ ω∗,∀ω, η ∈ A•(X) (2.9)

Definition 2.9. We extend the ∗-operation to A•(X,End•E) by

(L⊗ ω)∗ = (−1)|L||ω|L∗ ⊗ ω∗ (2.10)

for all L ∈ A0(X,End•E) and ω ∈ A•(X).

Lemma 2.10. The operator ∗ extends to a conjugate linear involution on
the algebra A•(X,End•E).
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Definition 2.11. If h is a Hermitian structure on the cohesive module E•,
then we extend h to A•(X,E•) by the formula:

h(e⊗ ω, f ⊗ η) = ω∗ ∧ h(e, f) ∧ η (2.11)

where e, f ∈ A0(X,E•) and ω, η ∈ A•(X).

The following result shows that ∗ defines the adjoint operation with re-
spect to h.

Lemma 2.12. If A ∈ A0,•(X,End•E), then A∗ ∈ A•,0(X,End−•E) and for
any s, t ∈ A•(X,E•), we have

h(As, t) = h(s, A∗t) (2.12)

Proof. Assume A = L⊗τ, s = e⊗ω, t = f⊗η and |e|+|L| = |f | for otherwise
both side of the equation are zero.

h(As, t) =h(L⊗ τ(e⊗ ω), f ⊗ η) = (−1)|τ ||e|h(Le⊗ τ ∧ ω, fη)

=(−1)|τ ||e|(τ ∧ ω)∗h(Le, f)η = (−1)|τ ||e|ω∗ ∧ τ ∗h(e, L∗f)η

=(−1)|τ ||e|ω∗h(e, L∗f)τ ∗ ∧ η = (−1)|τ |(|e|+|f |)ω∗h(e, L∗ ⊗ τ ∗(f ⊗ η))

By assumption |e|+ |L| = |f |, we have |τ | (|e|+ |f |) = |τ | |L| mod 2. Finally,
since A∗ = (−1)|L||τ |L∗ ⊗ τ ∗, we have

h(As, t) = (−1)2|L||τ |h(s, A∗t) = h(s, A∗t) (2.13)

2.2 Chern superconnection of a Hermitian cohesive
module

The holomorphic Chern connection ∇E for a holomorphic Hermitian vector
bundle E is the unique unitary connection on E with ∂̄X-component given by
the Dolbeault differential ∂̄E. We generalize this construction in this section
to Hermitian cohesive modules.

Lemma 2.13. For a complex Hermitian vector bundle (E, h) with an ∂̄X-
connection ∇′′ which is not necessarily flat, there exist an unique ∂X-connection
∇′ such that ∇ = ∇′ + ∇′′ is unitary with respect to h. That is, for any
e, f ∈ A•(X,E), ∇ satisfies:

dXh(e, f) = −h(∇e, f) + h(e,∇f) (2.14)
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Proof. The problem is local, so it suffices to construct ∇ and prove its
uniqueness locally. Choose a local frame s = (s1, s2, ...sn) on E, let Θ ∈
A0,1(X,EndE) be the connection (0, 1)-form such that ∇′′s = s ⊗ Θ. With
respect to the frame s, the Hermitian metric h is represented by the Her-
mitian matrix valued function H = h(s, s). Since any (1, 0)-connection ∇′
is locally represented by its connection (1, 0)-form Ω ∈ A1,0(X,EndE) such
that ∇′s = s⊗ Ω, if we set ∇ = ∇′ +∇′′, the condition for ∇ being unitary
is:

dXH = −(Θ + Ω)∗H +H(Θ + Ω) (2.15)

Comparing the (1, 0) and (0, 1) component of equation (2.15) above, then
(2.14) is equivalent to

∂XH = −Θ∗H +HΩ (2.16)

∂̄XH = −Ω∗H +HΘ (2.17)

Using (2.16), we can solve for Ω as

Ω = H−1∂XH +H−1Θ∗H (2.18)

which shows the uniqueness of∇′. But we can also use (2.18) as the definition
of Ω. It remains to verify that with Ω so defined, equation (2.17) is satisfied.
Since H is a Hermitian matrix, H∗ = H, we can now compute Ω∗ as

Ω∗ =(∂XH)∗(H−1)∗ +H∗Θ∗∗(H−1)∗

=− ∂̄XH∗(H∗)−1 +H∗Θ(H∗)−1

=− ∂̄XHH−1 +HΘH−1 (2.19)

Multiplying H on the right, we get (2.17).

Remark 2.14. The above equation (2.14) differs by a minus sign from the
ordinary equation for unitary connections:

dXh(e, f) = h(∇e, f) + h(e,∇f) (2.20)

This is caused by our extension of h to A•(X,E•). In the ordinary case, if
s⊗ Ω is a one form with values in E, then h(s⊗ Ω, t) = Ωh(s, t). However,
by our definition, h(s⊗ Ω, t) = Ω∗h(s, t) = −Ωh(s, t).
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Definition 2.15. We define an exotic grading on the spaces A•(X,End•E)
and A•(X,E•). For an element A = L⊗ τ , where L ∈ Endd(E•) or L ∈ Ed,
and τ ∈ Ap,q(X), define its exotic degree by deg(A) = −p + q + d. A•(X)
inherit an exotic grading as well given by deg(τ) = −p + q. We denote by
Gk the subspaces of exotic degree k. In particular, the subspace G0 in A•(X)
consists of forms with bi-degree (p, p).

Lemma 2.16. With respect to the exotic grading deg, A•(X) is a Z-graded
algebra; A•(X,End•E) is a Z-graded algebra and Z-graded module over A•(X);
A•(X,E•) is both a Z-graded module over A•(X) where the action is ex-
terior product, and a Z-graded module over A•(X,End•E) where the ac-
tion is evaluation. In addition, the ∗-operator defined before on A•(X) and
A•(X,End•E) maps G• to G−•.

Proof. It’s simple to verify that the subspaces G• respects all these structures
in the sense

Gi · Gj ⊆ Gi+j (2.21)

whenever the composition is defined by the algebra multiplication or module
action.

Proposition 2.17 (Chern superconnection). Let E = (E•,E′′, h) be a Her-
mitian cohesive module. There exist an unique ∂X-superconnection E′ :
A0(X,E•) → A•,0(X,E•) of exotic degree −1 such that the superconnection
E = E′ + E′′ is unitary. That is for any s, t ∈ A•(X,E•), we have

(−1)|s|dXh(s, t) = −h(Es, t) + h(s,Et) (2.22)

Proof. There is a decomposition of E′′ = E′′1 +
∑

k 6=1 E′′k into an ordinary

∂̄X-connection E′′1 on E• and linear terms E′′k ∈ A0,k(X,End1−kE).
By lemma 2.13, there is an unique ∂X-connection E′1 on E• such that

∇E• = E′′1 + E′1 is unitary on the graded Hermitian complex vector bundle
E•. If we set E′k = (E′′k)∗ for k 6= 1, by lemma 2.12, Ek = E′′k + E′k is
unitary. Adding ∇E• and Ek, the resulting dX-superconnection E is unitary.
Uniqueness is obvious from the construction and equation (2.22).

Remark 2.18. We can always write a homogeneous term A = L⊗ τ in such
a way that τ is a real form of degree k. Since A is odd, A∗ is just L∗ ⊗ τ ∗
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and therefore A = A∗ is equivalent to L = (−1)
k(k+1)

2 L∗. In other words, L
satisfies the following conditions:{

L is Hermitian k = 0, 3 (mod 4)

L is skew Hermitian k = 1, 2 (mod 4)

In particular, this is compatible with the well known fact that an unitary
connection has skew Hermitian connection matrix.

2.3 Chern-Weil construction of characteristic forms

Definition 2.19. Let E be the superconnection for a Hermitian cohesive
module (E•,E′′, h) given by Proposition 2.17. We call it the Chern super-
connection. The curvature of E is defined by the usual formula

R = E2 =
1

2
[E,E] (2.23)

In the classical case of Hermitian holomorphic vector bundles, the cur-
vature of the Chern connection is a (1, 1)-form. In the case of Hermitian
cohesive modules, we have similar properties of Chern superconnections for
cohesive modules.

Lemma 2.20. If E is the Chern superconnection for a Hermitian cohesive
module (E•,E, h) and R is its curvature, then it satisfies the following prop-
erties:

R∗ = R (2.24)

E′ ◦ E′ = 0 (2.25)

R = [E′,E′′] (2.26)

Consequently, the curvature R is of exotic degree zero R ∈ G0.

Proof. By definition, the curvature is

R =E ◦ E = (E′ + E′′) ◦ (E′ + E′′)
=(E′)2 + [E′,E′′] + (E′′)2

=(E′)2 + [E′,E′′]

10



where the term (E′′)2 vanishes by our flatness assumption on E′′. Since the
exotic degree of E′ is−1 and that of [E′,E′′] is 0, (E′)2 ∈ G−2 and [E′,E′′] ∈ G0.
We use equation (2.22) repeatedly to get:

0 =(dX)2h(s, t) = (−1)|s|+1dXh(Es, t) + (−1)|s|dXh(s,Et)
=− h(Rs, t) + h(Es,Et)− h(Es,Et) + h(s,Rt)
=− h(Rs, t) + h(s,Rt)

Since R is linear, by Lemma 2.12, the curvature R is self adjoint R = R∗.
Since ∗ maps G−2 to G2, we see (E′)2 = 0. The last equality follows from
this.

Lemma 2.21 (Bianchi Identity). [E,R] = 0

Proof. By definition, R = 1
2
[E,E]. Using either the graded Jacobi identity

or simply by expanding the expression, we have

[E,R] = [E,E2] = E · E2 − E2 · E = 0

Definition 2.22. Assume (E, h) is a Hermitian cohesive module with Chern
superconnection Eh and curvatureRh. Let f(T ) be a convergent power series
in T , we define the characteristic form of (E, h) associated to f(T ) by

f(E•,E′′, h) = Trsf(Rh) (2.27)

where Trs is the supertrace in the sense of Quillen.

Remark 2.23. The power series is required to be convergent since R is no
longer concentrated in degree (1, 1).

Proposition 2.24. The characteristic forms are closed

dXf(E•,E′′, h) = 0 (2.28)

Proof. Without loss of generality, we assume f(T ) = T n is a monomial. Then
we have

dXTrs(Rn
h) =

∑
i

Trs(Ri−1
h [Eh,Rh]Rn−i

h ) (2.29)

Since each term in the summation is zero by Bianchi identity, Trs(Rn
h) is

closed.
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Consequently, the characteristic forms defines deRham cohomology classes.
We will show that these cohomology classes only dependent on the connec-
tion component ∇E = E1 in Eh. Let Et = (1− t)∇E + tE be a one parameter
family of superconnections that joins ∇E to E where ∇E = E1 is the connec-
tion term of E. If we write A = E−E1 =

∑
k 6=1 Ek for the linear terms, then

Et = ∇E + tA. Let Rt be the corresponding curvatures for Et.

Lemma 2.25. The deformation of curvature is computed by

d

dt
Rt = [Et, A] (2.30)

Proof. Since Et = ∇E + tA, we have Rt = R0 + t[∇E, A] + t2A2. We can
then compute

d

dt
Rt = [∇E, A] + 2tA2 (2.31)

since 2tA2 = t[A,A] = [tA,A], the right side of the above equality is [Et, A].

Corollary 2.26. If we define f(E,Et) by the same formula f(Rt), we have

f(E,E)− f(E,∇E) = dX
∫ 1

0

Trs{A · f ′(Rt)}dt (2.32)

Consequently, f(E,E) is cohomologous to f(E,∇E) in deRham cohomology.

It is well-known that f(E,∇E) only depends on the topological vector
bundle structure of E as a Z2-graded vector bundle, so the characteristic
class in deRham cohomology defined by f(E•, h,E′′) is independent of h.

Definition 2.27. Let Ap,p(X) be the space of forms of bi-degree (p, p) and
Zp(X) be the subspace of dX-closed forms. We set Bp(X) the subspace of
Zp(X) that is the image of Ap−1,p−1(X) under ∂X ∂̄X , then the p-th Bott-
Chern cohomology Hp

BC(X) is defined by:

Hp
BC(X) =

Zp(X)

Bp(X)

By Lemma 2.20, f(E, h) ∈ G0 and hence the forms defines Bott-Chern
cohomology classes. We will prove in the next section that these refined
cohomology classes are independent of the Hermitian structure h. In the last
section, we will show they are further invariant under homotopy equivalences
between cohesive modules.
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3 Transgression formulas for characteristic forms

3.1 Universal cohesive module and Maurer-Cartan equa-
tion

We fix a cohesive module E = (E•,E′′) on X and let M be the space of
Hermitian structures on E•. We endow it with the topology of uniform C∞-
convergence on compact subsets of X. If h ∈M, x ∈ X, let Ahx be the subset
of End0Ex whose elements are Hermitian endomorphisms with respect to hx.
Ahx forms a bundle Ah over X, and the tangent space of M at h, ThM, can
be identified with the linear space of sections of Ah over X.

Definition 3.1. Consider the projection π : M× X → X, we define Ẽ•

as the pull-back bundle π∗E• over M× X. There is an universal cohesive
structure Ẽ′′ on Ẽ• defined by

Ẽ′′ = ∂̄M + E′′ (3.1)

Finally, we write h̃ for the universal Hermitian form on Ẽ•. We denote by Ẽ
the universal Hermitian cohesive module (Ẽ•, Ẽ′′, h̃).

Remark 3.2. The bundle Ẽ• is flat in the M-direction with flat connection
dM. In the above formula, ∂̄M acts on an element e⊗ ω by (−1)|e|e⊗ ∂̄Mω.

Lemma 3.3. Ẽ′′ defines a Z-graded flat ∂̄M×X-connection on Ẽ•.

Proof. Note that the vertical cohesive structure E′′ is constant along M-
direction, so dME′′ = 0, we have

(Ẽ′′)2 = (∂̄M + E′′)2 = (∂̄M)2 + ∂̄M(E′′) + (E′′)2 = 0 (3.2)

Definition 3.4. The Maurer-Cartan one form θ ∈ A1(M× X,End0Ẽ) on
M with values in A is the one form defined by

θ = h−1dMh (3.3)

where dM is the exterior differential on M.

Lemma 3.5. θ is a one form in the M-direction with values in Hermitian
endomorphisms, θ ∈ A1(M,End(E, h)).
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Proof. We choose a frame (e1, e2, ..., en) for E• locally on X. Any Hermitian
form h is represented by a smooth function with values in Hermitian matrix
by

H : x ∈ X → [hx(ei, ej)]ij (3.4)

If Ht(x) is a smooth family of Hermitian matrix valued functions with pa-
rameter t, we can differentiate Ht(X) with respect to t, then H−1

t Ḣt is a
Hermitian with respect to Ht.

Lemma 3.6. θ satisfies the Maurer-Cartan equation:

dMθ = −θ2 (3.5)

Proof. This is straightforward calculation:

dMθ =dM(h−1dMh) = dM(h−1)dMh+ h−1dM(dMh) (3.6)

=− h−1(dMh)h−1dMh = −θ2 (3.7)

Since Ẽ is flat along theM-direction, by the explicit expression of θ with
respect to a local frame on X, we see θ measures the deformation of h over
M in the following sense.

Lemma 3.7. The flatM-directional exterior derivative dM has the following
compatibility relation with the universal Hermitian form h̃

(−1)|s|dMh̃(s, t) = −h̃(dMs, t) + h̃(s, θt) + h̃(s, dMt) (3.8)

for all s, t ∈ A0(M×X, Ẽ).

The above lemma together with equation (2.22) for each h ∈ M shows

that Ẽ = dM + Eh differs from the Chern superconnection of (Ẽ•, h̃, Ẽ′′) by
the Maurer-Cartan form θ.

Proposition 3.8. The universal superconnection Ẽ satisfies the following
equation

(−1)|s|dM×X h̃(s, t) = −h̃(Ẽs, t) + h̃(s, Ẽt) + h̃(s, θt) (3.9)
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Even though the previous proposition shows Ẽ is not the Chern super-
connection, we will use Ẽ to study Ẽ•. Denote by R̃ the curvature of Ẽ, it is
given by

R̃ = (dM + Eh) ◦ (dM + Eh) = dMEh +Rh (3.10)

Proposition 3.9. The M-directional derivative of the Chern superconnec-
tion Eh is given by

dMEh = −[E′h, θ] (3.11)

and the M-directional derivative of curvature R̃ is given by

dMR̃ = dMRh (3.12)

Proof. Since Eh = E′h + E′′ and E′′ is independent of h, we have

dMEh = dME′h (3.13)

By the explicit construction of E′h from E′′ and h, we can write

E′h = h−1 ◦ E′′ ◦ h (3.14)

Taking exterior differential in M-variable, we have

dME′h = dMh−1 ◦ E′ ◦ h− h−1 ◦ E′ ◦ dMh
= −h−1 ◦ dMh ◦ h−1 ◦ E′ ◦ h− h−1 ◦ E′ ◦ h ◦ h−1 ◦ dMh
= −θ ◦ E′h − E′h ◦ θ = −[E′h, θ]

3.2 Bott-Chern double transgression formula

Recall the characteristic forms defined in the previous section f(E•,E′′, h) =
Trsf(Rh) for a convergent power series f(T ), the following transgression
formula computes the deformation of the characteristic forms over M.

Proposition 3.10 (First Transgression Formula).

dMTrsf(Rh) = −∂̄XTrs(f
′(Rh) · [E′h, θ]) (3.15)

∂XTrs(f
′(Rh) · [E′h, θ]) = 0 (3.16)
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Proof. On the universal Hermitian cohesive module Ẽ•, by proposition 2.24
and equation (3.10), we have

0 = dM×XTrsf(R̃) = dM×XTrsf(Rh + dMEh) (3.17)

Without loss of generality, we assume f(T ) = T n and we expand (3.17) by
the multilinear property of Trsf(T ) to get:

0 = dXTrsRn
h + dMTrsRn

h + dX
∑
i

Trs(Ri
h · dMEh · Rn−1−i

h )}+ ... (3.18)

The first term is zero by proposition 2.24 and the omitted terms are at least
degree 2 forms in M-variables. If we collects the forms of degree one in the
M-variables, we have

0 = dMTrs(Rn
h) + n · dXTrs(Rn−1

h · dMEh) (3.19)

where we commute Ri
h · dMEh and Rn−1−i

h under Trs. Using lemma 3.9,
dMEh = −[E′h, θ], we have the following equality:

dMTrsf(Rh) = dXTrs(f
′(Rh) · [E′h, θ]) (3.20)

Now we compare both sides of (3.20) and the consider the subspaces G•
defined by the exotic degree. On the left side of (3.20), we have a one form
on M with values in G0 since Rh ∈ G0. On the right side, Rh is in G0 while
[E′h, θ] is in G−1 since E′h is of exotic degree −1. Finally, since ∂X increases
the exotic degree by −1 while ∂̄X increases the exotic degree by 1, we get
equation (3.15) by comparing the G0 component and equation (3.16) by the
G−2 component.

Our next goal is to express Trs(f
′(Rh) · [E′h, θ]) in equation (3.16) as the

image of ∂X . To do this, we first introduce a notation.

Definition 3.11. If g(T ) = T n, for a pair (A;B) of variables, we define

g(A;B) =
n∑
i=1

Ai−1BAn−i (3.21)

In general for a convergent power series g(T ), we define g(A;B) by the pre-
vious formula for its homogeneous components and take the sum. A simple
norm estimates shows the convergence.

16



Proposition 3.12 (Second Transgression formula).

Trs(f
′(Rh) · [E′h, θ]) = ∂XTrs(f

′(Rh) · θ) (3.22)

Proof. For each Eh along the vertical fiber X, we have

dXTrs(f
′(Rh) · θ) = Trs([Eh, f ′(Rh) · θ]) (3.23)

By the graded Leibniz formula of Eh, we can expand the equation and com-
pute

dXTrs(f
′(Rh) · θ) = Trs([Eh, f ′(Rh)] · θ) + Trs(f

′(Rh) · [Eh, θ])
= Trs(f

′(Rh; [Eh,Rh]) · θ) + Trs(f
′(Rh) · [Eh, θ])

By Bianchi identity, the first term is zero, hence we have

dXTrs(f
′(Rh) · θ) = Trs(f

′(Rh) · [E′h, θ]) + Trs(f
′(Rh) · [E′′h, θ]) (3.24)

Note as before, [E′h, θ] ∈ G−1, [E′′h, θ] ∈ G1 and Trs(f
′(Rh)·θ) ∈ G0, comparing

the G−1 component we have (3.23).

Combining the first transgression formula (3.10) and second transgression
formula (3.22), we established the double transgression formula for charac-
teristic forms on cohesive modules.

Corollary 3.13 (Bott-Chern formula). The M-directional derivative of the
characteristic form f(E,E′′, h) at h is given by:

dMTrsf(Rh) = ∂X ∂̄XTrs(f
′(Rh) · θ) (3.25)

This generalizes the classical formula obtained by Bott and Chern in
[BC65] for holomorphic vector bundles. If we view the previous equality in
Bott-Chern cohomology, the right hand side is zero and we established the
invariance of characteristic classes under metric deformation.

Corollary 3.14. The characteristic forms f(E,E′′, h) in the Bott-Chern co-
homology are independent of the choice of Hermitian metric h.

In the last section, we will show the characteristic classes only dependent
on the homotopy class of the cohesive module.
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3.3 Transgression formula for secondary classes

Our next goal is to study the differential forms Trs(f
′(Rh) · θ) that appear

in the double transgression formula. As we will prove later, they are the
secondary characteristic classes and define holomorphic analog of the Chern-
Simons forms. We will use them to study infinite determinant bundle and
stability in a separate paper. For their applications in holomorphic vector
bundles, see [BGS88a][BGS88b][BGS88c].

Lemma 3.15. The curvature tensors Rh hasM-directional derivative given
by:

dM(Rh) = [Eh, [E′h, θ]] (3.26)

Proof. By Bianchi identity for the universal cohesive module and use Lemma
3.9, we have:

0 = [Ẽ, R̃] = [dM + Eh,Rh − [E′h, θ]] (3.27)

Expand the terms and use lemma (3.9) again, we have

0 = dMRh + [Eh,Rh]− [Eh, [E′h, θ]] + (dM)2(Eh) (3.28)

By Bianchi identity for Eh, the middle term in (3.28) vanishes and we get
(3.26).

We will start to prove the main result of this section, namely the form
Trs(f

′(Rh) · θ) appearing in the double transgression formula is itself a well-
defined secondary characteristic form. Like the double transgression formula
of Bott and Chern, the goal is to compute the M-directional derivative of
Trs(f

′(Rh)·θ) and show it’s in the image of ∂X and ∂̄X . We break the lengthy
computation into several lemmas.

Lemma 3.16.

dXTrs(g(Rh; [E′h, θ]) · θ) =Trs(g(Rh; [Eh, [E′h, θ]]) · θ) (3.29)

+ Trs(g(Rh; [E′h, θ]) · [Eh, θ])

Proof. Without loss of generality, we assume g(T ) = T n. By our definition,
g(Rh; [Eh, [E′h, θ]]) is a summation of the form:

g(Rh; [Eh, [E′h, θ]]) =
∑

i+j=n−1

Ri
h[Eh, [E′h, θ]]R

j
h (3.30)
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If we consider the following differential, keeping in mind when passing dX

over Trs, we act via Eh and follows the Leibniz rule

dX
∑
i

Trs(Ri
h[E′h, θ]Rn−i−1

h θ) =
∑
i

dXTrs(Ri
h[E′h, θ]Rn−i−1

h θ) (3.31)

=
∑

i+j+k=n−2

Trs(Ri
h[Eh,Rh]Rj

h[E
′
h, θ]Rk

hθ) +
n∑
i=1

Trs(Ri−1
h [Eh, [E′h, θ]]Rn−i

h θ)

+
∑

i+j+k=n−2

Trs(Ri
h[E′h, θ]R

j
h[Eh,Rh]Rk

hθ) +
n∑
i=1

Trs(Ri−1
h [E′h, θ]Rn−i

h [Eh, θ])

The terms in the first and third summations are zero by Bianchi identity
[Eh,Rh] = 0. Since the second and last summations are just Trs(g(Rh; [Eh, [E′h, θ]])·
θ) and Trs(g(Rh; [E′h, θ]) · [Eh, θ]) respectively, the result follows.

Lemma 3.17.

dMTrs(g(Rh) · θ) + Trs(g(Rh) · θ2) =∂̄XTrs(g(Rh; [E′h, θ]) · θ) (3.32)

− Trs(g(Rh; [Eh, θ]) · [E′′, θ])

Trs(g(Rh; [E′h, θ]) · [E′h, θ]) = 0 (3.33)

Trs(g(Rh; [E′′, θ]) · [E′′, θ]) = 0 (3.34)

Proof. Without loss of generality, we assume g(T ) = T n is a monomial. By
Leibniz formula, we get

dMTrs(g(Rh) · θ) = Trs(g(Rh; d
MRh) · θ) + Trs(g(Rh) · dMθ) (3.35)

We can substitute dMRh and dMθ in the above equation by previous two
lemmas 3.6 and 3.15. Then we have

dMTrs(g(Rh) · θ) = Trs(g(Rh; [Eh, [E′h, θ]]) · θ)− Trs(g(Rh) · θ2) (3.36)

Lemma 3.16 together with equation (3.36) shows that

dMTrs(g(Rh)θ) + Trs(g(Rh) · θ2) (3.37)

=dXTrs(g(Rh; [E′h, θ]) · θ)− Trs(g(Rh; [E′h, θ])[Eh, θ])
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In equation (3.37), the left hand side is a 2-form onM with value in G0. For
the right hand side of the equation, keeping in mind that E′h increases exotic
degree by−1 while E′′ increases it by 1, we can decompose Trs(g(Rh; [E′h, θ])[Eh, θ])
as a sum of its G−2 and G0 components respectively as:

Trs(g(Rh; [E′h, θ])[Eh, θ]) =Trs(g(Rh; [E′h, θ])[E′h, θ]) (3.38)

+ Trs(g(Rh; [E′h, θ])[E′′, θ]) (3.39)

Comparing the G−2 components in equation (3.37), we get equation (3.33).
Taking its adjoint, we get (3.34). Finally if we compare the G0 components
in equation (3.37), we get

dMTrs(g(Rh) · θ) + Trs(g(Rh) · θ2) =∂̄XTrs(g(Rh; [E′h, θ]) · θ)
− Trs(g(Rh; [E′h, θ])[E′′, θ])

Adding the zero term Trs(g(Rh; [E′′, θ]) · [E′′, θ]) to it, we get equation (3.32).

Lemma 3.18. The last term Trs(g(Rh; [Eh, θ]) · [E′′, θ]) in equation (3.32) is
given by:

Trs(g(Rh; [Eh, θ]) · [E′′, θ]) =∂XTrs(g(Rh; [E′′, θ]) · θ) (3.40)

+ Trs(g(Rh; θ) · [E′h, [E′′, θ]])

And the term Trs(g(Rh; [E′′, θ]) · θ) satisfies:

∂̄XTrs(g(Rh; [E′′, θ]) · θ) + Trs(g(Rh; θ) · [E′′, [E′′, θ]]) = 0 (3.41)

Proof. We consider the following differential and compute it as in lemma
3.16. Again we assume without loss of generality that g(T ) = T n.

dX
n∑
i=1

Trs(Ri−1
h θRn−i

h [E′′, θ]) (3.42)

=
∑

i+j+k=n−2

Trs(Ri
h[Eh,Rh]Rj

hθR
k
h[E′′, θ]) +

n∑
i=1

Trs(Ri−1
h [Eh, θ]Rn−i

h [E′′, θ])

−
∑

i+j+k=n−2

Trs(Ri
hθR

j
h[Eh,Rh]Rk

h[E′′, θ])−
n∑
i=1

Trs(Ri−1
h θRn−i

h [Eh, [E′′, θ]])
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Again the terms in the first and third summations are zero by Bianchi iden-
tity. So we get

Trs(g(Rh; [Eh, θ]) · [E′′, θ]) =dXTrs(g(Rh; θ) · [E′′, θ]) (3.43)

+ Trs(g(Rh; θ) · [Eh, [E′′, θ]])

Substitute (3.43) into (3.32) in lemma 3.17, we have

dMTrs(g(Rh) · θ) + Trs(g(Rh) · θ2) (3.44)

=∂̄XTrs(g(Rh; [E′h, θ]) · θ)− dXTrs(g(Rh; [E′′, θ]) · θ)
−Trs(g(Rh; θ) · [Eh, [E′′, θ]])

Note again the left hand side is a 2-form on M with values in G0, we get
the first equality by comparing G0 components and the second equality in by
comparing G2 components.

Combining the formulas we proved so far, we are ready to derive the
following main theorem.

Theorem 3.19. Let g(T ) be a convergent power series in T , then the M-
directional derivative of Trs(g(Rh) · θ) is given by the following formula:

dMTrs(g(Rh) · θ) =
1

2
∂̄XTrs(g(Rh; [E′h, θ]) · θ)−

1

2
∂XTrs(g(Rh; [E′′, θ]) · θ)

(3.45)

Proof. We write Trs(g(Rh; θ)[Eh, [E′′, θ]]) as the sum of its G0 and G2 com-
ponents

Trs(g(Rh; θ)[E′h, [E′′, θ]]) + Trs(g(Rh; θ)[E′′, [E′′, θ]]) (3.46)

then by Jacobi identity and flatness of E′′, we have

[E′′, [E′′, θ]] =
1

2
[[E′′,E′′], θ] = 0 (3.47)

Similarly, we compute

[E′h, [E′′, θ]] = [[E′h,E′′], θ]− [E′′, [E′h, θ]] (3.48)

By equation (3.33), we can add 0 = [E′h, [E′h, θ]] to the above equation and
note that Rh = [E′h,E′′], we have

[E′h, [E′′, θ]] = [Rh, θ]− [Eh, [E′h, θ]] (3.49)
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By lemma 3.15, we have dM(Rh) = [Eh, [E′h, θ]] and therefore we can rewrite
the above formula as

[Eh, [E′′, θ]] = [E′h, [E′′, θ]] = [Rh, θ]− dMRh (3.50)

so we have

Trs(g(Rh; θ)[Eh, [E′′, θ]]) = Trs(g(Rh; θ)[Rh, θ])− Trs(g(Rh; θ)d
MRh)

(3.51)

By the property of Trs and Rh has even total degree, we have

Trs(g(Rh; θ)d
MRh) =

n∑
i=1

Trs(Ri−1
h θRn−i

h dMRh) (3.52)

=
n∑
i=1

Trs(θRn−i
h dMRhRi−1

h )

=Trs(θg(Rh; d
MRh))

Using this equation, we can rewrite the last term in equation (3.40) in lemma
3.18 as:

Trs(g(Rh; θ)[E′h, [E′′, θ]]) =Trs(g(Rh; θ)[Rh, θ]])− Trs(g(Rh; θ)d
MRh)

=Trs(g(Rh; θ)[Rh, θ]]) + Trs(g(Rh; d
MRh)θ)

=Trs(g(Rh; θ)[Rh, θ]]) + dMTrs(g(Rh)θ) (3.53)

+ Trs(g(Rh)θ
2)

Finally we plug the equation (3.53) into equation (3.44), after collecting
terms, we get

2dMTrs(g(Rh) · θ) + 2Trs(g(Rh) · θ2) =∂̄XTrs(g(Rh; [E′h, θ]) · θ) (3.54)

− ∂XTrs(g(Rh; [E′′, θ]) · θ)
− Trs(g(Rh; θ)[Rh, θ])
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We expand the last term Trs(g(Rh; θ)[Rh, θ]) explicitly to get

Trs(g(Rh; θ)[Rh, θ]]) =
n∑
i=1

Trs(Ri−1
h θRn−i

h Rhθ)−
n∑
i=1

Trs(Ri−1
h θRn−i

h θRh)

=
n∑
i=1

Trs(Ri−1
h θRn−i+1

h θ)−
n∑
i=1

Trs(Ri
hθRn−i

h θ)

= Trs(θRn
hθ)− Trs(Rn

hθ
2) = −2Trs(Rn

hθ
2)

= −2Trs(g(Rh) · θ2) (3.55)

Plug equation (3.55) into (3.54), we have

2dMTrs(g(Rh) · θ) = ∂̄XTrs(g(Rh; [E′h, θ]) · θ)− ∂XTrs(g(Rh; [E′′, θ]) · θ)
(3.56)

Divide both sides by 2, we get the desired formula.

We are now ready to define secondary Bott-Chern classes for cohesive
modules with Hermitian structures. Recall G = G0 is the space of (p, p)
forms, let G ′ be the subspace of G defined by Im∂X + Im∂̄X . We will define
the secondary classes as elements in G0/G ′ ∩ G0.

Definition 3.20. Assume k1, k2 be two Hermitian metrics on a cohesive
module E. For a convergent power series f(T ), we define the secondary
Bott-Chern form f̃(k1, k2) associated to k1, k2 as an element in G0/G ′ ∩ G0

with a representatives f̃(k1, k2; γ) in G0 given by:

f̃(k1, k2; γ) =

∫
γ

Trs(f
′(Rh) · θ)dγ (3.57)

where γ(t) is a curve onM that connects k1 to k2. The following proposition
shows that this is well-defined.

Proposition 3.21. The equivalence class of f̃(k1, k2; γ) in G0/G ′ ∩ G0 is in-
dependent of γ.

Proof. Let τ be a another path connecting k1 to k2, then by convexity ofM,
the loop η = γ−τ is the boundary of a smooth 2-simplex σ inM. By Stokes
formula, we have

f̃(k1, k2; γ)− f̃(k1, k2; τ) =

∫
∂σ

Trs(f
′(Rh) · θ)dη =

∫
σ

dMTrs(f
′(Rh) · θ)dσ

(3.58)
By theorem 3.19, the integrand is an element in G ′, the result follows.
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Corollary 3.22. The primary characteristic form is related to the secondary
form via the following equation:

f(E, h2)− f(E, h1) = −∂̄X∂X f̃(h1, h2; γ) (3.59)

for any path γ that connects h1 to h2.

Proof. By the Bott-Chern formula (3.25), we have

f(E, h2)− f(E, h1) =

∫
γ

dMTrs(f(Rh))dγ (3.60)

= −Trs{
∫
γ

∂̄X∂Xf ′(Rh) · θdγ} (3.61)

the result follows from the definition of f̃(h1, h2; γ).

4 Invariance of Bott-Chern classes under quasi-

isomorphism

4.1 Invariance under gauge transformation

In this section, we study the Bott-Chern forms under deformation of the
cohesive structures. Unlike the situation of Hermitian metrics, the charac-
teristic classes will depend on the cohesive structures. In fact, this is why we
want to refine the characteristic classes to take value in Bott-Chern cohomol-
ogy since their image in deRham cohomology only depend on the underlying
topological complex vector bundle structure and therefore are independent
of the cohesive structure.

Definition 4.1. For a Z-graded Hermitian vector bundle (E•, h), define E
to be the space of ∂̄X-superconnections of total degree 1 and define E ′′ to be
subspace of E whose elements satisfy the flatness condition.

Definition 4.2. Recall the subspaces G• defined by exotic degrees in section
2. For each k ∈ Z, we define G ′′,k to be the subspace of Gk whose elements
are forms of type (0, •). Similarly we define G ′,k to be the subspace of Gk
whose elements are forms of type (•, 0).
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Example 4.3. If E• is concentrated in degree 0 and we set A to be the space
of ∂̄X-connections and A′′ to be the subspace of ∂̄X-flat connections, then
by Koszul-Malgrange theorem, A′′ is the space of holomorphic structures on
E. If the underlying complex manifold X is a Riemann surface, then every
∂̄X-connection is automatically flat and A′′ = A is an affine space modeled
on A0,1(X,EndE).

We assume E ′′ is non-empty and it has a marked point E′′ such that
E = (E•,E′′, h) is a Hermitian cohesive module. The following lemma is a
straightforward consequence of the explicit construction of Chern supercon-
nections in Proposition 2.17.

Lemma 4.4. E is an affine space modeled on G ′′,1. E ′′ is the subspace whose
elements α′′ ∈ G ′′,1 satisfy the Maurer-Cartan equation:

E′′(α′′) +
1

2
[α′′, α′′] = 0 (4.1)

The ∗ operation interchanges G ′′,• and G ′,−•. If E is the Chern supercon-
nection of the Hermitian cohesive module E, then the space of Chern super-
connection is in one-to-one correspondence with E ′′. The correspondence is
given by:

F ∂̄X−component−−−−−−−−−→ F′′ (4.2)

whose inverse is given by:

E + α′ + α′′
α′=(α′′)∗←−−−−− E′′ + α′′ (4.3)

Definition 4.5. By the above lemma, the tangent space TE′′E ′′ of E ′′ at a
point E′′ can be identified with the space of solutions in G ′′,1 to the equation:

E′′(α′′) = 0 (4.4)

In particular, the tangent space is a subspace in G ′′,1. We define a one form
δ′′ on E ′′ with values in G ′′,1 by the formula:

δ′′(α′′) = α′′, ∀α′′ ∈ TE′′E ′′ (4.5)

By duality, we also define the one form γ′ on E ′′ with values in G ′,−1 by the
formula:

δ′(α′′) = (α′′)∗ = α′ (4.6)

Finally, we set δ = δ′ + δ′′ to be an one form with values in G ′′,1 ⊕ G ′,−1.
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Lemma 4.6. If Et is a family of Chern superconnections such that E′′|t=0 =
E′′ and E′′t = E′′+A′′t , then the deformation of the curvatures Rt is given by:

d

dt
Rt = [Et,

d

dt
Et] (4.7)

where Ett is the Chern superconnection of (E•,E′′t , h). Using the one form δ
defined above, we can rewrite this formulas as

dER = −[E, δ] (4.8)

Proof. We write αt = α′t+α′′t for the tangent vectors d
dt
Et for short. For each

t, α′′t satisfies:
[E′′t , α′′t ] = 0 (4.9)

and by duality, α′t satisfies
[E′t, α′t] = 0 (4.10)

By definition, Rt = [E′′t ,E′t], so if we take its derivative, we have

d

dt
Rt = [α′′t ,E′′t ] + [α′t,E′t] (4.11)

Adding up the above equations, we get the desired equality.

Proposition 4.7. Let f(T ) be a convergent power series in T , the E-directional
differential of the Bott-Chern characteristic form f(E,E′′, h) at E′′ ∈ E ′′ is
given by:

dEf(R) = −Trsf
′(R · [E, δ]) = −dXTrsf

′(R · δ) (4.12)

Proof. The first equality is a direct consequence of previous lemma. The
second equality follows from Bianchi identity [E,R] = 0 as before.

Corollary 4.8. We compare the G• components of both sides of the equality
(4.12). We get the following identities:

dETrsf(R) = −∂XTrs(f
′(R) · δ′′)− ∂̄XTrs(f

′(R) · δ′) (4.13)

∂XTrs(f
′(R) · δ′) = 0 (4.14)

∂̄XTrs(f
′(R) · δ′′) = 0 (4.15)
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Equation (4.13) is the first transgression formula over E ′′. Motivated by
the results we established in previous section, equation (4.14) and (4.15) are
expected to admit a further transgression. However this is not the case in
general for otherwise we would have proved Trsf(R) is even independent of
the cohesive structure. We will show the terms Trs(f

′(R) ·δ′) and Trs(f
′(R) ·

δ′′) admit a further transgression formula when restricted to certain subspaces
in E ′′.

Definition 4.9. We define the generalized Dolbeault complex associated to
a cohesive module E by (G ′′,•,E′′). By the flatness condition on E′′, it defines
a differential. The cohomology of the complex is defined to be the Dolbeault
cohomology of the cohesive module E.

Remark 4.10. The Euler characteristic χ(E) of the Dolbeault cohomology
group of a cohesive module E is studied in a different paper [Qia16]. By
Hodge theorey, χ(E) is given by the index of a Dirac-type operator DE

defined by
√

2(E′′ + (E′′)∗) where (E′′)∗ is the formal adjoint of E′′ with
respect to a Hermitian metric hE on E and a Hermitian metric hX on X.
It is proved that the index is computed by the classical Atiyah-Singer index
formula:

Ind(DE) = (2πi)− dimX

∫
X

Todd(X) · ch(E) (4.16)

where Todd(X) is the Todd genus and ch(E) is the Chern character form
associated to the power series exp(−T ).

Definition 4.11. Let E′′t be a one parameter family of cohesive structures.
The tangent vectors α′′t = Ė′′t satisfies E′′t (α′′t ) = 0 so they are pointwise closed
with respect to the generalized Dolbeault operator E′′t . We say the family is
exact if there exist a smooth section γ′′t with values in G ′′,0 such that

[E′′t , γ′′t ] = δ′′t ,∀t (4.17)

That is to say, the tangent vectors α′′t defines zero cohomology class in the
first Dolbeault cohomology groups and in addition, we can find a smooth lift
of them.

Example 4.12. Consider the group GL(E) whose elements are of the form
f =

∑dimX
k=0 fk where fk ∈ A0,k(X,End−kE) and f0 is invertible. Since A•>0
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is nilpotent and we required f0 to be invertible, GL(E) forms a group. GL(E)
acts on E and preserves the subspace E ′′ via gauge transformation:

(E′′)f = f−1 ◦ E′′ ◦ f = f−1 ◦ [E′′, f ] + E′′ (4.18)

If ft is a one parameter family of gauge group elements in GL(E) such that
f0 = IdE, then for any choice of E′′ ∈ E ′′, we claim the one parameter family
of cohesive structures E′′t = (E′′)ft is exact.

To see this, we simply take γ′′t = f−1
t

d
dt
ft with values in G ′′,1 and we can

compute

d

dt
E′′t =

d

dt
(f−1
t ◦ [E′′, ft] + E′′) (4.19)

= −γ′′t ◦ f−1
t ◦ [E′′, ft] + f−1

t ◦ [E′′, ft ◦ γ′′t ] (4.20)

= −γ′′t ◦ E′′t + γ′′t ◦ E′′ + E′′t ◦ γ′′t − γ′′t ◦ E′′ (4.21)

= [E′′t , γ′′t ] (4.22)

This shows that the family E′′t obtained by applying a family of gauge trans-
formations is exact.

Remark 4.13. If E is again just a holomorphic vector bundle concentrated in
degree 0, then GL(E) is just the group of invertible linear automorphisms.
Two holomorphic vector bundle structure on E are equivalent if and only if
they differ by a gauge transformation.

Definition 4.14. If S is a submanifold of E ′′ for which the restriction δ′′ is
exact and admits a smooth lift γ′′ ∈ G ′′,0 such that [E′′, γ′′] = δ′′ , we say S
is exact.

Proposition 4.15. If S is exact with a lift γ′′ of δ′′ and we set γ′ = (γ′′)∗,
then we have the following identities:

∂̄XTrs(f
′(R · γ′′)) = Trs(f

′(R) · δ′′) (4.23)

∂XTrs(f
′(R · γ′)) = −Trs(f

′(R) · δ′) (4.24)

Proof. By Bianchi identity, we have

dXTrs(f
′(R · γ′′)) = Trs(f

′(R) · [E, γ′′]) (4.25)

We compare the G2 component of the equation and we get the first equation
(4.23). If we replace γ′′ by γ′ = (γ′′)∗, it satisfies

[E′, γ′] = −δ′ (4.26)
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by taking adjoints of [E′′, γ′′] = δ′′. The same argument as above shows the
second equation (4.24).

Combining Proposition 4.7 and Proposition 4.15, we have the following
double transgression formula for Bott-Chern forms over an exact submani-
fold.

Proposition 4.16. With the same assumption as above, if we set γ = γ′ +
γ′′ ∈ G0, the S-directional differential of Bott-Chern forms is given by:

dSTrsf(R) = −∂X ∂̄XTrs(f
′(R) · γ) (4.27)

As a corollary, the Bott-Chern characteristic classes remains invariant
over S. We shall now apply this proposition to prove the invariance of Bott-
Chern cohomology classes under homotopy equivalences.

For two cohesive modules (E•,E′′) and (F •,F′′) , we have the following
criteria for homotopy equivalence. For its proof, we refer to [Blo10].

Proposition 4.17. (E•,E′′) and (F •,F′′) are equivalent in the homotopy
category Ho(PA) if and only if there is a degree zero closed morphism φ ∈ P0

A
which is a quasi-isomorphism between the complexes (E•,E′′0) and (F •,F′′0).

Using this criteria, the invariance of Bott-Chern classes will be proved in
two steps. First we show that if the underlying complex (E•,E′′0) is acyclic,
the characteristic classes are zero. Next we show that the Bott-Chern charac-
teristic classes are additive with respect to short exact sequences of mapping
cones and reduce to the acyclic case.

4.2 Transgression formula for acyclic complex

We start by define a rescaling operation on superconnections. If t ∈ R+ is a
positive real constant and E is a superconnection, define

Et =
∑
k

t1−kEk (4.28)

It’s easy to verify that E′′t = (E′′)t and E′′t are flat. So E′′t forms a smooth
family of cohesive structures.

Definition 4.18. We define the grading operator NE for the cohesive module
E as an element in A0(X,End0(E•)) such that it acts by:

NE(A⊗ ω) = |A| · A⊗ ω (4.29)
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Lemma 4.19. With NE so defined, we choose γ′′t = 1
t
NE ∈ G0 and we have

[E′′t , γ′′t ] =
1

t

∑
k

(1− k)(E′′k,t) =
d

dt
E′′t (4.30)

Proof.

d

dt
E′′t =

∑
k

(1− k)t−kE′′k =
1

t

∑
k

(1− k)(E′′k)t (4.31)

On the other hand, we may take s ∈ Ed so we have

E′′t ◦NE(s) = d
∑
k

t1−kE′′k(s) (4.32)

and note that E′′k(s) ∈ A0,k(X,Ed+1−k), so we have

NE ◦ E′′k,t(s) = NE

∑
k

t1−kE′′k(s) =
∑
k

t1−k(d+ 1− k)E′′k(s) (4.33)

Taking the difference of the above two equalities and divide both sides by t,
we get (4.30).

Since NE is clearly self adjoint, we have γ′ = γ′′ = 1
t
NE and we have the

following corollary.

Corollary 4.20. For the family of rescaled cohesive structures, we have

d

dt
Trs(e

−Rt) = −2

t
∂X ∂̄XTrs(e

−Rt ·NE) (4.34)

Finally, by the same arguments in [BGS88a], if (E•,E′′0) is acyclic, then
the degree zero component ∆E of its curvature

R0,0
t = t2(E′′0 + E′0)2 = t2∆E

is a strictly positive element and the characteristic form of the Chern char-
acter

Trs exp(−Rt) = Trs exp(−t2∆E +O(t))

decays exponentially fast uniformly on X when t approaches ∞. Applying
this result and let t → ∞, we transgressed the characteristic forms to zero
as desired.
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Theorem 4.21. If (E•,E′′) is a cohesive module such that (E•,E′′0) is an
acyclic complex, then the integral

IE =

∫ ∞
1

Trs(exp(−Rt) ·NE)
dt

t
(4.35)

is finite and
Trs exp(−R) = ∂X ∂̄XIE (4.36)

4.3 Additive properties of Bott-Chern classes

We begin by defining the mapping cone of a closed morphism. Let φ ∈
P0
A(E,F ) be a closed degree 0 morphism between two cohesive modules

(E•,E′′) and (F •,F′′).

Definition 4.22. The mapping cone Cone(φ) is the cohesive module (Cone(φ),C′′φ)
whose underlying complex vector bundle is defined by:

Cone(φ)• = F • ⊕ E•+1

and with respect to this decomposition, the cohesive structure C′′φ is given
by:

C′′φ =

(
F′′ φ
0 −E′′

)
Consider the one parameter family of morphisms φt = tφ with t ∈ [0, 1]

such that φ0 = 0 and φ1 = φ. The corresponding mapping cones have the
same underlying bundle Cone(φ)• and cohesive structures C′′t . It’s a simple
calculation that

d

dt
C′′φt =

(
0 φ
0 0

)
= α′′ (4.37)

is constant. If we set for t > 0, γ′′t ∈ G ′′,0 by the formula:

γ′′t =

(
0 0
0 1

t
· IdF

)
=

1

t
γ′′

then it satisfies that

[C′′t , γ′′t ] =
d

dt
C′′t (4.38)
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So we can apply the previous Proposition 4.16 for all nonzero value of t. Note
again in this case γ′ = γ′′, we have the following equality of characteristic
forms.

f(Cone(φ), C ′′1 )− f(Cone(φ), C ′′s ) = −∂X ∂̄X [

∫ 1

s

2Trsf
′(Rt) · γ′′

dt

t
] (4.39)

It’s clear that we can’t let t → 0 in the above formula due to the singu-
larity. Instead, motivated by the construction in [BC65], we will modify the
integrand to remove the singularity.

To do this, we calculate Rt explicitly as

Rt =

(
RF + t2φφ∗ t(F′φ− φE′)

t(φ∗F′′ − E′′φ∗) RE + t2φ∗φ

)
= R0 + tAt (4.40)

where R0 is the curvature computed by C′′0 computed using the direct sum
Hermitian form

R0 =

(
RF 0
0 RE

)
(4.41)

and At is the reminder term

At =

(
tφφ∗ F′φ− φE′

φ∗F′′ − E′′φ∗ tφ∗φ

)
(4.42)

If we evaluate a convergent power series g(T ) on Rt, we have

g(Rt) = g(R0 + tAt) = g(R0) + tRg(t,R0, At) (4.43)

for some reminder term Rg that is a power series in t with coefficients that
are polynomials in R0 and At.

We have already shown that Trsf(R0) is dX-closed by Proposition 2.24,
therefore it is also ∂X ∂̄X-closed. So we can subtract it from the above equa-
tion and derive the following equation:

f(Cone(φ), C ′′1 )− f(Cone(φ), C ′′s ) = −2∂X ∂̄X
∫ 1

s

(f ′(Rt)γ
′′ − f ′(R0)γ′′)

dt

t
(4.44)

Now we substitute equation (4.43) with g = f ′ into the above equality, the
singular term 1

t
cancels out and we get

f(Cone(φ), C ′′1 )− f(Cone(φ), C ′′s ) = −2∂X ∂̄X
∫ 1

s

Rf ′(t, At,R0)dt (4.45)
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Now the we can let s→ 0 since the integrand is bounded and we established
the following proposition.

Proposition 4.23. The characteristic form f(Cone(φ), C ′′1 ) coincide with
f(Cone(φ), C ′′0 ) in Bott Chern cohomology.

Under the direct sum Hermitian metric hE ⊕ hF on the mapping cone
Cone•, we have the following simple equality of differential forms:

f(Cone(φ)•,C′′0, hφ) = f(F •,F′′, hF )− f(E•,E′′, hE) (4.46)

where the minus sign comes from the shift in degree of E• in the mapping
cone. Together with the previous corollary, we established the following
proposition.

Proposition 4.24. The Bott Chern cohomology classes of an exact triangle

0→ (E•,E′′) φ−→ (F •,F′′) iF−→ (Cone•(φ),Cφ)

is additive in the sense

f(E•,E′′)− f(F •,F′′) + f(Cone•(φ),Cφ) = 0 (4.47)

in Bott-Chern cohomology

If φ is a homotopy equivalence, it was shown in [Blo10] that this is equiv-
alent to φ0 : (E•,E′′0) → (F •,F′′0) being a quasi-isomorphism. Therefore the
mapping cone Cone(φ) is acyclic so proposition 4.21 shows that the left side
of equation (4.46) is zero in Bott-Chern cohomology. Combining these, we
established our main result below.

Theorem 4.25. If two cohesive modules (E•,E′′) and (F •,F′′) are homotopy
equivalent, then they have the same Bott-Chern cohomology classes.

As a corollary, we can define characteristic classes for an object S in
Db

Coh(X) as follows. We choose a cohesive module representative (E•,E′′) and
equip it with some Hermitian structure hE. Then for any convergent power
series f(T ), we define the associated class f(S ) as the class of f(E, hE). In
particular, this extends Bott-Chern cohomology classes to coherent sheaves.
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