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Abstract: Accessibility and economic sustainability of public bus services (PBS) have been in a
continuous decline in Japan’s countryside. Rural cities also suffer from population transformation
toward industrial centers experiencing rapid economic growth. In the present study, we reviewed
the current demand status of PBS in Kitami, a rural city in Japan that hosts a national university.
The investigation was performed by examining students’ daily lives using a survey to collect data
representing a portion of the population. The objective was to predict the change in demand rate
for PBS concerning the necessities of everyday life from the perspective of university students as
potential users of PBS. Intuitively, decision-makers at every level display a distinct prejudice toward
alternatives that intend to change the long-lasting status quo, hence in the question sequence, a
two-step verification probe was used to reveal a person’s actual perceived opinion. Accordingly,
the respondents’ initial demand rate for PBS was around 60%; however, this score increased to 71%
in the secondary confirmation. Afterward, using machine learning-based prediction methods, we
could predict this demand at over 90% of F-measure, with the most reliable and stable prediction
method reaching 80% by other daily life indicators’ weight. Finally, we supplied thorough evidence
for our approach’s usability by collecting and processing the data’s right set regarding this study’s
objective. This method’s highlighted outcomes would help to reduce the local governments’ and
relevant initiatives’ adaptability time to demands and improve decision-making flexibility.

Keywords: public bus services; student decision; qualitative analysis; statistical test; predictive
analysis

1. Introduction

Accessibility and economic sustainability of public bus services (PBS) have been in
continuous decline in Japan’s countryside [1]. Moreover, rural cities suffer from popula-
tion transition toward industrial centers due to rapid economic growth. Former studies
concerning passenger transportation have generally discussed the definition of services,
performance, management, private providers’ role, improved efficiency, pricing, and sys-
tematic travel user-demand supervision [2,3]. Modern studies regarding academic and
industrial sectors focus on passenger satisfaction to encourage more public transportation
by suggesting to provide advanced passenger transport systems based on individual’s
preference of transportation [4,5].

In this context, it is essential to enhance the knowledge base in the passenger trans-
portation field to provide a firm basis to empower policymakers with the ability to respond
dynamically to ever-changing transportation needs. The majority of the data in the trans-
portation field consists of official statistics created by the government or local authorities in
Japan [6]. The data is usually collected by user surveys conducted in major cities or specific
business sectors and often describes the reason for people’s movement, beginning and
arrival points, and transportation means. Therefore, increasing the diversity of transporta-
tion statistics in Japan and discussing the challenges of each geographic region’s different
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needs and expectations to promote appropriate solutions have been the motivating factors
to carry out this research.

Unlike large cities in Japan, the accessibility of PBS is limited in rural regions; con-
sequently, transportation often depends on privately owned vehicles. While most rural
Japanese residents prefer the comfort of owning a private car, worth noting is the impor-
tance of PBS for the elderly, students, non-permanent residents, and visitors.

Additionally, contemporary Japanese society faces many other issues; frequently high-
lighted points include a decrease in population, an aging society, and young people’s
migration to metropolitan areas [7]. Beyond these, the increasing trend of ‘inward-looking
orientation’ among young people urges researchers and managers to search for more
psychological reasons behind the inward-looking orientation within the youth popula-
tion [8]. While the government mentions social engagement as one of the essential factors
contributing to the quality of student experience, most universities tend to focus more on
the academic program rather than on cultural adjustment [9]. Nevertheless, those problems
are eventually disrupting rural communities’ sustainability.

From a more global perspective, various regional studies have examined the influence
of travel and tourism on the revitalization of rural regions suffering from various socio-
economic deficiencies in developed and developing countries [10–13]. Particular studies
have also concentrated on universities’ role in travel and tourism activities, especially the
demand side of university students’ tourism consumption, to understand the university as
an integrative part of society [14]. A study suggested that universities and host cities should
acknowledge the potential contribution of university students to developing ecologically
and socially sustainable communities [15]. Universities are also under increasing pressure
to become more internationally oriented and provide their students a global experience
related to the openness of their communities. From international students’ perspective,
the desire to travel and the opportunity for fun or excitement are the primary motivators
for undertaking an educational exchange, along with the host country’s climate, natural
environment, hospitality, and tourist attractions [16]. Moreover, instead of isolating the
campus areas, university students also want to be involved in their host cities’ social and
cultural life [17].

In such a circumference, the scientific originality of this research evolves with identi-
fying and presenting the straightforward points of daily life necessities that may expand
the young population’s sustainability in the rural regions of Japan through findings from a
case study. Considering that public transport services are one of the basic requirements
of everyday life in a city, and observing that it does not serve effectively convinced us
that it would be beneficial to conduct this study. We therefore strategically identified the
entry point for this approach as inadequate PBS in a rural university town and its impact
on the daily lives of university students. The proposed methodology offers a properly
tested method to interpret the young individual opinions in this aspect. The discussed
findings will help reduce adaptation time and improve decision-making flexibility for local
governments and related enterprises in responding to students’ mobility demands. The
objectives of this research were:

(1) “To determine the impact of daily life needs that will significantly increase university
students’ demand for PBS as potential users in a rural city.”

(2) “To confirm the hypothesis that if an improvement occurs in PBS based on determined
user needs, the demand on the user side will increase.”

(3) “To offer a simple inferential statistics-based modeling that predicts how much the
demand rate will increase on the user side if there is an improvement in PBS.”

Therefore, after examining the universities’ and students’ role in contributing to their
host cities’ economy and recognizing the perception of this contribution to sustainable com-
munities, we analyzed the “Student daily life after school hours” survey data conducted in
2019 at Kitami, Hokkaido.

Kitami (Figure 1) is the largest city in the Okhotsk subprefecture located in Japan’s
northern part. The population of the city is around one hundred thousand residents and
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sparsely distributed among its boroughs. It hosts a national university, Kitami Institute of
Technology, and a private college of nursing.

Figure 1. Location of Kitami City within Japan (Google Maps).

The Sea of Okhotsk is about 40–45 km north of the city. The sea’s polar nature
causes an internationally well-known natural drift of ices that can be observed off the
seacoast during the winter season. The city also has a famous association with winter sport,
particularly curling.

Additionally, agriculture is one of the leading industries in the region, and Kitami
is Japan’s largest producer of onions. The distance between Sapporo (the largest city of
Hokkaido) and Kitami is around 300 km. Both bus and train services are operating daily;
however, reservation in advance is required. Memanbetsu Airport serves the city located
approximately 20 km from Kitami.

Intuitively, decision-makers at every level display a distinct prejudice toward alter-
natives that intend to change the long-lasting status quo [18]. Hence in the question
sequence, a two-step verification probe was used to avoid this trap and reveal a person’s
actual perceived opinion. The respondent’s initial demand rate for current PBS scored
around 60% in favor; however, this score increased to 71% in the second confirmation.
Next, four different machine learning-based prediction algorithms were tested with the
user preference data collected in the survey applied as the feature set, which resulted in a
reliable prediction of user preference change of over 90% for F-measure concerning real-life
circumstances. Finally, we supplied thorough evidence for the usability of our approach in
regional development decision-makers’ detailed data analyses. The study was also aimed
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to provide an entry-level micro-analysis, particularly for urban mobility studies when the
secondary data is not yet achievable or limited.

The organization of the remaining sections is as follows. Section 2 overviews the
literature. Sections 3 and 4 present the proposed methodology and case study. Finally,
Section 5 summarizes our research conclusions.

2. Literature Review
2.1. Situation Overview in Japan

A public transport system is expected to have two simultaneous objectives: to serve the
public benefit and be profitable [19]. Still, these two goals do not go hand in hand according
to each country’s particular circumstances. Public transport policy differs distinctly among
the countries’ social structure and may focus on either the public benefit or the profitability.
In Japan, profit-driven, privately owned, and publicly traded mass transit companies
predominantly operate public transit systems [20].

Traditionally, Japanese regional passenger transportation systems evolved on railway
subsidiaries until World War II [21]. However, after the war, during the rapid economic
and industrial growth, unlike many other countries, the railway-based transport market’s
condition shifted to private automobiles starting in the late ’60s. The new circumstance has
triggered the abandonment of local railway lines by passengers, and disused lines were
soon beginning to close due to unprofitability [22].

As a result of rapid economic growth, many households’ incomes became sufficient
to afford more than one car in the late 1980s. The increasing trend for using private
vehicles also caused a reduction in the passenger volume on public buses [23]. Many
local bus companies began to experience financial difficulties, gradually resulting in the
sudden abolition of PBS for local citizens even without a substitute [24]. In general, if
passenger density is lower than five persons per inner-city bus line, the line is considered
not profitable to maintain.

In Japan, as explained above, public transportation has been usually a service provided
by private initiatives; simultaneously, especially in rural areas, people prefer private cars.
In reality, there is not enough passenger demand for the profitability of public transport
services provided by private companies. PBS can therefore never be an independent
transportation alternative in rural Japan. Despite this fact, Japanese government policy has
adopted the principle of self-sufficiency for public transportation [19].

Private companies in the countryside today offer many essential services required
to maintain lifestyles in these regions, such as public transportation, logistics, and retail.
However, these service providers are experiencing financial difficulties that cause them to
withdraw from these markets because of declining demand and lack of the work power to
carry out services, and weak long-term profitability expectations [25].

A new urban design and city planning concept called “compact city” has meanwhile
been developed by government agencies to address the problems of aging and depopulated
societies in rural areas according to people’s needs [26].

In parallel with the compact city concept, information and communication technolo-
gies (ICT) have emerged as active agents in stimulating people’s lives in rural commu-
nities [27–30]. Content analysis studies have shown that travel, tourism, and hospitality
industries use ICT in various functional units and for different applications [31]. The func-
tional unit for the ICT environmental impact assessment is generally defined as the change
(quantification of improvement) triggered by a new ICT introduction [32]. Still, tourism in-
formatics studies in Japan primarily focus on the informatics’ abilities to improve customer
experiences regardless of promoting the tourist arrival to the tourism establishment [33].

On the other hand, the travel and tourism revenues’ contribution to the Japanese econ-
omy is small compared to the massive industrial sector’s income [34]. This performance
depends on domestic travel and tourism spending that shapes the Japanese tourism indus-
try’s unique economic characteristics. For example, domestic travel spending accounted for
91.8% of direct total travel and tourism expenditures (2.4% of total Japan GDP) in 2014 and
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81% (7% of total Japan GDP) in 2019 [35,36]. The increased international spending share
from 8.2% to 19% in the total tourism expenditures has relied on government agencies’
success in the last five years. Japan has moved up from ninth to fourth position on the
travel and tourism competitiveness index among 140 countries. Inbound tourist arrivals
have also increased from 20 million to 31 million all over Japan in the same period [37–39].

In the meantime, findings suggest that Japan’s inbound tourists’ increased rate is
strongly dependent on the Asian market. The number and percentage of growth of
sightseeing tourists are higher than those of other types. China has become the most
significant source of inbound tourism for Japan [40]. Similarly, China is the top source
of Japan’s international students, accounting for 43.2% of the total 279,597 international
students in Japan as of 1 May 2020 [41]. Correspondingly, the number of Japanese who used
their study abroad 80,566 in 2019 [42]. Unfortunately, The COVID-19 outbreak abruptly
limited Chinese tourists, and it seems it will not recover soon [43].

If we want to summarize the issues we have surveyed so far: the historical evolution of
public transportation means, the role of private companies in public transport, the impact
of rapid economic growth on society, a new government policy to redesign rural areas, and
the economic importance of tourism income for Japan. Travel and transportation, which we
can conceptualize more general under tourism features and as a phenomenon created by
human activities, need to improve and adapt to the changes depending on time, needs, and
available technology. It is, therefore, necessary to recognize the value of public passenger
transport within the tourism-focused solutions to increase local communities’ welfare.

2.2. Research Objectives

Analyzing social dynamics to assess travel and tourism-related initiatives that benefit
local communities and rural environments requires a challenging approach to accumu-
late information and analyze its various aspects [44]. Due to each community’s unique
characteristics, measuring the impact of tourism on communities with different impact
parameters is a difficult task [45]. Therefore, it would be optimal to propose a singular
framework for each social organization to understand the wide range of travel and tourism
incentives. Many studies have examined the phenomenon of rural tourism from the per-
spective of the local tourism industry [46]. Several researchers have tried to identify the
importance of social issues to rural communities along with the consequences of occurring
events [47] and consumer behavior pattern changes in time [48]. Others have analyzed
motivation factors that attract tourists toward the rural areas, characteristics of the rural
tourists, destination management, and business effectiveness [49–51].

On the other hand, researchers have focused on the passenger transportation sector to
strengthen communities in various ways. Some authors have indicated the importance of
passenger transportation within the travel and tourism value chain. Passenger transporta-
tion is a component that plays a vital role in the growth of travel and tourism economies.
Transportation services quality improvement based on people’s demands and behavior
patterns makes tourism incomes more robust in many rural areas [52]. In contrast, the
frequency and accessibility of transportation mean in rural areas are somewhat different
from the metropolitan areas’ markets’ needs. The management of operating urban pas-
senger transportation systems involves the participation of businesses from private and
public sectors encompassing various economic, environmental, and socio-political issues.
Studies frequently propose a multi-criteria decision support systems (DSS) that may aid
the decision-making process by evaluating such problems [53]. To do so, selecting the
industry and local economy-related indicators to analyze the parametric estimation of
public transportation total demand performs better in an extensive system such as run in
the metropolitan areas when the required data are vast enough to examine statistically [54].

The quality of public transport is also evaluated directly within user surveys by
measuring various service features, such as punctuality, network coverage, and connectivity
of lines, service operating frequencies, and overall user satisfaction [55]. The findings also
indicate differences in how public transport is perceived by each individual differently. The
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significant evaluation factors in users’ satisfaction are a priority issue for public transport
operators. The most identified relevant features of the transportation system regarding
user satisfaction are trip duration, accessibility, fare, network connectivity, information,
comfort, safety, and employees’ kindness [56]. Besides those, environmental impacts and
sustainability have also been considered recently [57].

Many municipalities today in different parts of the world are remodeling their city’s
traditional modes of transport to transforming into smart ones to enhancing sustainable
mobility. One of the prime challenges in many urban areas is to overcome private cars’
general use [58]. In addition to pedestrian movement, various urban mobility studies
offered multimodal connection solutions along with public bus travel. Bike-sharing systems
are frequently studied as a reasonable solution among alternative traveling methods [59].
However, especially in sparsely distributed cities or highly urbanized areas, travel by bike
cannot meet all mobility needs; motorized transport will still be required, depending on
the areas’ demographic, geographic, and climate characteristics. Even so, a conducted
study revealed that short-distance travel with the availability of bike-sharing stations near
500 m diameters of the home, the workplace, school, or the university has a significantly
increased probability of using the bike-sharing system [60].

Another presented solution in the literature is to use the extended theory of planned
behavior to determine whether it can explain users’ intention to use the bus-based park-
and-ride facilities. The results revealed that attitude, subjective norm, and perceived
behavioral control positively influence using park-and-ride facilities [61].

There is also research on university students’ mobility coming forward within the
various academic disciplines. These studies’ notable assumptions can be summarized as
universities’ role in contributing to their territory to more sustainable and environmentally
friendly transport options and students’ social life [62]. Planning, infrastructure, trans-
portation characteristics of a region, quality of education, and the effects of cultural features
on students’ movements are also examining [63].

However, the lack of communication and integration between administrative insti-
tutions in these residential areas is also among the studies’ findings. A standard selected
methodology of the studies is conducting a questionnaire that makes it an easy way to
collect students’ information and experiences [64].

A study focusing on understanding the relationship between mobility and students’
social ties has shown that students’ mobility allows them to participate more actively
in heterogeneous socio-cultural environments significantly different from their campus
living environments [65]. Those environmental activities make them more likely to reject
stereotyping and reflect critically on their social contexts. Thus, they are encouraged to
deliberately consider their concerns, future actions, and personal identity [66].

From the informatics-based approaches, machine learning methods have impressive
success in predicting human decisions in many social sectors such as economics, law,
sales, healthcare, marketing, tourist destinations, and customer management [67–69]. The
results suggest that while machine learning can be valuable, realizing this value requires
integrating these tools into an economic framework; clarifying the link between predictions
and decisions is needed. The precise accuracy of studied models principally relied on the
size of training data. However, if the size of training data is relatively small, such as in
many decision-making domains of interest to social scientists, purely data-driven methods
have had both an impressive as well as an underwhelming success [70].

In addition to these developments, there are ethical debates on the decision dilemma
on the end-user side to improve advanced autonomous vehicles that can provide a solution
framework to passenger transportation problems in rural areas [71]. Finding how to build
autonomous ethical machines that promise benefits to change the world by increasing
traffic efficiency and reducing environmental pollution still seems to be one of today’s most
challenging artificial intelligence (AI) problems [72].

Given a brief literature review, we observed that obtaining and processing data from
different sources is vital to identify the problems and provide sustainability improvements for
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the transportation systems in rural regions from the passenger’s perspective. As mentioned
in previous studies, identifying the factors that interact competently with passenger trans-
portation needs to be addressed correctly to assess a transportation systems’ performance.

As a solution to such a situation in our study, we offer a predictive model that
predicts fluctuations in user demand for public transport in a sample rural city in Japan
and effectively identifies the roles of factors unique to this community. For this purpose,
we use the direct user survey method to obtain data for qualitative analysis and apply
machine learning algorithms, the forefront of predictive methods [73]. To integrate these
two approaches into an economic framework, we focused on university students’ role in
tourism activities, especially their demand side for potential contribution to developing
ecologically and socially sustainable communities.

In addition, people’s travel decisions and priorities change with time and other
conditions. That change generally falls into two categories: The majority are more likely
to change their travel plans due to the evolving circumstances; however, the minority are
less likely to do so [74]. We also analyzed the impact of these decision changes within
our methodology.

3. Methodology
3.1. Theoretical Framework

The formal setting of this methodology is based on statistical decision theory (STD).
STD is concerned with making optimal decisions in the presence of statistical knowledge
(data), which sheds light on some of the uncertainties involved in the decision problem [75].
STD is an essential mathematical theory used in machine learning and social informat-
ics research fields. The formal definition of STD for a 2 class problem is given by the
determination of the joint distribution function:

p(X, Ck) (1)

where:

p is the probability,
X is an input vector that consists series of values (a set of data),
C is a class,
k is a constant that takes values of 1, 2.

Assume y is a correspondent vector of the target variable (1 or 0), and let y = 1
correspond to class C1, and y = 0 correspond to class C2. The theory is concerning with
how to make an optimal decision given the reasonable probabilities in a task of assigning
an input vector (X) value to a suitable class (C1, C2); SDT has two main objectives in
performing this task:

• Minimize given the wrong assignment;
• Reduce the expected loss.

In the case of two-class problems, drawing a confusion matrix (Figure 2) would help
visualize the theory. The performance of machine learning algorithms is also typically
evaluated by a confusion matrix.

Figure 2. Confusion matrix.
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In the confusion matrix, TN is the number of negative examples correctly classified
(True Negatives), FP is the number of negative examples incorrectly classified as positive
(False Positives), FN is the number of positive examples incorrectly classified as nega-
tive (False Negatives), and TP is the number of positive examples correctly classified
(True Positives).

To minimize the given wrong assignment approach, we divide the input space into
decision regions (Rk), one region for each class (Rk is assigned to class Ck). While doing
this operation, a mistake occurs when an input vector value belonging to R1 is assigned to
C2 or a vector value belonging to R2 is assigned to C1. The equation given below used to
calculate this mistake:

p(misclassi f ication) =
∫

R1

p(X, C2).dx +
∫

R2

p(X, C1 ).dx (2)

where:

X is an input vector that consists series of values (a set of data),
C1 and C2 are the two classes,
Rk is decision regions,
k is a constant that takes the value of 1 or 2.

To minimize misclassification, X must be assigned to the classes that have provided a
smaller integral value.

To reducing the expected loss, assuming that for a new value of X, we assign it to class
Cj whereas the real correct class is Ck. This means we have incurred a loss Lkj, which is the k,
j element of the confusion matrix. The following equation gives the average loss function:

E [L] = ∑
k

∑
j

∫
Rj

Lkj p(X, Ck).dx (3)

where:

Lkj is an occurred loss value,
X is an input vector that consists series of values (a set of data),
Ck is the actual correct class,
Rj is decision regions,
j, and k is the constant of regions that take the value of 1 or 2.

The best solution is one that minimizes the average loss function. For a given input
vector X, the uncertainty in the correct class is expressed through the joint probability
distribution p(X, Ck).

The interpretation of the method under a short description of the STD presented
as follows:

Predictive analysis, especially in machine learning classification, is tried to estimate
the future possibility of an event in advance from the historical set of data related to that
event. Simply the researcher needs the collection of data features to conduct the analysis.
The reason for additional questions in any survey is to collect more information related to
the subject issue.

It is common to perform a survey study to measure people’s opinions on a specific
topic, and all surveys have a set of questions for different analysis purposes. This case
study’s prime concern is to ask a correct set of questions related to the mobility preferences
of university students of a rural town in a proper way while respecting their sensitivities.
Therefore the structure of the questions did not contain any political or misleading contents.

The initial attempt with direct questioning is intended to test the responder’s reaction
to demanding more PBS in daily life and resulted in an outcome below what is typically
expected. This situation displays the influence of a status quo that we mentioned earlier.
The status quo that the sustainability and availability of PBS in Japan’s rural regions have
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been in a continuous declining state for a long time. This method is an attempt to discover
the consequences of this condition to current-day mobility demands.

The secondary questioning regarding the same problem is intended to discover a
concrete development in the responder’s mind. However, it is still not enough to measure
other daily life indicators’ impact. Therefore, to collect more information about the PBS
demand, three sets of questions, a demographical background, travel behavior, and overall
life satisfaction prepared and asked the participant.

Many factors can affect anyone’s daily life mobility needs. In this case, those factors’
weight implications to the overall mobility requirement are intended to reveal. In this way,
this method could explain the reasonability of any increase or decrease in predicting a
specific issue.

Although there are numerous other types of classifiers in machine learning, the
character of data type and the size of data are of the utmost importance to choose one
effective classifier for the desired purposes. For this case, before proceeding any further,
the collected data analyzed and processed statistically to better understanding.

Therefore, by the formal definition of the STD, this methodology is divided into
three stages to analyze the current PBS situation in Japan’s rural city of Kitami. First, we
surveyed university students’ demand rate regarding the current PBS. After completing
the survey section, we proceeded with the statistics and hypothesis test to understand the
data’s characteristics. Finally, we used the data as input to develop a machine learning
prediction model based on STD to discover the potential of the user’s best demand rate
for PBS.

3.2. Data

The data was collected through a 2019 questionnaire titled “Student daily life after
school hours” conducted at Kitami Institute of Technology, where approximately 1800 un-
dergraduate students are enrolled [76]. The information bulletin regarding the survey was
spread all around the campus, and the data collection period took a month. Responders
accessed the web link of an online form by reading the QR code on the notification form
with the QR code reading feature of a free application for instant communication on their
smartphones. The survey questions collected information about students’ demographics,
transport preferences, and overall satisfaction with their academic life. The survey was
responded to by 250 students, in other words, 14% of the student population.

Usually, surveys with low response rates and nonresponse bias raise a notable concern.
In survey sampling, bias refers to the tendency of a sample statistic to systematically over-or
under-estimate a population parameter. In theory, the optimum way to identify bias in
the estimates from a sample of respondents would be to compare the estimates to actual
population values; however, population values are not always available [77].

Furthermore, a survey’s response rate reflects the collected data quality and reliability
as an essential indicator. Since there is no agreed-upon minimum acceptable response rate,
it largely depends on creating, distributing, and managing the surveys [78].

A conducted study in Japan found evidence of response rate bias for univariate distri-
butions of demographic characteristics, behaviors, and attitudes. Still, during examining
relationships between variables in a multivariate analysis, controlling for various back-
ground variables, findings do not suggest bias from low response rates for most dependent
variables [79]. Moreover, the survey environment, how questions are asked, and the respon-
dent’s state define problems in measurements. For instance, when we analyze data from
another survey study focusing on the health-promoting lifestyle profile of Japanese uni-
versity students, we see that the response rate decreases as the student year increases [80].
Nevertheless, in our case, absolute reliability can only be provided by applying the same
questionnaire to new students enrolling each year in university and comparing the results
obtained. However, at present, the distribution of sex and origin of responders generated
by this survey data also matches the current student population characteristics.
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There are also statistical formulas available for determining the size of the sample [81].
The two critical factors for these formulas are the margin of error (in the social research,
a 5% margin of error is usually acceptable) and the level of confidence that the survey
findings’ results are accurate (the typical confidence levels used are 95 %) [82].

The size of the collected responses and total student population calculates the margin
of error as ±5.76% with a 95% confidence level. A 95 percent confidence level means that
95 out of 100 samples will have the actual population value within the specified margin of
error of ±5.76 percent.

The obtained response rate from the student survey still encouraged us to exhibit the
differences and similarities in the student community of the university town of Kitami
within a given limit.

The urban outline of Kitami city is distributed sparsely, with winter periods mainly
being cold and snowy compared to the rest of Japan [83]. The university campus area is
2.5 km from the city center. Transportation in Kitami city is highly automobile-dependent
(152.4 automobiles per 100 people) [84], which is much higher than the average of the
whole Hokkaido prefecture (68.67 automobiles per 100 people) [85]. The offered frequency
of PBS is relatively limited due to a lack of passengers’ interest, e.g., some bus lines run
only 3 or 4 times per day. The main bus line, running across the city, runs four times per
hour and ends around 21:00 on weekdays and 20:00 on weekends [86].

University students in Kitami city come from various parts of Japan, with only 35%
from Hokkaido prefecture, and the ratio of female students is 14 % [87]. In other words,
students from different prefectures represent an active population of domestic tourists for
locals and business owners, at least until they graduate from the university. The broad
impact of a society with a declining birthrate, such as Japan, although not noticeable
around big cities, significantly influences the local economy in rural towns such as Kitami.
Therefore, it is crucial to engage young people living in this city to support the local
economy from various perspectives. The idea includes both purely economic aspects such
as buying from local stores and economic and environmental aspects, such as choosing
PBS in favor of private cars.

We have decided to use a two-step verification process in the survey design under the
conditions mentioned above. Because the long-neglected status of PBS in rural Japan has
reinforced the belief that there will be no change in the situation, psychologically, people
have come to accept this as the status quo.

The first question we asked (first inquiry—FI) was whether a student would like to
use PBS more in the current situation with a binary response (yes/no).

The following several questions we asked for linked the daily life activities that need
mobility, including joining a part-time job, dinner options, nearby restaurant demand,
and supermarket shopping. Next, we asked questions regarding the respondents’ public
transport behavior, such as frequency of using PBS, days and times they prefer to go out,
the transportation type they choose during these activities. These questions aimed to
demonstrate to the responders the essential requirement of PBS in daily life.

The second question we asked (second inquiry—SI) was whether a student would
like to use PBS in an alternate situation with a binary response. An alternate PBS that can
provide the mobility need of any person during everyday life for various reasons such
as going shopping, dining in a restaurant, traveling for sightseeing purposes, or even
conveniently commuting to part-time job workplaces.

The difference in responders’ decision distribution between the two groups (Yes/No)
did not reveal any visible diversity in the first inquiry (FI); however, the second inquiry
(SI) resulted in a meaningful difference. This finding showed that using the two-stage
verification probe was the right decision to analyze this specific community.

Furthermore, the variable identified with the second inquiry (SI) became the entire
survey study’s target value for the machine learning-based predictions. Finally, regarding
the various questions asked, the respondent’s overall satisfaction with academic lives has
also been reviewed.
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By the end of data collection, we populated 18 different types of categorical variables
from the respondents. The conversion of these 18 categorical variables to the continuous
type resulted in 47 types of continuous labels.

Once the dataset was formed and prepared for the analysis, chi-square statistical
tests were applied to determine the best subset collection while dataset attributes were
of the categorical value form. The chi-square test is a nonparametric statistical test that
measures the association between two categorical variables [88]. It is not applicable to
analyze parametric or continuous data types [89].

Additionally, the p-value calculation was applied while dataset attributes were of
the continuous value form. Statistical significance is the probability that the observed
difference between two groups is due to chance. If the p-value is more significant than
the statistical significance level (α), any practical difference is assumed to be explained by
sampling variability. However, reporting only the significant p-value for analysis is not
adequate to fully understand the effect sizes [90,91].

Due to differences in the perception of statistical inference to prevent misinterpretation
of evidence from the given data [92], we set two different criteria to evaluate the participants’
behavior better and simplify the models’ predictive weight. These criteria were chi-square
and p-value.

3.3. Hypothesis Test

As described above, we compared participants’ responses (positive or negative) to two
different stimuli by conducting a two-step verification probe in the survey. We measured
these two stimuli with two separate survey questions: the first inquiry (FI) and the second
inquiry (SI). A sample result is applied to a 2 × 2 contingency table (Table 1), which
tabulates the outcomes of two trials on a sample of N subjects.

Table 1. Sample of a 2 × 2 contingency table.

Trial 2 Positive Trial 2 Negative Row Total

Trial 1 Positive A B A + B
Trial 1 Negative C D C + D
Column Total A + C B + D N

There were four cells in the table named A, B, C, and D. Cells A and D hold the
concordant results (the frequency of individuals who answered positively or negatively to
both stimuli). Cells B and C contain the discordant results (the frequency of individuals
who responded positively to one stimulus but negatively to the other) [93].

The critical issue here was whether the totals in these two discordant cells were
sufficiently different to suggest that they trigger different reactions. In terms of the null
hypothesis testing paradigm, this could be explained by a p-value, which is the probability
of seeing the observed difference in these two discordant values. The statistical test
designed to provide this probability is McNemar’s test [94]. Both B and C values were used
in the given formula below to calculate the test [95].

X2 =
(B− C)2

B + C
≈ (|B− C| − 0.5)2

B + C
(4)

where:

X2 is a chi-squared distribution with 1 degree of freedom,
B is the frequency of individuals who responded positively to the first stimulus but nega-
tively to the second,
C is the frequency of individuals who responded negatively to the first stimulus but
positively to the second.

McNemar’s test compares two dichotomous variables’ marginal homogeneity as
part of the chi-square statistic. It is preferable for analyzing paired binomial data to
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conclude if there is a meaningful change in the data between two stimuli. Additionally, for
understanding the influential association between two dichotomous variables, Cramér’s V
(other naming is Cramér’s phi and denoted as ϕc) value can also be calculated. Cramér’s
V correlation varies between 0 and 1 [96].

A hypothesis test gives a fair settlement between two mutually exclusive statements.
The definition of our hypothesis testing is denoted as follows:

H0: µ1 = µ2;
HA: µ2 > µ1;
H0—The null hypothesis states that there is no difference concerning PBS requests between
the regular days (µ1 = mean of FI) and weekend days (µ2 = mean of SI) during the
20:00–24:00 h by university students in the Kitami city;
HA—The alternative hypothesis states that there is a difference.

The statistical significance level (α) for this study was also chosen before the data
collection and set to 5% (0.05) [97].

3.4. Predictive Modeling

The predictive modeling part explains the applicability of an inferential model for
data mining algorithm to predict new or future observations. In particular, the goal is
to predict the output value (y) for recent statements given their input value sets (X) [98].
In predictive modeling, we used a group of classifiers trained with the dataset to predict
whether a randomly selected student would prefer to use PBS more or not.

Classification is a part of predictive modeling, and it is an integral part of the data
science processes. A typical supervised statistical learning problem is defined when the
relationship between a response variable and an associated set of predictors (inputs) is of
interest while the response variable is categorical. One challenge in classification problems
is to use a dataset to construct an accurate classifier that produces a class prediction for any
new observation with an unknown response [99].

The classifier algorithms used for comparison in our research included a logistic
regression (LR), a support vector machine (SVM), a random forest (RF), and a multi-layer
perceptron classifier (MLP).

Logistic regression is considered a standard approach for binary classification in the
context of a low-dimensional dataset. This condition usually occurs in scientific fields such
as medicine, psychology, and social sciences, where the focus is not only on a prediction but
also on explainability [100]. LR classifier aims to test the relationship between a categorical
dependent variable and continuous independent variables by plotting the dependent
variables’ probability scores. LR models develop from the statistic that best explains the
relationships with yes or no answers (no answer indicates missing data) [101].

SVMs do separate two classes in the data space by building a decision boundary [102].
The SVM classifier creates a maximum-margin hyperplane that lies in transformed input
space and splits the class samples while maximizing the distance to the nearest dividing
samples [103].

RFs are a machine learning technique that aggregates many decision trees in the
ensemble (this is often called “ensemble learning”), resulting in a reduction in the variance
compared to single decision trees [104]. The objective behind an RF classifier is to take a
set of high-variance, low-bias decision trees and transform them into a low variance and
low-bias model. By aggregating individual decision trees’ various outputs, RF reduces the
conflict that can cause errors in decision trees. RF also allows a reliable assessment of the
importance (weight) of each variable.

Unlike previous classification algorithms, an MLP relies on an underlying neural
network to perform classification. Artificial neural networks try to learn tasks (to solve
problems), applying the similarities to the brain’s behavior. Specifically, similarly to how
the brain is composed of a large set of specialized cells called neurons that memorize brain
activity patterns, neural networks memorize patterns between features to fit as closely
as possible to the desired output. MLP is often achieving high performance. However,
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similarly to how it is difficult to explain the behavior of separate neurons in the brain,
neural network-based models are also considered ill-suited for explanatory modeling,
especially when the training data size is small [105,106].

The performance of machine learning algorithms usually is evaluated by predictive
accuracy. However, this is not appropriate when the data is imbalanced, and the costs of
different errors vary markedly. Often real-world datasets are predominately composed of
“normal” examples with only a tiny percentage of “abnormal” or “relevant” examples [107].

The dataset was split into the train (80%) and the test set (20%). We used test sets,
which the model did not see, during the performance metrics calculation to avoid over-
optimistic predictive accuracy. After interpreting the performance metrics, the method that
produces the most compatible outcome with the real-life situation was compared.

The performance metrics for evaluating each algorithm in this study were the F-measure
(Fβ), accuracy, area under the curve (AUC), Cohen’s kappa, and cross-validation (CV).

F-Measure is a commonly used performance measure and is more informative about
the effectiveness of a classifier on its predictive ability than simple accuracy. The β in Fβ
sets different weightings for Precision and Recall (β = 1 or 2 or 3). We therefore computed
the F1 score, where β was chosen to be equal to 1. Accuracy is not suitable considering
a user preference bias toward the minority (positive) class examples because of the least
represented impact. However, more actual examples are reduced when compared to that
of the majority class. Two other popular measures used, especially in imbalanced class
domains, are the receiver operating characteristics (ROC) curve and the corresponding
area under the ROC curve (AUC).

Moreover, ROC curves do not provide a single-value performance score, which moti-
vates the use of AUC. The AUC allows the evaluation of the best model on average. Still, it
is not biased toward the minority class [108].

The reliability of data collection is an essential component influencing the overall real-
life utility of the proposed machine learning model. Cohen’s kappa statistic is frequently
used to test interrater reliability, which shows how reliable the data is. Cohen’s kappa was
developed to account for the possibility that raters guess on at least some variables due
to uncertainty. A kappa is a form of the correlation coefficient. Correlation coefficients
cannot be directly interpreted, but a squared correlation coefficient, called the coefficient
of determination (COD), is directly interpretable. The COD is explained as the amount of
variation in the dependent variable that can be explained by the independent variable [109].
Like most correlation statistics, the kappa can range from −1 to +1.

Cross-validation (CV) is a popular strategy for algorithm selection. The main idea
behind CV is to split data, once or several times, for estimating the risk of each algorithm.
Part of the data (the training sample) is used for training each algorithm, and the remaining
part (the test sample) is used for estimating the efficacy of the algorithm. In the process of
CV, the algorithm with the highest efficacy is then selected. CV is a widespread strategy
because of its simplicity and universality [110].

4. Case Study and Results
4.1. Data Analysis

This section discusses the data presented in three parts as the tables. Part A represents
students’ demographic background, Part B discusses students’ travel behavior, and Part C
analyzes students’ overall satisfaction. Additional explanations regarding the abbreviation
used in the tables are provided in Appendix A.

The way to interpret Chi2 column in the tables is that categorical features with the
highest values for the chi-squared statistics indicate higher relevance and importance in
predicting students’ PBS demand. On the other hand, after converting data to continuous
type, the p-value is the evidence against the null hypothesis. The smaller the p-value is, the
more statistically significant the evidence.
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4.1.1. Part A—Students’ Demographic Background

In this part, we analyzed the survey part where the respondents were asked to provide
their demographic background. The results are presented in Table 2:

Table 2. Descriptive differences of students’ demographic background.

No Attributes No Label Name Relative (%) Chi2 p-Value

1 Sex 0.18
Female 1 SexF 14.8 0.27
Male 2 SexM 85.2 0.27

2 Origin 0.11
Japan, other than Hokkaido 3 “OJ” 58.8 0.98

Hokkaido 4 “OH” 33.2 0.42
International 5 “OI” 8 0.15

3 Accommodation 0.65
Apartment 6 “Lapart” 67.2 0.39

Boarding house 7 “Lblodge” 17.2 0.35
University dormitory 8 “Ldorm” 8.8 0.78

Parent’s home 9 “Lhome” 6.8 0.60

4 Preferences of Dinner 0.58
Cooking 10 “Dcook” 54.4 0.63

University cafeteria 11 “Dcafe” 20 0.13
Meal served by a boarding house 12 “Dbmeal” 18.4 0.38

Lunch box 13 “Dbento” 5.2 0.26
Restaurant 14 “Drstrnt” 2 0.13

5 Participation in a part-time job 15 “PTime” 2.99 0.01
Yes 52
No 48

Among the 250 respondents who participated in the survey, 85.2% were males, and
14.8% were females. Regarding the origin, 33.2% of the students were from the Hokkaido
region, 58.8% from other parts of Japan, and 8% were foreigners. Regarding the students’
distribution of accommodation, 67.2% resided in an apartment house (block of flats), 17.2%
resided in boarding houses with a meal, 8.8% resided in a university dormitory, and 6.8%
were staying with their own family. The preferences of dinner, while 54.4% of the students
said they cook for themselves, 20% had their dinner at the university cafeteria, 18.4% at
the boarding house (while some boarding house near the campus also offers two meals
a day even for a non-tenant), 5.2% were buying their meals/lunch boxes at convenience
stores, and only 2% used the restaurants nearby. The ratio of students taking part-time jobs
was 52%.

The prime finding in this part is that participating in a part-time job by the 52% of
respondents has created the highest values for the chi-squared statistics and provided the
lowest p-value. In other words, in Kitami city, university students provide a significant
economic value not only by being a student but also by participating in the local business
job market.

4.1.2. Part B—Students’ Travel Behavior

In this part, the respondents were asked to provide their travel behavior. The results
are represented in Table 3:
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Table 3. Descriptive differences of students’ travel behavior.

No Attributes No Label Name Relative (%) Chi2 p-Value

6 Frequency of public buses usage 4.30
Daily 16 “PTFD” 8 0.15

Weekly 17 “PTFW” 30 0.00
Monthly 18 “PTFM” 30.4 0.80

Less than a Month 19 “PTFL” 31.6 2.41

7 Possession of an automobile 20 “Car” 0.3 0.55
Yes 14.4
No 85.6

8 Demand to use buses more often 21 “FI” 17.95 0.00
Yes 59.6
No 40.4

9 Preferred evenings to go out mostly (multi-selection)
Friday 22 “Frdy” 32.4 4.47 0.01

Saturday 23 “Strdy” 84 0.12 0.38
Sunday 24 “Sndy” 69.6 0.94 0.08

10 Preferred periods to go out mostly (multi-selection)
18:00–20:00 25 “HL” 76.4 0.00 0.94
20:00–22:00 26 “HM” 36.8 4.13 0.01
22:00–24:00 27 “HH” 26 7.41 0.00

11 Preferred transport types during that period 1.09
Walk 28 “PTTwalk” 45.2 0.26

Bicycle 29 “PTTbike” 21.2 0.62
Bus 30 “PTTbus” 15.6 0.20

Personal automobile 31 “PTTcar” 12.8 0.13
Taxi 32 “PTTtaxi” 5.2 0.08

12 Demand for buses in that period 33 “SI” (target value)
Yes 70.8
No 29.2

The frequencies of using public buses to travel to other areas than the university
campus resulted in 62% monthly or less than a month. The student’s automobile ownership
was rated at 14.4%. Among the participants, 59.6% requested more PBS opportunities with
a 6% margin of error (95% confidence interval). Friday, Saturday, and Sunday collected,
respectively, 32.4%, 84%, and 69.6% of the students’ interest in most favorite days to go
out. The favorite time interval was between 18:00 and 20:00 and accumulated the interest
of 76.4% of the students. The time between 20:00 and 22:00 was selected by 36.8% of the
students, and the time between 22:00 and 24:00 was selected by 26% of the students. During
these periods, the students’ transportation choices were as follows: 45.2% preferred to walk,
21.2% preferred bicycle, 15.6% preferred public bus, 12.8% preferred their own car, and
5.2% preferred taxi as a transportation option. In this circumstance, a second confirmation
of the demand for PBS resulted in a 70.8% agreement of responders with a 5.6% margin of
error (95% confidence interval).

The prime findings in this part are the high percentage of walk preferences. The
reason for the high rate of walk preferences was that the bus line was not available. In
some bus lines, passengers still have to walk halfway to the destination, so many prefer to
walk instead of paying for bus fees. With the given student car ownership being 14%, it is
evident that a personal car-dependent public transport model does not cover most students
in this local city. Especially weekly bus users, who want to use buses more regularly, or
those who want to go out on Friday night after 20:00, and who need to use a taxi in this
situation created the highest chi-square stats and p-value correlation.
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4.1.3. Part C—Students’ Overall Satisfaction

In this part, the respondents were asked to provide their overall satisfaction with their
academic life and future expectations. The results are presented in Table 4.

Table 4. Descriptive differences of students’ overall satisfaction.

No Attributes No Label Name Relative (%) Chi2 p-Value

13 University’s contribution to the city 1.32
Economically 34 “Conteco” 34.8 0.10
Educationally 35 “Contedu” 26 0.76
Academically 36 “Contaca” 19.6 0.65
Industrially 37 “Contind” 16 0.03
Culturally 38 “Contcul” 3.6 0.08

14 Evaluation of the university 0.53
High 39 “ValueH” 19 0.54

Medium 40 “ValueM” 34 0.26
Low 41 “ValueL” 47 0.55

15 Winter seasons negative effect on the daily life 5.63
High 42 “WinterH” 64 0.01

Medium 43 “WinterM” 22 0.15
Low 44 “WinterL” 14 0.08

16 Demand a fast-food restaurant nearby campus 45 “Mc” 1.39 0.00
Yes 83.2
No 16.8

17 Demand a nearby supermarket 46 “SpM” 0.77 0.00
Yes 90.4
No 9.6

18 Dwelling in the same city after graduation 47 “Grad” 0.04 0.84
Yes 20
No 80

Regarding the university’s contribution to the city from the students’ point of view,
34.8% of the participants expressed the importance of economic contribution, 26% high-
lighted the educational contribution, 19.6% chose the academic contribution, 16% industrial,
and only 3.6% cultural. Students’ university rating into three scale bins resulted in 47%
for low, 34% for medium, and 19% for high. The negative effect of winter seasons on
students’ daily lives resulted in 64% of replies for high, 22% for medium, and only 14% for
low. The idea that “Having at least a chain restaurant (for example, McDonald’s) near the
campus area would make life more comfortable” resulted in support of 83.2%. Similarly,
the idea that “Having a supermarket near the campus” resulted in 90.4% of the students’
interest in favor. Finally, with regards to the question of “Would you stay in Kitami city
after graduation if there were any career opportunities for you?” 80% of participants se-
lected a negative response, while 20% answered positively to this question. The positively
answered students group divided by 40% from Hokkaido origin, 46% from another part of
Japan, and 14% were international students.

The facts emerging in this section can be summarized as follows: the university’s
contribution to the city does not represent any common consensus among the participants.
Participants generally rate the university at an average level. Participants who found the
negative impact of the winter season highly on daily life achieved a high value in the
chi-square test while at the same time providing the lowest p-value. Likewise, the need for
a chain restaurant and a supermarket nearby perceived support from the overwhelming
majority of participants. Both variants were statistically verified by producing a low p-
value. Another important finding is that roughly 4 in 5 participants do not want to settle in
Kitami city after graduation. On the other hand, the remaining 20%, if extrapolated to the
whole student population, result in about two hundred people per year, which represents
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a vital and robust workforce that, if given the opportunity, could invigorate the decreasing
population of Kitami.

4.2. McNemar’s Test

The contingency table created from our dataset is represented in Table 5. Cell (B)
represents the number of students who were willing to use public bus services at the initial
survey but changed their minds in unfavorable of bus services during the second survey.
Cell (C) represents the number of students whose case is the opposite.

Table 5. 2 × 2 contingency table.

FI/SI Second Inquiry
(SI)—Yes

Second Inquiry
(SI)—No Row Total

First Inquiry (FI)—Yes 129 20 (B) 149
First Inquiry (FI)—No 48 (C) 53 101

Column Total 177 73 250

The calculated result of the test is presented in Table 6 [111].

Table 6. The result of McNemar’s Test.

Set of Parameters Value

McNemar’s Chi-square (1.0) 11.5294
p-value 0.0007

Cramér’s V 0.2148

The statistical significance level (α) for this study was also chosen before the data
collection and set to 5% (0.05). The decision was statistically significant; we are 95% (0.95)
confident that it would be implausible to have occurred, given the null hypothesis is valid.
Hence, the null hypothesis can be rejected in favor of the alternative hypothesis. Cramér’s V
correlation with a value of 0.2148 indicates an influential association between the variables.

Additionally, the students’ decision change populated by groups regarding the trans-
portation option during their preferred period in the existence of PBS is given in Table 7.

Table 7. The student’s decision change regarding the transportation preferences by groups.

Cell Group Bike Bus Car Taxi Walk Row Total

A 30 24 9 9 57 129
B 5 3 1 0 11 20
C 9 7 10 3 19 48
D 9 5 12 1 26 53

Column total 53 39 32 13 113 250

In Figure 3. The member of group B and group C were represented in the radar charts.
Decision changes mainly occurred among the respondents who prefer to walk, and this
response also covers the majority of the student population.

The findings suggest that it could be helpful in the city to increase the PBS frequencies,
at least for the students’ periods as most desirable (e.g., Friday and Saturday evenings after
20:00 h).
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Figure 3. The student decision change in the presence of the PBS.

4.3. Classification

Below, we report on the results from four machine learning classifiers (logistic regres-
sion, support vector machines, random forests, and artificial neural networks) to predict
the binary demand variable based on the features described in Section 4.1. We report
performance measures on a 20% random sample of test data in all experiments. With the
remaining 80% of the data, we use 10-fold cross-validation to tune the model parame-
ters. These parameters were the regularization strength and solver function for logistic
regression, the number of iterations in support vector machines, the tree’s depth in random
forests, and hidden layer size in neural networks.

Before moving on to the broader review, we took a pragmatic experiment with the
subset selected in the student’s dataset. The feature selection technique is an essential
process in machine learning, where the set of all possible features is reduced to those
required to contribute most to the prediction output [112]. We used SelectKBest as a
popular feature selection method [113]. SelectKbest is a feature selection algorithm used to
improve prediction accuracy or increase performance on high-dimensional datasets [114].
As the definition suggests, this method is ideal for high-volume data sets, and SelectKBest
removes all but the K highest scoring features [115]. The best predictors obtained by
SelectKBest are given the Table 8. Additional explanations regarding the abbreviation used
in the table given in Appendix A.

Table 8. Selected top 10 features of SelectKBest techniques.

1 2 3 4 5 6 7 8 9 10

Label FI PTFL PTFW HH Frdy HM Contind Contcul PTime PTTtaxi
Chi2 Score 17.940270 11.884577 9.133065 4.131003 4.470251 4.131003 3.901401 3.023923 2.987147 2.908807

However, the effect of the significant number of features determined by SelectKBest
on the classification model’s accuracy was not as high as expected, with a 0.74 value of
accuracy. Nevertheless, these are factors that come at the forefront of situations in which
students feel the need for PBS, in their opinion.

Therefore, as we explained above, due to the relatively small volume of students’
data density, we preferred to use all dataset features and considered their effects on the
estimation depending on each label’s separate correlation over the target variable.

The shape of the data has changed by creating dummy variables to cast categorical
variables to continuous applicability in the classification processes. The dataset’s shape
consists of 250 records and 46 features for prediction. Next, the data were normalized, and
models were fitted.
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The evaluation metrics for normalized data prediction are shown in Table 9. The
performance was comparable across models (AUC between 0.81 and 0.68). The differences
at the Cohen’s kappa metrics with modest gains in the case of logistic regression were
decisive. A higher accuracy value with the training set might indicate overfitting. For this
reason, the test set accuracy is more relevant for evaluating the performance on unseen
data since it is not biased. As we mentioned before, the MLP classifier performs the worst
due to the relatively small data size.

Table 9. Prediction metrics for classifiers with the normalized data.

Classifier F-Measure Accuracy AUC Cohen’s
Kappa

Cross-Validation
F1

Logistic Regression 0.88 80% 0.81 0.39 0.82
Linear SVM 0.80 70% 0.71 0.25 0.76

Random Forest 0.91 84% 0.61 0.25 0.81
MLP 0.67 56% 0.68 0.17 0.76

On the other hand, the random forest algorithm provided the highest prediction results
on F-measure. Furthermore, the log-loss (cross-entropy loss) marks a logistic regression
classifier’s performance and gets the best of its value near 0. In this model, it was 0.48.

As seen from the table, the logistic regression and random forest algorithms are
preferable for practicality and reliability. Those algorithms are often used with data mining
growth in the information systems domain [116,117]. The powerful strategies among the
metrics here were Cohen’s kappa results. In addition, cross-validation may lead to higher
average performance than applying any single classification strategy, and it also cuts the
risk of poor performance in practice [118].

In Figure 4, a graph for mean F-scores between the algorithms was given to perform
a 5 × 2 cv paired t-test procedure to compare the performance of the two models [119].
According to Figure 4, logistic regression and random forest classifiers perform better
than the other algorithms. We assume a significance threshold of α = 0.05 for rejecting the
null hypothesis that both algorithms perform equally well on the dataset and the result of
conducted the 5 × 2 cv t-test given below:

The p-value is = 0.528
The t-statistics is = −0.678

Figure 4. Mean F1-score between the algorithms.
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Since p > α, we cannot reject the null hypothesis and conclude that the two algorithms’
performance is not significantly different.

For visualization purposes, a set of graphs for class distribution of logistic regression
and random forest classifiers was given below in Figure 5.

Figure 5. Class distribution plots of logistic regression and random forest classifiers (TN: True-Negative, TP: True-Positive,
FN: False-Negative, FP: False-Positive).

Finally, we have able to define around 80% of the reliable variation in selecting night
hours and optimized PBS with all survey dataset features. In addition, classification is a
practically applicable method. Policymakers can use this method to estimate the demand
each year and change the PBS accordingly.

5. Conclusions
5.1. Discussion of Research Finding and Limitations

The available research study on public buses in rural areas or small cities in Japan is
limited but expanding. The characteristics of rural areas or small towns have encouraged
private cars, which has caused problems for the continuity of public bus operation due
to financial feasibility. There are two main reasons people were indifferent and reluctant
to use the bus. The first one is the limited number of buses, and the second one is the
operational time [120]. Another major problem is the accessibility of the bus stops. A
significant statistic revealed by a survey aimed to measure people’s bus use intention in
Japan’s rural city. Nearly half of the respondents live within five minutes of a bus stop, and
approximately 80% of them are within 10 min of a bus stop [121]. In addition, the common
point of the studies is that if the demand is supplied appropriately, the tendency of people
to use buses instead of personal cars increases.

In the presented study, we endeavor to highlight why and how rural city university
students’ transport quality needs to be improved based on demand.

However, if we desire this method to be positioned in a more generalized frame, it
must respond to some conditions:

First, the sample size of a population is essential to prevent any scientific suspicion
of the significance of the statistic’s accuracy behind the research. The sample size of
250 students from a population of 1800 is notable but less than satisfying the exact expected
confidence level (a fair 5% margin of error for a population of 1800 persons requires
317 responses with a population proportion value of 50%). The obstacle for this task is
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the low response rate in Japan. Social and economic status can affect the answer rate; for
instance, voter turnout, a measure of citizens’ participation in the political process, was
53% during recent elections, lower than the Organization for Economic Co-operation and
Development (OECD) average of 68% [122].

Second, the method provides a simple foresight into next year’s PBS demand pro-
jection from a year earlier student opinion poll. That means the method’s performance
requires ensuring a data flow by obtaining new survey data from newly enrolled students
each year. In this way, we can analyze the low response rate on reliability, non-random
response model, and possible selection bias.

Third, PBS demand analysis was the main topic in this case study scenario. The
method requires at least one more test with a different case scenario and a different topic.

On the other hand, the survey question design and order may need to be improved
depending on each year’s new conditions that may help the city’s transportation bureaus
manage their decisions more interactively to meet passenger demand with their services.

As researchers indicated in their detailed analysis in literature, improving university
students’ mobility makes it easier for them to participate in more social activities after
school hours, enhancing their socializing ability, which is a bit problem in Japan.

The findings for the three objectives of this research presented in Sections 4.1–4.3 can
be summarized as follows:

• Initially, the current demand rate, measured at 60% with the two-step verification
probe, was strictly compatible with the Japanese countryside’s real-life situation. The
demand for PBS is relatively low. However, the secondary probing increased the
demand rate to 71%;

• The initial and secondary probing findings were subjected to a hypothesis test to
provide a fair settlement between two mutually exclusive statements. The final
decision was confirmed statistically and significantly supported the hypothesis that
there is a need to improve on the PBS to fulfill students’ mobility demand based on
the collected student data sample;

• After implementing several machine learning-based prediction methods to measure
whether the increase in demand would occur, the best and most reliable predic-
tion of the demand settled at 80%. Additionally, with a simple series of questions
(Appendix B), we have explained a variation of 20 percent that can increase demand
for PBS.

Providing sustainable and reliable information is a fundamental requirement of
decision-making. Researchers collect and process data systematically, unbiased, and
solution-oriented to help policy-level decision-makers make practical decisions [123]. Our
research could help decision-makers generate more practical and realistic policies regarding
optimizing the public bus service frequencies.

The following steps in our research will involve:

• Discussions with university administrators;
• Improving our predictive models with enhancing daily life indicator variations;
• Possibly expanding our method applicability to a research field other than public bus

transportation.

5.2. The Current Policies and Implications

In a general term, there is always a requirement for statistics produced by various
methods, including survey statistics, to properly understand a regions’ actual transport
and traffic limitations. For instance, the PBS usage continuously decreases around 36%
over the past 20 years in Japan except for its three major metropolitan areas Tokyo, Osaka,
and Nagoya [124]. Based on this statistical information, a general assessment of the current
and suggested solution-oriented policies for promoting PBS versus private vehicle can be
summarized as follows:
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• On-demand transportation services, such as autonomous shuttles, can operate more
economically under an uncertain demand level;

• Micro-mobility solutions, such as e-bikes for students and tourists and e-wheelchairs
for the elderly, can meet public transportation requirements.

A demand-based and situation-specific solution may be convenient for rural munic-
ipalities with different geographical, cultural, and population characteristics. As in this
study, hosting a university is a good thing for a city’s economy, but not every rural city
may have this privilege.

Instead of using personal vehicles, promoting using more current public transport
instruments while they are still operating is also an effective way in the circumference of
the existing situation eventually. Simultaneously, when the passenger demand increases
toward the public transport, the services’ frequency and quality increase.

The studies are ongoing to realize the future applicability of mobility as a service
in Japan. It has featured the necessity of providing data covering the whole country
by standardizing transport operators’ data into a standard format and making it open
data [125].

Improved autonomous vehicles providing a promising solution to passenger trans-
portation problems in rural areas might drastically change the transportation arena. How-
ever, there are situations where autonomous vehicles will not meet transport expectations.
For instance, autonomous vehicles have difficulties operating in poor weather, such as fog
and snow, and reflective road surfaces from rain and ice create other challenges for sensors
and driving operations [126].

In an ongoing study, Higashihiroshima City is conducting an experimental project in
collaboration with private initiatives that aim to solve traffic problems around Hiroshima
University, providing a loop bus service and collect data for the future automated driving
society [127]. As in this case, a fixed-route loop bus through areas that lacked regular access
to existing public transit can be a sample of best practices.

Finally, this research presented that public transportation is essential for a community
to carry out daily life activities based on mobility. If it is chosen more often by the students
and other citizens (such as travelers, domestic tourists, and the elderly, who account for a
large part of the city population), it will become more comfortable. Reversibly, in equilib-
rium, the quantity of a good supplied by producers equals the amount demanded by con-
sumers [128]. The revitalization of local industries, needed especially in the post-COVID-19
pandemic reality, also depends on the enrichment of different transportation options.
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Appendix A

In the following table, acronyms of the variables used in Tables 2–4 are given by the
order with their full name:

Table A1. Acronyms of the variables used.

No Acronyms Explanation

1 SexF Label of female responder
2 SexM Label of male responder
3 OJ Label of a Japanese student who is origin different than Hokkaido
4 OH Label of a Japanese student who is origin Hokkaido
5 OI Label of an international student
6 Lapart Label of a student who is residing in an apartment flat
7 Lblodge Label of a student who is residing in a boarding house with a meal
8 Ldorm Label of a student who is residing university dormitory
9 Lhome Label of a student who is residing with their parent’s home
10 Dcook Label of a student who is cooking dinner for themselves
11 Dcafe Label of a student who is dining at the university canteen
12 Dbmeal Label of a student who is dining at the boarding house
13 Dbento Label of a student who purchases a lunch box (bento) for dinner
14 Drstrnt Label of a student who prefers a restaurant for dinner
15 PTime Label of a student who is doing a part-time job
16 PTFD Label of a student whose public transport frequency is daily
17 PTFW Label of a student whose public transport frequency is weakly
18 PTFM Label of a student whose public transport frequency is monthly
19 PTFL Label of a student whose public transport frequency is less than a month
20 Car Label of a student who has a car

21 FI First inquiry: label of a student who wants to use more public
buses initially

22 Frdy Friday: the preferred day of the week to go out for entertainment
23 Strdy Saturday: the preferred day of the week to go out for entertainment
24 Sndy Sunday: the preferred day of the week to go out for entertainment
25 HL Hours between 18:00 and 20:00 segment
26 HM Hours between 20:00 and 22:00 segment
27 HH Hours between 22:00 and late segment
28 PTTwalk Label of a student whose preferred transport type is walk
29 PTTbike Label of a student whose preferred transport type is a bicycle
30 PTTbus Label of a student whose preferred transport type is a bus
31 PTTcar Label of a student whose preferred transport type is car
32 PTTtaxi Label of a student whose preferred transport type is a taxi
33 SI Secondary inquiry: label of a student who wants to use public buses finally
34 Conteco The university has a significant contribution to the city’s economy
35 Contedu The university has a significant contribution to the city’s education system
36 Contaca The university has a significant contribution to the academy
37 Contind The university has a significant contribution to the city’s industry
38 Contcul The university has a significant contribution to the city’s culture
39 ValueH Evaluation of the university by a student (high)
40 ValueM Evaluation of the university by a student (medium)
41 ValueL Evaluation of the university by a student (low)
42 WinterH The negative effect of the winter season on student life (high)
43 WinterM The negative effect of the winter season on student life (medium)
44 WinterL The negative effect of the winter season on student life (low)
45 Mc Label of a student who prefers a chain restaurant near campus
46 SpM Label of a student who prefers a supermarket near campus

47 Grad Label of a student who remains if a career opportunity exists
after graduation

Appendix B

In the following table, the survey questions are given by order:
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Table A2. Questions of the survey used.

No Questions

1 What is your sex?
2 Where are you from?
3 What kind of residence do you live in?
4 Where do you usually have dinner?
5 Do you have a part-time job?
6 How often do you use the public bus services of Kitami city?
7 Do you have a car?
8 Would you like to use the public bus services of Kitami city more often?
9 Which days of the week would you like to go out the most?

10 During which periods would you like to go out?
11 Which transportation option are you using during those periods?
12 If public bus services would be available until late at night, would you use them often?
13 In what way is the institute of technology contributing to Kitami city the most?
14 How would you evaluate the importance of the institute of technology for Kitami city?
15 Do you think the winter season makes your life challenging in Kitami city?
16 Do you think it would be useful to have a restaurant like McDonald’s around the campus?
17 Do you think it would be useful to have a supermarket around the campus?

18 Would you stay in Kitami city after graduation if there are any career opportunities
for you?
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