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Avalanches and edge-of-chaos learning in
neuromorphic nanowire networks
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Zdenka Kuncic 1,2,4✉

The brain’s efficient information processing is enabled by the interplay between its neuro-

synaptic elements and complex network structure. This work reports on the neuromorphic

dynamics of nanowire networks (NWNs), a unique brain-inspired system with synapse-like

memristive junctions embedded within a recurrent neural network-like structure. Simulation

and experiment elucidate how collective memristive switching gives rise to long-range

transport pathways, drastically altering the network’s global state via a discontinuous phase

transition. The spatio-temporal properties of switching dynamics are found to be consistent

with avalanches displaying power-law size and life-time distributions, with exponents obeying

the crackling noise relationship, thus satisfying criteria for criticality, as observed in cortical

neuronal cultures. Furthermore, NWNs adaptively respond to time varying stimuli, exhibiting

diverse dynamics tunable from order to chaos. Dynamical states at the edge-of-chaos are

found to optimise information processing for increasingly complex learning tasks. Overall,

these results reveal a rich repertoire of emergent, collective neural-like dynamics in NWNs,

thus demonstrating the potential for a neuromorphic advantage in information processing.
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The age of big data has driven a renaissance in Artificial
Intelligence (AI). Indeed, the ability of AI to find patterns
in big data could arguably be described as super-human;

the human brain is simply not designed for brute-force iterative
optimisation at scale. Rather, the brain excels at processing
information that is sparse, complex and changing dynamically in
time. The increasing prevalence of streaming data requires a shift
in neuro-inspired information processing paradigms, beyond
static Artificial Neural Network (ANN) models used in AI. The
brain’s unique capacity for adaptive, real-time learning is enabled
by the complex interplay between its neuro-synaptic non-linear
elements and a recurrent network topology1, with information
processing manifested through emergent collective dynamics2.

Physically implemented neuro-inspired information processing
has been demonstrated by nano-electronic device components
that integrate memory and computation, enabling a shift away
from the traditional von Neumann architecture. Resistive
switching memories3 are an important class of such devices
known as memristors4. Their electrical response depends not only
on applied stimulus, but also on memory to past signals5, which
can mimic the short-term plasticity and long-term potentiation of
neural synapses6. Utilising memristive switches as artificial
synapses in crossbar architectures7 has shown great promise in
realising physical implementations of popular ANNs such as
feed-forward8 and convolutional neural networks9.

Self-assembled networks of metallic nanowires with memristive
cross-point junctions10–13 are an approach to move from rigid
crossbar array architectures towards a more neural-like structure
in hardware. Nanowire networks (NWNs) exhibit a small-world
topology14, thought to be integral to the brain’s own efficient
processing ability15. Electrochemical metallic filament growth
through electrically insulating, ionically conducting coatings (e.g.
metal-oxides16, Ag2S10 or PVP11), enables memristive switching
at the metal-insulator-metal junctions11,17. The interplay between
memristive switching and a recurrent network topology promotes
emergence of collective, adaptive dynamics, such as formation of
conducting transport pathways that can be dynamically
tuned18,19, giving networks a biologically plausible structural
plasticity20. These neuromorphic properties equip NWNs with
unique learning potential, with applications ranging from
shortest-path optimisation21 to associative memory22. Addition-
ally, the neuromorphic dynamics of NWNs may be exploited for
processing dynamic data in a reservoir computing framework23,
as shown in both experimental24,25 and simulation26–28 studies.

It has been widely postulated that optimal information pro-
cessing in non-linear dynamical systems may be achieved close to

a phase transition, in a state known as criticality29. Distinct phase
transitions are associated with criticality, notably ‘avalanche
criticality’30 and ‘edge-of-chaos criticality’31. In avalanche criti-
cality, a system lies at the critical point of an activity–propagation
transition where perturbations to the system may trigger cascades
over a range of sizes and duration, characterised by scale-free
power-law distributions. In sub-critical systems, activity can only
propagate locally. Super-critical systems exhibit characteristically
large avalanches that span the system. Scale-invariant avalanches,
concomitant with avalanche criticality, have been observed in
neuronal cultures29,32,33 and neuromorphic systems comprised of
percolating nanoparticles34. In edge-of-chaos criticality, dyna-
mical states lie between order and disorder and the system retains
infinite memory to perturbations. Edge-of-chaos dynamics have
been observed in cortical networks35 and appear to optimise
computational performance in recurrent neural networks36, echo
state networks37 and random boolean networks38.

The observation of 1/f power spectra in neuromorphic NWNs
has led to the suggestion that they may be poised at criticality12,39.
While necessary, 1/f spectra are insufficient for criticality as 1/f
noise can be produced by a diverse range of processes without
spatio-temporal correlations, including uncoupled networks of
isolated memristors40. Here, we present evidence for avalanche
criticality in memristive NWNs and show that a critical-like state
occurs near a first-order (discontinuous) phase transition. We
also present the first evidence for edge-of-chaos criticality in
neuromorphic NWNs and demonstrate that information pro-
cessing is optimised at the edge-of-chaos for computationally
complex tasks. Our results reveal new insights into neuro-
inspired learning, suggesting that in addition to non-linear neuro-
memristive junctions, the adaptive collective dynamics facilitated
by neuromorphic network structure is essential for emergent
brain-like functionality.

Results
A physically motivated model for neuromorphic structure and
function in nanowire networks. PVP-coated Ag nanowires self-
assemble to form a highly disordered, complex network topology
(experiment: Fig. 1a; simulation: Supplementary Fig. 1). As a
neuromorphic device, NWNs are operated by applying an elec-
trical bias between fixed electrode locations across the
network12,22. To gain deeper insight into the neuromorphic
dynamics, a physically motivated computational model of Ag-
PVP NWNs was developed. The model is briefly described here
(see Methods for further details).
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Fig. 1 Ag-PVP nanowire networks with memristive junctions. a Optical microscope image of a self-assembled Ag-PVP NWN (scalebar= 100 μm).
b Biased nanowire-nanowire junctions promote Ag+ migration and redox-induced Ag filament formation through the electrically insulating, ionically
conducting PVP layer. Filament gap distance s varies from smax to 0. Junction resistance is modelled as a constant series resistance (Rr ¼ Roff ¼ G�1

off), in
parallel with constant filamentary resistance (Rf ¼ G�1

0 ) and time-dependent tunnelling resistance (Rt). c Junction conductance (Gjn ¼ R�1
jn ) and s, as a

function of state variable Λ(t). As ∣Λ∣ increases, the junction transitions from high resistance to tunnelling and then ballistic transport.
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Ag∣PVP∣Ag junctions lie at the intersection between nanowires.
These electrical junctions are modelled as voltage-controlled
memristors12,41. Λ(t) represents the state of a junction’s
conductive Ag filament in the PVP layer (Fig. 1b, Eq. (5)), and
is closely related to the physical filament gap distance (Fig. 1b, c,
Eq. (8)) that determines the junction’s conductance
(GjnðtÞ ¼ R�1

jn ¼ Ijn=V jn).
A junction filament grows when voltage exceeds a threshold:

∣Vjn∣ >Vset. The sign of Λ(t) encodes the junction polarity: a
filament approaches Λ ¼ Λmax when Vjn >Vset and approaches
Λ ¼ �Λmax when Vjn <−Vset. When the voltage is sufficiently
low (∣Vjn∣ < Vreset), the filament decays towards Λ= 0, as a result
of thermodynamic instability. The rate of filament growth or
decay is determined by the voltage difference relative to Vset or
Vreset. Hence, Λ(t) encodes a junction’s memory to past electrical
stimuli. See Methods (Eq. (5), Fig. 9) for full mathematical details.

Figure 1c shows the non-linear dependence of Gjn on ∣Λ∣ that
produces switch-like junction dynamics. When 0 ≤ ∣Λ∣ <Λcrit, the
junction is insulating (Gjn=Goff≪Gon, where Gon=G0 is the
conductance quantum). As ∣Λ∣ approaches Λcrit, the junction
transitions to a tunnelling regime where conductance exponen-
tially grows as ∣Λ∣ increases. After the filament has grown
(Λcrit ≤ jΛj<Λmax), the filament tip width is the limiting factor of
conductance and transport is ballistic, with Gjn=Gon=G0.

Next, simulations using this model are presented analysing the
network level dynamics of this neuromorphic system.

Adaptive network dynamics near a discontinuous phase tran-
sition. NWNs driven by a constant bias V converge to a steady-
state conductance (simulation: Fig. 2; experiment: Supplementary
Fig. 2a). The transient dynamics of the network conductance
time-series, Gnw(t), occurs in steps, as the network shifts between
metastable states (plateaus in Gnw). Above a threshold voltage Vth,
NWNs exhibit system-level switching, with Gnw dramatically
increasing by three orders of magnitude. Post-activation, the
conductance increase slows to a rate comparable with pre-
activation (on logarithmic scale). Increasing V increases the
activation rate and diminishes the step-like increases in con-
ductance. These qualitative features of Gnw(t) are independent of
the specific network and voltage in simulation and experiment.

Simulations reveal that in the Low Conductance State (LCS:
Gnw≲ 10−3 G0 for this network), all network junctions exhibit
low tunnelling conductance and no junctions are in a ballistic

transport regime. The High Conductance State (HCS: Gnw≳
10−1 G0) exhibits pathways of high-conductance junctions (Gjn ≈
G0) spanning from source to drain electrodes. Figure 2b shows a
single pathway, however the HCS may also consist of multiple,
parallel high conductance pathways at higher voltages (Supple-
mentary Fig. 3), and for large or dense networks with many
equivalently short source-drain paths.

Figure 2c shows the steady-state Gnw (re-scaled to
G�
1 ¼ nGnwðt ¼ 1Þ=G0, where n is the graph length of the

shortest path between source and drain electrodes) as a function
of V*= V/Vth for two different network initial states: an inactive
(LCS) network, with all junctions initialised to Λ= 0 (black
circles); and a network pre-activated (HCS) to G�

nw ¼ nGnw=G0 �
4:7 by a 1.8 V= 20Vth DC bias for 10 s (red triangles). For V* <
nVreset, networks always converge to a stable LCS, irrespective of
initial conditions. Above this level, multiple stable G�

1 states
emerge. Multi-stable conductance states for a wider range of
initial conditions are shown in Supplementary Fig. 4. Networks
exhibit hysteresis, since initial junction filament states control
which stable state is reached. In simulation, for all initial
conditions, G�

1 is always non-decreasing with V*, but this is
not observed experimentally (Supplementary Fig. 2c) as it is
difficult to prepare a network in exactly the same state before each
activation (due to long-term memory of junctions). Additionally,
persistent fluctuations from junction noise, not included in the
model, can facilitate transitions between multi-stable states12,39

(Supplementary Fig. 2b).
A discontinuity in the order parameter (steady-steady

conductance, G�
1) between LCS (G�

1 � 0) and HCS (G�
1 � 1)

is revealed as the control parameter (V) is varied for any given
network and initial conditions. This is found in both simulation
(e.g. V*= 0.5 for pre-activated and V*= 1 for inactive networks
in Fig. 2c) and experiment (Supplementary Fig. 2c). These
distinctive discontinuities (V*= 0.5 for pre-activated and V*= 1
for inactive), along with the properties of multistability and
hysteresis, indicate that the formation/annihilation of the first
conducting pathway in the network corresponds to a first-order
(discontinuous) non-equilibrium phase transition, marking an
abrupt change in the global state of the system. In the model, the
location of the discontinuous transition is universal (Supplemen-
tary Fig. 5), as it depends only on the length of the shortest path
between the electrodes and on the initial state (either LCS or
HCS). Networks in a LCS (no conducting pathways) transition to
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Fig. 2 Threshold network activation under constant bias. Simulations using a 100 nanowire, 261 junction NWN. a DC activation curves for an initially
inactive NWN (Λ= 0 for all junctions) for increasing applied voltages (V*= V/Vth), with Vth= 0.09 V. b Snapshot visualisation of NWN, showing
formation of first transport pathway, corresponding to shortest path length n. c Steady-state network conductance (with G�

nw ¼ nGnw=G0), as a function of
V*. Black circles are for an initially inactive network. Red triangles are for a network pre-activated by a 1.8 V DC bias. Inset shows a zoom-in near V*= 1 with
a logarithmic vertical scale.
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a HCS (conducting pathways exist) when V* > nVset. Networks in
a HCS transition to a LCS when V* < nVreset. In real (i.e. non-
ideal) NWNs, Vset and Vreset may vary between junctions due to
variations in the thickness of PVP coating around nanowires.

Additional discontinuities in G�
1 may be observed at higher

integer multiples of thresholds (V=mVset, V*= kVreset). For
example, at V*= 11/9 ≈ 1.2 (corresponding to V= 11Vset) in
Fig. 2c. These correspond to the formation/annihilation of
additional transport pathways. In the limit of large network size,
only the first discontinuity (between G�

1 � 0 and G�
1 � 1) in G�

1
vs V remains concomitant with formation of the first conducting
pathway (Supplementary Fig. 5).

These results demonstrate that NWNs can adaptively respond
to external driving and can undergo a first-order phase transition
between bi-stable states (LCS and HCS). These global network
dynamical states arise from the recurrent connectivity between
junctions and their switching dynamics, as shown next.

Collective junction switching drives non-local transport. Net-
work activation or de-activation as described above can be
understood as a collective effect emerging from recurrent con-
nections between junctions. By Kirchoff’s Voltage Law (KVL), the
sum of voltages along any path between source and drain is equal
to the externally applied voltage, while the sum of voltages around
any closed loop in the network is zero. Since the voltage across a
given junction Vjn(t) controls the future evolution of its filament
state Λ(t) and hence conductance Gjn(t), KVL couples the
dynamics of memristive junctions to the network topology. A
simulation at V*= 1.1, with uniform initial conditions (Λ= 0),
showing Gjn(t) (Fig. 3a), Vjn (t) (Fig. 3b) and corresponding
visualisations at three time-points (Fig. 3c–e), reveals the quali-
tative characteristics of collective switching dynamics in NWNs.

Initially, the disordered network structure ensures the voltage
distribution (Fig. 3b) is inhomogeneous, with junctions near the
electrodes typically having the highest Vjn. For junctions with
|Vjn | <Vset, filament states remain static, or otherwise decay to
∣Λ∣= 0, if Λ ≠ 0 and ∣Vjn∣ <Vreset. When ∣Vjn∣ >Vset, filaments
grow at a constant rate dΛ/dt= ∣Vjn∣− Vset until Gjn (Fig. 3a)
rapidly increases from the onset of tunnelling, coinciding with a
decrease in Vjn (Fig. 3b). Gjn plateaus once ∣Vjn∣ reaches Vset. This
first occurs at t ≈ 0.8 s for junction #1. Voltage is redistributed
locally to neighbouring junctions42 (junctions near opposite
electrodes, e.g. #1 and #9, can be considered connected by an
edge, with Rjn= 0, at the power source). If the subsequent voltage
increase results in ∣Vjn∣ > Vset, the filament growth rate increases
for these junctions. For junctions already in a tunnelling regime
(Goff <Gjn <Gon=G0), Gjn briefly increases until Vjn returns to
Vset, whereas insulating junctions experience a delay before Gjn

increases as their filament grows. Hence, Gnw displays small, step-
like increases coinciding with junctions transitioning from
insulating (Gjn=Goff) to tunnelling (Goff <Gjn <Gon) and groups
of already active junctions adaptively adjust their Gjn such that
their Vjn lies on or below the threshold. These active junctions
effectively wait for other junctions to activate before switching on,
resulting in a switching synchronisation phenomenon similar to
that seen in 1D memristive networks43,44.

Through these switching events, the network self-organises to
prevent a large voltage drop (greater than Vset) across any given
junction, funnelling most of the current down a single (or a few)
transport pathways, which grow from the electrodes towards the
centre of the network (Fig. 3c, d). For any given pathway of length
m, if V* <mVset, then after higher voltage junctions adjust their
voltage to Vset the pathway ceases to grow. This is the fate of all
paths in networks with V* < 1. When, V* > 1, nearby pathways
grow in competition, with the shortest pathway forming first.

Once the final junction along a source-drain pathway enters a
tunnelling regime (t ≈ 6 s), Gjn of each junction on the path
adjusts (Fig. 3e) such that they receive the same voltage (Vjn=
V/n > Vset), since a larger Vjn increases dΛ/dt and hence, Gjn,
which in turn reduces Vjn. At this point, junctions along the path
behave collectively like a single memristive junction under
constant bias: for each of these junctions, Λ grows linearly in
time, leading to exponential growth in Gjn and hence, Gnw. This
manifests itself as a large, rapid increase in Gnw(t). This growth
ceases when all junctions along the path reach the ballistic
transport regime (Λ=Λcrit, Gjn=G0), where they stably remain
at later times. For higher voltages or denser networks, additional
transport pathways may form, resulting in later steps in Gnw (cf.
Fig. 2a). For sufficiently high voltages (when Vjn > Vset for all
junctions along the path), the plateaus become less pronounced
and conductance increases continuously with time, however
synchronous switching is still observed (Supplementary Fig. 6).

These results show that the emergence of transport pathways
can be attributed to coupling between the complex network
topology and memristive junction switching. Cascades of activity
are induced as junctions transition into the conducting regime,
adaptively redistributing voltage to their neighbours. This
collective switching activity near a phase transition is reminiscent
of avalanche dynamics, investigated next.

Avalanche switching dynamics. Avalanches with scale-free size
and lifetime event statistics—a hallmark of critical dynamics—
have been observed in neuronal populations29,32,33 and other
neuromorphic systems34,45. For NWNs, the conductance time-
series of each junction (from the model described above) is
converted to discrete switching events by introducing a threshold
for the conductance change ΔGjn between adjacent time-points. A
similar procedure is applied to experimental measurements of
Gnw. As in neuronal data32,33, events are binned discretely in time
into frames (width Δt). This allows an ‘avalanche’ to be defined as
a sequence of frames containing events preceded and followed by
an empty frame. Avalanche size (S) is defined as the total number
of events in the avalanche. Avalanche life-time (T) is defined as
the number of frames in the avalanche. See Methods for full
details.

Systems near criticality exhibit avalanche size S and lifetime T
probability distributions (P(S), P(T)) and average avalanche size
(〈S〉(T)) that follow power-laws (Eqs. (1), (2), (3)), with
exponents obeying the crackling noise relationship (Eq. (4))46.
The agreement of the independent estimates (Eqs. (3), (4)) of 1/
σνz more rigorously tests avalanches for consistency with
criticality than mere power-laws, as power-law size and life-
time distributions can be obtained by thresholding stochastic
processes47, but do not obey Eq. (4).

PðSÞ � S�τ ð1Þ

PðTÞ � T�α ð2Þ

hSiðTÞ � T1=σνz ð3Þ
1

σνz
¼ α� 1

τ � 1
ð4Þ

Both simulated and experimental NWNs stimulated with
voltages close to the switching threshold (V* ≈ 1) exhibit power-
law P(S) (Fig. 4a, d) and P(T) (Fig. 4b, e) (KS test, p > 0.5). In the
simulated NWNs, the power-laws exhibit a break attributed to the
finite-size of the network limiting avalanche propagation. As
network size or density is increased (Supplementary Fig. 7), the
slope of the power-law region remains unchanged, while the
power-law break increases for P(S), P(T) and 〈S〉(T). The break in
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the distribution is consistent with criticality as the avalanche
distributions obey finite-size scaling48,49 (Supplementary
Fig. 8a–c). Experimental NWNs contain many more nanowires
so no power-law break is evident in the avalanches sampled.
Additionally, 〈S〉(T) follows a power-law (Fig. 4c, f). For
simulated NWNs, τ ≈ 1.95 ± 0.05 (Kolmogorov–Smirnov distance
(KSD)= 0.006, p= 0.54) and α ≈ 2.25 ± 0.05 (KSD= 0.004, p=
0.54), yielding 1/στz ≈ 1.3 ± 0.1, which is in agreement with
1/στz= 1.3 ± 0.05 from 〈S〉(T). The same agreement is obtained
for experimental NWNs with τ ≈ 2.05 ± 0.10 and α ≈ 2.25 ± 0.10
(for P(S), KSD= 0.032, p= 0.80; for P(T), KSD= 0.037, p=
0.59), yielding 1/στz ≈ 1.2 ± 0.15, which is in agreement with 1/
στz= 1.2 ± 0.05 from 〈S〉(T). The agreement of the individual
estimates of exponent 1/σνz in both simulated and experimental
data confirms the crackling noise relationship (Eq. (4)) is obeyed
within uncertainties. Further evidence for avalanche criticality is
found by collapse of avalanche shape onto a universal scaling
function (Supplementary Fig. 9), obtaining a third independent
estimate that 1/σνz ≈ 1.3. These factors strongly suggest that these
avalanches are consistent with critical-like dynamics.

By altering the strength of the driving voltage away from the
threshold Vth, the avalanche distributions begin to deviate from a
power-law (Fig. 5). When V* < 1, pathways are unable to form

across the network and the switching events result in small-scale
avalanches (black points). As V* approaches 1, the distribution
elongates and becomes a power-law (red points). Above V*= 1
(when the networks activate), a bi-modal distribution is evident,
as avalanches of large characteristic sizes and lifetimes emerge
above the power-law tail (cyan and blue points). As network size
increases, the probability density of the bump relative to the
power-law region grows (Supplementary Fig. 8d–f). This suggests
these anomalously large avalanches are consistent with super-
critical states.

Order-chaos transition from polarity-driven switching. The
response of a NWN to constant voltage stimulus, examined
above, has revealed rich collective dynamics, but ultimately
conductance converges to a steady state. When networks are
driven by unipolar periodic stimuli, they converge to periodic
attractor states. However, in response to a periodic, alternating
polarity driving signal, NWNs exhibit a more diverse range of
dynamics, from ordered to chaotic, depending on the amplitude
A and frequency f of the driving signal. This is quantified by
calculating the maximal Lyapunov exponent λ for simulated
networks driven by a triangular AC signal (see Methods).
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Fig. 3 Collective switching dynamics under DC bias. Simulations using a 100 nanowire, 261 junction NWN at voltage V*= V/Vth= 1.1. a Conductance
states of each junction, Gjn, along shortest source-drain path (in units of conductance quantum G0). Junctions are numbered sequentially according to
distance from source (#1 closest, #9 farthest). Network conductance, G�

nwðtÞ (normalised by source-drain path length), is also shown. b Corresponding
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λ measures the exponential convergence or divergence of nearby
states of the system separated by an infinitesimal perturbation50.
For λ < 0, the perturbations shrink over the trajectory and the
network evolves to stationary (fixed point) or periodic (limit
cycle) behaviour. For λ > 0, perturbations rapidly amplify,

resulting in chaotic dynamics. λ ≈ 0 corresponds to the edge-of-
chaos state.

Figure 6a plots λ as a function of A and f for triangular AC
stimuli. Highly ordered dynamics can be inferred from the low-f and
low-A regime where λ≲− 10 s−1 (black region). For f≲ 0.2Hz,
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increasing A results in an increase in λ towards zero at A ≈ 3 V.
Above this frequency, increasing A can lead to a λ > 0 and the
onset of chaotic dynamics in the network. For A≳ 2.5 V and f ≳
1.5 Hz, stronger chaotic dynamics are inferred, with λ≳ 10 s−1

(yellow region). Further increasing f for a given A leads to a
decrease of λ.

For a given λ, the collective switching states of NWNs was
characterised by the ratio of maximum to minimum network
conductance, r, averaged over each AC cycle. When 1≲ r≲ 10,
the network remains in either LCS (no pathways) or HCS
(pathways exist). When r≳ 103, the network is persistently driven
back and forth across the transition between these states.
Figure 6b reveals that only networks exhibiting strong switching
(r≳ 103) can exhibit chaotic dynamics (λ > 0), whereas both edge-
of-chaos dynamics (λ ≈ 0) and ordered dynamics (λ < 0) are
observed over the range of possible collective switching states.

Figure 7a–f shows simulated I− V (top row) and G−V
(bottom row) curves over 20 successive triangular AC cycles for
A= 1.25 V and varying f, producing different network dynamical
regimes: ordered (left column, f= 0.1 Hz, λ=− 2.6 s−1); edge-of-
chaos (centre, f= 0.5 Hz, λ= 0.4 s−1); and chaotic (right column,
f= 0.85 Hz, λ= 4.1 s−1). Examples of corresponding junction
conductance and voltage time-series are shown in Supplementary
Fig. 10. In the λ < 0 regime, I− V (Fig. 7a) and G− V (Fig. 7d)
cycles exhibit symmetric, repetitive hysteresis. For these states the
minimum conductance occurs when V= 0, meaning the network
fully activates and de-activates before polarity reverses. In the
edge-of-chaos regime (λ ≈ 0), I− V (Fig. 7b) and G− V (Fig. 7e)
cycles are still symmetric and repetitive, but now the network
does not deactivate completely before polarity reverses. In the
chaotic regime (λ > 0), I− V (Fig. 7c) and G−V (Fig. 7f)
trajectories diverge over successive cycles (evident from the
thickening of blue curves). These chaotic trajectories are not
unbound, but are instead confined to a reduced region of phase
space (a ‘chaotic attractor’). Examples of chaotic trajectories of
different Lyapunov exponents are shown in Supplementary
Fig. 11.

Qualitatively, the observed Lyapunov exponents can be
understood by considering a small perturbation (δΛ) to the
filament state (Λi) of the i-th junction. When tunnelling is absent

(cf. Fig. 1c), δΛ changes Gjn and hence, leaves the voltage
distribution of the network unchanged. Thus, as the network
continues to evolve, δΛ is remembered by the junction (the
junction states remain a fixed distance δΛ apart). When Λi

approaches its boundaries (cf. Fig. 1), either from when the
filament decays to zero (Λi→ 0 when ∣Vi∣ < Vreset) or saturates
(jΛij ! Λmax when ∣V∣ > Vset), δΛ shrinks. When a junction is in
a tunnelling regime, however, any perturbation to Λi is
exponentially amplified in terms of conductance. Perturbations
that increase a junction’s conductance decrease its voltage,
slowing filament growth if ∣Vi∣ >Vset, or increasing filament
decay if ∣Vi∣ <Vreset. The effect on neighbouring junctions is the
opposite. Under slow driving, the network can adapt to such
perturbations and retain the size of the perturbation. Under fast
driving, however, the network is unable to adapt and perturba-
tions grow during activation and de-activation, leading to
separation of nearby network states. The frequency which
constitutes fast or slow depends on the amplitude applied (cf.
Fig. 6) and the network structure (size and density). The
dynamical balance between the mechanisms that enforce order
(perturbations shrink) and create chaos (perturbations grow)
determines the stability of the global network dynamics. Hence,
tuning the driving signal allows control over system dynamics. As
shown next, this may be advantageous when utilising neuro-
morphic NWNs for information processing36,45.

Information processing optimised at the edge-of-chaos. The
information processing capacity of neuromorphic NWNs in dif-
ferent dynamical regimes was tested with the benchmark reser-
voir computing51,52 task of non-linear wave-form transformation
previously demonstrated in NWN experiments24,25 and
simulations26,27. In this task a triangular wave is input into the
network, nanowire voltages are used as readouts and are trained
using linear regression to different target wave-forms. Examples
of target waveforms obtained are shown in Supplementary Fig. 12
and sample network readouts (nanowire voltages) are shown in
Supplementary Fig. 13.

Figure 8 shows the network performance in transforming an
initial triangular wave of given A and f to different target wave-
forms as a function of the maximal Lyapunov exponent λ for each
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input (cf. Fig. 6). Over the range of λ, the rank order of relative
accuracy between tasks is consistent with the similarity between
the input (triangular) and target waveforms, namely sin > square
> π/2-shift ≈ 2f. The similarity between waveforms can be under-
stood by considering the Fourier decomposition of each signal.
To convert to a sine wave, higher harmonics must be removed
from the triangular input signal, whereas conversion to a square
wave requires additional odd higher harmonics. For double
frequency conversion, odd higher harmonics must be removed,
with even harmonics added. For phase shift conversion, the
network must produce a lag to the input signal, i.e. coefficients of
cosine terms in the Fourier series become coefficients of sine
terms. The sine wave transformation accuracy is always ≥ 0.98
before decreasing to ≈ 0.95 above λ ≈ 0. The square wave and π/2-
shifted wave accuracy increase as λ increases towards zero,
peaking when −2 s−1≲ λ≲ 0 s−1 at 0.86 for square wave and 0.69
for π/2-shifted wave. Like the sine wave, both the square wave
and π/2-shifted wave accuracy tapers off rapidly when the
network is in a chaotic regime (λ > 0), to an approximately
constant accuracy of ~ 0.6 for square and 0.3 for π/2-shift.
Notably, for the π/2-shifted wave, the accuracy for chaotic states
lies above the minimum accuracy for ordered states. For the 2f
target wave, the accuracy is zero for λ≲− 0.5 s−1, before rapidly
increasing to peak near the edge-of chaos regime λ ≈− 0.1 s−1 at
an accuracy of 0.79. Like the other wave-forms, accuracy
decreases as the network becomes chaotic (λ > 0), but accuracy
is higher than for ordered dynamics (λ < 0). For all tasks, strongly
chaotic states underperform compared to the edge-of-chaos. This
suggests that while more ordered (sine wave target) or slightly
chaotic (2f target) dynamical regimes may be optimal depending
on the computational complexity of the task, only a relatively
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narrow range of network states, those tuned to the ‘edge-of-
chaos’, are robust performers over a diverse set of target
waveforms.

Discussion
The formation (or destruction) of long-range transport pathways
between electrodes is a ubiquitous feature of disordered mem-
ristive networks with threshold-driven junction switching53,
including nanowires12,18,19 and nanoparticles54. Here, it was
found that the network undergoes a discontinuous phase transi-
tion when the first pathway forms, with a linear relation between
threshold voltage and source-drain path length. A similar dis-
continuous transition coinciding with pathway formation was
reported in simulations of adiabatically driven memristive net-
works with large Gon/Goff ratios (ratio between maximum and
minimum possible Gjn)53. Smaller Gon/Goff ratios were instead
found to result in a continuous transition. When Gon/Goff is large,
changes to Gjn lead to large changes in the voltage distribution,
strongly coupling the dynamics of junctions in the network. This
results in a switching synchronisation phenomenon (cf. Fig. 3a),
analogous to that observed in 1D memristive networks43,44.
Conversely, when Gon/Goff is small, junctions changing con-
ductance have a smaller effect on their neighbours. In this regime,
junctions still collectively switch between metastable states, but do
not exhibit switching synchronisation (Supplementary Fig. 14).
Hence, by tuning Gon/Goff, which can be achieved experimentally
by varying thickness of PVP coating, the collective behaviour of
NWNs can be controlled.

Finding power-law avalanche distributions over a few orders of
magnitude near a first-order (discontinuous) transition is sur-
prising, as they are usually associated with second-order (con-
tinuous) transitions55. Disorder and hysteretic behaviour are
likely key ingredients for scale-free avalanches observed in other
systems driven near a discontinuous phase transition, such as
magnetic materials56 and neural networks57. These properties are
certainly present in NWNs.

Critical avalanches were demonstrated here by tuning voltage
to the activation threshold, but the role of self-organisation in
achieving and sustaining critical avalanches requires further
investigation. Experiments show NWNs continue to exhibit
persistent, bi-directional conductance fluctuations (Supplemen-
tary Fig. 2b) as a result of junction noise, electromigration-
induced junction breakdown events, and subsequent recurrent
feedback by the network12,58. These mechanisms may allow
NWNs to self-organise to an avalanche critical state, allowing
mapping to models such as ‘self-organised criticality’ (SOC)30

(self-organisation to a continuous transition), ‘self-organised
bistability’ (SOB)59 (self-organisation to a discontinuous transi-
tion), quasicriticality60 (departs from criticality with crackling
noise equation (Eq. (4)) obeyed) and their non-conservative
counterparts61. Over long time scales, if anomalously large ava-
lanches coexist with scale-free avalanches, then SOB would be a
better description of NWNs than SOC. However, fluctuations
could plausibly make the transition (cf. Fig. 2c) continuous
resulting in a SOC-like state.

Critical dynamics has previously been observed in self-
assembled tin nanoparticle networks (NPNs)34,62. There are
notable differences between dynamics observed in nanowire and
nanoparticle networks. In NWNs, resistive switching is facilitated
by filament growth through an insulating layer. In NPNs, the
nanoparticles are not coated with an insulating layer and resistive
switching is due to tunelling-driven filament growth across nano-
gaps between nanoparticles. Thus, in the absence of filament
growth, nanoparticles in contact are conductive, whereas nano-
wires in contact are insulating. Consequently, resistive switching

dynamics and critical avalanches are only observed when the
nanoparticle density is finely tuned to the percolation threshold.
NWNs, on the other hand, exhibit resistive switching and ava-
lanches at densities close to and well above the percolation
threshold, such as twice the threshold (cf. Supplementary Figs. 7
and 8). Conversely, in NPNs, the voltage does not need to be
finely tuned to achieve critical avalanches, provided networks are
on the percolation threshold. Breakage of conductive filaments
from Joule heating and electromigration effects self-tune NPNs to
a critical state. In NWNs, critical avalanches with power-law sizes
and life-times are observed when tuning networks close to the
threshold voltage. At voltages below the threshold, avalanches do
not span the network and exhibit exponentially decaying ava-
lanche distributions (cf. Fig. 5), while at voltages significantly
above the threshold, large avalanches of a characteristic size and
duration are observed, corresponding to formation and annihi-
lation of non-local conducting pathways. Thus, passivation of
nanoscale metallic components affords the advantage of not
having to fine-tune density.

The universality of avalanches poses an interesting question for
future studies on neuromorphic systems. The experimental stu-
dies of avalanches in percolating NPNs presented non-universal
avalanche exponents that satisfy criteria for avalanche
criticality34,62. Notably their model62 exhibits avalanche expo-
nents (τ= 2.0, α= 2.3, 1/στz= 1.3) very close to NWN values,
suggesting they may belong to the same universality class. A
capacitive breakdown model of current-controlled NWNs, in a
lower current regime than studied here,63 found universal ava-
lanche exponents consistent with the classic SOC sandpile
model30. However, in other neuromorphic systems such as
adiabatically driven memristive networks53 and spiking neuro-
morphic networks45, as well as neuronal culture experiments32,
avalanche statistics match that of a branching process64, a
member of the universality class of directed percolation (τ= 1.5,
α= 2, 1/στz= 2).

While ordered attractor (λ < 0) states in models of networks of
voltage-controlled memristors under alternating polarity stimuli
have previously been observed65, the diverse edge-of-chaos and
chaotic dynamics of neuromorphic NWNs have not been pre-
viously shown in memristive networks. Unlike certain types of
memristors66, individual junctions driven by periodic stimuli are
incapable of exhibiting chaos, but chaos emerges in these net-
works due to strong recurrent coupling between components67.
This requires an alternating polarity pulse where activation and
de-activation are both strongly driven: for unipolar periodic
pulses only λ ≤ 0 is found. As the ‘edge-of-chaos’ (λ ≈ 0)
can be reached in a strongly driven regime (high f), it
does not necessarily coexist with ‘avalanche critical’ states. Ava-
lanche distributions (P(S) and P(T)) near λ ≈ 0 do not follow
power-laws (Supplementary Fig. 15): power-law fits fail
Kolmogorov–Smirnov test unless range of fit is made very small
(xmax=xmin ≲ 2), unlike the DC case at V*= 1. This deviation may
be attributed to the fast driving signal which ensures activity is
injected into the network at a non-uniform rate while avalanches
propagate, breaking time-scale separation between driving and
network feedback (avalanches), obfuscating the distinction
between consecutive avalanches. This reinforces the point often
overlooked in neural network models that despite often
coinciding68, activity propagation (avalanche) and order-chaos
transitions are distinct69.

The observation of optimal overall performance on the non-
linear transformation task at the ‘edge-of-chaos’ corroborates the
popular hypothesis of robustness of information processing near
phase transitions31 and is consistent with simulations in other
types of recurrent networks36–38. Despite this, the task depen-
dence of accuracy is striking. For the simplest task
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(transformation to sine wave) the ‘edge-of-chaos’ state afforded
no computational advantage. On the other hand, the greatest pay-
off from the ‘edge-of-chaos’ state was found for the most dis-
similar target wave-forms (double frequency, phase shifted). This
result corroborates a previous study using a spiking neuro-
morphic network that found critical dynamics maximises the
abstract properties of the system (auto-correlation time, sus-
ceptibility and information theoretic measures) and hence, per-
formance in tasks of non-trivial computational complexity, yet
for simpler tasks ordered dynamical states (away from criticality)
may perform more optimally45.

Neuromorphic NWNs may be utilised for a range of infor-
mation processing tasks. Information may be stored in memris-
tive junction pathways for static tasks such as associative
memory22 and image classification26. However, it is the coupling
of memristive junctions with recurrent network topology that
makes NWNs ideal for temporal information processing when
implemented in a reservoir computing framework, such as signal
transformation24,25,27 and non-linear time-series forecasting26,70.
These applications suggest NWNs are a promising neuromorphic
system for adaptive signal processing of streaming data.

The rich dynamical behaviour revealed here may be observed
on other network topologies, provided networks are highly
recurrent and disordered. Recurrent networks have many short
loops71, allowing junctions to be strongly coupled (e.g. short
loops in Fig. 2b which are coupled by Kirchoff’s laws), thus
generating the diverse range of time scales for avalanche events
and chaotic dynamics to be observable. This recurrent topology
is important for information processing in networks, such as
recurrent neural networks52,71. Disorder ensures spatio-
temporal inhomogeneity of the voltage distribution, maximis-
ing the degrees of freedom of networks. Understanding how to
harness network structure for optimal information processing
provides an exciting future challenge for neuromorphic net-
work research.

In conclusion, neuromorphic NWNs respond adaptively and
collectively to electrical stimuli and undergo a first-order phase
transition in conductance at a threshold voltage determined by
the shortest path length between electrodes. Due to recurrent
loops in the network, junctions switch collectively as avalanches.
These avalanches are consistent with avalanche criticality at the
critical voltage. At higher voltages, anomalously large avalanches
coexist with avalanches spanning a range of scales. Under alter-
nating polarity stimuli, networks can be tuned between ordered
and chaotic dynamical regimes. The edge-of-chaos is the most
robust dynamical regime for information processing over a range
of task complexities. These results suggest that neuromorphic
NWNs can be tuned into regimes with diverse, brain-like col-
lective dynamics2,35, which may be leveraged to optimise infor-
mation processing.

Methods
Simulations. NWNs were modelled (Supplementary Fig. 1a) by randomly placing
lines of varying length (randomly sampled from a gamma distribution with mean
10 μm and standard deviation 1 μm) and angular distribution (sampled uniformly
on [0, π]) on an 30 × 30 μm2 grid (centre locations sampled from a uniform
distribution).

The network was converted to a graph representation (Supplementary Fig. 1b)
in which nodes and edges correspond to equipotential nanowires and Ag∣PVP∣Ag
junctions, respectively. The largest connected component was used in the
simulations. Unless stated otherwise, a network with 100 nanowires and 261
junctions was used.

A voltage bias is applied between source and drain nodes (chosen at opposite
ends of the network) and the model solves Kirchoff’s laws to calculate the voltages
Vjn(t) across each junction at each time point. At each junction (edge),
electrochemical metallisation is phenomenologically modelled with a conductive
filament parameter (Λ(t)). The filament parameter is restricted to the interval
�Λmax ≤ΛðtÞ≤Λmax and dynamically evolves according to a threshold-driven

bipolar memristive switch model (Fig. 9, Eq. (5))41,72:

dΛ
dt

¼

ðjV jnðtÞj � V setÞ sgn ðVjnðtÞÞ jV jnðtÞj>V set

0 V reset < jVðtÞj<V set

b ðjV jnðtÞj � V resetÞ sgn ðΛðtÞÞ V reset > jV jnðtÞj
0 jΛj≥Λmax

8>>><
>>>:

ð5Þ

Junction conductance (cf. Fig. 1b, c) is modelled as a constant residual resistance of
the insulating PVP layer (Rr), in parallel with constant filamentary resistance
(Rf ¼ G�1

0 � Rr) and Λ-dependent tunnelling resistance (Rt),

GðΛÞ ¼ 1
RtðΛÞ þ Rf

þ 1
Roff

ð6Þ

with tunnelling conductance Gt calculated using the low voltage Simmon’s formula
(Eq. (7)) for a MIM junction73.

Gt ¼ ½RtðΛÞ��1

¼ 3ð2m�Þ1=2e5=2 ðϕ=eÞ1=2
A2h2s2

exp
n
� 4πð2m�eÞ1=2

h s ϕ
e

� �1=2o ð7Þ

s ¼ max Λcrit � jΛj� � smax

Λcrit
; 0

� �
ð8Þ

with effective mass m*= 0.99me and PVP layer (assumed homogeneous) thickness
smax ¼ 5 nm . The potential barrier ϕ= 0.82 eV is the difference between Fermi
levels of PVP and Ag. A= (0.41 nm)2= 0.17 nm2 is the area of a face of the silver
unit cell. Nanowire resistance is considered negligible compared to junction
resistance11. Gt thus introduces an additional non-linear dependence on V, through
the filament growth parameter s= s(Λ(V)), that modulates junction switching due
to filament formation (cf. Supplementary Fig. 20).

Free parameters are chosen such that activation time is comparable to
experiment. Values used are Vset= 0.01 V, Vreset= Vset/2, Λcrit= 0.01 Vs,
Λmax ¼ 0:015 Vs, Roff ¼ 103ðG0Þ�1 ¼ 12:9 MΩ, Rf ¼ ðG0Þ�1 ¼ 12:9 kΩ and b=
10. For the Lyapunov analysis and non-linear transformation task Vset= Vreset was
used. Simulations use the Euler method with time-step dt= 10−3 s. The effect of
model parameters on results presented here is discussed in Supplementary
Information.

Experimental. Physical NWNs were synthesised with the polyol process74 using
1,2-propyleneglycol (PG) as an oxidising agent for silver nitrate (AgNO3) and were
drop-cast onto a glass substrate12. NWN size was 500 × 500 μm. Nanowires had
mean length 7.0 ± 2.4 μm, diameter 500 ± 100 nm and density ≈ 0.1 nw/μm2

determined with a high amplification optical microscope. The PVP-coating
thickness is 1.2 ± 0.5 nm12. Networks were electrically stimulated with pre-

crit

-
crit

max

-
max

V

Vset-V set Vres-V res

Fig. 9 Pictorial representation of filament formation model. Evolution of Λ
(t) (vertical axis) as a function of junction voltage Vjn (horizontal axis) in
threshold memristor junction model (Eq. (5)). Arrows are proportional to
filament growth rate (dΛ/dt) and point in the direction of filament growth.
When Vreset ≤ ∣Vjn∣ ≤ Vset, or jΛj ¼ Λmax, dΛ/dt= 0.
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patterned rectangular gold electrodes of width 500 μm and current was read out
using an in-house amplification system12 at a sampling rate of 1 kHz.

Avalanche analysis. For simulation, an event is defined as when 1
Gjn

j ΔGjn

dt j exceeds
a certain threshold (10−3 s−1) before returning below the threshold. A similar
procedure was applied to experimental data using the network level (rather than
junction level) conductance time-series, with an event defined as when 1

Gnw
j ΔGnw

dt j
exceeds 1 s−1 before returning below the threshold, or when ΔGnw, exceeds a
threshold 5 × 10−8 S before returning below the threshold. Changing the event
detection threshold leads to negligible change of avalanche statistics.

As in studies of avalanches in neural cultures32 and nanoparticle networks34,
the natural choice of frame (Δt) is the average inter-event-interval, 〈IEI〉, over the
time-scale that events occur, where IEI is the time between adjacent events. Effect
of changing frame on avalanche statistics is shown in Supplementary Fig. 16.
Avalanche size and life-time distributions, P(S) and P(T), were binned linearly for
simulations (logarithmically for experiments due to poorer resolution of the tail)
and fit using a Maximum Likelihood (ML) power-law fit (P(x) ∝ x−σ). Scaling
exponent (σ) were determined to precision 10−2, lower (xmin) and upper (xmax)
cut-offs75 were determined to nearest integer. Statistical significance of the ML fit
was tested using the Kolmogorov–Smirnov (KS) test76. 500 synthetic data sets were
generated from the distribution of the ML fit. The KS distance between each and
the ML fit, was compared with the KS distance between the empirical (simulation
or experiment) data and the ML fit. The p value is the fraction of fits where the KS
distance is smaller for the empirical data than the synthetic data. In all cases where
power-laws were presented above, the null hypothesis that data followed a doubly
truncated power-law was accepted to the chosen statistical significant (p > 0.5). For
power-law fits with p > 0.5, no significant change was found to exponents (within
uncertainties) for different xmin and xmax values up to a cut-off determined by
system size (Supplementary Fig. 17). Hence, xmin and xmax are chosen such that
log ðxmax=xminÞ is maximised for fits with p > 0.5. As average avalanche size (〈S〉(T))
is not in the form of a probability distribution (so ML methods do not apply), it
was fit using linear regression on a log-log plot.

In simulation, as networks converge to a steady-state under constant DC bias
(cf. Fig. 2), to generate avalanches, either a voltage pulse is applied to a network in a
steady state (allowing certain junctions to activate/deactivate, subsequently
triggering avalanches of other switching junctions), or junctions are manually
perturbed by changing their state (e.g. switching them from high Gjn to low Gjn or
vice versa). Results based on the former method are presented here. Avalanches are
calculated from the transients as networks relax to their steady state using the
binning method described above. To obtain enough statistics to sample the
avalanche statistical distributions an ensemble of 1000 randomly generated
networks of physical dimensions 150 × 150 μm2 (100 × 100 μm2 for Fig. 5), density
0.10 nw (μm)−2 and with nanowire length 10 ± 1 μm were simulated for 30 s each
starting from all filament states from Λ= 0. All nanowires with physical centre
location within 2.5% (3.75 μm for this network size) of top of network were selected
as source electrodes. All nanowires with physical centre location within 2.5% of
bottom of network were selected as drain electrodes. This ensured the whole
network is stimulated, reducing finite-size effects.

In experiment, noise and junction breakdown events12 perturb networks from
their steady-state allowing spontaneous initiation of avalanches at constant voltage.
NWNs were stimulated with DC biases of gradually increasing voltage (with
waiting time of 3 h between measurements) until the switching threshold was
determined. The network was then stimulated with a voltage just above threshold
for 1000 s, or until current exceeded 8 × 10−5 A (to prevent network damage),
recording data at 30 kHz. This was repeated 3 times (with 3 h wait between
measurements) on the same network. Time-series are truncated, first by excluding
initial times for which network current I < 1 × 10−8 A and then between the first
and last detected event. Avalanche statistics from all data-sets (at fixed voltage just
above threshold) were combined to produce avalanche statistical distributions.
Combining data-sets is valid under the assumption that avalanches at fixed voltage
on an individual network follow the same statistical distribution.

Unlike in simulations, in experimental data, switching activity and avalanches
in sub-threshold networks cannot be identified as they fall below the experimental
noise floor. In contrast, junction conductance time-series can be simulated at all
voltages. Examples of both experimental and simulated avalanches are shown in
Supplementary Fig. 18.

Lyapunov analysis. A triangular wave of period T was applied for a simulation
time of 3000 s to allow the network to converge to an attractor. The perturbation
method50 was used to calculate the maximal Lyapunov exponent, λ. Briefly, the
procedure was:

(1) Perturb filament state (Λi) of i-th junction in network by ϵ= 5 × 10−4 Vs.
(2) Simultaneously evolve perturbed and unperturbed networks by one time-

step (dt= 5 × 10−4 s) to obtain perturbed Λp(t) (filament states for each
junction) and unperturbed Λu(t) state vectors.

(3) Compute Euclidean distance, γ(t)= ∣Λp(t)−Λu(t)∣, and re-normalise
perturbed state vector Λp(t) to ΛuðtÞ þ ϵ

γðtÞ ðΛpðtÞ � ΛuðtÞÞ.
(4) Repeat steps 2 and 3 until end of period. Average over all time-steps to

obtain junction Lyapunov exponent λjðTÞ ¼ 1
dt hln γðtÞ=ϵ� �it .

(5) Repeat step 4 until λj(T) converges to within error tolerance (∣λj(T)− λj(T−
1)∣ < 10−2 s−1)

(6) Repeat steps 1–5 for all junctions. Average over λj to obtain network
Lyapunov exponent λ= 〈λj〉.

Note, Lyapunov analysis is only performed under periodic driving where
network converges to time-varying attractor. Under constant DC voltage where
network converges to a steady-state λ is not as well defined.

Non-linear transformation task. Following the reservoir computing imple-
mentation analysed in previous studies26,27, junction filament states were pre-
initialised to the starting values used in Lyapunov analysis, and network was driven
by AC triangular wave for 80 s. Target waves T(t) were sine-wave, square wave,
double frequency triangular wave, and triangular wave phase shifted by π/2.
Absolute voltage (vi for i-th node) of each of the n nanowires were used as reservoir
readout signals, V(t)= [v1(t), v2(t),...,vn(t)], with corresponding weights
Θ ¼ ½Θ1;Θ2; :::;Θn�T . The network’s output signal is y(t)=V(t) ⋅Θ. Weights were
trained using linear regression to minimise the cost-function
JðΘÞ ¼ ∑M

m¼1 ðTðtmÞ � yðtmÞÞ2, over all time-points. Performance accuracy of the
task is quantified by 1-RNMSE (Eq. (9)), where RNMSE is the root-normalised
mean-squared error.

RNMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

JðΘÞ
∑
M

m¼1
½TðtmÞ�2

vuuut ð9Þ

Data availability
Experimental data generated in this study have been provided as a Source Data
file. Source data are provided with this paper.

Code availability
Code to perform all simulations, process experimental data and generate all figures is on
the repository https://github.com/joelhochstetter/NWNsim.
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