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Modeling confirmation bias and 
polarization
Michela Del Vicario1, Antonio Scala1,2, Guido Caldarelli1, H. Eugene Stanley3 & 
Walter Quattrociocchi1

Online users tend to select claims that adhere to their system of beliefs and to ignore dissenting 
information. Confirmation bias, indeed, plays a pivotal role in viral phenomena. Furthermore, the wide 
availability of content on the web fosters the aggregation of likeminded people where debates tend to 
enforce group polarization. Such a configuration might alter the public debate and thus the formation 
of the public opinion. In this paper we provide a mathematical model to study online social debates 
and the related polarization dynamics. We assume the basic updating rule of the Bounded Confidence 
Model (BCM) and we develop two variations a) the Rewire with Bounded Confidence Model (RBCM), in 
which discordant links are broken until convergence is reached; and b) the Unbounded Confidence Model, 
under which the interaction among discordant pairs of users is allowed even with a negative feedback, 
either with the rewiring step (RUCM) or without it (UCM). From numerical simulations we find that 
the new models (UCM and RUCM), unlike the BCM, are able to explain the coexistence of two stable 
final opinions, often observed in reality. Lastly, we present a mean field approximation of the newly 
introduced models.

Online users tend to select claims that adhere to their system of beliefs and to ignore dissenting information1–5. 
The wide availability of content on the web fosters the aggregation of likeminded people where the discussion 
tends to enforce group polarization6,7. Confirmation bias, indeed, plays a pivotal role in viral phenomena8. Under 
such conditions public debates, in particular on social relevant issues, tend to further fragment and polarize the 
public opinion9,10.

To better understand this process, in this paper we provide a mathematical model mimicking polarization in 
online social dynamics.

Opinion dynamics, have been widely investigated in recent years, using different approaches from statistical 
physics and network science11. Classical examples of opinion dynamics models include the Sznajd model12, the 
voter model13–15, the majority rule model16,17, and the bounded confidence model (BCM)18–20. Besides the differ-
ent assumptions and dynamics rules, for all the cited models the consensus state, in which all agents share the 
same opinion, is reached for a value of the tolerance parameter big enough.

However, consensus in far from common in real world and Internet based opinion exchanges. A recent study 
showed the emergence of polarized communities, i.e., echo chambers, in online social networks8. Inside these 
communities, homogeneity appears to be the primary driver for the diffusion of contents. Both polarization and 
homogeneity might be the result of the conjugate effect of confirmation bias and social influence. Confirmation 
bias is the tendency to acquire or process new information in a way that confirms one’s preconceptions and avoids 
contradiction with prior belief21. Social influence is the process under which one’s emotions, opinions, or behav-
iors are affected by others. In particular, informational influence occurs when individuals accept information from 
others as evidence about reality22,23.

Previous studies24,25 proposed a non consensus opinion model (NCO) that allowed for the stable coexistence 
of two opinions by also considering the opinion of the user herself when applying the majority rule update24, 
while in ref. 25 the competition between two groups is investigated by the introduction of a set of contrarians in 
one of the two. The survival of a two-opinions state is studied in ref. 26 from a different point of view, considering 
the emergence of spontaneous recovery of failed nodes and the majority rule update. Both these models assume 
only two opinion states (± 1) and a majority rule update, with the novelty of accounting for the individual opin-
ion24,25 and for an external source of influence26.
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Authors in ref. 27 investigate the emergence of extreme opinion trends in society by employing statistical 
physics modeling and analysis on polls. By developing an activation model of opinion dynamics with interaction 
rules based on the existence of individual “stubbornness”, they discover a sharp statistical predictor of the rise of 
extreme opinion trends in society in terms of a nonlinear behavior of the number of individuals holding a certain 
extreme view and the number of individuals with a moderate opinion and extreme opinion. A model grounded 
on the BCM and accounting for the interconnection and complexity of the online environment as well as the 
competition among sources of information is presented in ref. 28. In a recent study29, authors analyze the effects 
of the interplay between homophily, social influence, and confirmation bias in the emergence of segregation and 
echo chambers.

People shape their opinions on the basis of both confirmation bias and social influence, a combination of these 
two forces generates the observed polarization of communities and homogeneous links8. Accounting for this phe-
nomenon, we build a model of opinion dynamics and network’s evolution that considers both mechanisms and 
expands itself from the classical Bounded Confidence Model (BCM)18. We consider two variations of the model: 
the Rewire with Bounded Confidence Model (RBCM), in which discordant links are broken until convergence 
is reached; and the Unbounded Confidence Model, under which interaction among discordant pairs of users is 
allowed and a negative updating rule is introduced, either with the rewiring step (RUCM) or without it (UCM). 
As for the BCM, our models assume a continuous interval of opinions.

The paper is structured as follows. In the first section, Results and Discussion, we first present the new models 
and give an account of the simulation results, then we present a mean field approximation of the newly introduced 
models. In the last section, Methods, we provide references to the methods employed and give a brief overview of 
the BCM and its convergence results.

Results and Discussion
Models. The paper is a model study derived from the paper8 on which we provide evidence of the polarizing 
effect of different narratives and the echo chamber structure of cascades. Hence, here we exploit the bounded 
confidence proviso (i.e., interacting with an information/opinion iff this is close enough to the agent state) that 
well mimics the confirmation bias (i.e., acquiring information that adhere to a specific system of beliefs) process.

The Bounded Confidence Model (BCM)18,20 is a well known opinion dynamics model that takes into account 
a set of N agents arranged on a complex network G, each of which holds an opinion xi, i ∈  {1, … , N}, uniformly 
distributed in [0, 1]. Two agents interact if and only if they are connected in G and their present opinions are close 
enough, i.e. iff j ∈  NG(i) and |xi −  xj| <  ε, for ε ∈  [0, 1]. If these conditions hold, the two agents change their opin-
ions according to Eq. (1), otherwise they do not interact at all:
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Refer to the section Methods for further information on the BCM and for convergence results.
Starting from the BCM we introduce three new models of opinion dynamics and network evolution. The first 

model we consider is the Rewire with Bounded Confidence Model (RBCM) that considers the same framework 
as in BCM and involves two phases. In phase one we run the rewiring steps in which each agent i interacts with a 
randomly chosen neighbor j and, if the distance between the two opinions is above the tolerance ε, then their link 
is broken and i is rewired to a randomly chosen agent ∪∈ …k N N i i{1, , }/( ( ) { })G . To be specific, we introduce 
a new distance |.|τ : [0, 1] ×  [0, 1] →  [0, 0.5] defined as:

ρ| − | = | − − − |
τ

x x x x x x( ) , (2)i j i j i j

where i, j ∈  {1 … , N} and the adjustment ρ ensure the Periodic Boundary Conditions (PBC) (refer to the section 
Methods for further details). The condition for the random rewire becomes: |xi −  xj|τ ≥  ε, for ε ∈  [0, 0.5]. Note that 
we restrict our attention to ε ∈  [0, 0.5] after noticing that ∀ x, y ∈  {1, … , N} we get |x −  y|τ ∈  [0, 0.5]. We will 
assume ε ∈  [0, 0.5] throughout the paper. Phase one ends when all links have an opinion distance below the toler-
ance ε.

In phase two we run the BCM on the rewired network. The BCM allows the interaction only for those pairs 
whose opinion distance is below the tolerance ε, as all the couples in the rewired network are concordant, all the 
randomly chosen pairs will interact and readjust their opinion according to the rule in Eq. (1), where μ is taken 
in the interval (0, 0.5).

The Unbounded Confidence Model (UCM) is the second of the models that we introduce and its novelty 
is to allow the interaction for every randomly chosen pair of neighbors (i, j). To be specific, if two agents have 
concordant opinions, i.e. if |xi −  xj|τ <  ε, as for the previous model, we adjust xi and xj by Eq. (1). However, if their 
opinions are discordant, i.e. if |xi −  xj|τ ≥  ε, we use a new updating rule, see Eq. (3), that enables us to replicate the 
empirically observed repulsion of discordant opinions:
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where μ is taken in the interval (0, 0.5) and ρ(.) is defined in Eq. (14), in the Methods section. The adjustment ρ(.) 
ensures the PBC by maintaining the opinions inside the interval [0, 1].

The last model that we introduce is the Rewire with Unbounded Confidence Model (RUCM) that again allows 
the interaction for every randomly chosen pair of users (i, j) but at the same time allows for the random rewiring 
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of discordant pairs. Specifically, if |xi −  xj|τ <  ε, then we adjust xi and xj by Eq. (1). If |xi −  xj|τ ≥  ε, then we adjust xi 
and xj by Eq. (3), the link between nodes i and j is broken, and a new link between i and a randomly chosen user 

∪∈ …k N N i i j{1, , } /( ( ) { , })G  is created.

Simulation Results. We consider different types of complex networks in the simulations: The Erdös-Rényi 
random network (ER)30 characterized by a Poisson degree distribution with average degree 〈 2〉 , the scale-free 
network (SF)31 characterized by a power-law degree distribution P(k) ~ k−γ (SF networks are created by using 
the classic implementation of the Barabási and Albert model, hence γ =  3), and the small-world network 
(SW)32 with rewiring probability equal to 0.2 and neighborhood dimension equal to 2. We restrict our atten-
tion to SF networks and report the results for the Erdös-Rényi random network and the small-word network in 
Supplementary Figs S4 and S5.

Hence, we show the results of Monte Carlo simulations of the BCM and the three new models on a SF net-
work of 2000 nodes with the parameters (ε, μ) varying in the parameter space [0, 0.5] ×  [0, 0.5], for T =  105 times 
steps and we averaged our results over 5 repetitions. Note that the final state, under the different parameters 
combinations, is always reached before T =  105. Refer to Supplementary Fig. S3 for further details. Figure 1 shows 
the probability density functions (PDFs) of final opinion, after a maximum of 105 time steps, for four different 
combinations of the pair of parameters (ε, μ): (ε, μ) ∈  {(0, 0.05), (0, 0.1), (0.2, 0.05), (0.2, 0.1)}. The blue solid and 
the green dot-dashed curves refer to the newly introduced RUCM and UCM respectively, while the violet dotted 
curve is for BCM and the orange dashed for RBCM. For all the parameter choices we observe a bimodal opinion 
distribution in the cases of RUCM and UCM (note that we assume periodic boundary conditions). It is interest-
ing to note that for UCM and RUCM there are two polarized opinions also for ε =  0, while in that case BCM and 
RBCM show no changes with respect to the initial uniform distribution.

Figure 1. Probability density functions (PDFs) of final opinion, after a maximum of 105 time steps or until 
convergence is reached, for four different combinations of the parameters (ε, μ). In the upper left figure we 
have (ε, μ) =  (0, 0.05), in the upper right (ε, μ) =  (0, 0.1), in the lower left (ε, μ) =  (0.2, 0.05), and in the lower 
right (ε, μ) =  (0.2, 0.1). In all figures the blue solid curve is for RUCM, the green dot-dashed one for UCM, the 
violet dotted one for BCM, and the pale orange dashed one for RBCM. We observe a bimodal distribution for 
RUCM and UCM, representing the coexistence of two polarized stable opinions.
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Figure 2 reports a collection of summary statistics (mean, standard deviation, 1st quantile, and 3rd quan-
tile) of the final opinion distributions for varying ε and three different values of μ (violet is for μ =  0.05, blue 
for μ =  0.25, and orange for μ =  0.5). The left column is for BCM, the central one for UCM, and the right one 
for RUCM. We omit the results for RBCM as we observe from the simulations that, after the rewiring steps, the 
dynamics are similar to the BCM case but with a faster convergence, refer to the Supplementary Information for 
an in depth analysis of the RBCM model. We observe different mechanisms for the two newly introduced models, 
such as a faster convergence to the consensus state for RUCM. However, we need to study the final number of 
peaks to better characterize the differences between UCM and RUCM, and to relate them with the results for the 
classical BCM.

Final Distribution of Peaks. We perform Monte Carlo simulations of the BCM, UCM, and RUCM on 
a scale-free network of 2000 nodes with (ε, μ) ∈  [0, 0.5] ×  [0, 0.5], for T =  105 times steps, that are sufficient to 
reach the final state of the system under the different parameters combinations (the results are averaged over 5 
repetitions). Given the final distributions of opinions obtained by the simulations, we compute the number of 
peaks of opinions as the local maxima in the distribution of frequencies of opinions. To be specific, we divide the 
interval [0, 1] in 100 bins of length 0.01 and consider the frequencies of values falling in each interval. We regard 
two peaks to be separate if the distance between the middle points of the respective bins is smaller than 0.1. All 
the results are averaged over 5 repetitions.

Figure 3 shows the final distribution of peaks of BCM for varying (ε, μ) ∈  [0, 0.5] ×  [0, 0.5]. The corresponding 
result for the RBCM model is shown in Supplementary Fig. S2. The final peaks distribution complies with theo-
retical33,34 and simulation18 results from previous work. Figure 4 shows the final peaks distribution of UCM (left) 
and RUCM (right) for varying (ε, μ) ∈  [0, 0.5] ×  [0, 0.5]. For both models we observe a large area of the parameter 
space for which two final opinions coexist. We register a faster convergence to the consensus state for the RUCM 
(w.r.t. UCM), that is due to the rewiring rule. Also, we observe that for the RUCM there is a direct transition from 
many opinions to two opinions, as well as from two opinions to consensus, while for the UCM there is an inter-
mediate area where 3 or 4 opinions emerge, respectively shown in yellow and pale orange.

Comparing Figs 3 and 4, we see that the new models, unlike the BCM, are able to explain the coexistence of 
two stable final opinions, often observed in reality. Another important difference with respect to the BCM is that 

Figure 2. Summary statistics (mean, standard deviation, 1st quantile, and 3rd quantile) of the final 
opinion distributions for varying ε and three different values of μ: violet denotes μ = 0.05, blue denotes 
μ = 0.25, and orange denotes μ = 0.5. The left column is for BCM, the central one for UCM, and the right one 
for RUCM.
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the μ parameter assumes an important role in tuning the number of final opinions peaks. The dependence of the 
number of final peaks on the μ parameter is stronger for the RUCM, where we observe a clear transition from 
many opinions to exactly two on the diagonal.

Figure 3. Final distribution of peaks for the BCM, with varying (ε, μ) ∈ [0, 0.5] × [0, 0.5]. The Monte Carlo 
simulations are carried on a Scale-Free network with 2000 nodes for T =  105 times steps, that are sufficient to 
reach the final state of the system under the different parameters combinations (all results are averaged over 5 
repetitions).

Figure 4. Final distribution of peaks for the UCM (left) and RUCM (right), with varying (ε, μ) ∈ [0, 0.5] ×  
[0, 0.5]. The Monte Carlo simulations are carried on a Scale-Free network with 2000 nodes for T =  105 times 
steps, that are sufficient to reach the final state of the system under the different parameters combinations  
(all results are averaged over 5 repetitions).
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Mean Field Approximation. For the RBCM, after the rewiring steps, all connected agents have an opinion 
distance below ε, meaning that they will always interact. The time rate of change of  x t( , ) is equal to:

    ∫ ∫µ
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Considerations analogous to the BCM case hold (see the Section Material and Methods). A faster convergence 
scale is also observed in the simulations.

In the UCM and RUCM case we consider two updating rules: the one in Eq. (1) if the opinions (xi, xj) of the 
agents are close enough (|xi −  xj|τ <  ε) and the one in Eq. (3) if they are not (|xi −  xj|τ ≥  ε). Thus the opinions will 
change according to → ˆ ˆx x x x( , ) ( , )i j i j :
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where ϑε =  ϑ(ε −  |xi −  xj|τ) is the Heaviside theta function that equals 1 if ε −  |xi −  xj|τ <  0, 0 otherwise, and ρ is 
defined in Eq. (14). There are two ways in which the density of opinion x changes at every time step t: either an 
agent moves away from x after an interaction (I−) or she arrives in x after an interaction (I+). Let  x t dx( , )  be the 
fraction of agents whose opinion at time t lies in the interval [x, x +  dx], then its time rate of change is:

∂
∂

= + .− +x t
t

I x t I x t( , ) ( , ) ( , ) (6)

The negative part is defined as in the BCM case but for a wider interval:

 ∫= − +−

−
I x t x t x y t dy( , ) ( , ) ( , ) , (7)1

1

as I−(x, t) is simply the probability that an agent with opinion x interacts with some other agent and thus moves 
away from x. For I+(x, t) we have two terms depending on the distance of the initial opinions:
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for the first term we get the same expression as in the BCM case:
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For +I x t( , )2  we have to consider the negative update in Eq. (3), and the integrals are over the interval for which 
|x1 −  x2|τ ≥  ε:
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When all agents interact positively, i.e. when ε ≥  1/2, the third term of the rate equation disappears and we are 
again in the BCM case, where consensus is reached asymptotically and:

 δ= .∞ x M x( ) ( ) (12)0

For smaller values of ε, we rely on simulations results. We notice that the final state is a single peak as long as 
ε ∈  (0.45, 0.5) for the UCM, or ε ∈  (0.3, 0.5) for the RUCM (with the exception of those points for which μ is near 
to zero).
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Unlike for BCM, in the new models the parameter μ plays an important role in the evolution of the distri-
bution of opinions. For both UCM and RUCM we have the coexistence of two opinions in the final state for a 
wide region of the (ε, μ)-plane, this region varies for the two models, in particular the faster convergence to the 
consensus state for the RUCM is due to the rewiring rule. For smaller values of ε, and outside the two opinions 
region, we showed by numerical simulations that consensus is not reached, and many opinions at distance larger 
than ε coexist.

Conclusions
In recent years opinion dynamics has attracted much interest from the fields of both statistical physics and social 
science. In classical models such as the Sznajd model, the voter model, the majority rule model, and the bounded 
confidence model, consensus is eventually reached, for values of the tolerance parameter big enough. However, 
in face-to-face and online opinion exchanges, consensus is not commonly achieved, and classical models fail to 
explain this empirically observed fact.

We propose a model of opinion dynamics capable of reproducing the empirically observed coexistence of 
two stable opinions. We assume the basic updating rule of the BCM and we develop two variations of the model: 
the Rewire with Bounded Confidence Model (RBCM), in which discordant links are broken until convergence is 
reached; and the Unbounded Confidence Model, under which the interaction among discordant pairs of users is 
allowed and a negative updating rule is introduced, either with the rewiring step (RUCM) or without it (UCM).

From numerical simulations we find that the new models (UCM and RUCM), unlike the BCM, are able to 
explain the coexistence of two stable final opinions, often observed in reality. Another important difference with 
respect to the BCM is that the convergence parameter μ assumes an important role in tuning the number of final 
opinions peaks; hence, in our model the speed at which opinions converge/diverge allows to change the final 
opinion landscape. Lastly, we derive a mean field approximation of all the three new models.

Methods
Periodic Boundary Conditions. We consider N agents and a set of initial opinions xi, i ∈  {1, … , N}, uni-
formly distributed in [0, 1]. If we compare two agents’ opinions by the absolute value distance |xi −  xj|, those 
agents with near boundary opinions will have less concordant peers by definitions. We can overcome this problem 
by using the Periodic Boundary Conditions (PBC) and the alternative opinions’ distance |.|τ : [0, 1] ×  [0, 1] →  [0, 
0.5] defined as:

ρ| − | = | − − − |
τ

x x x x x x( ) , (13)i j i j i j

for i, j ∈  {1 … , N}. The ρ(.) : [− 1, 1] →  {− 1, 0, 1} adjustment ensures PBC and it is defined as:
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The Bounded Confidence Model (BCM). The Bounded Confidence Model (BCM)18,20 considers a set of N 
agents arranged on a complex network G. Each agent holds an opinion xi, i ∈  {1, … , N}, uniformly distributed in 
[0, 1]. Two agents interact if and only if they are connected in G and their present opinions are close enough, i.e. 
iff j ∈  NG(i) and |xi −  xj| <  ε, for ε ∈  [0, 1]. Note that, as we apply periodic boundary conditions in the simulations, 
two users will actually interact if: |xi −  xj|τ <  ε, for ε ∈  [0, 0.5]. If these conditions hold, the two agents change their 
opinions according to Eq. (1), otherwise they do not interact at all.

It is known from previous studies33,34 that for ε big enough consensus is reached. The time rate change of 
 x t dx( , ) , the fraction of agents whose opinion at time t lies in the interval [x, x +  dx], is given by:
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The first two moments are given by ∫= =M x t dx( , ) 10  and ∫= =M x x t dx( , ) 01 , i.e. the total mass and 
the mean opinion, are conserved33. Let  =x( , 0) 1 be a flat initial condition, with x ∈  [0, 1]. We are interested in 
the final state of the system  ∞x( , ).

When all agents interact, i.e., when ε ≥  1 the rate equation is integrable (as we assume PBC, ε ≥  1/2 is enough 
for our simulations). The second moment obeys + =M M M M/22 0 2 1

2, and using M1 =  0 and M0 =  1 we find that 
M2(t) =  M2(0)e−t/2, hence the second moment vanishes exponentially in time, all agents approach the center opin-
ion and the system eventually reaches consensus33:

 δ= .∞ x M x( ) ( ) (16)0

When ε ≥  1 the final state is a single peak located in the middle and, as long as ε ≥  1/2, this situation persists 
(again, thanks to the PBC we get ε ≥  1/4 in the simulations). For smaller values of the threshold ε, it has been 
shown, by numerical simulations, that consensus is not reached and the opinion evolves into clusters that are 
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separated by a distance larger than ε. Once each cluster is isolated it evolves into a Dirac delta function as in the 
case ε ≥  1. The final distribution consists of a series of non interacting clusters at locations xi with masses mi:

 ∑ δ= −∞
=

x m x x( ) ( ),
(17)i

r

i i
1

where r is the number of evolving opinion clusters33. All clusters must fulfill the conservation laws ∑ = =m M 1i 0 , 
and ∑ = =x m M 0i i 1  is equal to the conserved mean opinion. All different clusters i ≠  j must also fulfill 
|xi −  xj| >  ε.
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