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THE ECONOMETRICS OF ULTRA-HIGH FREQUENCY
DATA

1. Introduction

One measure of progress in empirical econometrics is the frequency of data used.
Upon entering Graduate School, I learned that my thesis supervisor, T.C. Liu, had just
broken the sound barrier by estimating the first quarterly model of the U.S. economy in
Liu(1964). Shortly thereafter, he doubled the feat by publishing a monthly macro model,
Liu(1969) I've not yet seen a weekly model of the macroeconomy but I suspect there may
be some in both government and private sector research groups. In finance a similar
transition has lead from the analysis of annual data to monthly data, to weekly data, to
daily data and now there is great interest in intradaily models.

In each case, much of the movement to higher frequency econometrics was a
consequence of the availablility of higher frequency measurements of the economy. Itis
natural to suppose that this will continue and we will have ever increasing frequencies of
observations. However, a moment’s reflection will reveal that this is not the case. The
limit in nearly all cases, is achieved when all transactions are recorded. These may be
transactions which occur in the supermarket, on the internet or in financial markets. Itis
difficult to think of economic variables which really are measurable at arbitrarily high
frequencies.

I will call this limiting frequency “ultra-high frequency” and spend the time in this
paper discussing econometric methods for the analysis of ultra-high frequency data.

The salient feature of such ultra-high frequency data is that it is fundamentally
irregularly spaced. Of course, one can aggregate this data up to fixed intervals of time,
but at that point one might argue that it is no longer ultra-high frequency data. There is
naturally a loss of information in such aggregates. This loss occurs partly because the
features within the interval may be lost if the interval is too large, and partly because
irregular spacing of the observations in an interval makes econometric analysis very
complex if the intervals are small.

The thrust of this paper will be to develop methods which are directly tailored to
the irregular spacing of the data rather than to adapt fixed interval econometrics to this
new situation. The statistics literature is replete with models for data of this form. These
models treat events as arriving in time according to some probability law. Famous
stochastic processes such as the Poisson Process and its Doubly Stochastic, Cluster and
Self-Exciting forms, Birth and Death Processes and many other continuous time discrete
state processes have been developed to solve problems in science and engineering. Many
of these processes can be used or extended to address economic problems. The basic
model to be presented and extended in this paper is the Autoregressive Conditional
Duration model developed by Engle and Russell(1995,a,b) which is a type of dependent
Poisson Process. In order to motivate the statistical methodology it is necessary to
examine the types of economic questions which may be asked of the data.

Section II of the paper will formulate the economic questions in a statistical
framework. Sections III and I'V develop the econometric models to be applied. Section V
gives results from IBM stock transactions, while VI presents the IBM price distribution.



II. Formulating the Economic Questions Statistically

Transactions data can be described by two types of random variables. The first is
the time of the transaction, and the second is a vector observed at the time of the
transaction. In the literature of point processes, these latter variables are called marks as
they identify or further describe the event that occured. In the type of financial data to be
examined here, the point of time is the time at which a contract to trade some number of
shares of IBM stock is agreed upon, and the marks are the volume of the contract, the
price of the contract, and the posted bid and asked prices at the time. Additional marks
which could be used or observed would be the counter-parties to the trade , the posted bid
and asked prices for other stocks, the order mechanism and many other features of a trade
which are of interest in studying market microstructure.

Let t, be the time at which the i trade occurs and let x;=t;-t; ; be the duration
between trades. At the i*' event the marks are observed and let these be denoted y; which
is a kx1 vector from a sample space =. The data therefore can be viewed as:

(1) {(xj,y;)i=1...N}

where the it observation has joint density conditional on the past filtration of (x,y) given
by:

2) (i yiNFio ~ fx yil%io 3i8)

where Z; ={z;,z,_,,...,z} denotes the past of z and 6°s are parameters which are
potentially different from observation to observation.

Economic hypotheses or measures of interest can now be expressed in terms of
this density function. The analysis of quantity data in traditional fixed interval
econometrics typically involves estimating the expected number of transactions or volume
of transactions in a particular time interval. The data measures the realization of a random
variable but generally it is the mean of this distribution and its determinants which is of
interest. For transactions data the realized transactions are zero at almost every point in
time while the probability of an event at each point of time is well defined.

The expected probability of a transaction in any instant of time can easily be
derived from (2). This is the instantaneous expected transaction rate and might be a
measure desired for various economic purposes. For any t>t, ,, the probability of an event
must be conditioned not only on all past events but also on the fact that there has not been
an event since t,, . The hazard function at a value t>t_| is exactly the probability of an
event at time t+At given that there has not been an event since t; ;. This is simply
expressed as the density of t-t, (or x) divided by the survival probability which is the
probability that the next event will be at a time greater than t. Since y is irrelevant to this
calculation it must be integrated out giving:
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A simpler expression can easily be obtained. Without loss of generality, the joint
density can be written as the product of the marginal density of the duration times the
conditional density of the marks given the duration, all conditioned upon the past
transactions.

4) SO {Eio 3-8 = ¢ (6% Y010 (3 3io1302:)

Substituting (4) into (3) gives an extension of the standard formula for the hazard which
now allows for past influences of both durations and marks (See for example Kalbfleisch
and Prentice(1980))

g (1 =1,4|%: 1, 301
J& (s=t;|%iy, D30, )ds
s2t
Notice in particular that it is not necessary to assume weak exogeneity or any other
restriction on the joint distribution to get this expression for the hazard.

3) A=
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More elaborate economic hypotheses are associated with the distribution of the
marks. Two such questions are the distribution of the next mark, regardless of when it
occurs, or the distribution of the next mark if it occurs at time t. To calculate the
distribution of the next mark conditional on t, one simply needs the function q defined in
equation (4).

To calculate the distribution of the next mark regardless of when it occurs,
requires calculating the marginal density of the mark.

(6) r il i@ N Fiey = f({ (8, Yi{Fi-1, 9138, )dis
52

If x and y are independent conditional on the past, then q will not depend upon x and
consequently, r=q. However, in the more common case where transaction rates are
related to the distribution of the marks, a numerical integral of some sort will be required.

Corresponding to each of these questions are prediction questions. What is the
hazard rate expected to be at some specified time in the future or after a certain number of
trades? Similarly, what is the distribution of the marks at some fixed time in the future or
after a certain number of transactions have occurred. Each of these questions can also be
answered by manipulation of the densities in (4) , although in most cases, closed form
solutions cannot be obtained. Instead, simulations can be used to generate answers.
These simulations are precisely defined by the joint density functions in (4) which are
conditional on past observations.

In the examples to be discussed below, the prices and times are modelled jointly.
This allows measurement not only of the transaction rate but its interaction with volatility.
The relation between volume and volatility has received vast attention from both a
theoretical and empirical point of view. It has been addressed as simply a data analysis
issue, or as a component of theories of market microstructure. Sometimes the empirical



models are developed for transactions data directly, but more often they are based on fixed
interval aggregates.

A popular approach to this analysis is through models of time deformation where
the relevant time scale is “‘economic time” rather than “calendar time.” Intuitively,
economic time measures the arrival rate of new information which influences both volume
and volatility. The joint analysis of transaction times and prices generalizes the standard
time deformation models by obtaining a direct measure of the arrival rate of new
information and then measuring exactly how this influences the distribution of the other
observables in the market.

II1. Econometric Issues

The econometric issues in applying these techniques are specifying and testing the
parameterizations of the functions g and q in equation (4) since the relevant economic
questions can all be determined from these functions.

The approach developed here is maximum likelihood with all its associated
parametric inference and testing procedures. In the subsequent section, a semiparametric
approach to hazard estimation will be presented.

In order to estimate parameters by maximum likelihood, it is necessary to
formulate the process so that there are a finite number of parameters 6 which are invarient
over events. The log likelihood function is simply the sum of the logs of all the N
individual joint densities conditional on the past and can therefore be written as:

N
) AX,Y;0)= Y log flx;, y|¥_1, ¥%i1;0 )
i=1

where X and Y are all the data and 6e O is the set of parameters.

In principle such a likelihood can be derived from a model where there are
unobserved latent processes. For example, some parameters may actually be unobserved
stochastic processes. Initially suppose that there is a series {¢} which is unobserved by the
econometrician but which is assumed to follow a probability law with conditional density
given by p with unknown parameters which are included in 8. The conditional density of
the observables can be expressed in terms of the different filtrations as follows:

by - = F .
0; [F 7 UF?& ~ I’(¢ilxi—lvyi—l’¢i—l’9)

(xi» )‘i)IF ENOFY ~ P, Yir®il%iots Y101 1:0)PO X1, 31, 04-130)

To obtain the density of (x,y) conditional only on observables, the density in (8) must be
integrated with respect to {¢;,i =1,..., N} leaving a likelihood as in (7) with only the fixed

parameters 0. In practice, the multidimensional integral is very difficult to evaluate and
requires sophisticated Monte Carlo methods. See for example Poulson, Jacquier and
Rossi(1994) for a volatility process and Shephard(1993) for more general problems.
Furthermore, it is not clear that it is easier to specify the processes in (8) than the
processes in (2) from a priori considerations.

®)



The specification of the conditional density of the durations given covariates is a
familiar problem in statistics and biostatistics. Much of this literature is focussed on the
treatment of censored durations which are endemic in survival analysis. In the transactions
analyses here, there are no censored durations, so the range of specifications which can be
considered is more generous. However, since the focus is on the temporal dependence of
the durations, the covariates are typically going to be lagged dependent variables and
functions of lagged dependent variables.

Engle and Russell(1995a,b) propose a specification of the conditional density
which requires only a mean function. They define y as the conditional duration given by

¢) Vi =Y (g, 3im30) = Eiy (fEiy, 512130) = [ s8(sf%i—y, 3oy 0)dis
and then assume that
Xi _~ ..
(10) 4 =X ~iid
i
This assumption insures that all the temporal dependence in the durations is captured by
the mean function. Such an assumption is testable in the sense that the standardized

durations can be checked for various forms of deviation from independence or identical
distribution. Under this assumption,

(11) 2|1 ¥,-13:0) = g(x )y 130)

where possibly there are no remaining unknown parameters in g which are not already in
. Because the x’s are now conditionally independent, the likelihood is easily evaluated.
The assumption in (10) is powerful and is incorporated in some but not all familiar
specifications for hazard models.

For example, the familiar log linear regression models or accelerated failure time
models can be specified in terms of covariates z as:

(12) 10gx,-=z,-B+w,-
where the error density is independent and identically distributed over observations and
does not depend upon 3. Thus

(13) x; =v;expzp

where v; is the exponential of w and is therefore positive. The expected value of x
conditional on the covariates will be proportional to exp(zp) so that x/y will be
independent and identically distributed as assumed in (10). If the hazard for v is A, then
the hazard for x is simply

(14) At 2) = Ao (te Py P



indicating that the covariates not only multiply the hazard, but also adjust the rate at which
the individual passes through the period. The name “accelerated failure time” has intuitive
appeal in medical applications where the patient is viewed as progressing through the
disease at a faster or slower pace depending upon the covariates. A similar interpretation
has been often used in finance where it is hypothesized that “economic time” sometimes
moves faster or slower than calendar time. Such models are described as time
deformation models and will be compared with the ACD model.

An alternative popular specification is the proportional hazard model (Cox(1972))
in which the baseline hazard is simply multiplied by the function of the covariates giving
rise to the specification:

(15) A(t,2)=Ao(e P

This model does not in general satisfy assusmption (10) although it does when the baseline
hazard is constant as in the exponential or when it is proportional to # as in the Weibull as
shown by Kalbfleisch and Prentice(1980,p34).

Under the specification (11), the log likelihood can be expressed as:

N
(16) AX,Y:0)= zl [log g(xw 1:61)+ log g(yi|x;, %1, ¥i-1:02)]
1=

which can be maximized with respect to the unknown parameters (6,,0,). If in addition
one can assume that the marks are weakly exogenous for the parameters of interest which
might be taken to be 0, then the joint estimation is not required and the parameters can be
estimated with no loss of efficiency simply by maximizing the first term. Similarly, if the
parameters of interest are in 6,, then weak exogeneity of x justifies maximizing simply the
second term.

IV. Semiparametric Hazard Estimation

With simply the assumption (10) and correct specification of (9), it is desirable to
find an estimate of the hazard function for x. This is called a semiparametric estimate of
the hazard because it does not require parameterizing the density of x but does require
specifying the mean of x. It is proposed to maximize the quasi-likelihood function

N N
(17) Q(X,9)=—__21[10g\l’1+xi /Wi]=‘§.15i

which would be the true log likelihood function if g were the exponential density. Define
the score, hessian and expected hessian of 1 as s, h and a respectively:
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A QMLE estimator can then be established which is consistent for the parameters and
which has a well defined asymptotic covariance matrix. This result was first pointed out
by Gourieroux, Monfort, and Trognon(1984) for a closely related problem, and follows
the QMLE results for ARCH models given in Bollerslev and Wooldridge(1992).

THEOREM 1: Under the following conditions:
1) For some 6, € int © a compact parameter space
E(x|Fi_1:80) =V ,;0)
X
v:00)
3) A set of regularity conditions nearly identical to those in Bollerslev and
Wooldridge

2) The random variable is a Martingale difference sequence

Then if n maximizes (17) over ©, then

o-1po 4o-11"1/2 A
[AN 1B A% 1] NGy -0 —25N©, D
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(2] 1 N o 1 N '
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Furthermore:
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where

. N LN
Ay=N"%Y[a;0y)], By=N gl[si(eN)fi(eN)]

i=1

This theorem supports estimation and inference by QMLE assuming an exponential
density. The result of such an estimate is a set of conditional durations for each
observation in the sample. By assumtion (10), the ratio of the realized duration to its
expectation is i.i.d. following some density g(). From this density, one can empirically

estimate a hazard function ?10() called the baseline hazard and then compute the hazard
for x from

(19) Ay (O=Rot DI,



There are many ways to empirically estimate the hazard for the standardized
durations. As there is no censoring or truncation in these data sets, various approaches
are available. One can estimate the density non-parametrically, compute the survivor
function from it and then take a ratio, or one can calculate the sample hazard function and
smooth it. Here we employ a version of the latter estimator which is essentially a k-
nearest neighbor estimator. When k is chosen as 1, this is a Kaplan Meier type estimate.
Since the durations are continuous and have few mass points, it is necessary to smooth
this estimator by choosing a wider bandwidth.

Consider the failure rate of the smallest 2k standardized durations. The time
interval for this set of failures is therefore (0,t,,) and the estimate of the hazard is the
number of failures divided by the time interval times the number at risk. In general, let n,
be the number of individuals surviving at time t;, then the 2k nearest neighbor estimate of
the hazard rate is computed from

2k

(20) At) = ——
ni(tire = i)

The nearest neighbor estimator gives a variable bandwidth as the number of individuals at
risk varies over the time axis. This is exactly the estimate which would be obtained if a
nearest neighbor approach to estimating the density of the durations was then used to
define the survival function and hazard. If the true density is exponential, then the hazard
is constant and the hazard estimates should be unbiased.

V. Estimating the Hazard for IBM Trades

Data on all trades for a random collection of stocks on the NYSE is available from
the exchange on the TORQ database which stands for Trades, Orders and Quotes. The
sample period runs from November 1990 through January 1991. For IBM there are
approximately 60,000 trades during this period although in this paper only 15,000
observations will be examined. Engle and Russell(1995a) analyzed both the first and
second set of 15,000 observations obtaining quite similar estimates even though the first
set included the Friday after Thanksgiving which was not only extraordinarily slow but
which also included a computer failure. Here only the second data set is examined.

Following E&R, the data is first “seasonally adjusted” to take out the typical time
of day effect. This is accomplished by regressing the durations on the time of day using a
piecewise linear spline specification and then taking ratios to get “seasonally adjusted”
durations which are expressed as fractions above or below normal. While this could be
done in one step, there is little to be gained in such a large data set. The range of the
adjusted data is from .025 to 19.9 or 1/40 of normal to 20 times normal. The standard
deviation is 1.33.



The adjusted data show striking evidence of autocorrelation with a Ljung-Box
statistic with 15 degrees of freedom of 1209 and all 15 autocorrelations between .055 and
.1 indicating a small but persistent signal. The model estimated is the ACD(1,1) expressed
as

(21) V=0t +By

where the density is assumed to be exponential. The estimates are therefore interpreted as
QMLE estimates as they are consistent regardless of the true density. The estimates are
presented below with the robust standard errors computed as in Theorem 1.

Table 1
Ercor  T-8tut . Robaost &

T TV 0 I TE 2 46
056 . 0023 | 242 0034 16.5
933 0028 325 0043 216

The standardized durations from this model, given by
(22) Xi=x;/y;

show very little evidence of autocorrelation with a Ljung Box statistic of 17.7 which is
well below the 5% point of 25 and six of 15 autocorrelations positive with a maximum
absolute value of .014. There is no evidence of time varying heteroskedasticity; the Ljung
Box statistic on the squares is only 20.6! There is very little evidence against serial
independence for this set of 15,000 observations. In E&R, further examination of this
result indicated that economic variables could improve the fit of this model but this line is
not pursued here.

The standardized durations are used to compute a density and a semiparametric
hazard following the approach of section IV. The empirical density with 50 nearest
neighbors on each side is plotted in Figure 1 with the hazard in Figure 2. There is strong
evidence of a sharp drop in the hazard for very small durations after which it only
gradually declines. Such a picture is broadly consistent with a Weibull density with
parameter less than unity as was found in E&R. The hazard in this case is proportional to
1/x-2 which is consistent with the sharp drop for very small durations.

The actual shape of the Weibull hazard when y=.8 is however not as abrupt as in
the figures. This can be seen in the following plot.
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V1. Estimating Price Volatility with Transaction Data

The most important mark which is available with each trade is the price at which it
occurred. These prices convey information about the volatility of the market and about a
variety of market micro structure hypotheses. In this section, a preliminary analysis of
price data corresponding to the IBM trades will be undertaken. The analysis focusses on
the relation between the timing of trades and the volatility of prices.

Since the time between trades is the reciprocal of the transaction rate which is
very highly correlated with volume, this study can draw on both the vast theoretical and
empirical literature on the relation between volatility and volume. Much of the empirical
literature is based on aggregated data which shows that there is a strong contemporaneous
relation between volume and volatility, e.g. see Lamoureux and Lastrapes(1990), Gallant,
Rossi and Tauchen(1992), and a survey by Karpoff(1987), although the predictive
information in volume is much less clear.

A theoretical construct which is often used in modelling both volume and volatility
is time deformation. Following the original ideas of Clark(1973) and Tauchen and
Pitts(1983), the relation between economic time and calendar time is specified either as a
latent process or as a function of observables. For example, Ghysels and Jasiak(1994)
propose having time pass as a function of quote arrival rates while Miiller et al.(1990) use
absolute quote changes and geographical information on market closings.

With transactions data, models are typically estimated in transaction time without
explicit account of the calendar time. For example see Hasbrouck(1988,1991) and
Harris(1986). Hausman Lo and MacKinlay(1992) introduce the duration of the last trade
as an exogenous explanatory variable but do not discuss its implications. Pai and
Polasek(1995) treat time as exogenous but allow the parameters of the process to depend
upon durations in simple ways.

The market microstructure approach to models of time and volume are more
useful as starting points. O’Hara(1995) points out that “if market participants can learn
from watching the timing of trades, then the adjustment of prices to information will also
depend on time.” It is useful to formulate the price adjusment process in terms of the
asymmetric information models introduced originally by Glosten and Milgrom(1985). In
these models, the specialist is faced with setting bid and asked prices to use when trading
with individuals who may be better informed than he is. In the original structure, there is
new information which is revealed to a fraction of the agents, while the rest will buy or sell

11



with a probability which is unrelated to the new information. When the specialist faces a
seller he offers a price which incorporates the probability that this trader is informed and
the probability that the information is bad. This inference is by Bayesian updating. The
more informed traders there are the lower the bid, and the higher the fraction of sellers,
the lower the bid. Eventually, the specialist discovers the private information and sets bids
and asks at the true value. If the informed traders act distinctively, such as selling large
volumes, then the specialist will rapidly reduce his bid.

Several extensions of this model are relevant for this analysis. Diamond and
Verrecchia(1987) note that sellers who do not own the stock must therefore short sell. If
some fraction of the informed traders are prohibited from short selling, then they cannot
profit from their information and when offered a chance to trade will not trade at the
existing prices. Thus non-trades are evidence that the news may be bad so the specialist
learns from the time between trades and lowers his prices and increases his spread. This
model can be summarized as no trade means bad news.

An alternative model is in Easley and O’Hara(1992) where there is also uncertainty
as to whether there even was an information event. Again a fraction of the agents are
informed and thus know whether there was news or not. When it is their turn to trade,
they will generally decline so that long intervals between trades is interpreted by the
specialist as evidence that there is no relevant news. The specialist therefore keeps prices
relatively stable if the trading intervals are long and reduces the bid asked spread. This
model can be interpreted as no trade means no news.

The goal of the analysis at this point is to determine a measure of the
instantaneous volatility using transaction data and discover how the timing of trades
influences this volatility. The prices are assumed to be best measured by the midquote
which is the average of the bid and asked price at the time of the transaction. This choice
of price measure reduces the econometric issues of bid asked bounce.

The model is formulated with the durations depending on past information
following an ACD type of model, and with prices following a GARCH type of process.
However, the volatility specification is now conditional not only on past information, but
also on the current duration. Such a measure of conditional volatility is no longer a
prediction but only becomes a prediction when integrated over durations using the density
estimated as part of the ACD.

To derive the variance process, let 6, be the conditional variance of the process
per second and let h; be the conditional variance of the i transaction. Both are condional
on the current duration as well as past information. These two variances are related by the
definition:

(23) hi=x0?

so that a pair of prices separated by zero time will have zero variance. This is in fact
correct in the data since at any point in time only one set of quotes can be current. The
longer the time, the bigger the variance of the transaction if the underlying variance
remains constant. If for example, ¢ depends only on the past, then the expected variance
over the next trade is simply given by

12



(24) E_(r)=E_(h)=E_(xo])=y of

where 1, is the log change in the midquote from transaction i-1 to transaction i. A simple
GARCH specification where current durations are not informative assumes:

2
(25) 6l=0+a 2l pol
Xi-1
which is a GARCH(1,1) modified to take account of the irregular trading intervals. This
model can be rewritten as

2
(26) b= x,-[co +a il B ﬂ}
A
which is the expression which appears in the likelihood function.
It is clear that this model does not yet recognize the possibility that variations in x
and variations in © could be related to the same news events. A more realistic and a more
interesting specification which also happens to have the highest likelihood of all the

models tried, is

2
27 ol=o +aily Bol, +'Yl'é"i+72ﬁ‘+73xi +Yqy 7!

Xi-1 i-1 i

where &; is the long run volatility computed by exponentially smoothing r? with a
parameter .995. That is:

(28) &; =005r2 +995,_,

Presumably, optimizing this parameter could give even better results although that was not
done here. The half-life of this smoother is 138 trades. This exponentially smoothed
estimate of volatility is computed in transaction time so it is here divided by y in order to
convert it to a per second volatility.

Because there is some serial correlation in the returns, an autoregressive moving
average process of order (1,1) was estimated. In addition, the trade interval was included
in the mean to allow a drift in returns or to allow the bad news effect of long durations to
reduce prices.

The impact of durations on volatility is incorporated in three coefficients which
measure the effects of surpises in durations, actual durations, and expected durations
respectively. These allow a rather interesting pattern of responses.

The results are presented in Table 2 along with robust standard errors as discussed
by Bollerslev and Wooldridge(1992). The first two rows correspond to the variables
which appear in the mean while the rest are in the variance.

13



TABLE 2

ESTIMATES OF VOLATILITY 02 FOR (27)
Log Likelihood=-18852

coef. sterr t-stat roberr rob t-stat

MEAN
AR(1) 51 .009 54 .06 8.2
MA(1) -.66 .008 -83 054 -12
X -.005 .007 -7.3 .003 -1.6
VARIANCE
const .60 .008 71 12 4.9
(9;2_1/)([_l 38 .007 52 045 8.2
38 .006 59 041 93
o
E v, 40 011 38 052 7.8
-.07 002 -33 .007 -10.7
%y
x_ -009 002  -45 .007 -1.4
1
1/, -22 008  -26 082 2.7

This model reveals strong autocorrelation in the mean through the highly
significant AR and MA coefficients. This is a familiar result in transaction data sets
because of bid asked bounce in transaction prices. It is also familiar in midquote models
such as Hasbrouck(1991) which is probably due to the discreteness in the quoted prices as
well as the occasional erroneous quote. The Ljung Box statistic for the original data with
15 lags is 1339, while the residuals reduce it to 658 and the standardized residuals fall to
88. Nevertheless this has a very small p value. The autocorrelations are still primarily
negative.

The mean is expressed as a function of the duration of the trade. This should be
the dfift in returns but also provides evidence of the bad news effect of long durations.
Interestingly this is negative supporting the Diamond and Verrecchia model but at least the
robust t-statistic is not very significant.

More interesting results are found in the variance equation. There is strong
evidence of time varying volatility as the Ljung Box on the squared returns is 1253 and on
the squared residuals is 1122 so that the fitting of the mean coefficients has little impact on
the volatility. The final squared standardized residuals have a Ljung Box of 34 which has
a p value of .006 which may not be too small for a sample of 15,000 observations. There
is however no reason why these should be serially uncorrelated since they are conditioned
on current durations as well as on the past. Only when conditioned on a filtration of the
observables should this be white noise.
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The coefficients of the conventional GARCH model o and B sum to just over .75
which is very small for such a high frequency data set. This result is also familiar in the
papers of Ghose and Kroner(1995) and Andersen and Bollerslev(1995) where it is found
that the persistence of a GARCH model drops dramatically with intradaily data. As shown
in the Appendix, the plain vanilla GARCH(1,1) shows similar features.

The remaining four variables illuminate the nature of high frequency volatility. The
first reveals that there is some substantial persistence in volatility since the slowly decaying
exponential smoother is an important explanatory variable.

Duration enters by itself and divided by its expectation. In both cases, longer
durations lead to lower volatilities. This finding supports the Easley and O’Hara
formulation in which no trade is interpreted as no news so that volatility is reduced.

The two terms have rather different impacts for forecasting. Taking expectation of
equation (27) conditional on the past gives:

2
(29) E,~_1<<s?)=m+a%‘—l+ﬁo?.l+vl‘t°'—‘1+vz+vgw,-+v4\u7‘
i-1 i—-1

so that 7y, which is highly significant has no persistence. On the other hand, ¥, has a long
term impact on future volatility since durations are themselves persistent. In this form it is
now clear that there is a non-linear response to Y where both coefficients are negative.
Plotting this relation shows that high expected duration leads to lower volatility while very
low expected durations also promise low volatilities.
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Figure 2

The response to high volatility merely supports the intuition that information in transaction
rates will help to predict future volatilities. When durations are very short, it is possible
that many of the transactions are actually trades which have been broken up and thus do
not represent separate events. This could explain the finding that when the market is
expected to be very active, volatility is lower than would otherwise be expected.

Several other simpler models have been estimated for this data set. These are
given in Table 3. In each case there is an ARMAC(1,1) in the mean and an intercept. The
first model is a plain GARCH(1,1) in transaction time while the second is a similar plain
GARCH(1,1) but translated into calendar time. The latter has a somewhat better fit but
the differences are not very large. The second is theoretically more interesting so it is
retained in the preferred specifications given above.
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TABLE 3
MORE MODELS FOR VARIANCES
each model has ARMA(1,1) in mean

B

Log Lik -19184 19172 18871

VII. Conclusions

This paper has introduced a framework to estimate models when the data arrive at
random intervals when these intervals themselves may carry information. The basic
procedure is to model the associated variables called marks conditional on the times, and
to separately model the times. Under some assumptions, there is no loss of information by
this two step procedure.

In this example, 15,000 IBM stock transactions are analyzed to find a model of the
timing of trades and then to measure the impact of this timing on the price volatility. The
ACD model introduced by Engle and Russell(1995) is used to estimate the dependent
point process for the arrival rates. A semiparametric approach to estimating the hazard
function is introduced and applied.

Finally, the price quotes are examined to obtain models of volatility conditional on
transaction times. Here it is found that volatility has a short and a long run component
and that longer durations are associated with lower volatilities as predicted by the Easley
and O’Hara model. In a predictive sense, very long expected durations have a negative
impact on expected volatility, but short expected durations also have a negative volatility
impact.
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