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In this study, we explored how the value of hybrid systems comprising solar photovoltaics (PV) and lithium-ion 

battery storage could evolve over time. Using a price-taker model with hourly energy and capacity prices pro- 

jected to 2050, we simulated the revenue-maximizing dispatch of three PV-plus-battery architectures, with fixed 

component sizing, in three locations. The architectures reflect different coupling types, which vary in terms of 

whether the PV and battery systems have separate inverters or a shared inverter and whether the battery can 

charge from the grid. We found that the highest-value architecture today varies largely based on PV penetration 

and the magnitude and timing of peak-price periods. As PV penetration increases over time —based on the evo- 

lution of the bulk power system —two trends emerge that indicate a convergence of the values of the systems 

studied. First, the energy values of the three architectures converge as an increasing fraction of energy from the 

coupled PV is used to charge the battery. Second, their capacity values converge to that of the battery as the 

capacity credit of stand-alone PV approaches zero. Of the systems studied, no single architecture has the highest 

year-one benefit-cost ratio in every region and year, and benefit-cost ratios of PV-plus-battery systems range from 

a 15% reduction to a 25% increase compared to separate PV and battery systems. Understanding the factors that 

influence the performance and economics of PV-plus-battery systems will help system planners and researchers 

evaluate the potential benefits of these hybrid resources to future power systems. 
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. Introduction 

Systems comprising solar photovoltaics (PV) coupled with lithium-

on battery storage, or PV-plus-battery hybrid systems, are of growing

nterest because of recent technology cost and performance improve-

ents and state and federal policies [1] . It is estimated that approx-

mately 40 utility-scale PV-plus-battery projects were installed on the

ulk power system before 2020 [2] , and over 25% of PV capacity in

.S. interconnection queues in 2020 was paired with battery systems

3] . It is expected that more than half of all battery capacity in U.S. in-

erconnection queues will be paired with PV by 2023 [4] , and interest

n such systems is apparent internationally as well [5] . 

Two PV-plus-battery architectures are commonly discussed in the

iterature [6] : AC-coupled systems involve separate inverters for the PV

nd battery components, and DC-coupled systems involve a single shared

nverter for both the PV and battery. We further divide the latter configu-

ation into two subtypes: loosely coupled systems that use a bidirectional

nverter that allows for charging from either the coupled PV or the grid,

nd tightly coupled systems that involve hardware (or controls) that dis-

llow grid charging. PV-plus-battery hybrid system configurations are
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urther characterized by component sizing via the PV inverter loading

atio (ILR), battery capacity, and battery duration. 

Each aspect of PV-plus-battery configuration influences the plant’s

ost and value; therefore, the long-term deployment potential of PV-

lus-battery systems could depend on which architecture is pursued.

he goal of the present study is to inform the long-term deployment

otential of PV-plus-battery systems by exploring (a) whether coupling

V and battery technologies results in improved net-economic perfor-

ance of the joint system and (b) if so, which form of coupling provides

he greatest net-economic benefits. Because answers to these questions

ould also vary both by location (which defines solar and wind resource,

oad patterns, and state-level policy drivers) and over time, we evalu-

te the cost and performance of different PV-plus-battery architectures

cross these dimensions. 

Information on costs for PV-plus-battery systems in the literature is

imited. Existing market data for operating and planned PV-plus-battery

ystems indicate that the power purchase agreement (PPA) price of a PV-

lus-battery system is currently $4/MWh–$14/MWh higher than that

f a comparable stand-alone PV system [3] , but these values reflect the

mpact of the federal investment tax credit (ITC) and a range of assump-

ions regarding component sizing [ 7 , 8 ]. Bottom-up engineering models
2021 
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ave also been developed to estimate costs related to engineering, pro-

urement, and construction (EPC) and project development functions,

ypically with a fairly detailed treatment of balance-of-system (BOS)

osts 1 [9–12] . Scenario analyses with such models indicate that coupling

 battery with utility-scale PV could reduce total project costs relative

o those of comparable separate PV and battery projects. 

To quantify the value that can be realized by PV-plus-battery systems,

revious analyses have often used price-taker modeling methods, which

re ideal for exploring how value varies across multiple dimensions due

o their computational efficiency. Price-taker analyses for stand-alone

V (e.g., in California [13] , New York [14] , Texas [15] , and other loca-

ions across the United States [16] ; in Ontario, Canada [ 17 , 18 ]; in lo-

ations in western Europe [19] ), stand-alone storage (e.g., compressed

ir energy storage [20] , pumped hydro storage [21] , sodium sulfur bat-

eries and flywheel energy storage [22] , hydrogen storage [23] ), and

oncentrating solar power with thermal energy storage (CSP-TES; e.g.,

n Spain [24] and various U.S. locations [ 25 , 26 ]) serve as helpful con-

ext for the valuation of PV-plus-battery systems. In particular, previous

rice-taker analyses of CSP-TES have shown that the value of solar-plus-

torage technologies is fairly insensitive to the optimization window be-

ause most of the shifting of the solar generation is done within the day

r among adjacent days [27–29] . Also, these previous analyses have

hown that the assumption of perfect foresight tends to overvalue solar-

lus-storage technologies, but it still provides a reasonable approxima-

ion of value because of the predictable diurnal pattern of energy prices

nd solar energy availability [ 3 , 27 , 30 , 28 ]. 

In addition to bulk power system applications (the focus of this

ork), there have been several analyses that explore PV-plus-battery

ystems in behind-the-meter (e.g., [31–33] ) and microgrid (e.g., [34] )

pplications. This area of research primarily focuses on retail electricity

ate savings to residential (e.g., in [35–38] ), commercial (e.g., in [39–

1] ), and industrial (e.g., in [41] ) customers as well as reliability bene-

ts to the distribution network (e.g., in [42–44] ). These analyses demon-

trate that battery capital costs, retail rate structures, policy-related fi-

ancial incentives and subsidies, and demand profiles are the primary

rivers of distribution-connected PV-plus-battery system economics. 

Price-taker studies involving utility-scale PV-plus-battery are also

merging, and they typically explore a small subset of the factors that

nfluence plant design, operation, and value. Zhang et al. [45] found

hat accounting for price and PV generation uncertainty in the real-time

peration of PV-plus-battery systems in PJM could increase revenue by

eserving battery energy and power capacity in the day-ahead (DA) mar-

et to be able to respond to fluctuations in real-time (RT) prices and

V generation. Carriere et al. [46] compared control strategies for PV-

lus-battery systems in DA and RT markets in France and found that

sing the battery to shift PV generation to higher-value hours provided

reater value than using the battery only to compensate PV forecast er-

ors. Ma ł kowski et al. [47] compared simulations to experimental tests

f PV-plus-battery systems for using the battery to balance RT PV gen-

ration to satisfy DA obligations in Poland and found that this applica-

ion results in levelized costs that are up to three times higher than DA

arket prices. These studies, however, focused on the operation of cou-

led systems and did not consider differences in system architectures or

harging the battery from the grid. 

Denholm et al. [48] employed price-taker modeling to study AC- and

C-coupled PV-plus-battery systems with a fixed configuration in Cal-

fornia, using historical hourly energy prices and simulated hourly en-

rgy prices for the year 2020. They found that coupled PV-plus-battery

ystems have higher benefit-cost ratios compared to separate systems,

ut their comparison of AC- and DC-coupled systems did not reflect the

fficiency differences between these architectures. 
1 BOS costs include all costs not related to the PV or battery components (e.g., 

ardware, labor, permitting, overhead, customer acquisition, and construction). 
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DiOrio et al. [49] developed a heuristic dispatch model that incorpo-

ates more-detailed physical modeling of battery components, including

onlinear effects associated with, for example, voltage and current, heat

ransfer, and degradation. They used this model to dispatch AC- and DC-

oupled systems in a single location against hourly PPA time-of-delivery

actors and similarly found that coupled PV-plus-battery systems have

igher benefit-cost ratios than separate systems. However, the focus of

heir analysis was on the value to the plant owner, not to the bulk power

ystem, and they did not investigate how future technology cost declines

ould affect project economics. 

Gorman et al. [3] used price-taker modeling with historical prices to

xplore how the value of PV-plus-battery systems in California and Texas

ary based on the battery dispatch algorithm. They found that the day-

head persistence algorithm, which provided a lower bound on value,

ould reduce the average market value of a PV-plus-battery system by

p to ~10–20% relative to the perfect foresight algorithm, depending on

ocation. They also demonstrated that coupling decreased the average

arket value relative to separate systems, but they considered only an

C-coupled system that was constrained to charge from the PV compo-

ent only. Furthermore, they compared these market values to existing

PA prices instead of project costs and did not consider future values or

osts. 

Our work expands on these previous analyses by combining the ca-

abilities of several existing electricity sector modeling tools with dif-

erent temporal and geographic scales to explore the net-economic per-

ormance of PV-plus-battery systems over a wide geographic extent and

nto the future. Given fixed component sizing, we explore how energy

nd capacity values for PV-plus-battery systems vary (a) by region (as

epresented by three U.S. states: Texas, New York, and California) and

b) based on the nature of coupling. Moreover, our analysis quantifies

he future value of PV-plus-battery systems based on simulated elec-

ricity prices —which include components of both energy and capacity

alue —that reflect evolving grid conditions projected through 2050 us-

ng a capacity expansion model. Finally, we evaluate and compare the

et-economic performance of PV, battery, and PV-plus-battery systems

cross all years, locations, and architectures. The objective of this anal-

sis is to provide insight about the motivations for coupling PV and

attery systems and the factors that influence the operation and value

f different coupling types as the bulk power system evolves. 

. Methods 

The future value of PV-plus-battery systems depends on plant-

pecific factors and the power system onto which those plants are inte-

rated. To the former point, the future costs of PV-plus-battery systems

ill depend on trajectories for PV panels, battery cells, and enabling

ower electronics and related BOS costs. To the latter point, the future

eneration mix will influence electricity price profiles and, in turn, the

perational strategy (and value) of PV-plus-battery systems. Both the

uture costs and operational strategy will also depend on the nature of

oupling, which defines the various energy pathways that are available

n a hybrid configuration. To represent all of these factors, we leverage

nformation from multiple tools that, when combined, generate infor-

ation about the evolving generation mix, temporal information about

uture electricity prices, and estimates for the future costs and perfor-

ance of PV and battery technologies. 

Fig. 1 presents the workflow developed for this study. First, we

rojected hourly prices by (1) optimizing generation and transmission

uildout through 2050 using a capacity expansion model, and (2) op-

imizing the hourly operations of the resulting bulk power system us-

ng a production cost (or unit commitment and dispatch) model. These

wo steps provided the simulated hourly price and net load data used

o create combined energy and capacity prices for future years. In ad-

ition, hourly PV generation profiles were obtained from a tool that

ses location-specific weather and solar resource data to simulate PV

ystem operation. The resulting hourly price and generation profiles
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Fig. 1. Summary of the workflow developed for this 

analysis and the individual tools used at each step. 
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ere used as inputs to a price-taker model to determine an individ-

al plant’s revenue-maximizing dispatch —accounting for configuration-

pecific energy pathways and efficiencies —which ultimately determines

he plant’s total value to the bulk power system. 

Fig. 1 also shows the particular tools used in this analysis. While sev-

ral of these tools are currently specific to the contiguous United States,

he workflow can be applied to any location, and different tools can be

ubstituted into the workflow. The following sections provide further

etail about how this workflow was applied in the current analysis, in-

luding input data that were derived from tools upstream of our analysis

 Section 2.1 ), details of our price-taker modeling setup ( Section 2.2 ), and

he specific PV-plus-battery configurations we explored ( Section 2.3 ). 

.1. Input assumptions derived from upstream tools and analysis 

The Regional Energy Deployment System (ReEDS) model is a capac-

ty expansion model that simulates the least-cost generation and trans-

ission build-out of the contiguous United States in every even year

hrough 2050 [50] . For the scenarios used in this study, the cost as-

umptions that informed the build-out were derived from capital and

&M costs for all modeled technologies from the 2019 Annual Tech-

ology Baseline (ATB) [51] . In particular, the underlying ReEDS results

hat informed this analysis were based on price data from the Low RE
3 
ost scenario, which assumes low-cost trajectories of capital, O&M, and

nancing costs for utility-scale and distributed PV, CSP, geothermal, and

and-based and offshore wind technologies [52] . We used the Low RE

ost scenario to evaluate how the value of PV-plus-battery systems could

volve with large increases in renewable energy penetration. 

ReEDS results for the states that comprise our three study regions —as

epresented by Texas, New York, and California —are shown in Fig. 2 ,

hich provides context for the results of the analysis. For example, re-

ewable energy technologies’ share of total capacity and generation is

imilar in each region by 2050 (despite starting at different levels in

020). The resulting impacts on energy prices and peak net loads are

hown in the Supplemental Information. Details about the evolution of

he electricity sector in these three regions in the Low RE Cost scenario

an be found in the 2019 Standard Scenarios report [52] and website

53] . 

Because our goal was to project the value of PV-plus-battery sys-

ems over time, the systems needed to be dispatched against electricity

rice profiles that evolve as the bulk power system in which they op-

rate evolves. Therefore, outputs from ReEDS were used as inputs to

he PLEXOS production cost model [54] , which optimizes the hourly

peration of the bulk power system and outputs hourly price data for

very modeled year. These hourly prices (along with other operational

ata) were processed and stored in the Cambium database [55] , which
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Fig. 2. Capacity fraction (top) and generation fraction (bottom) of battery, PV, wind, and CSP in each region. 
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Fig. 3. Example net load duration curve (blue) for a subset of hours in a year 

and its translation into hourly capacity prices (black), with energy prices (red) 

and alternate distributions of capacity prices (gray) shown for comparison; the 

area under each of the 1%, 3%, and 5% curves is the same and is equal to the 

yearly capacity value. 

l  
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s  
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(  
ncludes day-ahead energy prices (in 2018 U.S. dollars) for all even-

umbered years from 2020 to 2050 for each of the 134 balancing areas

epresented in the 2019 version of ReEDS [56] . 

Our approach dispatches each PV-plus-battery system to capture

oth energy and capacity value by using price signals that include hourly

apacity prices added to the hourly energy prices from Cambium. Re-

ource adequacy metrics like capacity credit are typically assessed in

erms of hourly loss of load probabilities, which represent the risk that

eneration will be insufficient to meet demand [57] . While the vast ma-

ority of hours in a year have little or no risk, there are higher-risk hours

hat typically coincide with the highest net loads [57] . Therefore, by

ncorporating capacity prices during hours with highest net loads as a

roxy for high risk, our methodology maximizes capacity value by max-

mizing power output during high-risk hours (i.e., by minimizing the

esulting net load during these hours, similar to the methodology devel-

ped in [58] ). 

To develop hourly capacity prices, we developed projections for the

nnualized cost, in $/MW-year, of a natural gas combustion turbine

NGCT) [51] as an approximation for the avoided cost of new capac-

ty, which is a typical approach for system planners [59] . 2 Then, we

istributed these annual capacity costs, weighted according to net load,

ver the top 3% of highest-net-load hours ( Fig. 3 ); i.e., the capacity price

or a given hour (in this subset of hours) is equal to the annual capacity

ost multiplied by the ratio of that hour’s net load to the sum of the net

oads in the top 3% of highest-net-load hours. We chose 3% because the

edian capacity factor of peaker plants in the United States is 3% [64] ,

nd about half of U.S. peaking capacity had a capacity factor of 5% or
2 Our projections assume a discount rate of 5.5% and a financing term length 

f 20 years. Several independent system operators (ISOs), including PJM [60] , 

idcontinent ISO [61] , ISO New England, and New York ISO [62] use an amor- 

ization period of 20 years for estimating the cost of new entry based on NGCTs. 

alifornia ISO estimates the cost of new merchant generation with low-, mid-, 

nd high-cost scenarios with financing periods of 20, 10, and 7 years, respec- 

ively [63] . 
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4 
ess in 2019 [65] . While the capacity credit of PV-plus-battery systems is

ensitive to the inclusion of hourly capacity prices in the dispatch price

ignals, there is minimal difference in capacity credit when the capac-

ty costs are distributed over 1% or 5% as opposed to 3%. Additionally,

he inclusion of hourly capacity prices minimally affects energy value

see Supplemental Information). An important element captured by this

ethod is that the hours with capacity prices change over the years as

he net load profile is affected by changing VRE and storage deployment.

These hourly prices reflect the assumptions that additional capacity

s needed in the system and that NGCT capacity would be the lowest-

ost, allowable capacity to meet system needs. These assumptions might

ot be true as the electricity sector and policy environment change. Not

ll regions need new capacity (e.g., PJM [66] ), and four-hour battery

apital costs are anticipated to be lower than NGCT capital costs in the

ext ten years [52] . Battery and PV-plus-battery systems are already
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eginning to replace new-build NG peaking capacity in places like Cali-

ornia [67] , Arizona [68] , and Texas [69] , and NYISO included battery

torage for the first time in their 2020 Capacity Demand Curve report

s a potential peaking technology because of state clean energy goals

70] . Furthermore, there has been increasing concern about gas gen-

ration assets becoming stranded before their economic lifetime [ 71 ,

2 ], especially as more places adopt clean and renewable energy stan-

ards and targets [73] . Finally, anticipated reliability concerns can be

lleviated by demand-side management or new transmission [74] . The

uestion of how resource adequacy assessment metrics and techniques

ust change with the evolving bulk power system is an active area of

esearch [75] . 

Finally, the National Solar Radiation Database (NSRDB) provides

ourly weather data that are used by the System Advisor Model (SAM) to

roduce hourly PV generation profiles [76] . We obtained PV production

rofiles for each region 3 from SAM’s PVWatts model [76] . The profiles

re based on a single-axis tracking PV array with a tilt of zero degrees,

hich is typical of most new PV systems [ 77 , 78 ]. Default values in SAM

ere assumed for the remaining parameters. To be consistent with the

imulated prices from Cambium, we used the 2012 weather year for the

V generation profiles. 

.2. Price-taker analysis 

Of the primary tools presented in Fig. 1 , RODeO [79] played the

ain role in determining the value of PV-plus-battery hybrid systems

n this analysis. RODeO is a price-taker, mixed integer linear program

hat optimizes a plant’s hourly dispatch behavior to maximize the net

evenue for the plant owner. Further details of RODeO, including the

athematical formulation, can be found in the Supplemental Informa-

ion as well as in [ 23 , 80 ]. RODeO’s low computational complexity —and,

herefore, fast run time —allowed us to analyze a wide range of scenar-

os, spanning multiple hybrid system configurations, regions, and years.

ecause RODeO is a price-taker tool, we assumed each stand-alone and

ybrid system is small enough relative to the total system that it does

ot change the marginal electricity prices [25] . For this analysis, we

sed an 8760-hour optimization window with perfect foresight of hourly

eather and prices 4 [23] . We did not include ITC-related cost reduc-

ions associated with battery operation in the optimization objective,

lthough we do account for them in the final cost results; so, while the

odel provides the value-maximizing dispatch, it does not provide the

ispatch that maximizes the benefit-cost ratio. 

To compare the PV-plus-battery hybrid systems to each other and

o separate systems, we accounted for two value streams. First, the net

nergy value is the energy revenue minus the costs incurred by charging

he battery from the grid, calculated by multiplying the hourly dispatch

ith the time-synchronous energy prices. Second, the capacity value

s based on the approximate capacity credit, 5 which we estimated for

ach hybrid system using the capacity factor approximation during the

0 hours with the highest net load. The same number of hours is used for

ll variable renewable energy (VRE) technologies in ReEDS [50] and has

een shown to provide a good approximation of stand-alone PV [82] and

SP-TES [83] capacity credit. Deriving the capacity value , then, requires
3 The specific locations are based on the centroids of the ReEDS balancing 

reas: Big Spring, Texas; Los Angeles, California; and Albany, New York [50] . 
4 According to [81] , production cost models “cannot completely simulate mar- 

et environments because they typically do not capture self-scheduling, bilateral 

ontracts, scarcity pricing, bidding strategies, and other factors that can alter 

ystem dispatch from the ‘least-cost’ dispatch produced by a model. ” Therefore, 

he price inputs we used will not reflect the volatility in prices, particularly neg- 

tive prices, seen in real markets. Consequently, the energy storage component 

s likely undervalued. 
5 Capacity credit is the portion of nameplate capacity that can be relied on to 

ontribute to firm capacity (i.e., the capacity that counts toward the planning 

eserve margin). 
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5 
ultiplying our capacity credit approximation for the PV-plus-battery

ystem by the annualized cost of NGCT capacity (previously described).

These value streams are not directly comparable with the revenue

hat might be earned by an independent developer in a wholesale mar-

et. Instead, they reflect avoided costs of energy and capacity, or the

alue that PV-plus-battery could provide as part of a least-cost planning

rocess (e.g., by displacing fuel consumption, reducing variable O&M

osts, and avoiding deployment of additional capacity). Previous re-

earch has shown that price-taker modeling of a solar-plus-storage tech-

ology provides a good approximation of the production cost reduction

hat would be seen by implementing the solar-plus-storage technology

n a production cost model [25] . 

We did not include the value of ancillary services in this analysis be-

ause, historically, ancillary services markets and their associated values

re typically small relative to energy and capacity markets [84–87] , and

hey can be difficult to model and predict [88] . The assumption required

y price-taker modeling that the system being modeled is small enough

o not affect marginal prices likely does not hold for ancillary services

arkets, in which 77-MW or 137-MW systems like the ones in this anal-

sis could be price-makers [89] . Furthermore, we wanted to consistently

ompare the value of PV-plus-battery systems among different areas by

ot including varying markets and participation rules and to avoid mak-

ng assumptions regarding future ancillary services markets [65] . 

Our summary metric is the year-one benefit-cost ratio (BCR). The

umerator of the BCR includes the capacity and net energy values during

he first year of operation, and the denominator is the annual cost of

he PV-plus-battery system (referred to as the annual capacity cost in

his paper), which includes annualized capital costs and year-one fixed

&M costs. Like ReEDS, we assume that a project that comes online

n a given year operates for that entire year and has costs equal to that

ear’s costs in the Annual Technology Baseline (i.e., the build year is the

rst year of operation). We chose to present the year-one BCR to avoid

rojecting total annual value beyond 2050 for systems built after 2020

given the assumed 30-year lifetime) and because we did not account for

V degradation in the RODeO simulations. Furthermore, our goal was to

nalyze how the value of these systems to the bulk power system might

volve relative to costs, not to analyze possible investment scenarios or

ecisions. However, for comparison, we also calculated the lifetime BCR,

ith the methodology and additional discussion in the Supplemental

nformation. The overall trends of the lifetime BCR and year-one BCR

re the same, but the lifetime BCR is very sensitive to discount rate. 

.3. Configuration details and costs 

The configurations we explore are shown in Fig. 4 . These diagrams

re simplified versions of the DC-coupled and centralized AC-coupled

ystems described in [6] . Each system comprises 100 MW DC of PV capac-

ty and 60 MW AC of battery capacity, which is consistent with the system

tudied in [90] . The battery is sized so that it can discharge at its full

apacity for four hours, uninterrupted, accounting for conversion losses

nd state-of-charge constraints. The unidirectional inverter (AC-coupled

ystems) and shared inverter (DC-coupled systems) are sized to maintain

he same ILR of 1.3 and have an efficiency of 98%. Battery roundtrip ef-

ciencies, including inverter losses, for each system ( Table 1 ) are based

n previous analysis of PV-plus-battery systems using the System Advi-

or Model (SAM) [49] . AC-coupled systems have lower battery roundtrip

fficiency when charged from the PV because of the extra conversions

erformed by the PV and bidirectional inverters, compared to the DC-

oupled system’s DC-DC converter. Details about the PV-plus-battery

ystems and how their design and operation affect values and costs are

hown in Table 1 . For comparison, we also include results for PV and

attery systems that are not co-located, hereafter referred to as separate

ystems or stand-alone systems; these systems operate independently of

ne another (i.e., are optimally dispatched separately) and do not ben-

fit from shared capital or operations and maintenance (O&M) costs. 
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Fig. 4. AC-coupled systems (left), in which the battery and PV have separate inverters, and DC-coupled systems (right), in which the battery and PV share an inverter. 

Table 1 

Assumptions for each configuration explored in this study. 

AC-Coupled DC-Coupled (Loose) DC-Coupled (Tight) 

Total power output capacity 137 MW 77 MW 77 MW 

Battery energy source Grid or PV Grid or PV PV only 

Battery roundtrip efficiency 85% (grid charging) 

86% (PV charging) 

85% (grid charging) 

87% (PV charging) 

87% (PV charging) 

Changes in energy value relative 

to separate systems 

None, because of separate inverters Limited by shared inverter 

Can capture energy that would 

otherwise be clipped by the inverter 

Higher roundtrip efficiency when 

storing PV energy 

Same as loosely DC-coupled 

Plus, cannot arbitrage grid energy (i.e., 

buy low and sell high) 

Changes in capacity value relative 

to separate systems 

None, because of separate inverters Limited by shared inverter Limited by shared inverter 

Cannot charge battery from grid in 

preparation for potential capacity 

shortfalls 

Changes in project costs relative 

to separate systems 

Reduced costs because of shared land, 

permitting, site preparation and 

staging, switchgear, transformer, and 

monitors, controls, and 

communication systems [90] 

Reduced costs due to same factors as AC-coupled, plus shared bidirectional 

inverter and lower interconnection costs [90] 

Increased costs because of distributed battery racks requiring more fire 

suppression and thermal energy management systems; increased labor costs 

(less experience with DC-coupled systems) [ 90 , 91 ] 

ITC eligibility Full eligibility for PV components 

Eligibility for battery components scales with fraction of energy charged from 

PV, which must be at least 75%; otherwise, 0% for battery components 

Full eligibility for all components 

Table 2 

Changes to capital and O&M costs from the PV Benchmark and ATB. 

Cost Category Changes 

PV costs O&M costs for PV systems include the annualized replacement cost of the inverter [92] . For DC-coupled systems, we removed the portion 

of O&M costs associated with the PV inverter replacement and instead used the annualized replacement cost of the shared inverter. 

Battery costs We incorporated the replacement of the entire battery pack after 15 years by finding the present value and then annualizing it over the 

30-year life. We assumed the bidirectional inverter was adapted from PV inverter architecture, with a price of $0.08/W AC in 2019 [5] . We 

then projected this cost according to the ATB four-hour storage trajectory, but we did not allow the bidirectional inverter to have less than 

a 10% premium over unidirectional inverters [ 5 , 91 ]. We incorporated replacement costs for the bidirectional inverter similarly to those of 

the battery pack. 

Interconnection costs Interconnection costs for AC- and DC-coupled systems were assumed to be the same as in [90] . We scaled interconnection costs according 

to total output capacity at the point of interconnection, so the AC-coupled system’s interconnection cost was based on a total of 137 MW, 

whereas the DC-coupled system’s interconnection cost was based on a total of 77 MW. 
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We derived our cost assumptions by adapting and updating capital

osts for stand-alone and hybrid systems from the 2018 U.S. Solar Pho-

ovoltaic System Benchmark [ 90 , 92 ], with the main changes shown in

able 2 . We annualized capital costs over the system’s 30-year lifetime,

ncluding replacement costs for the battery pack and inverter, assuming

 discount rate of 5.5% [51] . We used PV O&M costs from the 2019 ATB

nd battery O&M costs from the PV Benchmark. 6 To be consistent with

he Low RE Cost scenario assumptions, all PV-related capital and O&M

osts were projected to 2050 based on the ATB low-cost utility-scale PV
6 All O&M costs for both PV and battery systems are fixed, so variable O&M 

osts are zero. We implemented artificial variable O&M costs in the price-taker 

imulations for Texas to prevent the battery from cycling twice a day, but we 

id not include these costs in the post-processing step. See the Supplemental 

nformation for the values used in each year. 

t  

j

 

(  

I  

a  

6 
rajectory, and all battery-related capital and O&M costs were projected

ased on the ATB mid-cost four-hour storage trajectory. All costs are in

018 U.S. dollars. 

The annual capacity cost trajectories for separate PV and battery

ystems, AC- and DC-coupled systems, and NGCTs are shown in Fig. 5 .

or AC- and DC-coupled systems that happen to operate in a way that

nables the battery’s ITC eligibility, the shaded areas show the ranges of

ossible costs, depending on the fraction of battery energy that comes

rom the PV. Those ranges narrow significantly after the ITC steps down

o 10% in 2025, reducing the incentive to charge completely (instead of

ust mostly) from PV to less than $100,000 per year. 

Tightly DC-coupled systems will always have the lowest capacity cost

the loosely dashed blue line) because the battery will always have full

TC eligibility. Annual capacity costs for AC-coupled (dash-dotted lines)

nd loosely DC-coupled (dashed lines) systems depend on how much the
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Fig. 5. Annual capacity cost trajectories, in 

millions of dollars, for the AC- and DC-coupled 

systems shown in Fig. 4 (100 MW DC PV and 60 

MW AC , four-hour battery) and NGCTs. 7 
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attery is charged from the grid, which dictates ITC eligibility and value

or the battery component; therefore, these costs depend on the battery

peration as determined by RODeO. The incentive to charge mostly from

he coupled PV drops dramatically in 2025 as the cost savings associ-

ted with charging the battery at least 75% from the PV decline from

bout $600,000 to $250,000 and then continue falling over time. Even-

ually, most of the cost savings are associated with shared BOS costs

i.e., by AC-coupling), following by shared inverter and reduced inter-

onnection costs (i.e., by DC-coupling). For this reason, and because our

nalysis focuses on long-term value, we did not include ITC considera-

ions in the optimization objective. Insights from our results are largely

ndependent of the ITC and are, therefore, relevant for locations without

uch incentive. 

. Results and discussion 

In this section, we provide context for the BCRs of PV-plus-battery

ybrid systems by first presenting the energy value, capacity value, and

otal value of stand-alone and hybrid systems. 

.1. Energy value 

Fig. 6 shows the annual energy revenues, energy costs, and net en-

rgy values for 2020, 2030, and 2050. 8 In 2020, the coupling type that

rovides the highest value varies by location: AC-coupling has higher

et energy value than DC-coupling in Texas, AC- and loose DC-coupling

ave similar net energy value in New York, and all three coupling types

ave similar net value in California. However, by 2050, all three cou-

ling types have almost the same net energy value in each area (i.e.,

nergy value is largely independent of coupling). 

To understand why the different PV-plus-battery systems converge

n value over time, we provide three sets of dispatch plots for a typical

ummer day: one set in Texas in 2020, when AC-coupled systems have

igher energy value than DC-coupled systems ( Fig. 7 ); one set in New

ork in 2030, when AC- and loosely DC-coupled systems have similar

nergy values that are higher than tightly DC-coupled systems ( Fig. 8 );

nd one set in California in 2050, when all three PV-plus-battery systems
7 The ITC has been extended in the time since this analysis was performed. 
8 See Supplemental Information for all years. 

g  

i  

d  

7 
ave similar energy values ( Fig. 9 ). The typical dispatch behavior of

eparate systems is shown in the top left panel, and the typical dispatch

ehaviors of PV-plus-battery systems are shown in the remaining panels.

arginal energy prices are shown on the right axis. 

With the low PV penetration in Texas in 2020, the hours with high

emand and high prices coincide with solar generation, while wind gen-

ration and low demand suppress prices in the middle of the night.

herefore, the AC-coupled system operates like separate PV and bat-

ery systems: all PV generation is sent directly to the grid, and the bat-

ery charges during the low-priced, nighttime hours to discharge dur-

ng medium- and high-priced, morning and afternoon hours. Both DC-

oupled systems lose value because the shared inverter limits the power

utput during high-priced hours. The tightly DC-coupled system loses

ven more value by charging the battery from PV generation during

edium-priced hours instead of sending it to the grid, and its limited

rbitrage opportunity results in low battery use (i.e., the battery’s value

s limited by its inability to charge from the grid, especially in the pres-

nce of wind generation). A smaller battery could provide similar value

t lower cost in this tightly coupled case. 

In New York in 2030, the low-priced hours extend to slightly later

n the morning than in Texas, and the price peak is later in the evening

hen there is no solar resource. The shared bidirectional inverter of

he DC-coupled systems no longer limits the power output during the

igh-priced hours because it is the battery capacity that constrains how

uch power can be dispatched. The AC-coupled system and the separate

ystems now operate similarly to the loosely DC-coupled system: the

attery is charged during the night and morning from both grid and PV

nergy, the PV generation during the late morning and afternoon is sent

irectly to the grid, and the battery discharges fully in the evening after

he sun sets. The tightly DC-coupled system still loses value by charging

rom its own PV energy in the late morning instead of sending it to the

rid. 

In every year in this analysis, California has sufficient PV penetration

o suppress the value of additional PV, so the dispatch behavior of all

hree PV-plus-battery systems is consistent from 2020 to 2050. More of

ach system’s PV energy is used to charge the battery instead of going

irectly to the grid, and less of the battery’s energy is charged from the

rid. The AC-coupled system and both DC-coupled systems operate sim-

larly: the battery charges from low-value PV energy in the morning and

ischarges during the evening. The separate PV and battery systems also
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Fig. 6. Operation and energy value of separate (coupling type “None ”) and hybrid systems in 2020, 2030, and 2050. 

Fig. 7. Dispatch of separate and hybrid systems on a summer day in Texas in 2020. 
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ave the same net dispatch behavior as the coupled systems. However,

ome low-value PV energy is forced to the grid because of the mismatch

n PV capacity and battery capacity —the battery is undersized relative

o the PV system. In scenarios with high PV penetration, an optimally

ized system would likely have a larger battery capacity relative to the

V capacity. 

By 2050, all three coupling types have almost the same net energy

alue in each area because the increased PV penetration and conse-
8 
uent suppression of daytime energy prices cause the PV-plus-battery

ystems to use a larger fraction of the PV energy to charge the bat-

ery ( Fig. 10 ). Consequently, the AC-coupled system’s PV inverter is

sed less, and the lost arbitrage value of the tightly DC-coupled system

ue to its inability to charge from the grid is reduced. The decline in

et energy value over time results from increasing PV curtailment that

he battery cannot capture because of capacity and energy limitations

 Fig. 10 ). 
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Fig. 8. Dispatch of separate and hybrid systems on a summer day in New York in 2030. 

Fig. 9. Dispatch of separate and hybrid systems on a summer day in California in 2050. 
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The DC-coupled systems’ ability to capture clipped energy has a neg-

igible impact on energy value. In each region, total DC PV generation

s 2.0–2.2% lower than total AC PV generation. However, most of that

ifference is a result of the PV inverter loss of 2.0%, which cannot be

aptured by the battery, and any PV generation that is actually in excess

f the inverter capacity (not a result of inverter losses), goes through

 battery with roundtrip efficiency of less than 90%. Therefore, the

lipped energy that can actually be captured by the battery is signif-

cantly less than 2%. When all three PV-plus-battery systems operate

imilarly, the DC-coupled systems’ ability to avoid clipping and higher

attery roundtrip efficiency increase the net energy value by about 0.5%

r less compared to AC-coupled systems (see Supplemental Informa-

ion). However, the ILR for the configurations we analyzed is designed

o lower inverter costs with minimal clipping for standalone PV sys-

ems. DC-coupled systems with higher ILRs would see greater benefit

rom avoided clipping. 

In summary, AC-coupled systems and separate PV and battery sys-

ems provide more benefit to the power system than DC-coupled sys-

ems when it is valuable to discharge the battery when PV generation
9 
s high, and AC-coupled and loosely DC-coupled systems provide more

enefit than tightly DC-coupled systems when the battery can provide

ore value by charging when there is no PV generation (e.g., to capture

ighttime wind generation for morning peak net loads). Ultimately, with

igh PV penetration, the coupling type used for a PV-plus-battery system

ith an ILR of 1.3 plays a minor role in in the system’s net energy value.

he fact that the PV-plus-battery systems will eventually converge in

alue is independent of region —it happens because higher PV penetra-

ion decreases marginal PV value. But the timing of the convergence

oes depend on the region because PV deployment over time depends

n economic factors, particularly solar resource and policy drivers. 

.2. Capacity value 

As shown in Fig. 11 , as the capacity credit of stand-alone PV

pproaches zero with increasing PV penetration, the firm capacity

f a PV-plus-battery system approaches that of the battery. In other

ords, the battery alone contributes to the PV-plus-battery system’s

rm capacity based on its ability to discharge during peak net load
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Fig. 10. Fraction of PV generation sold directly to the grid (left) and fraction of battery’s energy from the PV array (right) for loosely DC-coupled systems. 

Fig. 11. Capacity credit of each hybrid system. 
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ours, regardless of whether the energy used to charge it comes from

he grid or the attached PV array. In California, PV-plus-battery sys-

ems and standalone battery systems have the same capacity credit

or all modeled years because additional PV consistently has a ca-

acity credit of zero. However, the battery’s inability to charge from

he grid in the tightly DC-coupled system can prevent it from charg-

ng in preparation for low-solar hours with high net loads, reducing
10 
he PV-plus-battery system’s total capacity value (e.g., New York in

050). 

The oscillations in New York for stand-alone PV and AC-coupled sys-

ems demonstrate the importance of considering all the factors that in-

uence how the entire bulk power system might evolve. For example,

enewable and clean energy policies simulated in this scenario result in

 large increase in PV capacity in 2040 [52] , driving the capacity credit
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Fig. 12. Capacity value of separate (coupling type “None ”) and hybrid systems, compared to maximum possible capacity values for stand-alone PV or shared 

bidirectional inverter (77 MW, top line) and stand-alone battery inverter (60 MW, bottom line). 
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f PV down. Then, demand growth, with negligible accompanying ca-

acity growth, causes the capacity credit to rebound slightly after 2042.

inally, the retirement of 1 GW of nuclear capacity prompts deployment

f 3 GW of PV capacity in 2048, driving PV capacity credit back down.

Fig. 12 shows how the capacity credit translates to the capacity value

f stand-alone and hybrid systems for the years 2020, 2030, and 2050.

he horizontal black lines indicate the maximum capacity value of the

C-coupled systems (77 MW, upper line) and the battery (60 MW, lower

ine). Because the capacity value is based on the avoided cost of new ca-

acity, the maximum possible capacity value of a PV-plus-battery system

ecreases over time as the cost of new NGCT capacity decreases, but the

ffect on capacity value is smaller than that of the falling capacity credit.

Using the capacity factor approximation to estimate capacity credit

esults in the PV-plus-battery systems having firm capacity equal to the

um of the firm capacities of separate PV and battery systems. However,

he shared bidirectional inverter of the DC-coupled systems limits their

rm capacity to 77 MW, even if the separate systems have more total

rm capacity. In Texas in 2020, for example, the DC-coupled systems’

apacity value is about $4 million lower than that of the AC-coupled or

eparate systems because of the difference in total power output capac-

ty. 

The capacity value trend over time follows the energy value trend in

hat the suboptimal design of certain components limits value compared

o separate systems. In early years, the shared bidirectional inverter re-

uces the capacity value of DC-coupled systems compared to separate

nd AC-coupled systems. In later years, the undersized battery limits

he firm capacity of PV-plus-battery systems to a maximum of 60 MW

espite the total output capacity of 137 MW for the AC-coupled system

nd 77 MW for the DC-coupled systems. As PV penetration increases

nd suppresses the capacity value of stand-alone PV systems, the op-
11 
imal PV-plus-battery system configuration will have a larger battery

apacity relative to the PV array capacity. 

.3. Total value 

Considering Figs. 6 and 12 together, the total value of each PV-plus-

attery system decreases over time, which is consistent with the find-

ng in [48] that PV-plus-battery system value declines with increasing

V penetration. However, at least some of the decline in total value

s a result of suboptimal component sizing, particularly of the battery

ower capacity and duration, and not limitations inherent to coupling.

n particular, a comparison of Fig. 11 and Fig. 13 shows that the largest

uctuations in normalized value coincide with the large fluctuations

n capacity credit, which are driven largely by the total output capac-

ty difference between separate or AC-coupled systems and DC-coupled

ystems. Smaller fluctuations are a result of changing energy value, as

hown in California, where the capacity credit of each system remains

onstant from 2020 to 2050. These results point to the need for optimal

V-plus-battery system design that accounts for evolving economic and

ulk power system conditions. 

The decline in capacity value is not as large as the decline in en-

rgy value, so capacity value contributes an increasing portion of the

otal value over time. Consequently, the method of determining capac-

ty value —both the capacity credit approximation and the translation

f firm capacity to dollar value —becomes more important. Our results

f the high capacity credit of four-hour storage are consistent with the

iterature in almost every year, given the high PV penetration [84] . How-

ver, each area sees a dramatic increase in storage deployment in 2050

hat could reduce the accuracy of our approximation. 
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Fig. 13. Combined capacity value and net energy value of hybrid systems, normalized relative to the 2020 combined capacity value and net energy value of separate 

systems. 
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According to [93] , the capacity factor during the 10 hours with the

ighest net load provides a good approximation of capacity credit be-

ause PV capacity credit is “highly sensitive to the most critical hours

f the year, due to strong correlation between loads and generation.

dding more hours to the calculation reduces the approximated capacity

alue, biasing the result ” [93] . As PV penetration increases, the corre-

ation between PV generation and net load decreases, so the 10 highest-

et-load hours might not provide the best estimate. More research is

eeded to understand how the accuracy of the capacity factor approxi-

ation changes with increased PV and battery penetration. 

Additionally, our translation of capacity credit to capacity value re-

uires assumptions about which technology is being avoided and the

ppropriate amortization period for new capacity of that technology.

e assumed NGCT capacity was avoided and the amortization period

as 20 years, which is consistent with several ISOs in the United States,

ncluding PJM [60] , Midcontinent ISO [61] , ISO New England, and New

ork ISO [62] . When we assume a higher cost of avoided capacity, we

nd increased capacity value for each PV-plus-battery system (see Sup-

lemental Information). The value increase is greater for AC-coupled

ystems —at lower PV penetration levels —because of their higher ca-

acity credit. 

.4. Benefit-cost ratio 

Fig. 14 shows the evolution of the BCRs of stand-alone PV and bat-

ery systems through 2050 (top row) and the change in BCR for each

V-plus-battery system relative to the combined BCRs of separate sys-

ems (bottom row). Combining PV and battery systems (dotted black

ine), with no cost savings, results in an averaging of the BCRs of stand-

lone systems, which reduces its volatility relative to stand-alone sys-

ems. BCRs, like the normalized values in Fig. 13 , are very sensitive to

hanges in capacity credit. 

The BCRs of the PV-plus-battery systems generally follow the same

rends as the BCRs of the combined separate PV and battery systems be-

ause coupling the systems —without changing component sizes —does

ot increase total value. Therefore, any increase in the BCR of a PV-plus-

attery system over combined separate systems in a given year is driven

rimarily by reductions in annual capacity costs resulting from shared

quipment, materials, labor, and infrastructure as well as the ITC’s ap-

licability to the battery. These cost reductions are greatest for tightly

C-coupled systems because of the battery’s full ITC eligibility and, be-

ore the ITC stepdown, are large enough to give tightly DC-coupled sys-
12 
ems higher BCRs than loosely DC-coupled systems. On the other hand,

 decrease in the BCR of a PV-plus-battery system relative to combined

eparate systems is a result of lost value resulting from the operational

onstraints associated with a shared inverter. Furthermore, increases in

CRs over time are driven entirely by the declining annual capacity costs

hown in Fig. 5 . 

Of the PV-plus-battery systems we studied, no coupling type has the

ighest BCR in every region, especially in the near term. AC-coupled sys-

ems have higher BCRs than DC-coupled systems when the added value

chieved by having separate inverters is greater than the increase in

ost associated with the additional inverter. DC-coupled systems have

igher BCRs than AC-coupled systems when stand-alone PV has little

r no capacity value and low energy value because the shared inverter

educes costs without limiting value. In the long term, because the PV-

lus-battery systems in this analysis converge to the same dispatch be-

avior and value as PV penetration increases, the most cost-effective

V-plus-battery system is likely the one with the lowest cost. 

Since the net-economic performance of PV-plus-battery systems rel-

tive to each other and to separate systems is more dependent on costs

han on performance differences (i.e., higher efficiency and clipped en-

rgy capture, which had minimal effect in this analysis), it is impor-

ant to understand the range of factors that contribute to uncertainty in

ost estimates. Transmission interconnection costs can be highly vari-

ble, and long wait times can result in large opportunity costs resulting

rom delayed operation [94] . A higher cost per interconnection capac-

ty in this analysis would have a greater effect on AC-coupled systems

ecause of their higher total power rating, improving the relative cost-

ffectiveness of DC-coupled systems. Similarly, prohibiting grid charg-

ng of the battery could lower interconnection costs by avoiding exten-

ive load interconnection studies that might be required if grid charging

s allowed [94] , which would improve the cost-effectiveness of tightly

oupled systems compared to loosely coupled systems. In the California

SO, batteries can be added to generators behind the point of intercon-

ection through a simpler modification process that can allow battery

peration a year or more earlier compared to a stand-alone battery sys-

em that would have to go through the full interconnection process [95] .

Another uncertain cost is that of the bidirectional inverter. We chose

 cost of $0.08/W (in 2019) based on the estimate in [5] for a simple

idirectional inverter adapted from PV inverter architectures, but the

ame reference notes that bidirectional inverter costs can be as high

s $0.30/W for “premium, custom-built products from top-tier manu-

acturers. ” A higher bidirectional inverter cost in this analysis would
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Fig. 14. BCRs of separate PV and battery systems (top) and changes in hybrid system BCRs relative to combined separate systems (bottom). 
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ave a greater effect on the DC-coupled systems, which have a 77-MW

idirectional inverter, while AC-coupled systems have a 60-MW bidirec-

ional inverter. Furthermore, we assumed that the tightly DC-coupled

ystems have a bidirectional inverter because the restrictions on how

uch energy the battery must charge from the PV for ITC eligibility last

or only five years (compared to inverter lifetimes of 10–20 years [96] ).

 higher premium on bidirectional inverter costs might make it more

ost-effective to invest in a PV inverter initially and wait for bidirec-

ional inverter costs to fall before replacing the inverter. 

Finally, it is important to note that the values and, therefore, BCRs

eported in this analysis do not reflect that PV-plus-battery system ca-

acity that is being added now and will continue being added to the

ulk power system will affect the operation and value of new PV-plus-

attery systems. Based on previous analyses of stand-alone PV (e.g.,

 97 , 98 ]) and stand-alone storage (e.g., [ 99 , 100 ]) systems, it is reason-

ble to assume that existing PV-plus-battery system capacity will reduce

he marginal value of new PV-plus-battery system capacity. Further-

ore, while this analysis compares different PV-plus-battery systems

o each other and to separate systems, it does not address how these

ystems will compete with other generation technologies or how other

enerators’ roles might change in response to increased PV-plus-battery

ystem deployment (e.g., the analysis done in [65] ). For these types of

uestions, other modeling tools, such as production cost or capacity ex-

ansion models, are required. 

. Conclusion 

In this analysis, we used a price-taker dispatch optimization to de-

ermine how the energy and capacity values of PV-plus-battery hybrid

ystem architectures evolve over time in areas with varying levels of so-

ar resource and penetration of variable renewable energy and battery

echnologies. Increases in PV, wind, and battery penetration shift the

agnitude and timing of marginal energy prices and peak net loads, so

he marginal value of additional PV and battery capacity is very sensi-

ive to grid conditions. 

The PV-plus-battery system with the highest benefit-cost ratio dif-

ers by region, depending on solar resource and how electricity price

atterns and magnitudes are affected by grid conditions. Generally, AC-

oupled systems can provide more benefit if it is valuable to discharge

he battery simultaneously with PV generation, and loosely coupled sys-
13 
ems can provide more benefit if the battery provides higher value by

harging during hours with no PV generation. However, as PV pene-

ration increases, the PV-plus-battery systems converge in value: their

apacity value converges to the battery’s capacity value, and their en-

rgy value converges toward that of tightly DC-coupled systems. This

onvergence in value happens because a growing fraction of the cou-

led PV energy is sent to the battery instead of the grid. 

However, hybridizing PV and battery systems —without optimizing

omponent sizing —does not offer more energy or capacity value than

eparate PV and battery systems and can reduce value if the systems

re not appropriately configured. The primary benefit of coupling is the

eduction in annual costs because of shared equipment, materials, labor,

nd infrastructure. 

Additional analysis could reveal greater insights into PV-plus-battery

ybrid system design and value. For example, our analysis did not con-

ider the impact of battery size or inverter loading ratio, which could

hange the value proposition for DC-coupled systems. Furthermore, we

id not evaluate how assumptions or constraints for the battery dispatch

lgorithm affect value. For questions regarding how PV-plus-battery sys-

em deployment might affect the marginal value of new PV-plus-battery

ystems or how these systems will compete with and affect the opera-

ions of other generators, particularly natural gas combustion turbine

nd/or combined cycle generators, production cost modeling, capac-

ty expansion modeling, or other types of equilibrium modeling tools

re necessary. As the role of PV-plus-battery hybrid systems in the bulk

ower system continues to grow, it will be increasingly important to

nderstand the impact of design parameters on economic performance.
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