Introduction to Tripos

COPYRIGHT

This manual Copyright (c) 1986, METACOMCO plc. All Rights
Reserved. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic
medium or machine readable form without prior consent, in writing,

from METACOMCO plec.

TRIPOS software Copyright (c) 1986, METACOMCO plc. All Rights
Reserved. The distribution and sale of this product are intended for the
use of the original purchaser only. Lawful users of this program are
hereby licensed only to read the program, from its medium into memory
of a computer, solely for the purpose of executing the program.
Duplicating, copying, selling, or otherwise distributing this product is a
violation of the law.

TRIPOS is a trademark of METACOMCO plc.
This manual refers to Issue 5, May 1986

Printed in the U K

DISCLAIMER

THIS PROGRAM IS PROVIDED "AS IS" WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE RESULTS AND
PERFORMANCE OF THE PROGRAM IS ASSUMED BY YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU (AND NOT
THE DEVELOPER OR METACOMCO PLC OR ITS AFFILIATED
DEALERS) ASSUME THE ENTIRE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION. FURTHER, METACOMCO
PLC OR ITS AFFILIATED COMPANIES DO NOT WARRANT,
GUARANTEE OR MAKE ANY REPRESENTATIONS REGARDING
THE USE OF THE PROGRAM IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, CURRENTNESS, OR OTHERWISE;
AND YOU RELY ON THE PROGRAM AND RESULTS SOLELY AT
YOUR OWN RISK. IN NO EVENT WILL METACOMCO PLC OR ITS
AFFILIATED COMPANIES BE LIABLE FOR DIRECT, INDIRECT,
INCIDENTAL, OR CONSEQUENTAL DAMAGES RESULTING FROM
ANY DEFECT IN THE PROGRAM EVEN [F IT HAS BEEN ADVISED
OF THE POSSIBILITY OF IMPLIED WARRANTIES OR LIABILITIES
FOR INCIDENTAL OR CONSEQUENTAL DAMAGES, SO THE
ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY.

Introduction to Tripos

Chapter 1: Simple Use of Tripos
Chapter 2: Editing Files
Chapter 3: Further Use of Tripos

Glossary

Issue 5 (May 1986)

Table of Contents

1.1
1.2

1.3

1.3.1
1.3.2
1.3.3
1.3.4
1.3.5
1.3.6
1.3.7

14

141
1.4.2
1.4.3
1.4.4
1.4.5
1.4.6

L5

Chapter Overview
Terminal Handling

Using the Filing System

Naming Files

Using Directories

Setting the Current Directory
Setting the Current Device
Attaching a Filenote
Understanding Device Names
Using Directory Conventions and
Logical Devices

Using Tripos Commands

Common Tripos Commands

Running Commands in the Background
Executing Command Files

Directing Command Input and Output
Interrupting Tripos

Understanding Command Formats

Example Session

Chapter 1: Simple Use of Tripos

This chapter provides a general overview of the Tripos operating system,
including descriptions of terminal handling, the directory structure, and
command use. At the end of the chapter, you'll find a simple example
session with Tripos.

Introduction to Tripos Simple Use of Tripos

1.1 Chapter Overview

|
Tripos is a multi-processing operating system designed for QSOOO
computers. Although you can use it as a multi-user system, you normally
run Tripos for a single user. The multi-processing facility lets man§ jobs

take place simultaneously. You can also use the multi-processing

facility to suspend one job while you run another. |

Each Tripos process represents a particular process of the opera
system - for example, the filing system. Only one process is running

ting
ata

time, while other processes are either waiting for something to happen or
have been interrupted and are waiting to be resumed. Each process has a
priority associated with it, and the process with the highest priority that
is free to run does so. Processes of lower priority run only when thaose of
higher priority are waiting for some reason - for example, waiting for

information to arrive from disk.

The standard Tripos system uses a number of processes that are

not

available to you, for example, the process that handles the serial |line.

These processes are known as private processes. Other private proce
handle the terminal and the filing system on a disk drive. If
hardware configuration contains more than one disk drive, there
process for each drive.

sses
the
is a

Tripos provides a process that you can use, called a Command Line
Interpreter or CLI. There may be several CLI processes running
simultaneously, numbered from 1 onwards. The CLI processes read

commands and then execute them. All commands and user programs
run under any CLI. To make additional CLI processes, you use
NEWCLI or RUN commands. To remove a CLI process, you use
ENDCLI command. (See Chapter 1, "Tripos Commands," of the Tri
User's Reference Manual for afull description of these comman

1-1

will
the
the
pos
ds.)

Simple Use of Tripos Introduction to Tripos

1.2 Terminal Handling

You can direct information that you enter at the terminal to a Command
Line Interpreter (CLI), that tells Tripos to load a program, or you can
direct the information to a program running under that CLI. In either
case, a terminal (or console) handler processes input and output. This
terminal handler also performs local line editing and certain other
functions. You can type ahead as much as you like.

To correct mistakes, you press the RUBOUT, DEL, or BACKSPACE key.
This erases the last character you typed. To rub out an entire line, hold
down the CTRL key while you press X. This control combination is
referred to from this point on in the manual as CTRL-X.

If you type anything, Tripos waits until you have finished typing before
displaying any other output. Because Tripos waits for you to finish, you
can type ahead without your input and output becoming inter-mixed.
Tripos recognizes that you have finished a line when you press the
RETURN key. You can also tell Tripos that you have finished with a line
by cancelling it. To cancel a line, you can either press CTRL-X or press
any of the deletion keys (BACKSPACE, DEL, RUBOUT) until all the
characters on the line have been erased. Once Tripos is satisfied that you
have finished, it starts to display the output that it was holding back. If
you wish to stop the output so that you can read it, simply type any
character (pressing the space bar is the easiest), and the output stops. To
restart output, press a deletion key, CTRL-X, or RETURN. Pressing
RETURN causes Tripos to try to execute the command line typed after
the current program exits.

Tripos recognizes CTRL-\ as an end-of-file indicator. In certain
circumstances, you use this combination to terminate an input file. (For
a circumstance when you would use CTRL-\, see Section 1.3.6.)

Finally, Tripos recognizes all commands and arguments typed in either
upper or lower case. Tripos displays a filename with the characters in the
case used when it was created, but finds the file no matter what
combination of cases you use to specify the filename.

1-2

Introduction to Tripos Simple Use of Tripos

1.3. Using the Filing System

This section describes the Tripos filing system. In particular, it explains
how to name, organize, and recall your files.

A file is the smallest named object used by Tripos. The simblest
identification of a file is by its filename, discussed below in Section 1.3.1,
"Naming Files." However, it may be necessary to identify a file more
fully. Such an identification may include the device or volume name,
and/or directory name(s) as well as the filename. These will be discussed

in following sections.

1.3.1 Naming Files

Tripos holds information on disks in a number of files, named so that‘: you
can identify and recall them. The filing system allows filenames to have
up to thirty characters, where the characters may be any prertmg
character except slash (/) and colon (;). This means that you can include
space (), equals (=), plus (+), and double quote ("), all special characters
recognized by the CLI, within a filename. However, if you use these
special characters, you must enclose the entire filename with double
quotes. To introduce a double quote character within a filename,|you
must type an asterisk (*) immediately before that character. In addition,
to introduce an asterisk, you must type another asterisk. This means
that a file named

A*B = C"
should be typed as follows:
"AX*B = CH""
in order for the CLI to accept it.
Note: This use of the asterisk is in contrast to many other operating

systems where it is used as a universal wild card. An asterisk by itself in
Tripos, represents the keyboard and screen. For example,

Simple Use of Tripos Introduction to Tripos

COPY filename to *
copies the filename to the screen.

Avoid spaces before or after filenames because they may cause confusion.

1.3.2 Using Directories

The filing system also allows the use of directories as a way to group files
together into logical units. For example, you may use two different
directories to separate program source from program documentation, or
to keep files belonging to one person distinct from those belonging to
another.

Each file on a disk must belong to a directory. An empty disk contains
one directory, called the root directory. If you create a file on an empty
disk, then that file belongs to this root directory. However, directories
may themselves contain further directories. Each directory may
therefore contain files, or yet more directories, or a mixture of both. Any
filename is unique only within the directory it belongs to, so that the file
fred’' in the directory 'bill' is a completely different file from the one
called 'fred’ in the directory 'mary’.

This filing structure means that two people sharing a disk do not have to
worry about accidentally overwriting files created by someone else, as
long as they always create files in their own directories.

WARNING: When you create a file with a filename that already exists,
Tripos deletes the previous contents of that file. No message to that effect
appears on the the screen.

You c¢an also use this directory structure to organize information on the
disk, keeping different sorts of files in different directories.

Introduction to Tripos Simple Use of Tripos

An example might help to clarify this. Consider a disk that contains two
directories, called 'bill' and 'mary’. The directory bill’ contains two files,
called 'text' and 'letter'. The directory 'mary’ contains a file called ‘data’
and two directories called 'letter’ and "invoice'. These subdirectoriesleach

contain a file called jun18'. Figure 1-A represents this structur
follows:

root
N . ‘
I |
bill mary
[|
+————— + + + +
[I I | |
text letter data letter invoice
I |
+ +——+ junl8
I l
ABComputers junlsg
Figure 1-A: Using Directory Structure

€ as

Note: The directory 'bill' has a file called "letter,’ while the directory

'‘mary’ contains a directory called ‘letter'. However, there is no conf ‘

here because both files are in different directories. There is no lim
the depth that you can 'nest’ directories.

sion
it to

To specify a file fully, you must include the directory that owns it, the
directory owning that directory, and so on. To specify a file, you givé the

names of all the directories on the path to the desired file. To separate
each directory name from the next directory or file name, you type a
following slash (/). Thus, the full specification of the data files on the disk

shown in Figure 1-A above is as follows:

1-5

Simple Use of Tripos Introduction to Tripos

bill/text

bill/letter

mary/data
mary/letter/ABComputers
mary/letter/junl8
mary/invoice/junl8

1.3.3 Setting the Current Directory

A full file description can get extremely cumbersome to type, so the filing
system maintains the idea of a current directory. The filing system
searches for files in this current directory. To specify the current
directory, you use the CD (Current Directory) command. If you have set
‘mary' as your current directory, then the following names would be
sufficient to specify the files in that directory:

data
letter/junl8
invoice/junl8

You can set any directory as the current directory. To specify any files
within that directory, simply type the name of the file. To specify files
within subdirectories, you need to type the names of the directories on
the path from the current directory specified.

All the files on the disk are still available even though you've set up a
current directory. To instruct Tripos to search through the directories
from the root directory, you type a colon () at the beginning of the file
description. Thus, when your file description has the current directory
set to 'mary’, you can also obtain the file 'data’ by typing the description
“mary/data’. Using the current directory method simply saves typing,
because all you have to do is specify the filename 'data’.

To obtain the other files on the disk, first type "bill/text’ and "bill/letter’
respectively. Another way might be to CD or type / before a filename.
Slash does not mean 'root’ as in some systems, but refers to the directory
above the current directory. Tripos allows multiple slashes. Each slash
refers to the level above. So a Unix (TM) ../ isa/ in Tripos. Similarly,
an MS-DOS (TM) ..\ isa / in Tripos. Thus, if the current directory is

1-6

Introduction to Tripos Simple Use of’li'ripos

“mary/letter’, you may specify the file "mary/invoice/junl8' as
"/invoice/jun18'. To refer to the files in ":bill’, you could type ‘

CD :bill

or
CD //bill ;

Then you could specify any file in 'bill' with a single filename. Ofcoiurse,
you could always use the // feature to refer directly to a specific ﬁleT. For

example,

TYPE //bill/letter i

displays the file without your first setting 'bill' as the current direc‘tory.
To go straight to the root level, always type a colon (:) followed by a
directory name. If you use slashes, you must know the exact number of

levels back desired.

1.3.4 Setting the Current Device

Finally, you may have many disk drives available. Each disk device has
a name, in the form DFn (for example, DF1), where the 'n' refers t‘o the
number of the device. (Currently, Tripos accepts the device names| DFo0
to DF3). Each individual disk is also associated with a unique nLame,
known as a volume name (see below for more details).

In addition, the logical device SYS: is assigned to the disk you starte‘ the

system up from. You can use this name in place of a disk device name
(like DF0:).

The current directory is also associated with a current drive, the drive
where you may find the directory. As you know, prefacing a‘ file
description with a colon serves to identify the root directory of’ the
current drive. However, to give the root directory of a specific drivel you
precede the colon with the drive name. Thus, you have yet another way of
specifying the file 'data’ in directory 'mary’, that is 'DF1:mary/data". ‘LI‘his
assumes that you have inserted the disk into drive DF1. So, to referrznce

1-7

Simple Use of Tripos Introduction to Tripos

a file on the drive DFO0 called 'project-report' in directory 'peter’,you
would type ‘DFO0:peter/project-report’, no matter which directory you had
set as the current one.

Note: When you refer to a disk drive or a device, on its own or with a
directory name, you should always type the colon, for example, DF1:.

Figure 1-B illustrates the structure of a file description. Figure 1-C gives
some examples of valid file descriptions.

Left of the : Right of the : Right ofa/

Device name Directory name Subdirectory name
-or- -or- —or-

Volume name Filename Filename

Figure 1-B: The Structure of a File Description

SYS:commands

DF0:bill

DFl:mary/letter
DF2:mary/letter/junl8
DOC:report/sectionl/figures
C:cls

Figure 1-C: Examples of File Descriptions

To gain access to a file on a particular disk, you can type its unique name,
which is known as the disk's volume name, instead of the device name.
For instance, if the file is on the disk '"MCC®, you can specify the same file
by typing the name '"MCC:peter/project-report’. You can use the volume
name to refer to a disk regardless of the drive it is in. You assign a
volume name to a disk when you format it (see "FORMAT" in
Chapter 1,"Tripos Commands," in the Tripos User's Reference
Manual for further details).

1-8

Introduction to Tripos Simple Use of Tr%pos

A device name, unlike a volume name, is not really part of the name.|For
example, Tripos can read a file you created on DFO0: from another drive,
such as DF1;, if you place the disk in that drive, assuming of course that
the drives are interchangeable. That is, if you create a file called bill' on
a disk in drive DFO:, the file is known as 'DFO0:bill'. If you move the disk
to drive DF1;, Tripos can still read the file, which is then 'DF1:bill".

1.3.5 Attaching a Filenote

Although a filename can give some information about its contents, %t is
often necessary to look in the file itself to find out more. Tripos provides a

simple solution to this problem. You can use the command called
FILENOTE to attach an associated comment. You can make up a
comment of up to 80 characters (you must enclose comments contain}ing
spaces in double quotes). Anything can be put in a file comment: the ‘day
of the file's creation, whether or not a bug has been fixed, the version

number of a program, and anything else that may help to identify it.

You must associate a comment with a particular file - not all files have
them. To attach comments, you use the FILENOTE command. If ‘rryou
create a new file, it will not have a comment. Even if the new file is a
copy of a file that has a comment, the comment is not copied to the new
file. However, any comment attached to a file which is overwritten is
retained. To write a program to copy a file and its comment, you'll have

to do some extra work to copy the comment.

When you rename a file, the comment associated with it doesn't change.
The RENAME command only changes the name of a file. The file's
contents and comment remain the same regardless of the name change.
For more details, see "LIST" and "FILENOTE" in Chapter 1, "Tripos
Commands," of the Tripos User's Reference Manual.

Simple Use of Tripos Introduction to Tripos

1.3.6 Understanding Device Names

Devices have names so that you can refer to them by name. Disk names
such as DFQ: are examples of device names. Note that you may refer to
device names, like filenames, using either upper or lower case. For
disks, you follow the device name by a filename because Tripos supports
files on these devices. Furthermore, the filename can include directories
because Tripos also supports directories.

You can also create files in memory with the device called RAM:. RAM:
implements a filing system in memory that supports any of the normal
filing system commands.

Note: RAM: requires the library I/ram-handler to be on the disk, and for
the MOUNT command have been used to make the RAM: device
available; see "MOUNT" in Chapter 1, "Tripos Commands,” of the
Tripos User's Reference Manual.

Once the device RAM: exists, you can, for instance, create a directory to
copy all the commands into memory. To do this, type the following
commands:

MOUNT ram:

MAKEDIR ram:c

COPY sys:c TO ram:cC
ASSIGN C: RAM:C

You could then look at the output-with DIR RAM:. It would include the
directory 'c' (DIR lists this as c(dir)). This would make loading commands
very quick but would leave little room in memory for anything else. Any
files in the RAM: device are lost when you reset the machine.

Tripos also provides a number of other devices that you can use instead of
a reference to a disk file. The following paragraphs describe these
devices including NIL:, SER:, PAR:, and AUX:. In particular, the device
NIL: is a dummy device. Tripos simply throws away output written to
NIL:. While reading from NIL:, Tripos gives an immediate end-of-file.
For example, the following:

1-10

Introduction to Tripos Simple Use of Tripos

EDIT abc TO nil:

allows you to use the editor to browse through a file, while Tripos throws

away the edited output.

You use the device called SER: to refer to any device connected to
serial line (often a printer). Thus, you would type the following comm
sequence:

COPY xyz TO ser: ‘

to instruct Tripos to send the contents of the file 'xyz' down the se
line. Note that the serial device only copies in multiples of 400 bytes
time. Copying with SER: can therefore appear granular. \

The device PAR: refers to the parallel port in the same way.
Tripos also provides the device AUX:. This device refers to the se

line, like SER:. However, unlike SER:, AUX: always treats the se
line as another interactive terminal. You usually use AUX: with

the
and

rial
ata

rial
rial
the

NEWCLI command; see "NEWCLI" in Chapter 1 of the Tripos User's

Reference Manual for afull specification of this command.

There is one special name, which is * (asterisk). You use this to refer to
the screen, both for input or for output. You can use the COPY command
to copy from one file to another. For instance, using *, you can copy from

a file to the screen, for example,
COPY bill/letter TO *
You can also copy from the screen to a file. For example,

COPY * TO mary/letter

sends anything you type on the keyboard to the file 'mary/letter'. Tripos
finishes copying when it comes to the end of the file. To tell Tripos to stop

copying from *, you must give the CTRL-\ combination. Note that
NOT the universal wild card.

1-11

* is

Simple Use of Tripos Introduction to Tripos

1.3.7 Using Directory Conventions and Logical Devices

In addition to the aforementioned physical devices, Tripos supports a
variety of useful logical devices. Tripos uses these devices to find the files
that your programs require from time to time. (So that your programs
can refer to a standard device name regardless of where the file actually
is.) All of these 'logical devices' may be reassigned by you to reference
any directory.

The logical devices described in this section are as follows:

Name Description Directory

SYS: System disk root directory :

C: Command library :C

L: Library directory :L

S: Sequence library S

DEVS: Device for Open Device calls :DEVS
Temporary workspace ‘T

Figure 1-D: Logical Devices

Logical device name: SYS:
Typical directory name: My.Boot.Disk:

'SYS' represents the SYStem disk root directory. When you first start up
the system, Tripos assigns SYS: to the root directory name of the disk in
DF0:. If, for instance, the disk in drive DF0: has the volume name
My.Boot.Disk, then Tripos assigns SYS: to My.Boot.Disk:. After this
assignment, any programs that refer to SYS: use that disk's root
directory.

1-12

Introduction to Tripos Simple Use oan‘“ipos

Logical device name: C:

Typical directory name: My.Boot.Disk:c ‘

'C' represents the Commands directory. When you type a command to the
CLI (DIR <cr>, for example), Tripos first searches for that command in
your current directory. If the system cannot find the command in the
current directory, or in any other directory in your current path, it then
looks for 'C:DIR'. So that, if you have assigned 'C:' to another directory
(for example, 'Boot__disk:c"), Tripos reads and executes from
'Boot__disk:c/DIR".

Logical device name: L:
Typical directory name: My.Boot.Disk:1l

'L’ represents the Library directory. This directory keeps the overlays for
large commands and non-resident parts of the operating system.| For
instance, the disk-based run-time libraries (Ram-Handler,
Port-Handler, Disk-Validator, and so forth) are kept here. Tripos
requires this directory to operate.

Logical device name: S:
Typical directory name: My.Boot.Disk:s

'S’ represents the Sequence library. Sequence files contain command
sequences that the C command searches for and uses. C first looks for the
sequence (or batch) file in your current directory. If C cannot find it
there, it looks in the directory that you have assigned S: to.

1-13

Simple Use of Tripos Introduction to Tripos

Logical device name: DEVS:
Typical directory name: My.Boot .Disk :DEVS

Open Device calls look here for the device if it is not already loaded in
memory.

Note: In addition to the above assignable directories, many programs
open files in the ":T* directory. As you recall, you find file (or directory)
names predicated with a ' in the root directory. Therefore "T" is the
directory T, within the root, on the current disk. You use this directory to
store temporary files. Programs such as editors place their temporary
work files, or backup copies of the last file edited, in this directory. If you
run out of space on a disk, this is one of the first places you should look
for files that are no longer needed.

When the system is first booted, Tripos initially assigns C: to the :C
directory. This means that if you boot with a disk that you had formatted
by issuing the command:

FORMAT DRIVE DF0O: NAME "My.Boot.Disk"
SYS: is assigned to 'My.Boot.Disk'. The 'logical device’ C: is assigned to

the C directory on the same disk (that is, My.Boot.Disk:c). Likewise, the
following assignments are made

C: My.Boot.Disk:c
L: My.Boot.Disk:1
S: My.Boot.Disk:s
DEVS: My.Boot.Disk:devs

If a directory is not present, the corresponding logical device is assigned
to the root directory.

If you are so lucky as to have a hard disk (called HD0:) and you want to

use the system files on it, you must issue the following commands to the
system:

1-14

|
Introduction to Tripos Simple Use of Tripos
\

ASSIGN SYS: HDO:
ASSIGN C: HDO:C
ASSIGN L: HDO:L
ASSIGN S: HDO:S
ASSIGN DEVS: HDO :DEVS

Please keep in mind that assignments are global to all CLI processes.

If you want your commands to load faster (and you have memory 'to
burn'), type |

This copies all of the normal Tripos commands to the RAM disk and
reassigns the commands directory so that the system finds them there.

MAKEDIR RAM:C
COPY SYS:C RAM:C ALL
ASSIGN C: RAM:C

1.4 Using Tripos Commands
A Tripos command consists of the command-name and its arguments, i
any. To execute a Tripos command, you type the command-name and its
arguments after the CLI prompt.

When you type a command name, the command runs as part of ‘the
Command Line Interpreter (CLI). You can type other command names
ahead, but Tripos does not execute them until the current command has
finished. When a command has finished, the current CLI prompt
appears. In this case, the command is running interactively.

1-15

Simple Use of Tripos Introduction to Tripos

WARNING: If you run a command interactively and it fails, Tripos
continues to execute the next command you typed anyway. Therefore, it
can be dangerous to type many commands ahead. For example, if you

type

COPY a TO b
DELETE a

and the COPY command fails (perhaps because the disk is full), then
DELETE executes and you lose your file.

The CLI prompt is initially n>, where n is the number of the CLI
process. However, it can be changed to something else with the PROMPT
command. (See "PROMPT" "Tripos Commands” in the Tripos User's
Reference Manual for further details.)

1.4.1 Commeon Tripos Commands

This subsection describes in full the following commands, although a
formal specification of each of them can be found in Chapter 1, "Tripos
Commands," of the Tripos User's Reference Manual:

- LIST

- COPY

- TYPE

- DELETE

- WHY

- MAKEDIR
- DIR

- DATE

Even if you are only a novice user of Tripos, you'll need to give these

commands at some point, so that it is important that you understand
what they can do, and when and how to use them.

1-16

Introduction to Tripos Simple Use of Tripos

The examples in this subsection refer to Figure 1-A.

LIST

To find out what files are available, you can use the LIST command as
follows:

LIST
This displays a list of all the files or subdirectories in your current
directory. For example, if the current directory is :mary, the following is

listed:

letter
invoice

‘letter’ in this case would be flagged as being a directory. Suppose :mary
is your current directory, and you wish to list the contents of the 'letter'
directory, you could, for example, specify it after the LIST command:
LIST letter
This would list the contents of the 'letter’ directory on the screen.
If you attempt to LIST a file or directory which is not in your current
directory, and you omit to specify the path back to the root (that is, back
to the colon), an error occurs. For example, if you specify
LIST invoice
while still in :mary, the following message is displayed
Can't examine "invoice": object not found
This does not mean that 'invoice' has been lost or deleted, but simply that
it cannot be found in the current directory. This can be disturbing until
the filing system becomes second nature. In this case you could either
reset the current directory with CD, or specify the file's path. (See also
Section 1.3.3, "Setting the Current Directory", for further details.)

1-17

Simple Use of Tripos Introduction to Tripos

COPY

COPY makes an exact copy of a file or directory. The first file or
directory is written to the second one using the keyword TO:

COPY :bill/doc TO :bill/newdoc
Suppose :bill is your current directory, you can alter, or even delete,
'newdoc’ and still have his orginal safe in ‘doc’. So long as you give the
correct path, you can even send a copy of the file ‘doc’ to :mary by typing
COPY :bill/doc TO :mary/doc
Note that it is possible for two files with the same name to exist if they
belong to separate directories. However, you must be careful if you copy
a file with the same name from one directory to another as the TO file is
always overwritten. For example, if you typed the following:
COPY :mary/doc TO :bill/doc
after altering the second version of 'doc’ in :mary, you would lose the
original. That is to say, :bill/doc would then have the same contents as
:mary/doc.
To copy a directory to another directory, you could type, for example,
COPY letter TO invoice
which places a copy of the files in ‘letter' in the directory 'invoice.’ If there
is a file in 'letter' that has the same name as a file in 'invoice' (for
example, junl8'’), then the contents of the file in 'invoice’ are overwritten

and lost.

To make a copy of one file and place it in another directory, you could
type, for example,

COPY :mary.letter.junl8 TO :mary.invoice.letterJunl8

1-18

Introduction to Tripos Simple Use ofTriipos

By altering the name of the file in the second directory, you avoid ‘the
problem of overwriting the file 'invoice/jun18.’ |

COPY takes two possible keywords as arguments: ALL and QUIET. ‘%’ou
only use these arguments when you use COPY with directories. For
instance, you use ALL to ensure that COPY copies all the subdirectories
and files on the path below the first directory name to the second. For
example, if you had a directory :fred and you copied the contents of ‘mary
to it, |

COPY :mary TO :fred ALL |
COPY would copy all the files and subdirectories below :mary, and any
files and subdirectories in them, creating new directories as necessary.
This means that “mary/letter' and "mary/invoice' would became
:fred/letter and :fred/invoice, and all their files would also be copied over
to the new directories. }

Normally, when you give the COPY command to copy the contents of a
directory, the name of the file being copied is displayed, followed by the
word "copied" when the file is sucessfully copied:

COPY :bill TO :fred
text..copied
letter..copied

However, if the directory is large, you may not wish to have the scréen
filled with messages. In this case, you can use QUIET to turn off ‘the
verification. You can also use both keywords together; for example,

COPY :mary TO :fred ALL QUIET |

copies the contents of the files and directories below :mary to :fred,‘ as
explained above, only without displaying the "..copied” messages. |

1-19

Simple Use of Tripos Introduction to Tripos

TYPE

Once you have made a file, you can type it out (that is, display it) on the
screen with the command TYPE. For example,

TYPE :bill/doc
displays the contents of the file :bill/doc on the screen. If you want your
output to include line numbers, you must specify 'n' after the keyword
OPT. For example,

TYPE :bill/doc OPT n
that is to say, 'type out the file with the option numbers turned on.’
If you want your file to appear as hexadecimal numbers, type h after the
keyword OPT instead of n. Of course, this is more useful for files
containing program code than for files containing text.
By default, TYPE types the file you specified to the current output
stream (usually the screen). However, it is possible to use TYPE to 'type’
one file to another:

TYPE :bill/doc TO :bill/newdoc

This is identical in effect to copying the file; 'doc’ is retained and its
contents is copied to the new file ‘newdoc’".

You can also type a file to a device. For example,
TYPE :bill/doc TO PAR:

prints the specified file on the printer, and
TYPE :bill/doc TO *

displays the specifed file on the screen.

The speed at which a file is typed may be too fast to read if the file is
longer than will fit comfortably on the screen. As explained above, you

1-20

Introduction to Tripos Simple Use othLipos

can always suspend the output by pressing the space bar (or any o}ther
convenient character), and resume it again by pressing the RETURN
key, any deletion key (DEL, RUBOUT, BACKSPACE), or CTRL-X.} You
can also use CTRL-S and CTRL-Q for this purpose; if CONSOLE PAGE
mode is ON, the system automatically waits at the end of each page. |

The only problem that might occur is if, for example, you type
TYPE doc

and the following error message appears |

Can't open "doc" |
This means that the file 'doc' is not in the current directory. Elther the
file name has been mistyped or the correct directory has not been
specified with CD.

DELETE

You can use the DELETE command to get rid of unwanted files or
directories. Up to ten files or directories can be deleted at one time.
DELETE tries to remove each file in the order you specified. If it cax{not,
it gives a message and tries the next file on the list. For example,
DELETE could fail because the 'object’ was 'not found', or rather that the
name was incorrect. A directory can be deleted if it is empty; a direc‘tory
containing files may not. To delete one file, you type the name of the file
you wish to delete after DELETE. For example, suppose you wish to
delete the file 'doc', you would type |

DELETE doc

To delete more than one file, list the filenames of the files you wish to
delete after the command. For example, |

DELETE doc newdoc letter

1-21

Simple Use of Tripos Introduction to Tripos
1 ‘
deletes the files 'doc', 'newdoc’, and 'letter’, provided, of course, they are
in your current directory. If the files are not all in the same directory,
you can still delete them by specifying their path. For example,

DELETE :mary/letter letter

deletes the file 'letter’ in the directory “mary' as well as the file 'letter' in
the current directory.

If you delete all the files in a directory, you end up with an empty
directory. Once a directory is empty it can be deleted. For example,
suppose the directory :bill is empty and you wish to delete it, you can type

DELETE :bill

to remove the whole directory. Of course, if :bill is your current
directory, you should use CD to make another directory your current
directory before you try to delete it as Tripos won't allow you to delete
your current directory.

WHY

It is not always convenient to consult the manual when something
unexpected happens. When a command fails it gives a short error
message to say something has gone wrong, although it usually does not
go into any detail. There is, however, a useful command called WHY
which gives further information. The message given does not go as far as
the manual, but can give you a hint about what happened. For instance,
if the command

DELETE :bill
fails, and it returns the message
Can't delete "bill"
you might wonder what caused the failure. Usually you can guess what

has gone wrong. However, if you need more help, type WHY on a line by

1-22

Introduction to Tripos Simple Use ofTHipos

itself after the failed command and a fuller message will be displ:%yed

describing what has gone wrong. For example: ‘

WHY
Last command failed because object in use

MAKEDIR

Files may be created by ED, or EDIT, directories can only be created
with MAKEDIR. You specify the name of the directory you wish to
create after the MAKEDIR command. For example,

MAKEDIR :fred ‘
creates the new directory 'fred’ in the root directory. |
MAKEDIR only works with one directory at a time, so you must make
each directory separately. Also, for this reason, all directories on a path
must exist and cannot be made at the same time. Therefore, in orde:r to
create 'ABComputers', both "“mary' and ‘letter' would have to be there
already. Unless you specify the path, MAKEDIR makes the new
directory a subdirectory of the current directory. If you have made :rﬁary
your current directory, you can type |

MAKEDIR letter

to make the directory :mary.letter. You can then either type
CD letters

and type
MAKEDIR ABComputers

or you can stay in :mary and type

1-23

Simple Use of Tripos Introduction to Tripos
MAKEDIR :mary/letter/ABComputers

The results will be the same.

DIR

The DIR command sorts all the files and subdirectories in a directory and
then lists them. It can also sort and list the files in any subdirectories. If
you wish, you can use DIR in interactive mode to deal with each file as it
is listed (that is, examine it, delete it, and so on) or quit.

Unless you specify a directory name, DIR assumes that the directory to
be listed is the current directory. Otherwise DIR lists the files in the
specified directory. The order in which DIR displays the contents of a
directory is as follows:

1. subdirectories (if there are any)
2. files

DIR lists the files in two columns so that you can view even a large
directory at once. Of course, if you have a very large directory with a
great number of files, you will never be able to view them all at the same
time. In this case it is a good idea to LIST the files to a :T file. You can
then view the contents of your directory by editing this file with the
screen editor.

DIR can take various options after the OPT keyword; these include the
A, D, and I options. Each of these options is described below.

OPT A lists the subdirectories below the specified one, indenting each
sublist. For example, if you were to use DIR OPT A at the root level of
the hierarchy described in Figure 1-A, then something like this would be
displayed:

1-24

Introduction to Tripos Simple Use of Tﬁipos

mary(dir) bill(dir) |

data text |
letter(dir) letter
junl8
ABComputers
invoice(dir) |
junl8 |

OPT D only lists the subdirectory names. For example,
DIR :mary OPT D

results in
letter (dir)

if 'letter’ is the only directory below :mary. |

OPT I ensures DIR executes in interactive mode. When you specify
interactive mode with OPT I, DIR lists each file and directory in tjurn.
After each name, DIR displays a question mark (?) and waits for y(ﬁ"u to
respond. DIR recognizes several possible answers. Each of these is
described below. |

If you press RETURN, DIR moves on to the next name.

If you type the letter Q, you quit DIR and the listing stops. ‘

If you type the letter B, DIR goes back to the previous directory level,}you
can then type B again to go back to the level before that, and so on until
you reach the level of the initial directory. You cannot, however, use B to
move back beyond the initial level; that is, you cannot list files jand
directories above your current directory.

If DIR lists a directory name in interactive mode, then you can type the
letter E to 'enter’ that directory and list all the files and subdirectories.
Of course, you do not type E after a filename, only after a directory.

To delete a file, type the letters DEL after the question mark. The:file
will be deleted immediately. You can also use DEL to delete a directory,

1-25

Simple Use of Tripos Introduction to Tripos

always providing that the directory is empty, of course. Notice that you
type DEL, and that you do not press the DEL key.

If you type the letter T, DIR displays (‘types’) the file on the screen.
CTRL-C will stop the output, but will not return to the interactive
examination.

DATE

You can use the DATE command to display or set the system date or
time. That is to say, you can use DATE to check the current date and
time, or you can use it to set the system date or time so that all
subsequent work is associated with the correct date and time. In other
words, when you LIST your current directory, you find the correct dates
and times listed with the filenames.

DATE has the following form:

DATE [<date>][<time >] [TO|VER <name >}
and the following template:

DATE "DATE,TIME,TO=VER/K"

<date> is optional and can include the day of the week (Monday,
Tuesday, ...Sunday), Yesterday, Today, or Tomorrow, the day of the
month (01 through 31), the first three letters of the month (Jan,
Feb,...Dec), and the last two numbers in the year (that is, 86 for 1986).
The earliest date possible - the dawn of time for Tripos - is January 1st,
1978 (that is, 77 refers to 2077 and not 1977).

<time> is optional and comprises the hour (00 through 23), the minutes
(00 through 59), and the seconds (00 through 59).

TO and VER are equivalent. They are optional keywords that can be

used to introduce a different destination for the verification of the date or
time. Unless you specify otherwise, the DATE command verifies the

1-26

Introduction to Tripos Simple Use of'I‘LLipos

date and time to the screen. <name > can be a device or filename.

To obtain the date and time, type

DATE ;

The currently set system date and time is then displayed as followsL the
day of the week (for example, Monday); the day, month, and year l!"l the
form DD-MMM-YY (for example, 28-Apr-86); the time in the form
HH:MM:SS (for example, 14:05:33). It is important to note that the time
is always according to 24-hour clock; that is, 02:00:00 for 2a.m ‘ and
14:00:00 for 2 p.m. |
If the date is incorrect, you can use DATE to reset it. To do this, type the
correct date after DATE: ‘

DATE 29-Apr-—86

If you then give the DATE command, the following, or something like it,
is displayed on the screen: |

\
Tuesday 29-Apr—-86 14:09:54 }
However, if you set the date to one day ahead by mistake and then, vx?rhen
you notice your error, set it back again, any files you altered while the
date was still one day ahead are listed as being last altered "Tomorrow,’'
which, of course, is perfectly logical, although seemingly impossible. |

Notice that you can also type a day of the week, Yesterday, Today, or
Tomorrow after DATE. For example,

DATE Monday
or

DATE Yesterday
The corresponding date is then set. If the date was the 28-Apr-86, then
specifying Yesterday sets the date to Sunday 27-Apr-86. To return to
Monday 28-Apr-86, type

1-27

Simple Use of Tripos Introduction to Tripos
DATE Tomorrow
The current time is kept unless a new time is specified.

When you set the time you can specify it as three sets of two digits
separated by colons. In this case the first two digits are assumed to be
the hour, the second two the minutes, and the last two the seconds
(HH:MM:SS). If you omit the last colon and everything after it (that is,
you just specify HH:MM), then the time is set to the hours and minutes
specified and the seconds are assumed to be 00. If you omit everything
the first colon and everything after it (that is, you just specify HH), then
the time is set to the hour specified and the minutes and seconds are
assumed to be 00:00.

You usually only use DATE when you insert a disk for updating. When
you first insert a disk, Tripos creates a process at low priority, the restart
process. This process validates the entire structure on the disk. When the
restart process completes, Tripos checks to see if you have set the system
date and time. If there is no time or date set, you can then use DATE as
described earlier to set it; otherwise, if you leave the time and date unset,
Tripos sets the system date to the date and time of the most recently
created file on the inserted disk. This ensures that newer versions of files
have more recent dates, even though the the actual time and date will be
incorrect.

If you ask for the date and the time before the validation is complete,
Tripos displays the date and time as unset. You can then either wait for
the validation to complete or use DATE to enter the correct date and
time. Validation should happen at once; otherwise, it should never take
longer than one minute.

1-28

Introduction to Tripos Simple Use of Tripos

1.4.2 Running Commands in the Background

You can instruct Tripos to run a command, or commands, in the
background. To do this, you use the RUN command. This creates a new
CLI as a separate process of lower priority. In this case, Tripos executes
subsequent command lines at the same time as those that have been
RUN. For example, you can examine the contents of your directory at the
same time as sending a copy of your text file to the printer. To do this,

type

RUN TYPE text file TO PAR:
LIST

RUN creates a new CLI and carries out your printing (by directing the
output of that CLI - what would have been displayed on the screen - via
the parallel port device to a printer) while you list your directory files on
your original CLI's output stream (the screen).

You can ask Tripos to carry out several commands using RUN. RUN
takes each command and carries it out in the given order. The line
containing commands after RUN is called a command line. To terminate
the command line, press RETURN. To extend your command line over
several lines, type a plus sign (+) before pressing RETURN on every line
except the last. For example,

RUN JOIN text filel text_file2 AS text file +
SORT text_ file TO sorted_text +
TYPE sorted_ text to PAR:

1.4.3 Executing Command Files

You can use the C command to execute command lines in a file instead of
typing them in directly. The CLI reads the sequence of commands from
the file until it finds an error or the end of the file. If it finds an error,
Tripos does not execute subsequent commands on the RUN line or in the
file used by C, unless you have used the FAILAT command. See
Chapter 1, "Tripos Commands," of the Tripos User's Reference
Manual for details on the FAILAT command. The CLI only gives
prompts after executing commands that have run interactively.

1-29

Simple Use of Tripos Introduction to Tripos

1.4.4 Directing Command Input and Qutput

Tripos provides a way for you to redirect standard input and output. You
use the > and < symbols as commands. When you type a command,
Tripos usually displays the output from that command on the screen. To
tell Tripos to send the output to a file, you can use the > command. To
tell Tripos to accept the input to a program from a specified file rather
than from the keyboard, you use the < command. The < and >
commands act like traffic lights directing the flow of information. For
example, to direct the output from the DATE command and write it to
the file named 'text__file', you would type the following command line:

DATE > text_file

See Chapter 1, "Tripos Commands," of the Tripos User's Reference
Manual for a full specification of the < and > symbols.

1.4.5 Interrupting Tripos

Although the BREAK key is not accepted by Tripos as a valid interrupt,
you can indicate four levels of attention interrupt with CTRL-C,
CTRL-D, CTRL-E, and CTRL-F. To stop the current command from
whatever it was doing, press CTRL-C. The following then appears on the
screen:

**BREAK

followed by your usual prompt. In some cases, such as in EDIT, pressing
CTRL-C instructs the command to stop what it was doing and then to
return to reading more EDIT commands. To tell the CLI to stop a
command sequence initiated by the C command as soon as the current
command being executed finishes, press CTRL-D. CTRL-E and CTRL-F
are only used by certain commands in special cases. See the Tripos
Programmer's Reference Manual for details.

1-30

Introduction to Tripos Simple Use of Tripos

1.4.6 Understanding Command Formats

This section explains the standard format or argument template used by
most Tripos commands to specify their arguments. Chapter 1, "Tripos
Commands,"” of the Tripos User's Reference Manual includes this
argument template in the documentation of each of the commands. The
template provides you with a great deal of flexibility in the order and
form of the syntax of your commands.

The argument template specifies a list of keywords that you may use as
synonyms, so that you type the alternatives after the keyword, and
separate them with an =.

For example,

ABC,WWW XYZ=7ZZ

specifies keywords ABC, WWW, and XYZ. The user may use keyword
277 as an alternative to the keyword XYZ.

These keywords specify the number and form of the arguments that the
program expects. The arguments may be optional or required. If you give

the arguments, you may specify them in one of two ways:

By position In this case, you provide the arguments in the same order
as the keyword list indicates.

By keyword In this case, the order does not matter, and you precede
each argument with the relevant keyword.

For example, if the command MYCOMMAND read from one file and
wrote to another, the argument template would be

FROM,TO
You could use the command specifying the arguments by position

MYCOMMAND input-file output-file

1-31

http://WWW.XYZ

Simple Use of Tripos Introduction to Tripos

or using the keywords:

MYCOMMAND FROM input-file TO output-file
MYCOMMAND TO output-file FROM input-file

You could also combine the positional and keyword argument
specifications, for example, with the following:

MYCOMMAND input-file TO output-file

where you give the FROM argument by position, and the TO argument
by keyword. Note that the following form is incorrect

MYCOMMAND output-file FROM input-file

because the command assumes that ‘output-file' is the first positional
argument {that is, the FROM file).

If the argument is not a single word (that is, surrounded or 'delimited’ by
spaces), then you must enclose it with double quotation marks ("). If the
argument has the same value as one of the keywords, you must also
enclose it with quotation marks. For example, the following:

MYCOMMAND "file name" TO "from”

supplies the text 'file name' as the FROM argument, and the file name
'from" as the TO argument.

The keywords in these argument lists have certain qualifiers associated
with them. These qualifiers are represented by a slash (/) and a specific
letter. The meanings of the qualifiers are as follows:

/A The argument is required and may not be omitted.

/K The argument must be given with the keyword and may not
be used positionally.

/S The keyword is a switch (that is, a toggle) and takes no
argument.

1-32

Introduction to Tripos Simple Use of Tripos

The qualifiers A and K may be combined, so that the template
DRIVE/A/K
means that you must give the argument and keyword DRIVE.

In some cases, no keywords may be given. For example, the command
DELETE simply takes a number of files for Tripos to delete. In this case,
you simply omit the keyword value, but the commas normally used to
separate the keywords remain in the template. Thus, the template for
DELETE, that can take up to ten filenames, is

21399933y

Finally, consider the command TYPE. The argument template is
FROM/A,TO,0PT/K

which means that you may give the first argument by position or by
keyword, but that first argument is required. The second argument (TO)
is optional, and you may omit the keyword. The OPT argument is
optional, but if it is given, you must provide the keyword. So, the
following are all valid forms of the TYPE command:

TYPE filename

TYPE FROM filename

TYPE filename TO output-file

TYPE filename output-file

TYPE TO outputfile FROM filename OPT n
TYPE filename OPT n

TYPE filename OPT n TO output~-file

Although this manual lists all the arguments expected by the commands,
you can display the argument template by simply typing the name of the
command, followed by a space and a question mark (?).

If the arguments you specify do not match the template, most commands
simply display the message 'Bad args' or 'Bad arguments’ and stop. You

must retype the command name and argument. To display on the screen

1-33

Simple Use of Tripos Introduction to Tripos

help on what arguments the command expected, you can always type a
question mark (?).

1.5 An Example Session

The following is an example of a simple session using Tripos. The actual
screen interaction with Tripos is indented to distinguish it from text
describing the action. Note also that what the computer displays on the
screen is printed in a bold typeface to distinguish it from what you type.

> CD
sys:

If you use the CD command without any further qualification, Tripos
displays the name of the current directory. (> is the usual prompt from
Tripos.)

> CD dfl:tim

You can also use CD to change the current directory. The command
sequence listed above made the directory 'tim' on disk 'dfl:' the new
current directory. To gain access to files stored in this directory, you
simply type the filename. You no longer need to refer to the directory
structure.

> LIST

temp Dir rwed Today 08:57:16
book Dir rwed Today 16:39:30
doc Dir rwed Today 09:46:06
benchl 111 rwed Today 17:08:22
bench2 125 rwed Today 18:14:24

LIST requests an extended list of all the files held in the current
directory (dfl:tim). There are two files and three directories in this
directory. The directories have the word 'Dir’ in the second column; the
files have their size in the second column. The letters 'r', 'w', 'e', and 'd’
refer to the protection status of the particular file or directory. The letter
'r' means that you can read the file or directory, 'w' means that you write

1-34

Introduction to Tripos Simple Use of Tripos

to it, 'e' means that you can execute it, and 'd' means that you can delete
it. (Currently, Tripos only uses the 'd' flag.) LIST uses the last two
columns to indicate when you created a file or directory.

> CD doc

The name used here after CD has no colon (:) before it, and so Tripos
makes the search for the name from the current directory rather than
from the root of a filing system. The current directory is now
'dfl:tim/doc". To look at the files stored in this directory, you would use
the following command:

> LIST
to display the following:

plan 420 rwed Today 10:06:47
chapterl 2300 rwed Today 11:45:07

You can use COPY to create the file ‘'contents' in the directory
'df1:tim/doc', and everything you type at the terminal goes into the file
until you press CTRL-\. This sends a new line and end-of-file character
and terminates the file.

> copy * to contents
The Tripos User's Manual
Chapter 1: Introduction to Tripos

CTRL-\

You can then examine the directory contents again to see that the file
does indeed exist.

> LIST
contents 63 rwed Today 17:01:46
plan 420 rwed Today 10:06:47

chapterl 2300 rwed Today 11:45:07

1-35

Simple Use of Tripos Introduction to Tripos

To see what is in the file called 'contents', you can instruct Tripos to
display the file by giving the following command: ‘

> type contents
Tripos then displays the contents of ‘contents’:

The Tripos User's Manual

Chapter 1: Introduction to Tripos

1-36

Table of Contents

2.1
2.1.1
2.1.2

22

2.2.1
222
2.2.3

Screen Editor - ED
Immediate Commands
Extended Commands

The Line Editor - EDIT
Entering EDIT

Basic Use of EDIT
Terminating an EDIT Session

Chapter 2: Editing Files

This chapter introduces the two editors, ED and EDIT. A full
specification of both editors can be found in the Tripos User's
Reference Manual.

Introduction to Tripos Editing Files

2.1 Screen Editor - ED

You can use ED to edit text files. ED is a screen editor that you can use
instead of the line editor EDIT.

To edit a file with ED, you specify its name after the ED command. This
file is sometimes called the FROM file. The FROM file is read into
memory on entering the editor and if no file of that name exists, a new
file is created. Since the FROM file is read into memaory, there is a limit
to the size of file that can be edited using ED. The default working space
is 20000 words. Normally, ED estimates how much space it needs, and
then allots it. It is possible, though, for ED to be confused by a file with a
large number of short lines, in which case you must use the keyword
SIZE to adjust the working space manually.

Once you are in the editor, you can use ED's editing commands. Note
that certain of the local line-editing commands (for example, CTRL-X)
have no effect in ED.

You must specify the terminal type before you use ED. If you forget to do
S0, an error occurs. To specify the terminal type, you use the VDU
command. This command identifies the make of terminal to be used.
There are certain terminal types that are recognized by the system, and
all their keyboard characteristics are understood by the console handler.
The format is as follows:

VDU <terminal type >

For example, suppose you were using a Televideo 950 terminal, you
would type

VDU tvi

Known terminals makes are identified in the file DEVS:VDU. It should
be possible to tailor your system and support your own terminal if it is
not already supported. The method is described in the Tripos
Technical Reference Manual.

2-1

Editing Files Introduction to Tripos

To edit the file 'doc' with ED, type
ED doc

on the other hand, you could use the FROM keyword to identify the
FROM file 'doc”:

ED FROM doc

The file 'doc’ can now be edited, assuming it is in existence; if not, a new
file of this name is created. If 'doc’ is very large, type

ED doc SIZE 30000
to ensure a work space of 30000 words.

Commands to ED fall into two distinct types. The first are known as
immediate commands, which are commands that are executed
immediately, and are specified by a single key or control combination.
The second are known as extended commands. Extended commands are
typed on the command line (last line of the screen), and are not executed
until the line is finished (by pressing RETURN). Several extended
commands can be listed on the command line at one time; they may be
grouped together and caused to be repeated automatically. Many of the
simple immediate commands have a corresponding extended version.

2.1.1 Immediate Commands

The Tripos screen editor provides single-key or combined-key commands
that allow you to do the following immediately:

- control the position of the cursor
- insert text

- delete text

- scroll text

- verify text

- repeat extended commands

Introduction to Tripos Editing Files

Each of these topics is described below.
Cursor Control

You can move the cursor with the cursor control keys. If the cursor is on
the edge of the screen, ED scrolls the text horizontally to make the rest of
the text visible. Vertical scrolling is done one line at a time; horizontal
scrolling is done ten characters at a time. The cursor cannot be moved off
the top or bottom of the file, or off the left hand margin of the text. The
cursor controls are usually shown on the keyboard as -> or <-, etc. As
some terminals may not have cursor control keys, you can also use the
following control combinations:

Control Action

CTRL-H Move cursor left

CTRL-J Move cursor down

CRTL-K Move cursor up

CTRL-X Move cursor right
To move the cursor to the beginning or end of the current line (that is, the
line the cursor is pointing at), you can use the HOME key. This key first
moves the cursor to the right-hand end of the line; if it is already there, it
moves it left to the beginning of the line. Hence repeated pressing of the
key causes the cursor to jump backwards and forwards to each edge of the

line. If your VDU does not have a HOME key, you can use the control
combination CTRL-] instead.

CTRL-E places the cursor at the beginning of the first line visible on the
screen. Ifit is already there it is placed at the end of the last line visible.

The control combinations CTRL-T and CTRL-R move the cursor to the

start of the next word and the space following the previous word
respectively. The text is scrolled horizontally or vertically if necessary.

2-3

Editing Files Introduction to Tripos

The TAB key can also be used to move the cursor forward. The tab
positions are a multiple of the tab setting (initally 3). Where the TAB key
does not exist, you can use CTRL-I to achieve the same result. (See
"CONSOLE" in Chapter 1, "Tripos Commands," in the Tripos User's
Reference Manual for further details on tab settting.)

Inserting Text

In ED, any character you type at the keyboard is inserted at the cursor
position, unless you attempt to add to a line that is already 255
characters long (the maximum line length is 255 characters). Any
characters to the right of the cursor are immediately shuffled up to make
room for any new insertion. A line may be longer than the screen width
(although less than than 255 characters). If you add to a line that is
longer than the screen, ED redraws the screen and scrolls the text
horizontally so that you can see the end of the line. If you move the cursor
beyond the end of the text on a line (for example, by using the cursor
controls), ED automatically inserts spaces between the last character
and any new characters.

When you press the RETURN key, ED splits the current line at the
cursor and makes a new line containing everthing that was previously to
the right of the cursor; this is the new current line. Everything to the left
of the cursor remains unchanged. You can, for instance, use RETURN to
break a long line into two in order to make it fit across the screen. This
means that you do not have to scroll the text horizontally to see the end of
the line.

You can also use RETURN to insert a blank line. For instance, if you
press RETURN at the end of a line, you create a new blank line which
becomes the new current line. If you press RETURN at the beginning of
the line, you insert a blank line above the current line, but this blank
line does not become the current line.

RETURN need not be pressed at the end of the line. There is a facility to
set the right hand margin, initially set at the default of 79, so that when a
character is typed at the end of the line, and it reaches column 79, a new
line is made. Unless the last character was a space, the half completed
word is moved down onto the newly generated line. Note that this only
happens if characters are inserted at the end of the line.

2-4

Introduction to Tripos Editing Files

Delete

The deletion keys work in the same way in ED as they do in local line
editing, in that they erase the character immediately to the left of the
cursor and move the cursor left to the position of the erased character.
The text is scrolled if necessary.

CTRL-N deletes the character at the cursor position without altering the
position of the cursor. This is represented by DEL CHAR on some
terminals.

When you delete a character, ED moves any characters remaining on the
line to the right of the cursor leftwards to fill the space previously
occupied by that character. This means that characters that were
beyond the right-hand edge of the screen may become visible without
scrolling.

The CTRL-O command is known as ‘delete word’, but its action depends
on what the cursor is pointing at. If the cursor is at a space, then it
deletes that space, and any others to the right, up to the beginning of the
next character. If the cursor is at a character, that character and all
characters up to the next space are deleted. On some terminals the INS
CHAR key can be used instead.

To delete all the characters from the cursor position to the end of the
current line, you can use the command CTRL-Y. This command erases
the character at the cursor as well as all the characters to the right of the
cursor, while keeping the cursor in the same position. This is represented
by DEOL or LINE ERASE on some terminals.

The command CTRL-B removes the entire current line. The line
disappears and the next text line moves up to take its place. This line
then becomes the current line. Note that the cursor remains in the same
position throughout. Beware of this command: you cannot retrieve the
line once you've pressed CTRL-B. CTRL-B is replaced by DEL LINE on
some terminals.

Editing Files Introduction to Tripos

Scrolling

The text can be scrolled vertically line by line by moving the cursor down
to the last line on the screen. Alternatively, you can scroll vertically
twelve lines at a time with CTRL-U (scroll Up) and CTRL-D (scroll
Down). The terms 'Up' and 'Down' can be confusing. They do not mean
that you move up and down the file. If you imagine the entire file to be
written on a roll of paper, then rolling up the top will reveal the text
written at the below. Similarly, if the roll is unrolled, then text at the top
will be uncovered. Hence, scroll (or roll) up and down.

Verification

ED makes a great effort not to display any other text on the screen
besides the text in the file, so that all messages appear in the bottom
message area. However, in rare circumstances, other text can appear on
the screen. This does not necessarily mean that the file is in the condition
shown; it is just that ED has not had time to refresh the screen. To check,
you can tell ED to rewrite the text by pressing CTRL-V (Verify).

Repetition

You may wish to repeat an extended command. This is often necessary
when searching for a particular section of text. A search string may seem
to be unique, but is often found to occur several times in a file. As ED
remembers the last command line, you can repeat it by pressing
CTRL-G. For example, you can use CTRL-G to search repeatedly for the
same search string until you find the correct occurrence. Ifthe command
line contains any repetition commands, ED executes the same count each
time you press CTRL-G.

2.1.2 Extended Commands

To start an extended command, you press the ESCAPE key. On most
terminals this key is the one labelled ESCAPE or ESC; however, on some
makes of terminal, the ESCAPE character is sent as a prefix to function
keys. Another key must be used instead of ESCAPE on these terminals
(for example, you can use F1 on the Televideo 950). You can use this
substitute key wherever ESCAPE is used within this description. (See

2-6

Introduction to Tripos Iiditing Files

Chapter 4, “Installation,” in the Tripos Technical Reference
Manual fordetails on how to install a VDU like the Televideo 950.)

When you press the ESCAPE key, an asterisk (*) appears on the last line
of the screen, which is known as the command line. Anything you type
after pressing ESCAPE appears on this line. What you type on the
command line is assumed to be an extended command. You can erase
any mistakes on the command line with a deletion key (for example,
RUBOUT); otherwise the line cannot be edited. You can terminate the
command line by pressing either RETURN or ESCAPE. ED can only
execute the command line when you press either of these keys. When you
press RETURN, ED executes the command(s) on the line and returns to
immediate mode; however, when you press ESCAPE, it executes the
command(s) and remains in extended mode. If you press RETURN
immediately after pressing ESCAPE, ED returns to immediate mode
without doing anything.

Extended commands consist of one or two letters of either upper or lower
case. Complex multiple commands are accepted if each part is separated
by a semicolon (;). Commands can sometimes be qualified by the addition
of an argument or a string. An argument can be in the form of a number
(such as when you set up margins), or a string. A string is a sequence of
-letters, numbers, or spaces defined between terminators known as
delimiters. A delimiter is a character (which can be anything that is not
a letter, number, space, semicolon, or parenthesis), which is used to
introduce and terminate the sequence. Examples of strings with valid
delimiters are as follows:

/happy/ 123 feet! :Hello!: "1/2"

Note that each delimiter must match. So, although ! is used in the second
example, it has no effect in the third where it is used as part of the text
sequence. Also the slash (/) in the first example is a delimiter, but not in
the last. It is important to chose symbols that are not going to be present
in the text (for example, you cannot use slashes to delimit a string
containing a file description such as :doc/tripos).

2-7

Editing Files Introduction to Tripos

Getting Out of ED

To get out of ED and keep any alterations you may have made, press
ESCAPE and then type X. After a brief pause a message appears on the
command line saying that the text is being written out to file. The screen
then goes blank and the prompt sign appears on the screen. You will then
be out of the editor and free to list your files, and so on. What happens is
that ED overwrites the FROM file with the updated version. The
previous version the FROM file is kept in the file :t/ed-backup. To
terminate ED immediately without writing out the buffer (that is, to
throw way any alterations and keep the original version of the file), type
Q after pressing ESCAPE. When you type Q a message appears on the
command line asking if you want ED to ignore any changes that you may
have made. This gives you a second chance before anything happens to
the file. If no changes have been made, the question will not appear and
ED will terminate at once leaving the file intact.

The SA (SAve) command allows you to make a 'snapshot’ copy of the file
without coming out of ED. SA saves the text to a named file or, in the
absence of a named file, to the current file. For example:

Sa ":doc/savedtext”
or

SA
This command is particularly useful in areas subject to power failure or
surge. [t should be noted that SA followed by Q is equivalent to the X

command. Any alterations made between the SA and the Q will cause the
message

Edits will be lost — type Y to confirm:

to be displayed; if no alterations have been made, you quit ED
immediately and the file is saved in that state. SA is also useful because
it allows you to specify a filename other than the current one. It is
therefore possible to make copies at different stages and place them in
different files or directories.

2-8

Introduction to Tripos Editing Files

Undoing the Last Command

From time to time, you may give a command in error; however, should
this happen, all is not lost. Instead of staring in horror at the screen,
press ESCAPE followed by U (for Undo). The old version of the current
line is automatically reinstated and the damage undone. What happens
is that the editor keeps a copy of the current line, and then modifies it as
characters are added or deleted. The modified version replaces the
original when the cursor is moved off the current line. The U command
simply discards the modified version and causes the old version to be
used instead. This means that Undo will not work after delete line, or
when the cursor has been moved off the line for any reason. If this
happens it is too late to undo the damage.

Blocks

A block of text can be specified by identifying the beginning with the BS
(Block Start) command, and the end with the BE (Block End) command.
To do this, you move the cursor to the first line of the block, press
ESCAPE, and type BS. Then move the cursor to the last line of the block,
press ESCAPE, and type BE. After you have given the BS command, you
can use any of the cursor commands, or execute a search before you
define the end of the block with BE. Nevertheless, if you make any
change to the text at this point, the block becomes undefined again.

A block can be as small as one line. For example,
BS;BE

defines the current line as the current block. A block can never start or
end within a line. If you only want part of a line, you must split it before
you use BS and BE. A block cannot be infinite in length. If it is too long,
an error occurs. The size of block allowed is relative to the size of the file;
a block containing 50 lines may be allowed by a large file, but it won't by
a file of about 80 lines.

Once the block has been defined it can be moved and inserted elsewhere.
To insert the block in a new position, you use the IB (Insert Block)
command as follows: first move the cursor to where you wish to insert the
block, then press ESCAPE and type IB. A copy of the block is

2-9

Editing Files Introduction to Tripos

immediately inserted after the current line. To delete a block, you use
the DB (Delete Block) command. You give this command in the same way
as above, except that you type DB. Using the BS, BE, IB, and DB
commands, you can 'cut and paste’ the contents of a file into a new order.

It is also possible to move blocks between files. To write a block to a file,
you use the WB (Write Block) command. To do this, press ESCAPE and
type WB. For example,

WB /Doc/

writes the previously defined block to the file represented by the string
delimited by the two slashes (/); that is, the block is written to the file
'‘Doc.’ Any valid delimiters can be used; the second delimiter may be
replaced with RETURN. If the file does not exist, it is created. However,
if the file does exist, its contents are overwritten with a copy of the block.

The IF (Insert File) command uses the same format as WB. IF inserts a
file immediately after the current line. IF and WB can be used to merge
together different files.

You can also use BS and BE to mark a block in order to ‘remember' a
particular position in a file. You can then use the SB (Show Block)
command. SB resets the screen so that the first line of an identified block
appears at the top of the screen.

[t is important to note that blocks refer to whole lines. A BS cannot start
within a line, nor can a BE finish within one. This means that you can
point the cursor at any position on a line for the block marker to include
the whole line. If only part of a line is required, the line must be split
before marking. Similarly, a block cannot be inserted within a line. If a
block is to be inserted within a line then the line must be split before the
block is marked; the block markers are lost if the line is split after
setting but before insertion.

2-10

Introduction to Tripos Editing Files

Movement

The immediate commands to scroll up and down are suitable for small
amounts of movement up and down the file. However, if you want to
move to the end of the file, particularly if it is a long one, scroll up
(CTRL-U) is unsatisfactorily slow. The B (Bottom-of-file) command
immediately writes out the last part of the file on the screen. So, the last
usable line contains, where possible, the bottom line of the file.
Conversely, the T (Top-of-file) command writes out the top part of the file
with the first line of the file at the top of the screen. The movement
happens immediately because the whole of the file is kept in memory.

There are extended commands that correspond to immediate cursor
control commands. These, because they require more keys to be pressed,
are not as convenient for normal cursor control. They are most useful
when combined in a complex command. For example, you might have a
command line that finds a line containing a string, moves to the end of
that line and exchanges another string, then moves to the next line and
repeats the whole operation. The commands are: N for move to the start
of the Next line; P for move to the Previous line; CL for move Cursor
Left; CR for move Cursor Right; CE for move Cursor to the End of the
current line and CS for move the Cursor to the Start of the line.

Searching and Exchanging
To find a defined string, you can use the F (Find) command. For example,
F /ABC/

finds the string 'ABC'. The search starts immediately beyond the current
cursor position and continues until the string is found, or the end of the
file is reached. On locating the string, ED displays the part of the file
containing it on the screen.

F only searches forwards. The BF (Backwards Find) command enables
you to search backwards from the cursor. The search continues until the
string is found, or the top of the file is reached. The part of the file
containing the string is then written out as before. For example, the
command

Editing Files Introduction to Tripos

BF /ABC/

searches backwards through the file to find the last occurrence of the
string '"ABC". If the command is repeated, the penultimate occurrence is
found, and so on until the top of the file is reached.

To exchange one string for another, you can use the E (Exchange)
command. This command is followed by the string to be exchanged, with
the replacement string after the last delimiter of the first string. For
example, if you type

E /Apples/Pears/ -

the first 'Apples’ to be found after the cursor is replaced with 'Pears’.
After the exchange, ED moves the cursor to point after the exchanged
text. Spaces are allowed as strings. For example, you can exchange a
double space for a single one by typing

E/ 7/

A null string, two delimiters with nothing in between, can be used for the
first string. In which case the second string is inserted before the current
cursor position (that is, exchange nothing for string).

You can also achieve an exchange with the EQ command. EQ (Exchange

and Query) will execute the exchange or not depending on the answer
you give to the query. For example, suppose you give the command

EQ/ise/ize/

then it finds 'otherwise,' moves the cursor to point at the first letter of the
string (that is, the 'i'), and displays

Exchange?
on the bottom line of the screen. As 'otherwize' is clearly wrong, you
answer by typing an N and no change is made. You can then press

CTRL-G to find the next occurrence of the string. Suppose it finds
'recognise’, and you wish to Americanize your English, you type Y and

2-12

Introduction to Tripos Editing Files

the exchange is made. If you type anything else in answer to the query,
the following is displayed:

Commands abandoned

and no exchange is made. However, ED remembers the exchange strings
and so you can still repeat the EQ by pressing CTRL-G.

All these search and exchange commands recognize a difference between
upper and lower case: 'ABC' is not the same as ‘abc’. To search for a
string that could include either upper or lower case, use the UC (Upper
Case) command. This is useful if you wish to find a word that can appear
either at the beginning of a sentence or in the middle - such as 'All' or
‘all’. For example,

uc; f/all/
finds
All the King's horses
as well as
Despite the presence of all the King's horses

Once the UC command has been given, any search or exchange will find
any combination of upper and lower case. Although it does not actually
do a physical translation, ED acts as if every letter is in upper case. To
return to the default, you use the LC (Lower Case) command. In other
words, all lower case letters are again treated as different from upper
case.

Altering Text

The E command cannot be used to insert a new line into the text. The A
(After) and I (Insert) commands insert lines. To insert a blank line above
the current line, you can move the cursor to the beginning of the line and
press RETURN, or you can use the A command. Similarly, to insert a
blank line below the current line, you can move the cursor to the end of
the line and press RETURN, or you can use the [command. When you

2-13

Editing Files Introduction to Tripos

give either of these commands the lines below the current line are
shuffled down to make room for the new blank line.

You can also specify a string after either the I or A commands This
string is then inserted on the new line created by the command. For
example,

A/The Walrus and the Oysters/

makes a new current line containing the text 'The Walrus and the
Oysters' below the old current line.

To split a line in immediate mode, you move the cursor to the correct
position and press RETURN. In extended mode, you can use the S (Split)
command in the same way.

To join two lines together, move the cursor to the end of the first line,
press ESCAPE, and give the J (Join) command. The second line is then
written at the end of the first.

The extended version of delete is the D (Delete) command. This deletes
the current line in the same way as CTRL-B.

To delete a character at the cursor in the same way as CTRL-N, you use
the DC (Delete Character) command.

Repeating Commands
It is possible to repeat commands in extended mode. To repeat a
command a certain number of times, you must specify the number of
times before the command. For example,

4 E /slithy/brillig/
exchanges the next four occurrences of 'slithy’ to "brillig’. ED verifies the

screen each time it executes the command. If there are less than four
occurrences, the following message is displayed:

2-14

Introduction to Tripos Editing Files

Search failed

If you do not know how many times the string occurs and you wish to
exchange all occurrences, you can use the RP (RePeat) command. For
example, to exchange all occurrences of ‘slithy’ to "brillig’, type

RP E /slithy/brillig/

This continues to exchange the one string for the other until it comes to a
stop (for example, when it comes to the end of the file) and then it
displays:

Search failed
in the usual way.
You can give more than one extended command at the same time if you
separate them with semicolons. You can then use CTRL-G to repeat the

entire group. The whole group should then be enclosed within
parentheses. For example,

RP (F /bandersnatch/; 3 IB)
inserts the currently defined block three times on finding the string
‘bandersnatch’. RP continues to repeat the command until an error is
found. Typing a character while ED is repeating a command causes the
repetition to be abandoned with the message:

Commands abandoned
Executing a Tripos Command in ED
[t is sometimes useful to be able to carry out some other command while
still in ED. For instance, you might want to know if a file exists before
saving a copy to it. The command DO enables you to jump out of ED and

do something (for example, list a directory) and then jump back.

DO "LIST :doc/savedtext"

2-15

Editing Files Introduction to Tripos

Once the command DO is given, the screen clears and the action defined
within the delimiters carried out. Afterwards press RETURN to rewrite
the screen and return to ED.

2.2 The Line Editor - EDIT

EDIT is an alternative editor to ED. Unlike ED, EDIT processes files
sequentially, line by line. Although the text is not necessarily displayed
on the screen, editing a file in EDIT is similar to editing a file with
extended commands. The file to be edited is known as the original, or
source, file. EDIT's editing commands may be used to view or alter the
contents of the source file. EDIT copies each line that you pass, and
possibly alter, in the source file to an sequential file which known as the
destination file. You can then choose to keep the destination file, the
source file, or both.

The normal method is to move down sequentially, line by line through
the source file changing, or not changing, the text. However, it is possible
to move back a limited number of lines. These lines can be accessed
because they have not yet been sent to the destination file, but are held in
the output queue. Below it explains how the size of this queue, or
window, can be changed. If the size has not been made large enough, it is
possible to return to the beginning of the file and make another pass
through the text.

2.2.1 Entering EDIT

To enter EDIT, you can give the EDIT command followed by certain
arguments and keywords. For example, to edit the file 'doc’, type

EDIT doc

You can, if you wish, use the the FROM keyword to identify the source
file as follows:

EDIT FROM doc

2-16

Introduction to Tripoes Editing Files

If this keyword is omitted, then the first file name is assumed to be the
FROM file by its position. The FROM file is the original (source). [t can
be kept unaltered if you exit from the program by typing STOP.

If you wish to keep the original and to create a new file containing any
alterations you have made, then you must specify a TO (destination) file.
The keyword TO is optional as the file is recognized by its position. The
following command lines:

EDIT doc doc-new
EDIT FROM doc doc-new
EDIT doc TO doc—new

are all acceptable. In this case, after you exit from EDIT, 'doc’ remains
unchanged, and 'doc-new’ contains the new version of 'doc’ with any
alterations. If ‘doc-new' does not exist, it is created; if it does, it is
overwritten. If a TO file is not specified, then a temporary file is created,
which is then renamed with the same name as the original FROM file
when you exit from EDIT. The old version of the FROM file is retained in
the tempory file :t/edit-backup.

Commands in EDIT are accepted from the keyboard unless the keyword
WITH is given. This keyword introduces a file containing the EDIT
commands you wish to use on the FROM file. For example,

EDIT doc WITH edit-prog

takes commands from ‘edit-prog' and applies them to the text in 'doc’.
When the commands in ‘edit-prog' have finished, your usual prompt
returns, and 'doc’ is updated (the destination file overwrites the source).
This feature can be extremely useful. For example, you can use the RUN
command before the command line:

RUN EDIT doc WITH edit-prog
and thereby do your editing in the background while you get on with
something else. You can even set up a series of EDIT commands with

WITH files in a C command file and then RUN the command file in the
background:

2-17

Editing Files Introduction to Tripos

RUN C with-commands
where 'with-commands' is a file containing the following:

EDIT docl WITH edit-prog TO docl-new
EDIT doc2 WITH edit-prog TO doc2-new
EDIT doc3 WITH edit-prog2 TO doc3-new

EDIT then verifies the commands to the screen (for example, it displays
the global number of any global command it executes), displays a colon
(:) prompt when it completes each command line, and copies the results
to the TO destination file. Therefore the above example can be seen to
have worked if the following appears on the screen:

> e
oo

All verification of command execution is sent to the terminal unless
another destination has been specified by the keyword VER. For
example,

EDIT docl WITH edit-prog TO doc2 VER confirm

takes the commands from 'edit-prog’, applies them to 'docl’, copies the
updated file to 'doc2’, and sends the verification to ‘confirm.’

If verification is to be thrown away, you can use the device NIL:

EDIT docl WITH edit-prog TO doc2 VER NIL:
Lastly, EDIT accepts two options, which are introduced by the keyword
OPT. The two options are Pn and Wn. Pn denotes the maximum number

of previous lines that can be held in the virtual 'window'. Wn sets the
maximum line width. The default is P40 W120.

2-18

Introduction to Tripos Editing Files

2.2.2 Basic use of EDIT

EDIT commands are very similar, but not identical, to ED extended
commands. Commands typed at the terminal appear to act in almost the
same way as extended commands in ED, even multiple commands are
allowed using a semicolon (;) separator. The F (Find) command takes a
string in the same way in both editors. So

*F/text/
in ED has the same effect as
:F/text/
in EDIT. In both cases the command is executed on pressing RETURN.

The most obvious difference on entering EDIT for the first time after
using ED is that no text appears on the screen. Instead this is displayed:

Tripos Editor

The prompt : appears whenever the editor is waiting for a command. The
: is like the * on the ED command line; whatever you type after it is
executed as a command when you press RETURN, and if you fail to give
a valid command, an error occurs.

Text only appears when a command is received. Each command must
work on the line 'in hand'. This is the line which is read from the source
and passed on to the destination file. While the line is 'in hand’, it is
known as the current line. Commands act on this line in the same way as
on the line identified by the cursor in ED.

Note: Commands in EDIT can be given in upper or lower case: f/abc/ is
the same as F/abc/. The same is true of extended commands in ED.

Lines are identified in EDIT by unique line numbers, which are used to
move, or refer, to a particular line. As EDIT reads each successive line in
a file, it assigns it a line number. The line number is not part of the
information on that line and cannot be deleted or changed. However, any

2-19

L diting Files Introduction to Tripos

ines that you insert while in the editor will have no number assigned to
hem. On reentering EDIT, you will find that line numbers are
-eassigned sequentially, and that the lines that had no numbers are
1umbered in sequence.

[o move to line 5, type the M (Move) command followed by a 5:

M5
[his command finds line 5 and makes it the current line. If line 5 has
een passed, EDIT returns there, so long as line 5 is still held in main
nemory. It is important to note that because some lines may not have
iumbers (because they have just been inserted, for example), line 5 may

10t necessarily be the fifth line in the file.

“ertain symbols are also accepted in lieu of actual line numbers. A
veriod (.) is used to refer to the current line. For example,

M.
noves to the current line (which is, of course, an unnecessary, and silly,
ommand). This shorthand for the current line, however, is most often

1sed with deletion or insertion commands.

he asterisk (*) symbol is used to refer to the last line in the file. For
xample,

M*
neans move to the last line of the file.
‘he plus (+) sign is used to refer to the furthest line forward you can

nove to and still return to the current line using the M command. To
nove as far as possible forwards to the last line in the current memory,

ype

M+

"o move as far backwards as possible to the first line in memory, type

2-20

Introduction to Tripos Editing Files

M_
Movement can also be effected without reference to a particular line. For
instance, you can tell the editor to advance to the next line with the N
(Next) command. To move to the next line, type

N
and to move down two lines, type

N N

and so on. As this is tedious, you can place a repetition number BEFORE
the N to denote the number of lines you wish to advance. For example,

4N

tells EDIT to perform N four times. This command can be combined with
a specific move:

M5; 4N
[n other words, 'Move to line 5 and then move on four lines'. As lines
inserted during an editing session have no associated number, the ability

to move on without specifying a number is essential.

In the same way that N is used to move to the Next line, P is used to
move to the Previous line. For example,

)4

moves one line back. A number before the command denotes how many
times you wish to repeat the command. So,

4P
tells EDIT to perform P four times (that is, 'Move back four lines").

Although N works until the end-of-file is reached, P only works on lines
held in main memory.

2-21

Editing Files Introduction to Tripos

It is also possible to specify a particular line by its context. As mentioned
above, the search command F works in the same way as in ED. The
command is given followed by a string. The editor then searches forward
to find a line containing that string, making the located line the new
current line. The search continues until the end of the file is reached. The
message displayed by ED is 'Search failed' if the context is not found;
EDIT displays 'SOURCE EXHAUSTED' if it cannot find it.

Like in ED, it is also possible to search backwards in EDIT with the BF
(Backwards Find) command. Again, only the lines in memory can be
used. The same syntax as ED is used

BF /Jack and Jill/

(that is, 'search back through the file to find a line containing Jack and
Jill'). If the string is not found, then the message

NO MORE PREVIOUS LINES
is given.
Character strings have delimiters in the same way as in ED. There are a
number of characters that can be used; however, they must not be letters,
numbers, spaces, semicolons, or brackets. The delimiter that is chosen
must not also occur within the string's text. So,

fetch a pail of water.
should not have a period (.) as a delimiter. Spaces between the command
and the first delimiter are not significant, and are ignored; spaces within
the string are significant, since the context must match exactly.

Jack fell down
is different from

Jack fell down

and so no match is made.

2-22

Introduction to Tripos Editing Files

An F with no following string repeats the previous search. The search
starts at the current line, and so, if the same command is typed again, the
context in the same current line is found. To progress to find new
occurrences, you must advance the current line. For example,

N;F

moves onto the next line and repeats the search forwards. Similarly, for
Backwards Find,

P:BF
moves back a line and repeats the search back through the file.
EDIT has further additional refinements to the simple search command.
These are known as qualifiers. They allow the search to be limited, for
instance, to the beginning or end of the line. Thus,

F B/Jack/
finds the first line beginning with the word ‘Jack’. In this case, it finds
the first line of the rhyme. To find a line with a specific ending, you add
the E (End) qualifier

F E/ water./
This finds a line ending in * water."; in this case:

to fetch a pail of water.
The strings /Jack/ and / water./ are called qualified strings. Another
qualifier restricts the search to finding a line containing precisely a
string with no other characters, either before or after the string. This is
the P (Precisely) qualifier. Hence,

F P/to fetch a pail of water./

locates the line

2-23

Editing Files Introduction to Tripos

to fetch a pail of water.
whereas
F P/fetch a pail/

does not. You can also give a null string (that is, two delimiters
enclosing nothing) after 'F P":

FP//
In other words, ‘'Find Precisely nothing', or 'find an empty line".
Typing Text
Sometimes it is not sufficient to get the context from the single current
line. In which case it is possible to type out (that is, display) several lines
using the T (Type) command. For example,

T
starts at the beginning of the current line and continues to 'type' until it
reaches the end of the file. You can also specify how much you wish to be
'typed'. For example,

T6
types the next six lines, and

TP
types the lines in the output queue.
Changes on the Current Line

Exchange - To exchange one character string for another type:

E /Jack/John/

2-24

Introduction to Tripos Editing Files

This exchanges the first occurrence of the first string on the current line
for the second string, giving:

John and Jill

If /Jack/ is not found the message
NO MATCH

is given.

After - This places a second string immediately after the first occurrence
of the first string on the current line. For example,

A /John/ny/
results in:

Johnny and Jill
Before - This places the second string immediately before the first
occurrence of the first string on the current line. An empty string (two

delimiters together with no space in between), causes the second string
to be placed at the beginning of the line. For example:

B //Mary, /
Mary, Johnny and Jill

All the previous commands work by reading the line left to right, and

then acting on the first occurrence. To act on the last the qualifier 'L'is
used. This causes the line to be read right to left. For example:

E L/y/ie/
Mary, Johnnie and Jill

2-25

Editing Files Introduction to Tripos

Globals
The commands E (Exchange), A (After), and B (Before) only work on one
line. Each occurrence of Jack can be exchanged for John throughout by
setting up a global exchange. A global exchange command remains
active until it is cancelled. Each time a new line is read, and the string
matched, the exchange is made. So

G E/Jack/John/

globally exchanges Jack for John, and the lines that contained the string
‘Jack' will appear as follows:

John and Jill

John fell down

Up John got
and soon.

Line Deletion and Insertion

Delete - To delete a line, you use the D (Delete) command followed by the
line number of the line you wish to remove. For example,

DS
deletes line number 5. To delete the current line, type

D.
where period () denotes the current line. (D without a period is a
synonym for 'D.".) It is also possible to delete lines inclusively from one
numbered line to another. For example,

D5 7

deletes lines 5to 7.

2-26

[ntroduction to Tripos Editing Files

All successive lines until a line containing a specific string can be deleted
by the DF (Delete Find) command. For example,

DF /fetch a pail/
deletes the lines

Jack and Jill
went up the hill

but stops when it reaches the line
to fetch a pail of water

Insert - To insert a line, you use the I (Insert) command followed by a line
number or accepted symbol. For example,

I.

inserts anything you type on the keyboard before the current line. Until
the -insertion is terminated, all characters, including those used as
commands, are treated as text to be inserted. To terminate the insertion,
type the letter 'Z' on a line by itself. For example,

Il

Jack and Jill
went up the hill
A

tells EDIT to take the two lines typed before the Z and insert them before
line 1.

To insert the text of another file, you use the [(Insert) command followed
by the name of the file you wish to insert in the form of a string:

I ":Bill/nursery-rhyme"

The original lines are unchanged whenever you use an insertion
command. The new lines are, for the present, have no line numbers; if

2-27

Editing Files Introduction to Tripos

you move to them, you will see that they have plus signs (+ + +) where
the line number usually appears.

To remove a line and insert a replacement, you use the R (Replace)

command. This command is used in exactly the same way as the insert
command; it even has the same terminator. For example,

R.
and they all lived happily ever after.
A

replaces the current line with the text typed before the Z. Notice that the
text must be on a separate line from the Z.

A common mistake with both the I and R commands is to forget to type
the Z; if you do forget, then nothing appears to work as EDIT thinks the
commands you type are just lines of text you wish to insert.

Split and Join

Splitting a line - A line can be split before or after a string. The first part
of the line being sent to output, and the second part remaining as the

current line.

The SB (Split Before) command splits the line before the specified string.
For example,

SB /Jill/
rewrites the line *Jack and Jill’ as:

Jack and
Jill

The SA (Split After) command splits the line after the specified string.
For example,

SA /Jack/

2-28

Introduction to Tripos Editing Files

rewrites the same line as:

Jack
and Jill

The leading space would have been lost if the split had been
SA /Jack /

Joining lines - To join, or concatenate, a line so that the beginning of the
new current line is the current line followed by the given string, ending
with the next line, you use the CL (Concatenate Line) command. For
example,

CL / /

puts a space at the end of the current line and then concatenates the
current line and the next line to make a new, longer current line. If this
command is executed when the current line is the first line of the rhyme,
the result is as follows:

Jack and Jill went up the hill
A repeat counter before CL enables you to specify how many lines you

wish to be concatenated: 2CL// causes the next two lines to be
concatenated, 3CL/ / the next three lines, and so on.

2.2 3 Terminating an EDIT Session

You can can terminate EDIT in one of two ways. First, you can use the W
(Windup) command; this allows you to keep all your alterations in the
TO file when you leave EDIT. Second, you can use the STOP command;
this stops EDIT immediately and throws away any alterations you may
have made. For example,

W

2-29

Editing Files Introduction to Tripos

W writes the source file back to the destination. If there are any
oustanding globals, then they are executed as the source file is read and
then written out to the destination.

STOP
immediately stops whatever command is being executed, keeps the

source file intact, throws away the destination file, and terminates the
EDIT session. All edits are then lost.

2-30

Table of Contents

3.1

3.2

3.2.1
3.2.2
3.2.3

3.3
3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.5
3.6

3.7

Tasks

Commands to Tasks

Stopping a Task

Starting and Restarting a Task
Examining Tasks

Patterns

Command Files
Example 1
Example 2
Example 3
Example 4

Command Paths
Startup Sequence

Errors

Chapter 3: Further Use of Tripos

This chapter introduces further topics and explains in greater detail
some of those raised in Chapter 1.

Introduction to Tripos Further Use

3.1 Tasks

Like some other modern operating systems, Tripos provides the user
with the ability to perform a number of different jobs concurrently. This
ability to multi-task means that single users, at one console, can act as if
they have several machines at their command at the same time. These
virtual machines all share the same screen; a simple escape combination
enables you to switch from one to the other. Using this system, you can
print out a file and compile a program, while editing another file. Instead
of having one machine for several people, Tripos makes the machine act
as if it is several machines for one person.

Each Tripos task represents a particular process in the operating
system. (In fact, the term ‘process' is a synonym for 'task’ and you will
find that both terms are used interchangeably in this manual.) Only one
task is actually running at a time; other tasks are either waiting for
something to happen, or have been interrupted and are waiting to be
resumed. For each task there is an associated priority level. The task
with the highest priority runs first. Lower priority tasks run only when
those at a higher level are waiting for some reason - such as for data to
arrive from a disk or from the keyboard.

Tripos has at least four tasks in the standard system. The first task,
task 1, is the Command Line Interpreter or CLL This accepts commands
and attempts to execute them. All commands and user programs run
under a CLL To set up further CLIs, you can use the NEWCLI or RUN
command. (See Chapter 1, "Tripos Commands," of the Tripos User's
Reference Manual for afull specification of NEWCLI and RUN.)

The second task, task 2, is the debug task. You may select the debug task
yourself, or you may find that the system enters it for you if something
goes wrong. Once in debug, you can examine and alter the state of the
computer and then continue program execution if all is well.

Task 3 and task 4 handle the terminal and the filing system on the disk.

If there is more than one disk device, a separate task is devoted to each
one.

3-1

Further Use Introduction to Tripos

Initially anything you type on the keyboard is directed to the Command
Line Interpreter (CLI). Input and output is then processed by the console
(terminal) handler, which performs local line editing (for example,
character and line deletion).

To select another task, press CTRL-P (P for Process). This combination
allow you to move from task to task. Each time you press CTRL-P you
select another task. By repeatedly pressing CTRL-P you can cycle
through all the available tasks.

If necessary, you can use the CONSOLE command to change the control
combination to something else. That is, you can choose another character
to press with the CTRL key. You should make sure, though, that the
character you specify is not already used for something else. For
example, it is not a good idea to exchange CTRL-P for CTRL-X; if you do,
you'll lose the ability to cancel a line.

Initially input is directed to the CLI on task1l as it handles all
commands. However, you can use the CTRL-P combination to connected
your terminal to other tasks. If you use NEWCLI to create a new task,
then you can press CTRL-P to select it (you may have to press CTRL-P
several times to do so, though). When you select another CLI, you leave
the first CLI suspended. To reselect the initial CLI again, press CTRL-P
as many times as is necessary until you return to the correct task. You
can tell which task is which if you use the following PROMPT command:

PROMPT %n>
the prompt then includes the task number. For example,
8>

means that you are using task 8. Task 2 (debug) is easily recognized as it
has its own prompt, an asterisk (*).

3-2

Introduction to Tripos Further Use

3.2 Commands to Tasks

This section describes the commands that let you start, stop, and restart
atask. It also explains how you can examine tasks.

3.2.1 Stopping a Task

BREAK - The command BREAK (not the BREAK key), sets up specified
attention flags. The flag CTRL-C is set by default; CTRL-D, CTRL-E,
and CTRL-F may also be used. The result of the command BREAK is
identical to selecting the relevant task and pressing the required CTRL.
For example,

BREAK 7

means set the CTRL-C (default) of task 7. Alternatively, select task 7 (by
pressing CTRL-P as many times as is necessary) and then press CTRL-C,
the effect should be the same. To set the CTRL-D flag of task 5, type

BREAK 5 D

ENDCLI - This command terminates an interactive CLI task. That is,
ENDCLI terminates the CLI currently selected by the CTRL-P
combination. ENDCLI is normally used to end a CLI created by
NEWCLIL If the initial CLI (task 1) is terminated, and no new one set up,
then the session is automatically ended. You should use this command
with care.

3.2.2 Starting and Restarting a Task

NEWCLI - This command creates a new interactive CLI task while
remaining in the same currently selected task. To use the new CLI, you
must press the CTRL-P combination as many times as is necessary until
you obtain the correct prompt. Once you have selected a new CLI with
NEWCLI and CTRL-P, you will find the current directory and prompt is
the same as in your initial CLI. When a new CLI starts up it announces
its task number, which you can then use to identify it.

3-3

Further Use Introduction to Tripos

3.2.3 Examining Tasks

STATUS - This command displays information about the tasks currently
in existence. The command alone produces a list of the task numbers,
with an indication as to whether they are waiting, suspended, running,
interrupted, held, broken or if their work queue is empty. Information
about a specific task can also be given:

STATUS 4

will show the state of task number 4. Further arguments can be given to
get fuller or more specific information.

3.3 Patterns

A pattern is used to match certain files. It consists of several special
characters which have certain meanings, and any other characters
which match themselves. The special characters are as follows:

() 2% # |
The prefix ' is used to remove the special effect of any of these characters

and cause them to match themselves. For instance '? matches ? and "
matches'. The action of the special characters is as follows:

? matches any single character

% matches the null string

#<p> matches any number of occurrences of the pattern
<p>

<pl><p2> matches a sequence of pattern <pl> followed by
<p2>

<pl>|<p2> matches if either pattern <pl1> or pattern <p2>
match

0 are used to group patterns together

3-4

Introduction to Tripos Further Use

Thus
A#BC matches AC, ABC, ABBC, and so on
A#(B|C)D matches AD, ABD, ABCD, and so on
A?B matches AAB, ABB, ACB, and so on
A#7B matches AB, AXXB, AZXQB, and soon
THV# matches 7#, 7AB#, 77##,and soon
A(B|%)#C matches A, ABC, ACCC, and so on

This is rather complicated but, once mastered, allows LIST and other
commands to be used with extreme flexibility. For example,

LIST :bill PAT doc#?(x]|y)

means "Examine the directory :bill, printing information on files which

start 'doc' and which end with either 'x' or 'y".

Many commands take patterns as arguments, some examples using
familiar commands appear below. For instance, to copy all the files in the
current directory which start 'test-' to the disk device 'df1:’, type

COPY test-#? to dfl:

Deleting files is always dangerous. If many have to be deleted it is easy to
suffer from 'finger factor’, or cheerfully continuing to erase files that
should be kept. To avoid accidentally deleting too many files, you should
consider carefully any pattern set up for deletion before you use it. An
example of its use might be as follows:

DELETE t#?/#2(1|2)
which means: 'delete all files ending in 1 or 2 in directories starting with
t."! This is useful to clear out the temporary directory :T. The more

cautious user can always check with LIST before using DELETE.

You do not have to understand the use of patterns to use Tripos.
However, they can save you a lot of typing.

3-5

Further Use Introduction to Tripos

3.4 Command Files

This section provides additional examples for the C command. Although
C command files can be simple, they can also be highly complex. The
examples in this chapter show just how sophisticated they can be.

3.4.1 Example 1

This example shows parameter substitution by keyword name and/or
position.

The .KEY (or .K) statement supplies both keyword names and positions
in command files. It tells C how many parameters to expect and how to
interpret them. In other words, .KEY serves as a "template" for the
parameter values you specify. Only one .KEY statement is allowed per
command file. If present, it should be the first command line in the file.

When you enter a command line, Tripos resolves parameter
substitutions for the keywords in two ways: by specification of the
keyword in front of the parameter, and by the relative positions of the
parameters in the line. Keyword name substitution takes precedence.
For example, the following KEY statement:

.KEY flash,pan
tells Tripos to expect two parameter substitutions, <flash> and
<pan>. (The angle brackets indicate the keyword value to be
substituted at execution time.)
Suppose you enter the following command line:

C DEMOl pan somename flash othername

The value "othername" is assigned to <flash>, and the value
"somename" is assigned to <pan>.

3-6

Introduction to Tripos Further Use

You can omit the keyword names if the parameter substitutions are in
the order given in the .KEY statement. For example, the following
statement is equivalent to the preceding one:

C DEMOl othername somename

This is because the values correspond to the keyword order specified in
the . KEY statement.

You can also mix the two methods of parameter substitution. Suppose
you have a . KEY statement with several parameters, as follows:

.KEY wordl,word2,word3,word4

The C file processor removes parameter names from the input line to fill
the meanings of any keyword values it finds. Then, with any remaining
input, it fills the leftover keyword positions according to the position of
the input value.

For example:
C DEMO2 word3 ccc wordl aaa bbb ddd

The processor assigns ccc to <word3>, aaa to <wordl >, and has two
parameters left over. Scanning from left to right in the .KEY statement,
it finds that <word2> is still unassigned. Thus, <word2> gets the
next input word, bbb. Finally, <word4> hasn't been assigned either, so
it gets the last input word, ddd.

You can indicate special conditions for parameter substitution, as
follows:

.KEY namel/a, name2/a, name3, name4/k
The "/a" indicates that a value must be supplied to fill the parameters for
namel and name2. Values for name3 and name4 are optional, though

the "/k" indicates that <name4 > (if supplied) must be preceded by the
explicit keyword "name4." For example:

3-7

Further Use Introduction to Tripos

C DEMO3 fee fie foe name4 fum

If the user does not supply a required parameter (such as namel or
name?2 in the preceding example), C issues an error message.

As an example of the use of the /k option, suppose you have created a
command-file named COMPILE and it lets you optionally specify a file
name to which a printout of the compilation is to be directed. Your .key
statement might read:

. .key compilewhat/a,printfile/k
If a user enters a line such as:

C COMPILE myfile PRINTFILE myprint
the command-file says the keyword PRINTFILE is optional and need not
be supplied, but if used, there must be a value entered along with it.

Thus the above line is correct, since myprint is specified as the target
output file.

3.4.2 Example 2

This example demonstrates how you can assign default parameters and
different bracket characters.

Note: the following example can be executed as a batch file.
.KEY wordl

The .DEF directive establishes a default value for a keyword if the user
does not specify a value on the command line. To detect an unsupplied
parameter value, you can compare it to "" (two double-quotes in a row).
You must perform this comparison before executing any .DEF statement
in the command file.

You can assign defaults in either of two ways. The first way requires
that you specify the default every time you reference a parameter, using
the "$" operator.

3-8

Introduction to Tripos Further Use

For example, in the following statement:

ECHO "<wordl$defwordl> is the default for Wordl."
"defwordl"” is the default specified for wordl and is printed when the
above statement executes. The second way is to define a default once.
For example, with the following assignment:

.DEF wordl "defwordl"
you can execute fhe following statement:

ECHO "<wordl> is the default for Wordl."

The output of both of the above ECHO statements will be:
defwordl is the default for Wordl.

Note that a second use of .DEF for a given parameter has no effect:

.DEF wordl "--—— New default ---"
ECHO "<wordl> is STILL the default for Wordl."

(The first assignment, "defwordl" will be substituted for wordl at
execution time.)

Wherever C finds enclosing angle brackets, it looks within them to see if
it can substitute a parameter. An unsupplied parameter with no default
becomes a "null"” string.

Suppose you want to use a string that contains the angle bracket
characters, < and > . You can use the directives .BRA and .KET to
define substitutes for the bracket characters. For example,

ECHO "This line does NOT print <angle> brackets.®
.BRA {

.KET }

ECHO "This line DOES print <angle> brackets."
ECHO "The default for wordl is {wordl}."

3-9

Further Use Introduction to Tripos

The first ECHO statement causes the processor to look for the parameter
substitution for "angle," since that's the current meaning of the angle
bracket characters. Since "angle"” wasn't included in the .KEY
statement, the processor substitutes the null string for it. Then, after
the .BRA and .KET directives redefine the bracket characters, the
second ECHO statement prints the characters:

This line DOES print <angle> brackets.

The third ECHO statement illustrates that the braces ({ and }) now
function to enclose keywords for the purpose of parameter substitution.

3.4.3 Example 3

This example demonstrates file copy simulation showing command file
structures.

The IF statement lets you peform tests and cause different actions based
on the results of those tests. Among the possible tests are testing strings
for equality and testing to see if a file exists. You can use an ELSE
statement with an IF to specify what should be done in case the IF
condition is not true. The ELSE statement, if used, is considered a part
of the IF statement block. An ENDIF terminates an IF statement block.

The example programs below also use a SKIP statement. The SKIP
statement lets you skip FORWARD ONLY within your command-file to
a label defined by a LAB statement.

The IF...ENDIF structure is illustrated by the following short example.
It is generally a good idea to test for keywords that might be omitted, or
might be entered as null ("") in quotes, as shown below:

IF "<wordl>" EQ "usage"
SKIP USAGE

ENDIF

IF "<word2>" EQ ""
SKIP USAGE

ENDIF

3-10

Introduction to Tripos Further Use

Enclosing your parameter substituition words in double-quotes within IF
statements prevents C from reporting an error if the keyword is omitted.

If you omit the double quotes and the value is not supplied, the result can
be a line that reads:

IF EQ "usage"
This produces an error, because the two operators IF and EQ are
adjacent. Using double quotes around the keyword replacemem:
indicators results in a line that reads:

IF nn EQ "usagell

which is legal.

You can use NOT in an IF statement to reverse the meaning of the test
you perform. For example:

IF NOT exists <from>

There can be nothing on the IF line other than the test condition. For
example, the following is incorrect: |

IF <something> EQ true SKIP DONE
The correct form of the above statement is as follows:

IF <something> EQ "true"
SKIP DONE
ENDIF

As the example above shows, the string constant tested for need not be
enclosed in double-quotesin the preceding example, either "TRUE" or
TRUE is acceptable.

As shown in the sample command file below, [F statements can be nésted
so that commands can be executed based on multiple true statements
Note that C lets you indent to make the nesting of IF statements more
readable.

3-11

Further Use

Introduction to Tripos

The following sample command file simulates a file copying utility that
illustrates certain useful structures in a command (file:
[F...[ELSE]...ENDIF, LAB, and SKIP.

.KEY from,
IF "<from>"

to ; Assign parameter list
eqg "" ; Check for a FROM file

being supplied.

SKIP usage ; No file, show user how to use.
ENDIF
IF "<to>" eq "" ; Check for a TO file
being supplied.

SKIP usage ; No file, show user how to use.
ENDIF

IF NOT exists <from> ; Check if FROM file

; doesn't exist
ECHO "The FROM file you selected (<from>)"
ECHO "could not be found."
ECHO "Please use the DIR or LIST command"
ECHO " and try again."
SKIP DONE ; Note: We can SKIP out of an IF.

ENDIF
IF exists <to> ;: Check if TO file exists.
IF "<o>" EQ "O" ; Did the user supply "O"

on the line ?

copy
ECHO
ECHO
ECHO
ELSE
ECHO
ECHO
ECHO
SKIP
ENDIF
ELSE
ECHO
ENDIF
SKIP DONE

from <from> to <to>

"Replaced file named <to> with a copy of
" file named <from>."

"Request fulfilled."

"Command overwrites an existing file *
"ONLY if the O parameter is specified.”
"Request Denied"

usage ; Explain how to use this file
"copy from <from> to <to>."

3-12

Introduction to Tripos Further Use

LAB usage
ECHO "cp: wusage...."
ECHO "The following copy forms are supported:"

ECHO " x cp FROM sourcefile TO destinationfile"
ECHO " x cp FROM sourcefile destinationfile”

ECHO " x cp sourcefile TO destinationfile”

ECHO " x cp sourcefile destinationfile"

ECHO " x cp TO destinationfile FROM sourcefile"
ECHO " x cp sourcefile destinationfile O"

ECHO " x cp FROM sourcefile TO destinationfile O"

ECHO " x cp O FROM sourcefile TO destinationfile"
ECHO "where: x is short for Ccp is the name of"
ECHO "this command file, and *"O*" means "

ECHO "'overwrite existing file'."

LAB DONE

3.4.4 Example 4
This example provides a sample looping batch file.

The SKIP command allows only forward jumps. To create a loop
structure within a command file, use C iteratevely. That is, use the C
command within the file itself to send execution backwards to a label.
The following executable example illustrates looping.

:This file displays five messages:

;"This prints once at the start. (pl,p2)"
;"Loop number I."

;"Loop number II."

;"Loop number III."

;"This prints once at the end. (pl,p2)"

.KEY pl,p2,lo0pcnt,looplabel

FAILAT 20

IF NOT "<looplabel>" EQ "" ; Called with label?
SKIP <looplabel> : Yes, then loop.

ENDIF

3-13

Further Use Introduction to Tripos

ECHO "This prints once at the start. (<pl>,<p2>)"

; ==== Gtart of loop ====
LAB lst-loop
IF "<loopcnt>" EQ "III" ; f£inished looping?
?
SKIP loopend-<looplabel> ;Yes, unwind.
ENDIF

ECHO "Loop number <loopcnt>I." ;Go 'backwards’
; in this file

C. loop.sample "<pl>" "<p2>" <loopcnt>I lst-loop

LAB loopend-<looplabel>
IF NOT "<loopcnt>" EQ ""
SKIP EXIT
ENDIF ; === end of loop ====
ECHO "This prints once at the end. (<pl>,<p2>)"

LAB EXIT

3.5 Command Paths

The full description of a particular directory or file is called its path; it
describes the complete hierarchy from the root (:) through to that
directory of file. In other words, it describes the 'path' you have to go
along in order to find that directory or file.

When you use a command, Tripos looks for it first in C: and, if it cannot
find it there, it then looks for it in your current directory. You can,
however, specify further directories for Tripos to search. In fact, the
PATH command not only allows you to specify exactly which directories
Tripos should search, but it also lets you specify the order in which it
should search them.

You may wish to add to the default list. This can be done by typing

Introduction to Tripos Further Use

PATH ADD
followed by between one and ten names. For example,
PATH ADD :com :mary/commands :fred/commands

adds these three directories after the currently set ones, and in the order
given (that is, :com is searched before :mary/command, which is searched
before :fred/commands).

To replace the entire search list, omit the keyword ADD when you list
the directory names. To clear the list, you give the command with no
arguments; that is, you set the command path search list to nothing.

If you wish to find out the directories in the list, give the keyword SHOW
after the command; for example,

PATH SHOW
> c: bill :com :mary/commands :fred/commands

3.6 Startup Sequence

Sequence files are held in the sequence library on the logical device S:;
they contain command sequences. One sequence file that you will almost
certainly use is S:startup-sequence. This file sets up all your own default
commands when you startup Tripos on your computer. For example, it
can set your default CONSOLE parameters and your default terminal

type:

VDU TVI
CONSOLE PAGE ON AUTLN OFF

3-15

Further Use Introduction to Tripos

3.7 Errors

When a command fails it returns a failure code and sends a brief message
to the terminal. More information about what has gone wrong can be
obtained by using the command WHY.

The command FAULT accepts a failure code (also variously known as a
return, fault, or error code) as an argument and returns its
corresponding message. You can specify up to ten codes at a time. For
example,

FAULT 22 221 218
displays the messages for faults 22, 221 and 218.

If your command fails, use FAULT or WHY. If you are still confused,
you can lock up the error in Appendix A, "Error Codes and Messages," in
the Tripos User's Reference Manual. This appendix suggests
what might have gone wrong and supplies a possible course of action.
Not all errors are recoverable, however.

3-16

Introduction to Tripos Glossary

Glossary

Arguments
Additional information supplied to commands.

Character pointer
Pointer to the left edge of a line window in EDIT. You use it to
define the part of a line that EDIT may alter.

Character string
Sequence of printable characters.

Command
Aninstruction you give directly to the computer.

Command Line Interpreter (CLI)
A process that decodes user input.

Console handler
See terminal handler.

Command template
The method of defining the syntax for each command.

Control combination
A combination of the CTRL key and a letter or symbol. The CTRL
key is pressed down while the letter or symbol is typed. It appears
in the documentation, for example, in the form CTRL-A.

Current cursor position
The position the cursor is currently at.

Current directory
This is either the root directory or the last directory you set
yourself in with the command CD.

Glossary Introduction to Tripos

Current drive
The disk drive that is inserted and declared to be current. The
default is SYS:.

Current line
Either the line that EDIT has in its hand at any time or the line
pointed at by the cursor in ED.

Current string alteration command
An instruction that changes the current string.

Delimiter characters
Characters used at the beginning and end of a character string;
that is, characters that define the limits of the string.

Destination file
File being written to.

Device name
Unique name given to a device (for example, DFO: - floppy drive 0).

Directory
A collection of files.

Editing commands
Commands input from the keyboard that control an editing
session.

Extended mode
Commands appear on the command line and are not executed until
you finish the command line.

File
A collection of related data.

Filename
A name given to a file for identification purposes.

i

Introduction to Tripos Glossary

Immediate mode
Commands are executed immediately.

Keyword
Arguments to commands that must be stated explicitly.

Line windows
Parts of line for EDIT to execute subsequent commands on.

Memory
This is sometimes known as store and is where a computer stores
its data and instructions.

Multi-processing
The execution of two or more processes at the same time, rapidly
switching from one to the other according to a strict order of
priority.

Output queue
Buffer in memory holding data before being written out to file.

Priority
The relative importance of a process.

Process
A job requested by the operating system or the user; see also Task

Qualifiers
Characters that specify additional conditions for the context in
string

Qualified string
A string preceded by one or more qualifiers.

Queue
- see Output queue.

Root directory
The top level in the filing system. Files and directories within the

root directory have their names preceded by a colon (:).

iii

Glossary Introduction to Tripos

Sequential files
A file that can be accessed at any point by starting at the
beginning and scanning sequentially until the point is reached.

Source file
File being read from.

Syntax
The format or 'grammar’ you use for giving a command.

Task
A task is another name for a process. Tasks are numbered from 1
onwards: task 1 is the initial CLI task, task 2 is the debug task,
and so on. To select the next available task, press CTRL-P.

Terminal handler
A process handling input and output from the terminal or console.

Volume name
The unique name associated with a disk.

Wild card
Symbols used to match any pattern.

iv

Introduction to Tripos

Index

" (double quote) 1.3,1.9
|3.4

#34

% 3.4

34

03.4

* (asterisk) 1.3, 1.4, 1.11,2.7,2.20
+ (plus), use of 1.29, 2.20
- (minus), use of 2.20

. (period), use of 2.20, 2.26
A1

A6

/(slash) 1.5,1.6,1.32
/A1.32

/K 1.32

/S1.32

:(colon) 1.6,1.7,1.12, 1.14
‘T1.14,35

; (semicolon) 2.18

<129

>1.29

= (equals) 1.30
71.33,3.4

A213,2.25

After, insert 2.25

Altering text 2.13
Argument template 1.33
Arguments 1.30-33
Arguments, patterns as 3.5
Arguments, required 1.32
ASSIGN 1.15

Asterisk (*) 2.7, 2.20
Attention flags 1.30, 3.3
Attention interrupt levels 1.30, 3.3
AUX:1.10

B2.11,2.23,2.25

BACKSPACE 1.2

Backwards find 2.11, 2.12,2.22,2.23
Bad args 1.33

Basic use of EDIT 2.18

BE 2.9,2.10

Before, insert 2.25

Beginning of line, move to 2.3
Beginning of line qualification 2.23
BF 2.11,2.12,2.22,2.23

Block markers 2.9, 2.10

Blocks 2.9, 2.10

Bottom of ED file, move to 2.11
BREAK 1.30, 3.3

Broken tasks 3.4

BS2.9,2.10

C1.13,1.29,1.30,2.17,3.6
C:1.12,1.13,1.14

CD16,1.17,1.21,1.22,1.34,1.35
CE2.11
Changes on the current line 2.24
Changing the process selector 3.2
Character, erase - see BACKSPACE
Characters 1.3
CL2.11,2.28,2.29
CLI'L.1,1.2,1.15,1.28,1.29,1.30,
3.1,3.2,33
Command (various; see below)
-arguments 1.30, 1.32
- failure 1.29
- files 1.29,2.17, 3.6-14
-1/01.29
- keywords 1.30
-line 2.7
- Line Interpreter - see CLI
-line, ED 2.2
- line, erase - see CTRL-X
- line, extending a 1.29
- line, terminating a 1.29
-names 1.15
- paths 3.14
- patterns 3.4
- separator 2.18
- sequence interrupt (CTRL-D)
1.30
- template 1.30, 1.32, 1.33
Commands directory 1.13
Commands to tasks 3.3
Commands, executing 1.15
Comments 1.9
Concatenate lines 2.28, 2.29
Concurrency 3.1
Connecting the terminal to other tasks
3.2
CONSOLE 1.21,2.4,3.2,3.15
Console handler 1.2,2.1,3.2
Control combinations 1.2, 1.30
Control of output 1.2
COPY 1.10,1.11,1.18,1.19,1.35,3.5
Copying files 1.18
Correcting errors 1.2
Correcting mistakes 1.2
CR2.11
Creating a directory 1.23
CS2.11
CTRL-B2.5,2.14
CTRI-C1.25,1.30,3.3
CTRL-D1.30,2.6,3.3
CTRL-E1.30,2.3,3.3
CTRL-F 1.30,3.3
CTRL-G2.6,2.13
CTRL-H 2.3
CTRL-12.4
CTRI.-J 2.3

http://B2.ll

Index

Introduction to Tripos

CTRL-K2.3
CTRI-N25,2.14
CTRL-0O25
CTRL-P3.2,3.3
CTRL-Q1.21
CTRL-R2.3
CTRIL-S1.21
CTRL-T2.3
CTRL-U26,2.11
CTRL-V2.6
CTRL-X1.2,2.1,23
CTRL-Y 2.5
CTRLA1.2,1.11, 1.35
CTRL-]2.3
Current command interrupt (CTRL-C) 1.30
Current device 1.7
Currentdirectory 1.6, 1.7,1.17,1.23,
1.34
Currentdrive 1.7
Current line 2.19, 2.20
Cursor control 2.3, 2.11
Cut and paste 2.10

D2.14,2.26
DATE 1.26, 1.28,1.29
Date, setting the 1.26, 1.27,
1.28
DB 2.10
DC2.14
Debug task 3.1
DEL1.2
DEL CHAR 2.5
DEL LINE 2.5
DELETE 1.21,1.22,1.32,27,3.5
Delete 2.5,2.10, 2.14, 2.26
-block 2.10
- character 2.14
-find 2.26
- from cursor 2.5
-line 2.5,2.14,2.26
-word 2.5
Deleting 1.2,1.21,1.22,1.25, 3.5
- directories 1.22, 1.25
-files 1.21, 1.25,3.5
Deletion keys 2.5
Delimiters 2.7, 2.10, 2.22
DEOL25
Destination file 2.16, 2.29
Device names 1.8, 1.10
Device, setting the current 1.7
Devices, logical 1.12
Devices, physical 1.12
DEVS: 1.12,1.14
DEVS:VDU 2.1
DF 2.26
DIR 1.10,1.24,1.25

Directories, deleting 1.22
Directory 1.4, 1.5,1.6,1.12,1.22,
1.24,1.34
-conventions 1.12
-names 1.5,1.6
- nesting 1.5
- structure 1.4, 1.34
Directory, listing filesina 1.24
Directory, making a new - see MAKEDIR
Disk 1.1, 1.4,1.7,1.10,1.28
-drive 1.1
-names 1.7,1.10
-sharing 1.4
- structure validation (restart
process) 1.28
Displaying a file 1.25
DO(ED)2.15
Down 2.3
Drive name 1.7
Dummy device 1.10

£2.12,2.13,2.23,2.24,2.25
ED1.23,2.1.2.2,2.8,2.16,2.19
- command line 2.2
- commands, extended 2.2
- commands, immediate 2.2
ED, terminating 2.8
EDIT1.11,1.23,2.1,2.16
- destination file 2.16
-source file 2.16
Editing in a background task 2.17
Editing lines locally 1.2
Editors 1.14
End interactive CLI task 3.3
End of ED file, move to 2.11
End-of-file indicator - see CTRL-\
End-of-line qualification 2.23
End-of-line, move t0 2.3, 2.11
End-of-screen, move to 2.3
SNDCLI1.1,3.3
Entering data 1.35
Entering ED 2.1, 2.2
Entering EDIT 2.16
EQ2.12
Erase command line - see CTRL-X
Erasing mistakes 1.2
Errors 3.16
ESCAPE 2.7,2.8,2.9,2.10,2.11,
2.14
Escape combinations 3.1
Examining files 1.17
Example session 1.34
Examples of patterns 3.4
Exchange 2.11,2.12,2.24
Exchange and query 2.12
Executing command files 3.6, 3.7, 3.8,

Introduction to Tripos

Index

3.9.3.10,3.11,3.12,3.13,3.14
Executing Tripos commands in ED 2.15
Extended commands 2.2,2.6,2.7, 2.11,
2.18

F2.11,218,2.21,2.22,2.23
FAILAT 1.29

Failure of commands 1.22
FAULT 3.16

Filename 1.3, 1.6

File path 1.5,1.17, 1.18

File specification - see File Path
FILENOTE 1.9

Files 1.3

Filing system 1.1,1.3,1.5, 1.6, 3.1
Find blank line 2.24

Find string 2.11, 2.21, 2.23
Finger factor 3.5

First task 3.1

FORMAT 1.14

Fourth task 3.1

GE 2.25

Getting outof ED 2.8
Globals 2.25, 2.29

Group patterns together 3.4

Hard disk 1.14

HDO: 1.14

Held tasks 3.4

Help(?) 1.33

HOME 2.3

Horizontal scrolling 2.3, 2.4

12.13,2.27
IB29
IF2.10
Immediate commands 2.2,2.7, 2.11
Information about tasks 3.4
INPUT 1.23
Input and output (I/0) 3.2
INSCHAR25
Insert2.4,2.9,2.10,2.13,2.26,

2.27

- before 2.25

- block 2.9

-file 2.10

-from file 2.27

-line 2.26, 2.27

-new line 2.13

-textinED 2.4
Installation 2.1
Interactive CLI task 3.3
Interactive commands 1.16
Interactive listing 1.25
Interrupted tasks 3.4

Interrupts 1.30

J2.14
Join lines 2.14, 2.28

Keyword 1.30, 1.31
-arguments 1.31
-asaswitch 1.32
- qualifiers 1.32
- synonyms 1.30

L2.25

L:1.12,1.13

Last 2.25

LC2.13

Left, move cursor 2.3, 2.11

Letter case, use of 1.2

Levels of attention interrupt 1.30
Library directory 1.13

Line deletion 2.26

Line editing 2.5, 3.2

Line editing, local 1.2

Line editor (see also EDIT) 2.1, 2.16
Line insertion 2.26

Line length 2.4

Line numbers 1.20, 2.19, 2.27
Line, erase - see CTRL-X
LIST1.9,1.17,1.24,1.34,1.35,3.5
Listing directories 1.24, 1.25
Listing files 1.17, 1.24

Local line editing 1.2, 2.5, 3.2
Logical devices 1.12

Lower case 1.2,2.13,2.19

M2.19

M*2.20

M+ 2.20

M-2.20

M.2.20

MAKEDIR 1.10,1.23

Making a new directory 1.23

Margins 2.4

Match pattern 3.4

Match the null string 3.4

Maximum line width 2.18

Maximum number of lines held 2.18

Merging files 2.10

Minus (-), use 0of 2.20

Mistakes, correction/erasure 1.2

MOUNT1.10

Move back as far as possible 2.20

Move back in EDIT 2.16

Move between processes (tasks) 3.2

Move block 2.9

Move cursor (ED) 2.3, 2.11
-down 2.3

iii

Index

Introduction to Tripos

-left 2.3, 2.11
-right 2.3, 2.11
-toendofline 2.3, 2.11
-toend of file 2.11
- toend of screen 2.3
- to next word 2.3
- to previous word 2.3
-to start of line 2.3, 2.11
-to top of file 2.11
- to top of screen 2.3
-up2.3
Move to 2.11 2.19, 2.20, 2.21
- current line 2.20
- end of file 2.20
- last line in current memory
2.20
-line 2.19,2.20
- next line 2.21
- previous line 2.11, 2.21
Multi-processing 1.1
Multi-task 3.1
Multiple ED commands 2.7

N 2.20,2.21,2.23

Nesting of directories 1.5
NewCLI11.28,3.3

New line 2.4
NEWCLI1.1,1.11,3.1,3.2,3.3
Next line, move to 2.20,2.21, 2.23
Next word, move to 2.3
NILdevice (NIL:) 1.10, 2.18

Null string, use of 2.24

Open device calls 1.14
Organizing information 1.4
Output control 1.2

Output queue 2.16

P2.11,2.21,2.23

Page mode 1.21

Panic buttons 1.30

Parallel port (PAR:) 1.10,1.11

Path 1.5

PATH 3.14,3.15

Patterns 3.4, 3.5

Period (), use of 2.20, 2.22, 2.26

Physical devices 1.12

Plus (+), use of 2.20

Pn2.18

Positional arguments 1.31

Precisely 2.23

Previous line, move to 2.11,2.21,
2.23

Previous word, move t6 2.3

Priority 1.1,1.28,3.1

Process - see also Task

Process selector (CTRL-P) 3.2
Process, changing 3.2
Processes 1.1,1.28

Processes, move between 3.2
Prompt 1.15,1.16, 1.29
PROMPT 1.16,3.2

Q2.8

Qualified commands 2.7
Qualified strings 2.23
Qualifiers 2.23

R2.27

RAM device (RAM:) 1.10

Reading output to the terminal 1.2

Redirecting command /O 1.29

Remove special effect of character 3.4

RENAME 1.9

Repeat editing commands 2.2, 2.6,
2.14,2.15,2.22

Replace line 2.27

Required arguments 1.32

Restart validation 1.28, 3.15

Restarting a task 3.3

RETURN1.2,1.21,2.4.2.7,2.14

Return to immediate mode 2.7

Rewriting the screen 2.6

Right hand margin, set 2.4

Right, move cursor 2.3, 2.11

Root directory 1.4,1.6,1.7

RP2.15

RUBOUT 1.2,1.21,2.7

RUN1.1,1.28,1.29,2.17,3.1

Running editing commands in the
background 2.17

Running tasks 3.4

S2.14

S:1.12,1.13,3.15
S:startup-sequence 3.15

SA 238,228

Save 2.8

SB2.10,2.28

Screen editor 1.24, 2.1
Scrolling 2.3,2.4,2.5,2.6,2.11
Searching for string 2.11, 2.23
Second task 3.1

Select a new task 3.2
Semicolon (;), use of 2.18
Separating multiple commands 2.18
Sequence library 1.13, 3.15
Sequential processing 2.16
Serial device (SER:) 1.10, 1.11
Set right hand margin 2.4
Setting tabs 2.4

Sharing a Disk 1.4

Introduction to Pripos

Index

Show block 2.10

SIZE2.1,2.2

Source file 2.16, 2.29

Spaces, use of 2.22

Special characters 3.4
Specification of a file 1.5

Split line 2.4, 2.14, 2.28

Start of line, move cursor to 2.11
Starting a task 3.3

Startup sequence 3.15

STATUS 3.4

STOP2.16,2.29

Stop/start output to terminal 1.2
Stopping a task 3.3

Structure of directories 1.4, 1.5
Sub-directories 1.6

Suspended tasks 3.4

Syntax, command 1.30
SYS:1.7,1.12,1.14,1.34
System date and time 1.26, 1.28
System disk 1.8

System disk root directory 1.12
System tailoring 2.1

T2.11,2.24
T:1.12
TAB2.4
Tailoring your system 2.1
Task - see also Process
-four 3.1
- information 3.4
-one 3.1
- selection 3.2
- selector (CTRL-P) 3.2
- starting and restarting 3.3
- stopping 3.3
-three 3.1
-two 3.1
Tasks, 3.1,3.2,3.3,3.4
- broken 3.4
- commands to 3.3
-held 3.4
- interrupted 3.4
- move between 3.2
-running 3.4
- suspended 3.4
- waiting 3.4
Template, argument 1.30
Temporary directory 1.14
Temporary file 1.14, 2.17
Terminal handler 1.1,1.2,3.1, 3.2
Terminals supported 2.1
Terminating ED 2.8
Terminating EDIT 2.29
Third task 3.1
TIME 1.28

Time, setting the 1.26, 1.27, 1.28
Top of file, move to 2.11
Top of screen, move to 2.3
TP2.24
Tripos commands in ED, executing 2.15
TYPE 1.20,1.33,1.36
Typing ahead 1.2
Typing text on the screen 1.2, 1.20,
2.24

U29

uc2.13

Undoing the last command in ED 2.9
Upper case 1.2,2.19,2.13

Use of patterns 3.5

Validation of disk structure 1.28
vbu 2.1

VER2.18

Verification 2.6, 2.18

Vertical scrolling 2.3, 2.6
Volume name 1.8

W2.29

Waiting tasks 3.4
WB2.10

WHY 1.22,3.16

Windup 2.29

Wn218

Work queue 3.4

Work space (SIZE) 2.1, 2.2
Write block 2.10

X28

722.27,2.28

Tripos User's Reference Manual

COPYRIGHT

This manual Copyright (c) 1986, METACOMCO plc. All Rights
Reserved. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic
medium or machine readable form without prior consent, in writing,
from METACOMCO ple.

TRIPOS software Copyright (c) 1986, METACOMCO plc. All Rights
Reserved. The distribution and sale of this product are intended for the
use of the original purchaser only. Lawful users of this program are
hereby licensed only to read the program, from its medium into memory
of a computer, solely for the purpose of executing the program.
Duplicating, copying, selling, or otherwise distributing this product is a
violation of the law.

TRIPOS is a trademark of METACOMCO plc.
This manual refers to Issue 5, May 1986

Printed in the U.K

DISCLAIMER

THIS PROGRAM IS PROVIDED "AS IS" WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE RESULTS AND
PERFORMANCE OF THE PROGRAM IS ASSUMED BY YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU (AND NOT
THE DEVELOPER OR METACOMCO PLC OR ITS AFFILIATED
DEALERS) ASSUME THE ENTIRE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION. FURTHER, METACOMCO
PLC OR ITS AFFILIATED COMPANIES DO NOT WARRANT,
GUARANTEE OR MAKE ANY REPRESENTATIONS REGARDING
THE USE OF THE PROGRAM IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, CURRENTNESS, OR OTHERWISE,;
AND YOU RELY ON THE PROGRAM AND RESULTS SOLELY AT
YOUR OWN RISK. IN NO EVENT WILL METACOMCO PLC OR ITS
AFFILIATED COMPANIES BE LIABLE FOR DIRECT, INDIRECT,
INCIDENTAL, OR CONSEQUENTAL DAMAGES RESULTING FROM
ANY DEFECT IN THE PROGRAM EVEN IF IT HAS BEEN ADVISED
OF THE POSSIBILITY OF IMPLIED WARRANTIES OR LIABILITIES
FOR INCIDENTAL OR CONSEQUENTAL DAMAGES, SO THE
ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY.

Tripos User's Reference Manual

Chapter 1: Commands
Chapter 2: Screen Editor - ED
Chapter 3: Line Editor - EDIT

Appendix A: Error Codes and Messages

Issue 5 (May 1986)

Chapter 1: Tripos Commands

This chapter describes the Tripos commands that are provided as
standard. These commands fall into several categories: file utilities, CLI
control, command sequence control, system and storage management,
and programming tools. Each command is listed in alphabetical order
with a definition of its format, template, and purpose; a full specification
of the command and an example of its use is also provided.

The chapter starts with a list of unfamiliar terminology. At the end of
the chapter there is a Quick Reference Card that lists all the commands
according to the above categories (that is, by function).

Table of Contents

1.1 Tripos Commands

Quick Reference Card

Tripos User's Reference Commands

1.1 Tripos Commands

Unfamiliar Terminology

In this manual you could find some terms that you have not seen before.
The list below includes some common terms that are confusing if you are
unfamiliar with them.

Boot

Default

Device name

File handle

Logical device

Object code

Reboot

Stream

System disk

Volume name

startup. It comes from the expression "pulling
yourself up by your bootstraps."

initial setting or, in other words, what happens if you
do nothing. So that, in this manual, 'default’ is used

to mean 'in absence of something else.’

part of a name that precedes the colon (), for
example, DF0:, SER:, AUX:, and so forth.

an internal Tripos value that represents an open file
or device.

a name you can give to a directory with ASSIGN that
you can then use as a device name.

binary output from an assembler or compiler, and
binary input to a linker.

restart.

an open file or device that is associated with a file
handle. For example, the input stream could be from
a file and the output stream could be to the console
device.

adisk containing the commands.

a name you give to a physical disk.

1-1

Corhmands Tripos User's Reference

’

Format: [<command > };[<comment > |
Template: "command";"comment”

Purpose: To add comments to command lines.
Specification:

The CLI ignores everything after the semicolon (;).

Examples:

; This line is only a comment

ignores the part of the line containing "This line is only a comment."”
copy <file> to par: ; print the file

copies the file to the printer, but ignores the comment "print the file."

See also: C

1-2

Tripos User's Reference Commands

> <

Format: <command > [>[TO] <out file >}
[<[FROM] <infile>][{<arg>*]

Template: "command" >"TO" <"FROM" "args"
Purpose: To direct command input and output.
Specification:

You use the symbols > and < to direct the output and input of a
command. The direction of the point of the angle bracket indicates the
direction of information flow. You can use these symbols to change where
any command reads input or writes output. The output from a command
usually goes to the screen. However, if you type a > symbol after a
command and before a filename, the command writes the output to that
file instead. Similarly, if you type the < symbol before a filename, the
command reads from that file instead of from the keyboard.

You do not have to specify both the TO and FROM directions and files.
The existence and number of "args" depends on the command you used.
Redirection only happens for the command you specified. Tripos reverts
to the initial or 'default' input and output (that is, the keyboard and
screen) afterwards.

Examples:

DATE > diary dates

writes the output of the DATE command (that is, today's date and time)
to the file 'diary__dates’.

my program < my_ input

tells my__program to acccept input from my__input instead of from the
keyboard.

LIST > temp
SORT temp TO *

1-3

Commands Tripos User's Reference

produces a sorted list of files and displays them on the screen.
The following sequence:

ECHO > 2nd.date 02-3jan-78
DATE < 2nd.date ?
DELETE 2nd.date

creates a file called 2nd.date that contains the text
"02-jan-78 <linefeed >". Next it uses this file as input to the command
DATE. Note that the '?' is necessary for DATE to accept input from the
standard input, rather than the command line. Finally, as you no longer
need the file, the DELETE command deletes 2nd.date.

1-4

Tripos User's Reference Commands

ALINK

Format: ALINK [[FROM|ROOT] < filename >
[,<filename>*| + <filename*]][TO
<name>[WITH <name>][LIBRARY|LIB
<name>[MAP <map>][XREF <name>]
(WIDTH <n>][SMALL]

Template: ALINK "FROM=ROOT,TO/K,WITH/K,VER/K,
LIBRARY = LIB/K,MAP/K,XREF/K,
WIDTH/K,SMALL/S"

Purpose: To link together sections of code into an executable
file.

Specification:

ALINK instructs Tripos to link files together. It also handles automatic
library references and builds overlay files. The output from ALINK is a
file loaded by the loader and run under the overlay supervisor, if

required.

For details and a full specification of the ALINK command, see
Chapter 5 of the Tripos Programmer's Reference Manual.

Examples:
ALINK a+b+c TO output

links the files 'a’, 'b' and ‘c’, producing an output file ‘output'.

1-5

Commands

Tripos User's Reference
p

Format:

Template:

Purpose:

ASSEM

ASSEM [PROG|FROM] <prog> [TO <code >]
[VER <ver>][LIST <listing>]

[EQU <equates file>][OPT <opt>]

[INC <dirlist>1{OBJ <object

module file>]

ASSEM "PROG=FROM/A,TO/K,VER/K,
LIST/K,HDR/K,EQU/K,OPT/K,
INC/K,OBJ/K"

To assemble a program in MC68000 assembly
language.

Specification:

ASSEM assembles programs in MC68000 assembly language. See
Chapter 4 of the Tripos Programmer's Reference Manual for

details.

PROG
TO

VER
LIST
OoPT
HDR
INC

EQU

is the source file.

is the object file (that is, binary output from the
assembler)

is the file for messages (unless you specify VER,
messages go to the terminal)

is the listing file.

specifies options to the assembler.

is a header file which can be read as if inserted at the
front of the source (like INCLUDE in the source itself).
sets up a list of directories to be searched for included
files.

is the file that receives the 'equates' directive (EQU)
assignments from your source. You use EQU to generate
a header file containing these directives.

1-6

Tripos User's Reference Commands

The options you can specify with OPT are as follows:

S produce a symbol table dump as part of the object file.

D inhibit the dumping of local lables as part of a symbol
dump.

C ignore the distinction between upper and lower case in
labels.

X produce a cross-reference file.

L produce a listing file with the default suffix.

N inhibit production of object files.

Examples:

ASSEM prog.asm TO prog.obj

assembles the source program in 'prog.asm’, placing the result in the file
‘prog.obj’. It writes any error messages to the terminal, but does not
produce an assembly listing.

ASSEM prog.asm TO prog.obj HDR slib LIST prog-list

assembles the same program to the same output, but includes the file
'slib' in the assembly, and places an assembly listing in the file "prog-list'.

1-7

Commands Tripos User's Reference

ASSIGN
Format: ASSIGN [[<name>] <dir>][LIST}
Template: ASSIGN "NAME,DIR,LIST/S"
Purpose: To assign a logical device name to a filing system

directory or to examine current device names.
Specification:
NAME is the logical device name given to the directory specified by DIR.

ASSIGN <name> deletes the logical device name given (that is, it
removes the assignment of <name>).

ASSIGN, or ASSIGN LIST, lists all current assignments.

When you use ASSIGN, you must ensure that a disk is in the drive:
ASSIGN makes an assignment to a disk, not to a drive.

Note: Restarting the computer removes your ASSIGNments.

Examples:

ASSIGN sources: :new/work

Sets up the logical device name 'sources' to the directory ":new/work’.
Then to gain access to files in "new/work’, you can use the logical device
name 'sources’, as in

TYPE sources:xyz

which displays the file "“new/work/xyz'.

ASSIGN LIST

lists the current logical device names in use. (Used to change the

standard assignments such as C:, L:, SYS;, etc.)

1-8

Tripos User's Reference Commands

BREAK
Format: BREAK <task> [ALL][C][D][E][F]
Template: BREAK "TASK/A,ALL/S,C/S,D/S,E/S,F/S"
Purpose: To set attention flags in the given task (process).

Specification:

BREAK sets the specified attention flags in the task. C sets the CTRL-C
flag, D sets the CTRL-D flag, and so on. ALL sets all the flags from
CTRL-C through CTRL-F. If you just specify <task>, Tripos sets the
CTRL-C flag.

Note: It is the programmer’s responsibility to detect and act on these
flags being set. Tripos doesn't actually stop or remove a command.

Examples:
BREAK 7

sets the CTRL-C attention flag of task 7. This is identical to selecting
task 7 and pressing CTRL-C.

BREAK 5 D
sets the CTRL-D attention flag of task 5.
BREAK 3 D E

sets both CTRL-D and CTRL-E.

1-9

Commands Tripos User's Reference

C
Format: C <commandfile> [<arg>*]
Template: C "command-file","args"
Purpose: To execute a file of commands with argument

substitution.
Specification:

You normally use C to save typing. The command-file contains
commands executed by the Command Line Interface. Tripos executes
these commands one at a time, just as though you had typed them at the
keyboard.

Youl can aiso use C to perform parameter (that is, value) substitution,
where you can give certain names as parameters. Before the command
file is executed, Tripos checks the parameter names with those you've
given after the C command. If any match, Tripos uses the values you
specified instead of the parameter name. Parameters may have values
spedified that Tripos uses if you do not explicitly set the parameter. If you
have not specified a parameter, and if there is no default, then the value
of the parameter is empty and nothing is substituted for it.

To use parameter substitution, you give directives to the C command. To
indicate these, you start a line with a special character, which is initially
a period or 'dot' (.). The directives are as follows:

KEY Argument template, used to specify

the format of the arguments
K Argument template, identical to . KEY
.DOT ch Change dot character (initially '.") to ch
.BRA ch Change bra character (initially '<") to ch
KET ch Change ket character (initially '>") to ch
.DOLLAR ch Change default-char (initially '$") to ch
.DOL ch Equivalent to . DOLLAR
.DEF keyword value Give default to parameter
.<5pace> Comment line
.<hewline> Blank comment line

1-10

Tripos User's Reference Commands

Before execution, Tripos scans the contents of the file for any items
enclosed by BRA and KET characters (<’ and '>"). Such items may
consist of a keyword or a keyword and a default value for Tripos to use if
you have left the keyword unset. (To separate the keyword and the
default, if there is one, you type a dollar sign '$"). Thus, Tripos replaces
<ANIMAL > with the value you associated with the keyword ANIMAL,
while it replaces <ANIMAL$WOMBAT > with the value of ANIMAL if
it has one, and otherwise it defaults to WOMBAT.

A file can only use the dot commands if the first line has a dot command
on it. The CLI looks at the first line. If it starts with a dot command, for
example, a comment (. <space >txt) then the CLI scans the file looking
for parameter substitution and builds a temporary file in the :T
directory. If the file doesn't start with a dot command, then it is assumed
that there are NO dot commands in the file, which also means no
parameter substitution is performed. For the no-dot case, the CLI starts
executing the file directly without having to copy it to :T. Note that you
can still embed comments in a command-file by using the CLI's comment
character, the semicolon (;). If you don't need parameter substitution and
dot commands, don't use ".' as a comment. Not using "' saves you extra
accesses to the disk for the temporary file.

Tripos provides a number of commands that are only useful in command
sequence files. These include IF, SKIP, LAB, and QUIT. These can be

nested in a command file.

Note that you can also nest C files. That is, you can have a command file
that contains C commands. !

To stop the execution of a command file, you press CTRL-D. If you are
nesting command files; that is, if one command file calls another, you can
stop the entire set of C commands by pressing CTRL-C. CTRL-D only
stops the current command file from executing.

Examples:

Assume the file 'list’ contains the following:

1-11

Commands Tripos User's Reference

k filename/a

IUIi'l copy <filename> to par:+

echo "Printing of <filename> done"
\

Theén the following command

C list test/prg
acts as though you had typed the following commands at the keyboard.

RUN copy test/prg to par:+
ECHO "Printing of test/prg done"
|
Another example, "display”, uses more of the features described above:

.key name/a

IF EXISTS <name>

TYPE <name> OPT n

. If the file given is on the current

. directory, type it with line numbers.
ELSE

ECHO "<name> is not on this directory”
ENDIF

RUN C display work/prg2

should display the file work/prg2 with line numbers on the terminal if it
exists on the current directory. If the file is not there, the screen displays
the following message:

work/prg2 is not on this directory.

See also: ;» IF, SKIP, FAILAT, LAB, ECHO, RUN, QUIT

1-12

Tripos User's Reference Commands

CD
Format: CD[<dir>]
Template: CD "DIR"
Purpose: To set or change a current directory or drive.
Specification:

CD with no parameters displays the name of the current directory. In the
format list above, <dir> indicates a new current directory (that is, one
in which unqualified filenames are looked up). If the directory you
specify is not on the current drive, then CD also changes the current
drive.

To change the current directory to the directory that owns the current
one (if one exists), type CD followed by a single slash (/). Thus CD/ moves
the current directory one level up in the hierarchy unless the current
directory is a root directory (that is, the top level in the filing system).
Multiple slashes are allowed; each slash refers to an additional level
above.

Examples:

CD dfl:work

sets the current directory to 'work' on disk 'df1', and sets the current
drive to 'df1".

CD SYS:COM/BASIC
CDh /

sets the current directory to 'SYS:COM".

1-13

Commands

Tripos User's Reference

Format:

Template:

Purpose:

CONSOLE

CONSOLE [WIDTH <integer >][TAB ON|OFF]
[TASK <key>|OFF][PAGE ON|OFFJ[LENGTH
<integer >] [TABSTOP <integer>|]

[AUTONL ON|OFF}{IFC ON|OFF]

CONSOLE "WIDTH/K, TAB/K, TASK/K,
PAGE/K,LENGTH/K,TABSTOP/K,AUTONL/K
IFC/K"

To set the console characteristics of the console
handler used by the current CL1.

Specification:

WIDTH

TAB

TASK

PAGE

Sets the width of the console. The value of WIDTH must be
a valid positive integer. The initial value is 80.

Controls tabular spacing. TAB can have the value ON or
OFF. TAB ON ensures that tab characters (HT) are
expanded to spaces by the console handler during both
input and output. TAB OFF ensures they are untouched.
TAB is initially ON.

Allows you to set the task-changing control key (default
CTRL-P - think of P for Process, the other name for task).
For example, TASK T (as in T for Task) sets the control to
CTRL-T. TASK OFF disables task-changing. Take care in
your choice of key.

Specifies if output is to be in page mode. PAGE can have
the value ON or OFF. If PAGE mode is ON, the system
automatically waits at the end of each page (screen-full) of
output; the control code CTRL-Q must be given for the
display to continue. The default mode is OFF, where no
automatic page waits are performed, although output can
be halted at any stage by pressing CTRL-S or starting an
input line.

1-14

Tripos User's Reference Commands

LENGTH

TABSTOP

AUTONL

IFC

Sets the console length to be used in PAGE mode. This must
be a positive integer giving the number of lines on the
screen. The default length is 24.

Specifies the number of spaces the horizontal tab is to
represent. By default, the console handler expands a tab to
3 spaces.

Indicates whether the console handler is to insert a newline
when the line printed hits the specified terminal width.
AUTOLN can have the value ON or OFF. Some terminals
provide for an extra half cursor position so that characters
can be written in the final position; in this case the default
ON is suitable. Other terminals may automatically perform
a newline when the final character position has been filled;
in this case AUTONL should be set OFF.

Stands for Input Flow Control. 'Input' is input to the
console handler. This can be input from the keyboard;
however, the rate of input flow from the keyboard to the
console handler is unlikely to be too fast to handle. You
usually use IFC ON to inhibit input flow from another
computer that is running as a separate 'terminal'. IFC
allows the console handler to control the rate of input flow
from this "terminal’ by switching the flow off and then on
again. The console handler inhibits input by sending XOFF
(CTRL-S); it then re-enables input when it is ready by
sending XON (CTRL-Q). The default is OFF.

If no parameters are given, the current state of all the options is printed.

Examples:

CONSOLE

prints the current option settings.

CONSOLE PAGE ON LENGTH 20

1-15

Commands Tripos User's Reference

turns page mode on and sets the screen display to 20 lines. This ensures
the console stops and waits for a CTRL-Q after displaying 20 lines of
output.

1-16

Tripos User's Reference Commands

COPY

Format: COPY [[FROM] <name>][TO <name>][ALL]
[QUIET]

Template: COPY "FROM,TO/A,ALL/S,QUIET/S"

Purpose: To copy a file or directory from one place to another.

Specification:

COPY places a copy of the file or directory in the file or directory
specified as TO. The previous contents of TO, if any, are lost. If you
specify FROM as a file and TO as a directory, COPY creates a copy of the
FROM file in the TO directory (that is, the contents of <file> are copied
to <dir>/<file>).

If you specify a directory name as FROM, COPY copies all the files in the
FROM directory to the TO directory. If you do not specify the FROM
directory, Tripos uses the current directory. The TO directory must exist
for COPY to work; it is not created by COPY.

If you specify ALL, COPY also copies the files in any subdirectories. In
this case, it automatically creates subdirectories in the TO directory, as
required. The name of the current file being copied is displayed on the
screen as it happens unless you give the QUIET switch.

You can also specify the source directory as a pattern. In this case, Tripos
copies any files that match the pattern. See the command LIST for a full
description of patterns. You may specify directory levels as well as files
as patterns.

Examples:

COPY filel TO :work/file2

copies 'filel" in the current directory to ‘file2' in the directory work'.

COPY TO dfl:backup

1-17

Commands Tripos User's Reference

copies all the files in the current directory to 'dfl:backup’. It does not
copy any subdirectories, and DF1:backup must already exist.

COPY df0: to dfl: ALL QUIET

makes a logical copy of disk 'df0' on disk 'df1." No consideration is given
to filenames. All files an sub-directories on the disk are copied.

COPY test-$#? to dfl:xyz

copies all files in the current directory that start 'test-' to the directory
xyz on the disk 'dfl’, assuming that 'xyz’ already exists. (For an
explanation of patterns, such as '#7?', see the command LIST in this
chapter.)

COPY test file to PAR:

copies the file 'test__file' to your printer.

COPY DFO0:?/#? TO DFl: ALL

copies every file in any 1 character subdirectory of DF0: to the root
directory of DF1..

See also: JOIN

1-18

Tripos User's Reference Commands

DATE
Format: DATE [<date>][<time>][TO|VER <name >]
Template: DATE "DATE,TIME,TO=VER/K"
Purpose: To display or set the system date or time.

Specification:

DATE with no parameter displays the currently set system date and
time. This includes the day of the week. Time is displayed using a
24-hour clock.

DATE <date> sets the date. The form of <date> is DD-MMM-YY. If
the date is already set, you can reset it by specifying a day name (this
sets the date forward to that day) or by specifying 'tomorrow' or
'yesterday’.

DATE <time> sets the time. The form of <time> is HH:MM (for
Hours and Minutes). You should use leading zeros when necessary. Note
that, if you use a colon (), Tripos recognizes that you have specified the
time rather the date. That is to say, you can set both the date and the
time or either and in any order because DATE only refers to the time
when you use the form HH:MM.

If you do not set the date, the restart disk validation process sets the
system date to the date of the most recently created file.

To specify the destination of the verification, you use the equivalent
keywords TO and VER. The destination is the terminal unless you
specify otherwise.

Note: If you type DATE before the restart validation has completed, the

time is displayed as unset. To set the time, you can either use DATE or
Just wait until the validation process is finished.

1-19

Commands Tripos User's Reference
Examples: ~

DATE

displays the current date.

DATE 06-Sep-82

sets the date to the 6th of September 1982. The time is not reset.
DATE tomorrow

resets the date to one day ahead.

DATE TO fred

sends the current date to the file "fred”.

DATE 10:50

sets the current time to ten 'til eleven.

DATE 23:00

sets the current time to 11:00 p.m.

DATE 01-JAN-02

sets the date to January 1st, 2002. (The earliest date you can set is
02-JAN-78.)

1-20

Tripos User's Reference Commands

DELETE
Format: DELETE <name> [<name >*|[ALL}{Q|QUIET]
Template: DELETE *,,,,,,,,,,ALL/S,Q=QUIET/S"
Purpose: To delete up to ten files or directories.

Specification:

DELETE attempts to delete each file you specify. If it cannot delete a file,
the screen displays a message, and Tripos attempts to delete the next file
in the list. You may not delete a directory if it contains any files.

You can also use a pattern to specify the filename. See the description of
the command LIST for full details of patterns. The pattern may specify
directory levels as well as filenames. In this case, all files that match the
pattern are deleted.

If you specify ALL with a directory name, DELETE will delete that
directory and all subdirectories and files within that directory and its
subdirectories.

Unless you specify the switch QUIET (or use the alternative, Q), the
name of the file being deleted appears on the screen as it happens.

Examples:

DELETE old-file
deletes the file ‘old-file".

DELETE work/progl work/prog2 work

deletes the files 'progl' and 'prog2' in the directory 'work', and then
deletes the directory 'work’.

DELETE t#?2/42(1]2)

1-21

Commands Tripos User's Reference

deletes all the files that end in '1' or '2' in directories that start with 't'.
(For an explanation of patterns, such as '#7', see the command LIST later
in this chapter.)

DELETE DF1l:#? ALL

deletes all the files on DF1:.

See also: DIR (I-DEL option)

1-22

Tripos User's Reference Commands

DIR
Format: DIR [<name>][OPT AJI|D]
Template: DIR "DIR,OPT/K"
Purpose: To provide a display of the files in a directory in

sorted order. DIR can also include the files in sub-
directories. You can use DIR in interactive mode.

Specification:

DIR alone shows the files in the current directory. DIR followed by a
directory provides the files in that directory. The form of the display is
first any subdirectories, followed by a sorted list of the files in two
columns. If you want to know if a file exists type LIST filename.

Typing DIR filename, where filename is a file which exists results in the
computer responding with: "filename is not a directory."

To pass options to DIR, use the OPT keyword. Use the A option to include
any subdirectories below the specified one in the list. Each sublist of files
is indented.

To list only the directory names use the D option.

The I option specifies that DIR is to run in interactive mode. In this case,
the files and directories are displayed with a question mark following
each name. Press RETURN to display the next name in the list. To quit
the program, type Q. To go back to the previous directory level or to stop
(if at the level of the initial directory), type B.

Any combination of the three options may be used.

If the name displayed is that of a directory, type E to enter that directory
and display the files and subdirectories. Use E and B to select different
levels. Typing the command DEL (that is, typing the three letters DE L,
not pressing the DEL key) can be used to delete a directory, but this only
works if the directory is empty.

1-23

Commands Tripos User's Reference

If the name is that of a file, typing DEL deletes the file, or typing T Types
(that is, displays) the file at the screen. In the last case, press CTRL-C to
stop it 'typing’' and return to interactive mode.

To find the possible responses to an interactive request, type ?.
Examples:

DIR

provides a list of files in current directory.

DIR df0: OPT a

lists the entire directory structure of the disk 'df0’".

1-24

Tripos User's Reference Commands

DISKCOPY
Format: DISKCOPY [FROM] <disk> TO <disk> [NAME
<name>]
Template: DISKCOPY "FROM/A,TO/A/K,NAME/K"
Purpose: To copy the contents of one floppy disk to another.

Specification:

DISKCOPY makes a copy of the entire contents of the disk you specified
as FROM, overwriting the previous contents of the entire disk you
specified as TO. If you use a new, unformatted disk as the TO disk, you
must format it first. You normally use the command to produce backup
floppy disks.

Once you have given the command, Tripos prompts you to insert the
correct disks. At this point, you insert the correct source (FROM) and
destination (TO) disks.

You can use the command to copy any Tripos disk to another, but the
source and destination disks must be identical in size and structure. To
copy information between different sized disks, you use COPY.

You can also use the command to copy a floppy disk using a single floppy
drive. If you specify the source and destination as the same device, then
the program reads in as much of the source disk into memory as possible.
It then prompts you to place the destination disk in the drive and then
copies the information from memory onto the destination disk. This
sequence is repeated as many times as required.

If you do not specify a new name for your disk, DISKCOPY creates a new
disk with the same name as the old one. However, Tripos can tell the
difference between two disks with the same name because every disk is
associated with the date and time of its creation. DISKCOPY gives the
new disk the current system date as its creation date and time.

1-25

Commands Tripos User's Reference

Note: If you only have one disk drive, you can use COPY to RAM: to copy
part of a disk.

Examples:

DISKCOPY FROM df0: TO df1l:

makes a backup copy of the disk 'df0' onto disk ‘df1".

DISKCOPY FROM df0: TO df0:

makes a backup copy of the disk in drive 'df0’ using only a single drive.

See also: COPY

1-26

Tripos User's Reference Commands

DISKDOCTOR
Format: DISKDOCTOR [DRIVE] <name >
Template: DISKDOCTOR "DRIVE/A"
Purpose: To restore a corrupt disk.

Specification:

DISKDOCTOR tries to restore to health a disk that has previously failed
to validate. When you specify DRIVE DISKDOCTOR prompts for the
disk to be inserted. This disk must be in write-enabled state.

DISKDOCTOR scans the disk looking for unreadable blocks, and takes
the following actions on finding a bad block:

1. If the block is a directory block, it places all files and
subdirectories in that directory block into the root directory of the
disk. This may result in two files in the root having the same
name, but you can resolve this by renaming one of them.

2. If the block is a file header block, it warns you that a file header
block in a particular directory is unreadable. (DISKDOCTOR
can't tell you the name of the file because it can't read the header
block.) It then deletes the file; this may mean that you also lose
other files as a result.

3. If the block is a file data block, it warns you that part of the file is
unreadable. However, DISKDOCTOR will not delete the file.
When DISKDOCTOR has finished, the disk validator will
automatically be invoked, hopefully resulting in a perfectly
healthy disk, although files which are unreadable cannot be
copied.

After using DISKDOCTOR you should copy all the data you want (or can)

to a fresh disk. You should then reformat the corrupted disk. If the disk
fails to format, you should discard it.

1-27

Commands Tripos User's Reference

ECHO
Format: ECHO <string>
Template: ECHO""
Purpose: To display the argument given.
Specification:

ECHO writes <string> to the current output stream (which can be a file
or a device). This is normally only useful within a command sequence or
as part of a RUN command. If you give the argument incorrectly, an
error is displayed.

Examples:

RUN COPY :work/prog to dfl:work ALL QUIET +
ECHO "Copy finished"

creates a new CLI to copy the specified directory as a background task.
On completion, the message "Copy finished" appears.

To copy 2 files to the RAM disk and back, type
C mycopy
after entering the following command file:

ECHO "Starting 'MYCOPY' command file"
COPY DF1l:ABC TO RAM:ABC

COPY DF1:XYZ TO RAM:XYZ

ECHO "Remove the diskette in DF1l:"
ECHO "Insert the new diskette in DF1l:"
WAIT 10 SECS

COPY RAM:ABC TO DF1:ABC

COPY RAM:XYZ TO DF1l:ABC

ECHO "Done"

1-28

Tripos User's Reference Commands

ED
Format:
ED [FROM] <name> [SIZE <n>]
Template:
ED "FROM/A,SIZE"
Purpose: To edit text files.
Specification:

ED is a screen editor. You can use ED as an alternative to the line editor
EDIT. The file you specify as FROM is read into memory, then ED
accepts your editing instructions. If FROM filename does not exist,
Tripos creates a new file.

Because the file is read into memory, there is a limit to the size of file you
can edit with ED. Unless you specify otherwise, workspace size is
determined by the size of the file. If you wish to edit a file and insert a
large amount of extra text, you may wish to alter the workspace size. To
alter the workspace, you specify a suitable value after the SIZE keyword.
There is a full specification of ED in Chapter 2.

Examples:

ED work/prog

edits the file 'work/prog', assuming it exists; otherwise, ED creates the
file.

ED huge-file SIZE 50000

edits a very large file 'huge-file', using a workspace of 50,000 bytes.

1-29

Commands Tripos User's Reference

EDIT
Format: EDIT [FROM] <name> [[TO] <name >][WITH
<name>][VER <name >][OPT <option>]
Template: EDIT "FROM/A, TO,WITH/K,VER/K,OPT/K"
Purpose: To edit text files.
Specification:

EDIT is a line editor (that is, it edits a sequential file line by line). If you
specify TO, EDIT copies from file FROM to file TO. Once you have
completed the editing, the file TO contains the edited result, and the file
FROM is unchanged. If you do not specify TO, then EDIT writes the
edited text to a temporary file. If you give the EDIT commands Q or W,
then EDIT renames this temporary file FROM, having first saved the old
version of FROM in the file "t/edit-backup'. If you give the EDIT
command STOP, then EDIT makes no change to the file FROM.

EDIT reads commands from the current input stream, or from a WITH
file if it specified.

EDIT sends editor messages and verification output to the file you
specify with VER. If you omit VER, the terminal is used instead.

OPT specifies options: Pn sets the maximum number of previous lines to
n; Wn sets the maximum line width. The initial setting is P4A0W120.

Note: You cannot use the < and > symbols to redirect input and output
when you call EDIT.

See Chapter 3 for a full specification of EDIT.

Examples:

EDIT work/prog

1-30

Tripos User's Reference Commands

edits the file 'work/prog'. When editing is complete, EDIT saves the old
version of "'work/prog' in ":t/edit-backup’.

EDIT work/prog TO work/newprog

edits the file ‘'work/prog’, placing the edited result in the file
'work/newprog'.

EDIT work/prog WITH edits/0 VER nil:

edits the file ‘work/prog’ with the edit commands stored in the file
‘edits/0". Verification output from EDIT is sent to the dummy device "nil:'.

1-31

Commands Tripos User's Reference

ENDCLI
Format: ENDCLI
Template: ENDCLI
Purpose: To end an interactive CLI task.

Specification:
ENDCLI removes the current CLI.

You shouldn't use ENDCLI except on a CLI created by the NEWCLI
command. If the initial CLI (task 1) is ended, and no other has been set
up by the NEWCLI command, then the effect is to terminate the Tripos
session.

Note that there are no arguments to the ENDCLI command, and no
check for invalid arguments.

Note: Do not experiment with ENDCLI before you've used NEWCLI.
Using ENDCLI on the initial CLI always pulls the rug out from under
you by terminating that CLI, and ending the last CLI gives you no way of
creating a new one.

Examples:

NEWCLI

[Select the new CLI by pressing CTRL-P until it is selected]
LIST

ENDCLI

opens a new CLI, lists the directory, and closes the CLI again.

1-32

Tripos User's Reference Commands

FAILAT
Format: FAILAT <n>
Template: FAILAT "RCLIM"
Purpose: To instruct a command sequence to fail if a command

returns an error code greater than or equal to the
number specified.

Specification:

Commands indicate that they have failed by setting a return code. A
non-zero return code indicates that the command has found an error. A
return code > = the fail limit terminates a sequence of non-interactive
commands (that is, commands specified after RUN or in a C file). The
return code indicates how serious the error was; it is usually 5, 10 or 20.

You may use the FAILAT command to alter this fail level from its initial
value of 10. If you increase the level, you indicate that certain classes of
error should not be regarded as fatal, and that execution of subsequent
commands may proceed after an error. <n> should be a positive

number. The fail level is reset to the initial value of 10 on exit from the
command sequence.

You must use FAILAT before commands such as IF to test to see if a
command has failed; otherwise, the command sequence terminates
before executing the IF command.

If you omit the argument, the current value of the fail level is displayed.
Examples:

FAILAT 25

ends the command sequence if a command stops with a return code
>=25.

See also: IF, C, RUN, QUIT

1-33

Commands Tripos User's Reference

FAULT
Format: FAULT[<n>*]
Template: FAULT ",,,,..,,,"
Purpose: To display the messages corresponding to the fault
codes you supply.
Specification:

Tripos looks up the numbers and displays the corresponding messages.
Up to ten messages may be displayed.

Examples:

FAULT 222

displays the message for fault 222.
FAULT 221 103 121 218

displays the messages for faults 221, 103, 121, and 218.

1-34

Tripos User's Reference Commands

FILENOTE
Format : FILENOTE [FILE] <file> COMMENT <string >
Template: FILENOTE "FILE/A,COMMENT/K"
Purpose: To attach a comment or a note to a file.

Specification:
FILENOTE assigns a comment to a specified file.

The keyword COMMENT introduces an optional comment of up to 80
characters. A comment may be more than one word (that is, contain
spaces between characters). In this case, you must enclose the comment
within double quotes (").

A comment is associated with a particular file. When you examine the
file with the command LIST, the comment appears on the line below:

prog 30 rwed Today 11:07:33
: version 3.2 - 23-mar-86

When you create a new file, it does not normally have a comment. If you
overwrite an existing file that has a comment, then the comment is
retained even though the contents of the file has changed. The command
COPY copies a file. If a file with a comment is copied, the new file does
not have the comment from the original attached to it although the
destination file may have a comment which is retained.

Examples:

FILENOTE prog2 COMMENT "Ver 3.3 26-mar-86"

attaches the comment "Ver 3.3 26-mar-86" to program 2.

1-35

Commands Tripos User’s Reference

FORMAT
Format: FORMAT DRIVE <drivename> NAME <string >
Template: FORMAT "DRIVE/A/K,NAME/A/K"
Purpose: To format and initialize a new floppy disk.

Specification:

The program formats a new floppy disk in the method required for
Tripos. Once the disk is formatted, it is initialized and assigned the name
you specify. The DRIVE and NAME keywords must be given. DRIVE
specifies the drive name (for example, DF0:). You can type any string
after NAME, but if you use spaces, you must enclose the whole string in
double quotes (").

WARNING: FORMAT formats and initializes a disk as an empty disk. If
you use a disk that is not empty, you'll lose the previous contents of the
disk.

The name assigned should be unique. It may be 1 to 30 characters in
length and composed of one or more words separated by spaces. If the
name is more than one word, you should enclose it in double quotes.
Examples:

FORMAT DRIVE df0: NAME "Work disk"

formats and initializes the disk in drive 'df0' with the name "Work disk".

See also: DISKCOPY, RELABEL

1-36

Tripos User's Reference Commands

IF
Format: [F [NOT][WARN][ERROR][FAIL} [<str> EQ
<str>][EXISTS <name>]
Template: IF "NOT/S,WARN/S,ERROR/S,FAIL/S,,
EQ/K,EXISTS/K"
Purpose: To allow conditionals within command sequences.
Specification:

You can only use this command in a C command file. If one or more of the
specified conditions is satisfied, [F carries out all the following
commands until it finds a corresponding ENDIF or ELSE command;
otherwise, if the conditions are not satisfied, it carries out whatever
follows a corresponding ELSE command. (ENDIF and ELSE are only
useful in command sequences containing [F.) ENDIF terminates an IF
command; ELSE provides an alternative if the IF conditions fail. Note
that the conditions and commands in an [F and ELSE command can span
more than one line before their corresponding ENDIF.

The following table shows some of the ways you can use the IF, ELSE,
and ENDIF commands:

IF <cond> IF <cond> IF <cond>
<command> <command> <command>

ENDIF ELSE IF <cond>
<command> <command>
ENDIF ENDIF
ENDIF

Note that ELSE is optional and that nested IFs jump to the nearest
ENDIF.

ERROR is only available if you set FAILAT to greater than 10.
Similarly, FAIL is only available if you set FAILAT to greater than 20.

1-37

Commands Tripos User's Reference

Keyword Function
NOT reverses the result.
WARN satisfied if previous return code > = 5.
ERROR ” " " " 1] > o 10.
FAIL ” 1] " n n > - 20.
<a> EQ satisfied if the text of aand b is
identical (disregarding case).
EXISTS <file> satisfied if the file exists

You can use IF EQ to detect an unset parameter in a command file by
using the form

IF <a> EQ nn

Examples:

IF EXISTS work/prog
TYPE work/prog

ELSE

EC§O "file not found"
ENDIF

If the file ‘work/prog’ exists, then Tripos displays it. Otherwise, Tripos
displays the message "file not found" and executes the next command in
the.command sequence.

IF ERROR
SKIP errlab
ENDIF

If the previous command stopped with a return code > = 10, then Tripos

skips the command sequence until you define a label 'errlab’ with the
LAB command.

1-38

Tripos User's Reference Commands

IF ERROR
IF EXISTS fred

ECHO "An error occurred; 'fred' exists."
ENDIF
ENDIF

See also: FAILAT, SKIP, LAB, C, QUIT

1-39

Commands Tripos User's Reference

INFO
Format: INFO
Template: INFO
Purpose: To give information about the filing system.
Specification:

The command displays a line of information about each disk unit. This
includes the maximum size of the disk, the current used and free space,
the number of soft disk errors that have occurred, and the status of the
disk.

Examples:

INFO

Unit Size Used Free Full Errs Status Name
DF1: 880K 2 1756 0os O Read/Write Testb

Volumes available:
Test—6 [Mounted]
Tripos CLI V27.5 4—-Jul-85 [Mounted]

1-40

Tripos User’s Reference Commands

INSTALL
Format:
INSTALL <file> [VERSION A|B|C|D]
Template:
INSTALL "FILE/A,VERSION/K"
Purpose: To install a new Tripos system image onto a disk
Specification:

The filename you specify as <file> is identified as a bootstrap Tripos
system image for the disk on which it resides. The file must be the the
output from SYSLINK. (See the Tripos Technical Reference
Manual for a description of SYSLINK.) You may install up to 4 different
bootstraps on a single disk; that is, versions A, B, C, and D. If you do not
specify VERSION, the file is installed as version A. A particular version
is chosen as part of the bootstrap procedure.

Note: Take care always to keep at least one working version of a Tripos
bootstrap.

Examples:
INSTALL tripos

installs the file 'tripos’ as the system image file for version A on the
current disk.

INSTALL test-tripos VERSION B

installs a test version of Tripos as version B.

1-41

Commands Tripos User's Reference

JOIN
Format: JOIN <name> <name> [<name>*] AS
<name>
Template: JOIN ", 000 AS/IA/K”
Purpose: To concatenate up to 15 files to form a new file.

Specification:

Tripos copies the specified files in the order you give into the new file.
Note that the new file cannot have the same name as any of the input
files.

Examples:
JOIN partl part2 AS textfile
joins the two files together, placing the result in 'textfile’. The two

original files remain unchanged, while 'textfile’ contains a copy of 'part1’
and a copy of 'part2’.

1-42

Tripos User's Reference Commands

LAB
Format: LAB <string>
Template: LAB <text>
Purpose: To implement labels in command sequence files.

Specification:

The command ignores any parameters you give. Use LAB to define a
label 'text' that is looked for by the command SKIP.

Examples:
LAB errlab
defines the label 'errlab’ to which SKIP may jump.

See also: SKIP, IF, C

1-43

Commands Tripos User's Reference

LIST

Format: LIST [[DIR] <dir>][P[PAT <pat>][KEYS]
[DATES][NODATESIHTO <name>|[S <str>]
[SINCE <date>][UPTO <date>]{QUICK]

Template: LIST "DIR,P=PAT/K,KEYS/S,DATES/S,
NODATES/S,TO/K,S/K,SINCE/K,
UPTO/K,QUICK/S"

Purpose: To examine and list specified information about a
directory or file.

Specification:

If you do not specify a name (the parameter DIR), LIST displays the
contents of the current directory. The first parameter LIST accepts is
DIR. You have three options. DIR may be a filename, in which case LIST
displays the file information for that one file. Secondly DIR may be a
directory name. In this case LIST displays file information for files (and
other directories) within the specified directory. Lastly, if you omit the
DIR parameter, LIST displays information about files and directories
within the current directory (for further details on the current directory,
see the CD command).

Note: LIST, unlike DIR, does NOT sort the directory before displaying it.
If no other options are specified, LIST displays

file_name size protection date time
s:comment

These fields are defined as follows:
file__name: Name of file or directory.
size: The size of the file in bytes. If there is nothing

in the file, this field will state "empty". For
directories this entry states "dir".

1-44

Tripos User's Reference

Commands

protection:

date and time:

comment:

Options available:

TO

KEYS

DATES

NODATES

SINCE <date>

UPTO <date>

P <pat>

S <str>

This specifies the access available for this file.
rwed indicates Read, Write, Execute, and
Delete.

The file creation date and time.

This is the comment placed on the file using
the FILENOTE command. Note that it is
preceded with a colon (:).

This specifies the file (or device) to output the
file listing to. If omitted, the output goes to the
current CLL

displays the block number of each file header
or directory.

displays dates in the form DD-MMM-YY (the
default is to display, where applicable, a day
name in the last week, TODAY or
YESTERDAY).

does not display date and time information.
displays only files last updated on or after
<date>. <date> can be in the form
DD-MMM-YY or a day name in the last week
(for example, MONDAY) or TODAY or
YESTERDAY.

displays only files last updated on or before
<date>.

searches for files whose names match <pat>.

searches for filenames containing substring
<str>.

1-45

Commands Tripos User's Reference

QUICK just displays the names of files and directories
(like the DIR command).

You can specify the range of filenames displayed in two ways. The
simplest way is to use the S keyword, which restricts the listing to those
files containing the specified substring. To specify a more complicated
search expression, use the P or PAT keyword. This is followed by a
pattern that matches as described below.

A pattern consists of a number of special characters with special
meanings, and any other characters that match themselves.

The special characters are: ' ()? % # |

In order to remove the special effect of these characters, preface them
with '. Thus '? matches ? and ' ' matches ".

? matches any single character.
% matches the null string.
#<p> matches zero or more occurrences of the pattern
<p>.
<pl><p2> matches a sequence of pattern <pl> followed by
<p2>.
<pl>|<p2> matches if either pattern <pl> or pattern <p2>
match.
0 groups patterns together.
Thus:
LIST PAT A#BC matches AC ABC ABBC, and so forth.
LIST PAT A#(B|C)D matches AD ABD ABCD, and so forth.
LIST PAT A?B matches AAB ABB ACB, and so forth.
LIST PAT A#7B matches AB AXXB AZXQB, and so
‘ forth.
LIST PAT "7#7'# matches 7# 7AB# ?7?7##, and so forth
LIST PAT A(B|%)#C matches A ABC ACCC, and so forth.
LIST PAT #(AB) matches AB ABAB ABABAB, and so
forth.

1-46

Tripos User's Reference Commands

Examples:
LIST

displays information about all the files and directories contained in the
current directory. For example,

File 1

File 2

File.3

:comment

File004

notice that File.3 has a comment.

LIST work S new

displays information about files in the directory 'work' whose names
contain the text 'new". Note that LIST S produces the response: "Args no
good for key" because there is an "S" directory. LIST "s" will list this
directory's contents.

LIST work P new#?(x|y)

examines the directory 'work’, and displays information about all files
that start with the letters 'new' and that end with either 'x' or 'y".

LIST QUICK TO outfile

sends just the names, one on each line, to the file 'outfile’. You can then
edit the file and insert the command TYPE at the beginning of each line.
Then type

C outfile

to display the files.

See also: DATE, DIR, FILENOTE, PROTECT

1-47

Commands Tripos User's Reference

MAKEDIR
Format: MAKEDIR <dir>
Template: MAKEDIR "/A"
Purpose: To make a new directory.

Specification:

MAKEDIR creates a directory with the name you specify. The command
only creates one directory at a time, so any directories on the path must
already exist. The command fails if the directory or a file of the same
name already exists in the directory above it in the hierarchy.
Examples:

MAKEDIR tests

creates a directory 'tests' in the current directory.

MAKEDIR dfl:xyz

creates a directory 'xyz' in the root directory of disk 'df1".

MAKEDIR dfl:xyz/abc

creates a directory 'abc' in the parent directory 'xyz' on disk 'dfl:"
However, 'xyz' must exist for this command to work.

See ;also : DELETE

1-48

Tripos User's Reference Commands

MOUNT
Format: MOUNT <devicename >
Template: MOUNT "DEV/A"
Purpose: To mount a new device.

Specification:

The MOUNT command mounts (makes available) a non-standard device.
Standard devices (SER:, SYS:, etc) are mounted automatically by the
system.

To use MOUNT, type MOUNT followed by the name of the device (for
example, DF1:). MOUNT then reads the file DEVS:MOUNTFILE, finds
the description for that device, and makes it available for use. The
device is not actually initialized, however, until it is first referenced.
Examples:

MOUNT prin:

mounts an intelligent printer device "prin:".

1-49

Commands Tripos User's Reference

NEWCLI
Format : NEWCLI
Template: NEWCLI "FROM"
Purpose: To create a task associated with a new interactive

CLI task.

Specification:

Tripos creates a new CLI. The new task has the same set directory and
prompt string as the one where NEWCLI is executed. Each CLI task is
independent, allowing separate input, output, and program execution.
You can also use this to create a new CLI on another terminal. The
device AUX: refers to a standard alternate terminal. You specify AUX:
when creating a new CLI on the device attached to the auxiliary serial

port.

If your computer has extra serial ports, then you must to MOUNT them
before you can use them.

Examples:

NEWCLI

creates a new CLI task.

NEWCLI AUX:

creates a new CLI using the auxiliary serial port (AUX).

Note: Unlike a background task created with the RUN command, a

NEWCLI task stays around after you have created it.

See also: ENDCLI, RUN

1-50

Tripos User's Reference Commands

PATH
Format: PATH [{ADD] <dirl1 > [<dir2>[...<dir10>]]]
[SHOW]
Template: PATH "ADD?SS,,,,,,,,,,SHOW/S"
Purpose: To alter the directory search list for commands.

Specification:

Initially when you type a command and press RETURN, Tripos searches
for that command in your current directory and then in C:. However, you
may wish to alter this. The PATH command lets you specify a new list of
directories for Tripos to search, and the order in which it is to search
them. You can specify up to ten directories (which should be sufficient
for most purposes). The order in which you specify the directories
dictates the order in which they will be searched (that is, "PATH A B"
searches A before B).

Examples:

PATH

clears the list (that is, it sets the user defined part of the list to nothing).
PATH :commands

specifies that the directory :commands is to be searched.

PATH :commands :tripos/commands :extra/commands

specifies that the directory :commands is to be searched first, then
:tripos/commands, and then :extra/commands.

PATH ADD newcommands
adds the directory newcommands to the end of the search list (for
example, it would be searched after the directory :extra/commands in the

previous example).

1-51

Commands Tripos User’s Reference

PATH SHOW

displays the current search list on the screen.

1-52

Tripos User's Reference Commands

PROMPT
Format : PROMPT <prompt>
Template: PROMPT "PROMPT"
Purpose: To change the prompt in the current CLI.

Specification:

If you do not give a parameter, then Tripos resets the prompt to the
standard string ("> "). Otherwise, the prompt is set to the string you
supply. Tripos also accepts one special character combination (%N). This
is demonstrated in the example below.

Examples:

PROMPT

resets the current prompt to "> ".

PROMPT "&N> "

resets the current prompt to "n> ", where n is the current task number.
Tripos interprets the special character combination %N as the task

number. The double quotes (") are not required if there are no spaces in
the new prompt string.

1-53

Commands Tripos User's Reference

PROTECT
Format: PROTECT [FILE] <filename > [FLAGS <status>]
Template: PROTECT "FILE,FLAGS/K"
Purpose: To set a file's protection status.

Specification:

PROTECT takes a file and sets its protection status.

The keyword FLAGS takes four options: read (r), write (w), delete (d),
and execute (e). To specify these options you type anr, w, d, or e after the
name of the file. If you omit an option, PROTECT assumes that you do
not require it. For instance, if you give all the options except d,
PROTECT ensures that you cannot delete the file. Read, write, and
delete can refer to any kind of file. Tripos only pays attention to the
delete (d) flag in the current release. Users and user programs, however,
can set and test these flags if they wish.

Examples:

PROTECT progl FLAGS r

sets the protection status of program 1 as read only:

PROTECT prog2 rwd

sets the protection of program 2 as read/write/delete.

See also: LIST

1-54

Tripos User's Reference Commands

QUIT
Format : QUIT [<returncode >]
Template: QUIT "RC"
Purpose: To exit from a command sequence with a given error
code.
Specification:

QUIT reads through the command file and then stops with an error code.
The default error code is zero.

Examples:

QUIT

exits the current command sequence.
FAILAT 30

IF ERROR

QUIT 20

ENDIF

[f the last command was in error, this terminates the command sequence
with error code 20.

For more on command sequences, see the specification for the C
command earlier in this chapter.

See also: C,IF, LAB, SKIP

1-55

Commands Tripos User's Reference

RELABEL
Format: RELABELI[DRIVE] <drive> [NAME] <name >
Template: RELABEL "DRIVE/A,NAME/A"
Purpose: To change the volume name of a disk.

Specification:

RELABEL changes the volume name of a disk to the <name> you
specify. Volume names are set initially when you format a disk.

Examples:
RELABEL dfl: "My other disk"

See also: FORMAT

1-56

Tripos User's Reference Commands

RENAME
Format: RENAME [FROM] <name > [TO|AS] <name>
Template: RENAME "FROM/A,TO=AS/A"
Purpose: To rename a file or directory.

Specification:

RENAME renames the FROM file with the specified TO name. FROM
and TO must be filenames on the same disk. The FROM name may refer
to a file or to a directory. If the filename refers to a directory, RENAME
leaves the contents of the directory unchanged (that is, the directories
and files within that directory keep the same contents and names).

Only the name of the directory is changed when you use RENAME. If you
rename a directory, or if you use RENAME to give a file another
directory name (for example, rename :bill/letter as :mary/letter), Tripos
changes the position of the directory, or file, in the filing system
hierarchy. Using RENAME is like changing the title of a file and then
moving it to another section or drawer in the filing cabinet. Some other
systems describe the action as 'moving’ a file or directory.

Note: If you already have a file with exactly the same name as the TO
file, RENAME won't work. This should stop you from overwriting your
files by accident.

Examples:

RENAME work/progl AS :arthur/example

renames the file 'work/progl' as the file 'arthur/example'. The root

directory must contain ‘'arthur' but not ‘'arthur/example’ for this
command to work.

1-57

Commands Tripos User's Reference

RUN
Format: RUN <command>
Template: RUN command+
command
Purpose: To execute commands as background tasks.

Specification:
RUN creates a non-interactive Command Line Interpreter (CLI) task
and gives it the rest of the command line as input. The background CLI

executes the commands and then deletes itself.

The new CLI has the same set directories and command stack size as the
CLI where you called RUN.

To separate commands, type a plus sign (+) and press RETURN. RUN
interprets the next line after a + (RETURN) as a continuation of the
same command line. Thus, you can make up a single command line of
several physical lines that each end with a plus sign.

RUN displays the task number of the newly created task.

Examples:

RUN COPY :t/0 PAR:+

DELETE :t/0+

ECHO "Printing finished”

copies the file to the printer, deletes it, and displays the message.

RUN C comseq

executes in the background all the commands in the file '‘comseq’".

1-58

Tripos User's Reference Commands

SEARCH
Format : SEARCH [FROM] <name>|<pat> [SEARCH]
<string> [ALL]}
Template: SEARCH "FROM,SEARCH/A ,ALL/S"
Purpose: To look for a text string you specify in all the files

in a directory.
Specification:
SEARCH looks through all the files in the specified directory, and any
files in subdirectories if you specify ALL. SEARCH displays any line that
contains the text you specified as SEARCH. It also displays the name of
the file currently being searched.
You can also replace the directory FROM with a pattern. (See the
command LIST for a full description of patterns.) If you use a pattern,
SEARCH only looks through files that match the specified pattern. The

name may also contain directories specified as a pattern.

Tripos looks for either upper or lower case of the search string. Note that
you must place quotation marks around any text containing a space.

As usual, to abandon the command, press CTRL-C, the attention flag. To
abandon the search of the current file and continue on to the next file, if
any, press CTRL-D.

Examples:

SEARCH SEARCH vflag

searches through the files in the current directory looking for the text
'vflag'.

SEARCH df0: "Happy day" ALL

looks for files containing the text 'Happy day' on the entire disk 'df0:".

1-59

Commands Tripos User's Reference

SEARCH test-#? vflag

looks for the text 'vflag’ in all files in the current directory starting with
'test-'.

1-60

Tripos User's Reference Commands

SET-SERIAL

Format: SET-SERIAL <name> {[BAUD][<rate>]]
{[[PARITY][EVEN|ODD|NONE]]
([DATABITS] [<dbit>|J[[STOPBITS][<sbit>]]

Template: SET-SERIAL "NAME/A BAUD,PARITY,
DATABITS,STOPBITS"

Purpose: To alter the serial line speeds and data formats.

Specification:

You can use SET-SERIAL to alter the baud z;rate of any of the serial lines
and to specify the parity checking, the number of data bits, and the
number of stop bits. SET-SERIAL can also return the current settings of

all of these, if you require.

The first argument, <name >, is the name of the serial port you wish to
alter; only one port can be altered at a time. The possible options are any
serial line device; for example, CON (for CONsole) and AUX (for
AUZXilliary port).

The other parameters are both optional and positional.

<rate> is the baud rate; it can be any allowable speed on the device (for
example, 19200, 9600, 4800, 2400, 1200, GO(D or 300), depending on the
rate you require.

PARITY can be set to EVEN, ODD, or NONE.

<dbit> is the number of data bits. You can; spec1fy the data bits as 5, 6,
7,0r 8.

<sbit> is the number of stop bits. You can specify 1, 1.5, or 2 bits.
\

The line characteristics must be the same as the other device connected
to the serial line in question. If you omit any argument altogether, the
parameter is left as its current setting. The default settings are as
follows:

1-61

Commands ' . Tripos User's Reference
BAUD 9600 PARITY NONE DATABITS 8 STOPBITS 1
Current settings are not individually displayable. You can obtain all the
current settings for a particular device by specifying its name after the
command. For example, to display all the current settings for the
console device, type
SET-SERIAL con
Examples:

SET-SERIAL con BAUD 9600 PARITY even

sets the console serial line to 9600 baud and even parity. The data and
stop bits are unchanged and remain at their current setting.

1-62

Tripos User's Reference Commands

SKIP

Format: SKIP <label>

Template: SKIP "LABEL"

Purpose: To perform a jump in a command sequence.
Specification:

SKIP can be used only within a C command file. You use SKIP in
conjunction with LAB. (See LAB for details.) SKIP reads through the
command file looking for a label you defined with LAB, without
executing any commands.

You can use SKIP either with or without a label; without one, it finds the
next unnamed LAB command. With one, it attempts to find a LAB
defining a label, as specified. LAB must be the first item on a line of the
file. If SKIP does not find the label you specified, the sequence
terminates and Tripos displays the following message:

label "<label>" not found by Skip

SKIP only jumps forwards in the command sequence.

Examples:

SKIP

skips to the next LAB command without a name following it.

IF ERROR

SKIP errlab

ENDIF

If the last command stopped with a return code > = 20, this searches for

the label 'errlab’ later in the command file.

1-63

Commands

Tripos User's Reference

FAILAT 100

ASSEM text

IF ERROR

SKIP ERROR

ENDIF

LINK

SKIP DONE

LAB ERROR

ECHO "Error doing Assem"
LAB DONE

ECHO "Next command please"”

See also: C, LAB, IF, FAILAT, QUIT

1-64

Tripos User's Reference Commands

SORT
Format: SORT [FROM] <name> [[TO] <name >]
[COLSTART <n>]
Template: SORT "FROM/A,TO/A,COLSTART/K"
Purpose: To sort simple files.
Specification:

This command is a very simple sort package. You can use SORT to sort
files although it isn't fast for large files, and it cannot sort files that don't
fit into memory.

You specify the source as FROM, and the sorted result goes to the file
TO. SORT assumes that FROM is a normal text file where each line is
separated with a carriage return. Each line in the file is sorted into
increasing alphabetic order without distinguishing between upper and
lower cases.

To alter this in a very limited way, use the COLSTART keyword to
specify the first column where the comparison is to take place. SORT
then compares the characters on the line from the specified starting
position to the end,; if the lines still match after this, then the remaining
columns from the first to just before the column specified as COLSTART
are included in the comparison.

Note: The initial stack size (that is, 4000 bytes) is only suitable for small
files of less than 200 lines or so. If you want to sort larger files, you must
use the STACK command to increase the stack size; how much you
should increase the size is part skill and part guesswork.

WARNING: The computer will crash if STACK is too small. If you are
not sure, it is better to overestimate the amount you need.

1-65

Commands Tripos User's Reference

Examples:
SORT text TO sorted-text

sorts each line of information in 'text' alphabetically and places the
result in 'sorted-text’.

SORT index TO sorted-index COLSTART 4

sorts the file 'index’, where each record contains the page number in the
first three columns and the index entry on the rest of the line, and puts
the output in 'sorted-index' sorted by the index entry, and matching

index entries sorted by page number.

See also: > <, STACK

1-66

Tripos User's Reference Commands

STACK
Format: STACK[<n>]
Template: STACK "SIZE"
Purpose: To display or set the stack size for commands.

Specification:

When you run a program, it uses a certain amount of stack space. In most
cases, the initial stack size, 4000 bytes, is sufficient, but you can alter it
using the STACK command. To do this, you type STACK followed by the
new stack value. You specify the value of the stack size in bytes. STACK
alone displays the currently set stack size.

Usually, only SORT requires an increased stack size. Recursive
commands such as DIR need an increased stack if you use them on a
directory structure more than about six levels deep.

WARNING: The only indication that you have run out of stack is that
the computer crashes! If you are not sure, overestimate.

Examples:

STACK

displays the current stack size.
STACK 8000

sets the stack to 8000 bytes.

See also: RUN, SORT

1-67

Commands Tripos User's Reference

STATUS
Format: STATUS[<task>]|[FULL][TCB][SEGS]
[CLIJALL]
Template: STATUS "TASK,FULL/S,TCB/S,SEGS/S,
CLI=ALL/S"
Purpose: To display information about the currently existing

CLI tasks.
Specification:

STATUS alone lists the numbers of tasks and the program running in
each.

TASK specifies a task number and only gives information about that
task. Otherwise, information is displayed about all tasks.

FULL = SEGS + TCB + CLI
SEGS displays the names of the sections on the segment list of each task.

TCB displays information about the priority, stacksize, and global vector
size of each task.

For further details on stack and global vector size, see the Tripos
Technical Reference Manual.

CLI identifies Command Line Interpreter tasks and displays the section
name(s) of the currently loaded command (if any).

Examples:
STATUS 4 FULL

displays full information about task 4.

1-68

Tripos User's Reference Commands

TYPE
Format: TYPE [FROM] <name > [[TO] <name>][OPT
N[H]
Template: TYPE "FROM/A,TO,OPT/K"
Purpose: To type a text file or to type a file out as hexadecimal
numbers.

Specification:
TO indicates the output file that you specify; if you omit this, output is to
the current output stream, which means, in most cases, that the output

goes to the screen.

To interrupt output, press CTRL-C. To suspend output, type any
character. To resume output, press RETURN or CTRL-X.

OPT specifies an option to TYPE. The first option to TYPE is 'n’, which
includes line numbers in the output.

The second option you can give TYPE is h. Use the h option to write out
each word of the FROM file as a hex number, with the character
representation in a column down the right-hand side.

Examples:

TYPE work/prog

displays the file ‘work/prog’.

TYPE work/prog OPT n

displays the file 'work/prog' with line numbers.

TYPE obj/prog OPT h

displays the code stored in ‘obj/prog’ in hexadecimal.

1-69

Commands Tripos User's Reference

VDU
Format: VDU [<name>]
Template: VDU "NAME"
Purpose: To identify the make of terminal in use.

Specification:

You follow the VDU command with the name of a VDU that you are
using. Until you have given the VDU command, a number of commands
(for example, ED) won't work. The VDU command opens the file
DEVS:VDU and locates the name you specifed. If you wish to find out
which VDUs are currently supported, you can look at the file
DEVS:VDU with the editor. However, you may have to make certain
alterations to this file to support new makes of terminal. (See Chapter 4,
"Installation”, in the Tripos Technical Reference Manual for
further details.)

There is a limit on the size of a vdu specification and this limit cannot be
altered. If it is exceeded or any syntax error is found, then a suitable
message is given and the vdu specification is not altered.

The VDU handler is installed for the current task and for all tasks
created from that task by NEWCLI. Normally, you give the VDU
command once when you startup the system, and so you may find it
useful to place it in the file S:STARTUP-SEQUENCE. Once you have
done this, Tripos executes it automatically on starting up.

If you omit the vdu name, the name of the current vdu type appears on
the screen.

Examples:
VDU TVI

loads a VDU driver for the Televideo 950.

1-70

Tripos User's Reference Commands

WAIT
Format : WAIT <n> [SEC|SECS] [MIN|MINS][UNTIL
<time>]
Template: WAIT ",SEC =SECS/S,MIN = MINS/S,UNTIL/K"
Purpose: To wait for the specified time.

Specification:
You can use WAIT in command sequences or after RUN to wait for a
certain period, or to wait until a certain time of day. Unless you specify

otherwise, the waiting time is one second.

The parameter should be a number, specifying the number of seconds (or
minutes, if MINS is given) to wait.

Use the keyword UNTIL to wait until a specific time of day, given in the
format HH:MM.

Examples:

WAIT

waits 1 second.

WAIT 10 MINS
waits 10 minutes.
WAIT UNTIL 21:15

walits until quarter past nine at night.

1-71

Commands Tripos User's Reference

WHY
Format: WHY
Template: WHY
Purpose: To explain why the previous command failed.
Specification:

Usually when a command fails the screen displays a brief message that
something went wrong. This typically includes the name of the file (if
that was the problem), but does not go into any more detail. For example,
the command

COPY fred TO *
might fail and display the message
Can't open fred

This could happen for a number of reasons - for example, 'fred’' might
already be a directory, or there might not be enough space on the disk to
open the file, or it might be a read-only disk. COPY makes no distinction
between these cases, because usually the user knows what is wrong.
However, immediately after your command fails, type WHY and press
RETURN to display a much fuller message, describing in detail what
went wrong.

Examples:

TYPE DFO:

can't open DFO:

WHY

Last command failed because object not of required type

WHY hints at why your command failed: you can't type a device.

See also: FAULT

1-72

Tripos User's Reference

Commands

Quick Reference Card

File Utilities

COoPY

DELETE
DIR

ED
EDIT

FILENOTE

JOIN

LIST

MAKEDIR

PROTECT

RENAME

comment character, ignore the rest of the line.
direct command input and output respectively.

copies one file to another or copies all the files
from one directory to another.

deletes up to 10 files or directories.
shows filenames in a directory.
enters a screen editor for text files.
enters a line by line editor.

attaches a note with a maximum of 80
characters to a specified file.

concatenates up to 15 files to form a new file.

examines and displays detailed information
about a file or directory.

creates a directory with a specified name.
sets a file's protection status.

renames a file or directory.

1-73

Commands Tripos User's Reference

SEARCH looks for a specified text string in all the files
of a directory.

SORT sorts simple files.

TYPE types a file to the screen that you can
optionally specify as text or hex.

CLI Control

BREAK sets attention flags in a given task.

CD sets a current directory and/or drive.

CONSOLE sets the console characteristics of the console
handler used by the current CLI.

ENDCLI ends an interactive CLI task.

NEWCLI creates a new interactive CLI task.

PROMPT changes the prompt in the current CLI.

RUN executes commands as background tasks.

STACK displays or sets the stack size for commands.

STATUS displays information about the CLI tasks
currently in existence.

VDU identifies the make of terminal in use.

WHY explains why a previous command failed.

1-74

Tripos User's Reference Commands

Command Sequence Control

C executes a file of commands.

ECHO displays the message specified in a command
argument.

FAILAT fails a command sequence if a program

returns an error code greater than or equal to
this number.

IF tests specified actions within a command
sequence.

LAB defines a label (see SKIP).

QUIT exits from a command sequence with a given
error code.

SKIP jumps forward to LAB in a command sequence
(see LAB).

WAIT walits for, or until, a specified time.

System and Storage Management

ASSIGN assigns a logical device name to a filing
system directory.

DATE displays or sets the system date and time.

1-75

Commands Tripos User's Reference

DISKCOPY copies the contents of one entire floppy disk to
another.

DISKDOCTOR restores a corrupt disk.

FAULT displays messages corresponding to supplied
fault or error codes.

FORMAT formats and initializes a new floppy disk.

INFO gives information about the filing system.

INSTALL makes a formatted disk bootable.

MOUNT mounts a new device.

PATH alters the directory search list for commands.

RELABEL changes the volume name of a disk.
Programming Tools

ALINK links sections of code into a file for execution
(see JOIN).

ASSEM assembles M68000 language.

1-76

Chapter 2: ED - The Screen Editor

This chapter describes how to use the screen editor ED. You can use this
program to alter or create text files.

Table of Contents

21

22

221
222
223
224
2.2.5

2.3

2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6
2.3.7

Introducing ED

Immediate Commands
Cursor Control
Inserting Text
Deleting Text
Scrolling

Repeating Commands

Extended Commands

Program Control

Block Control

Moving the Current Cursor Position
Searching and Exchanging

Altering Text

Repeating Commands

Executing Tripos Commands in ED

Quick Reference

Tripos User's Reference ED

2.1 Introducing ED

You can use the editor ED to create a new file or to alter an existing one.
You display text on the screen, and you can scroll it vertically or
horizontally, as required.

ED accepts the following template:
ED "FROM/A,SIZE/K"

For example, to call ED, you type
ED fred

ED makes an attempt to open the file you have specified as 'fred’ (that is,
the FROM file), and if this succeeds, then ED reads the file into memory
and displays the first few lines on the screen. Otherwise, ED provides a
blank screen, ready for the addition of new information. To alter the text
buffer that ED uses to hold the file, you specify a suitable value after the
SIZE keyword, for example,

ED fred SIZE 45000

The initial size is based on the size of the file you edit, with a minimum of
20,000 words.

Note: You cannot edit every kind of file with ED. For example, ED does
not accept source files containing binary code. To edit files such as these,
you should use the editor EDIT.

WARNING: ED always appends a linefeed even if the file does not end
with one.

2-1

ED Tripos User's Reference

When ED is running, the bottom line of the screen is a message area and
command line. Error messages appear here and remain until you give
another ED command.

ED commands fall into two categories:

-immediate commands
- extended commands.

You use immediate commands in immediate mode; you use extended
commands in extended mode. ED is already in immediate mode when
you start editing. To enter extended mode, you press the ESC key. Then,
after ED has executed the command line, it returns automatically to
immediate mode.

In immediate mode, ED executes commands right away. You specify an
immediate command with a single key or control key combination. To
indicate a control key combination, you press and hold down the CTRL
key while you type the given letter, so that CTRL-M, for example, means
hold down CTRL while you type M.

In extended mode, anything you type appears on the command line. ED
does not execute commands until you finish the command line. You may
type a number of extended commands on a single command line. You
may also group any commands together and even get ED to repeat them
automatically. Most immediate commands have a matching extended
version.

ED attempts to keep the screen up to date. However, if you enter a
further command while it is attempting to redraw the display, ED
executes the command at once and updates the display when there is
time. The current line is always displayed first and is always up to date.

2-2

Tripos User's Reference ED

2.2 Immediate Commands

This section describes the type of commands that ED executes
immediately. Immediate commands deal with the following:

- cursor control

- text insertion

- text deletion

- text scrolling

- repetition of commands

2.2.1 Cursor Control

To move the cursor one position in any direction, you press the
appropriate cursor control key. If you do not have cursor control keys
(keys with arrows on them), then you can use the following|control
combinations: CTRL-H to move the cursor right, CTRL-J to move the
cursor down, CTRL-K to move the cursor up, and CTRL-X to move the
cursor right.

If the cursor is on the right hand edge of the screen, ED scrolls the text to
the left to make the rest of the text visible. ED scrolls vertically a line at
a time and horizontally ten characters at a time. You cannot move the
cursor off the top or bottom of the file, or off the left hand edge of the text.

HOME (or CTRL-], that is, CTRL and the square closing bracket 'l
takes the cursor to the right hand edge of the current line unless the
cursor is already there. When the cursor is already at the right hand
edge, HOME (or CTRL-]) moves it back to the left hand edge of the line.
The text is scrolled horizontally, if required. In a similar fashion,
CTRL-E places the cursor at the start of the first line on the| screen
unless the cursor is already there. If the cursor is already there, GTRL-E
places it at the end of the last line on the screen.

CTRL-T takes the cursor to the start of the next word. CTRL-R takes the
cursor to the space following the previous word. In these two cases, the
text is scrolled vertically or horizontally, as required. }

2-3

ED W‘ Tripos User's Reference
The TAB key (also CTRL-I) moves the cursor to the next tab position,
which jis a multiple of the tab setting (initially 3). It does NOT insert
TAB characters in the file.

222 Ixinserting Text

While in immediate mode, ED is also in INSERT mode so any ordinary
charac;ers you type will be inserted at the current cursor position. ED
has no|type-over mode. To replace a word or line, you must delete the
desn‘efi contents and insert new information in its place. Any letter that
you type in immediate mode appears at the current cursor position
unless |the line is too long (there is a maximum of 255 characters in a
line). If you try to make a line longer than the maximum limit, ED
refuseﬁ to add another character and displays the following message:

Li#e too long

Howev%r, on shorter lines, ED moves any characters to the right of the
cursor to make room for the new text. If the line exceeds the size of the
screen,Lthe left hand end of the line disappears from view. Then, ED
redisplays the end of the line by scrolling the text horizontally. If you
move tte cursor beyond the end of the line, for example, with the TAB or
cursor control keys, ED inserts spaces between the end of the line and
any ne\fv character you insert.

To spli‘t the current line at the cursor and generate a new line, press
RETURN. If the cursor is at the end of a line, ED creates a new blank
line afﬁer the current one. Alternatively, you press CTRL-A (or the INS
LINE key, if there one is on your make of terminal) to generate a blank
line after the current one, with no split of the current line taking place.
In either case, the cursor appears on the new line at the position
indicat;ed by the left margin (initially, column one).

To ensure that ED gives a carriage return automatically at a certain
position on the screen, you can set up a right margin. Once you have done
this, whenever you type a line that exceeds that margin, ED ends the line
before the last word and moves the word and the cursor down onto a new
line. This is called 'word wrap.’ (Note that if you have a line with no

spaces, ED won't know where to break the 'word' and the automatic

} 2-4
|

Tripos User's Reference ED

margin cannot work properly.) In detail, if you type a character|and the
cursor is at the end of the line and at the right margin position, then ED
automatically generates a new line. Unless the character you typed was
a space, ED moves down the half completed word at the end of the line to
the newly generated line. However, if you insert some text when the
cursor is NOT at the end of a line (that is, with text already to the right of
the cursor), then setting a right margin does not work. Initially, the right
margin is set up at column 79. You can turn off, or 'disable,’ the right
margin with the EX command. (For further details on setting margins,

see Section 2.2.1 "Program Control").

If you type some text in the wrong case (for example, in lower case
instead of upper case), you can correct it with CTRL-F. To do this, you
move the cursor to point at the letter you want to change and then press
CTRL-F. If the letter is in lower case, CTRL-F flips the letter into upper
case. On the other hand, if the letter is in upper case, CTRL-F flips it into
lower case. However, if the cursor points at something that is not a letter
(for example, a space or symbol), CTRL-F does nothing to it.

CTRL-F not only flips letter cases but it also moves the cursor ohe place
to the right (and it moves the cursor even if there is no case to flip). So
that, after you have changed the case of a letter with CTRL-F, the cursor
moves right to point at the next character. If the next character is a
letter, you can press CTRL-F again to change its case; you can then
repeat the command until you have changed all the letters on the line.
(Note that if you continue to press CTRL-F after the the last lett%r on the
line, the cursor keeps moving right even though there is nothing left to

change.) For example, if you had the line
The Walrus and the Carpenter were walking hand in|hand
and you kept CTRL-F pressed down, the line would become
tHE wALRUS AND THE cARPENTER WERE WALKING HAND IN|HAND
On the other hand, the following line:

IF <file> <= x

ED Tripos User's Reference
1

becomes
if| <FILE> <= X

where the letters change case and the symbols remain the same.

2.2.3 Deleting Text

The BACKSPACE key deletes the character to the left of the cursor and
moves|the cursor one position left unless it is at the beginning of a line.
ED scrolls the text, if required. CTRL-N (also DEL, or DEL CHAR on
some terminals) deletes the character at the current cursor position
without moving the cursor. As with any deletion, characters remaining
on the‘line shift back, and text that was invisible beyond the right hand
edge of the screen becomes visible.

The action of CTRL-O depends on the character at the cursor. If this
character is a space, then CTRL-O (also INS CHAR on some terminals)
deletes all spaces up to the next non-space character on the line.
Otherwise, it deletes characters from the cursor, and moves text left,
until ajspace occurs.

CTRL-Y (also LINE ERASE, or DEOL on some terminals) deletes all
charac*ers from the cursor to the end of the line.

|
CTRL-B (also DEL LINE on some terminals) deletes the entire current
line. You may use extended commands to delete blocks of text.

224 Sérolling

Besides vertically scrolling one line line at a time by moving the cursor
to the édge of the screen, you can vertically scroll the text 12 lines at a
time with the control keys CTRL-U and CTRL-D.

CTRL-D moves the cursor to previous lines, while scrolling the text

down; CTRL-U scrolls the text up and moves the cursor to lines further
onin the file.

2-6

Tripos User's Reference

ED

CTRL-V refreshes the entire screen, which is useful if another p
besides the editor alters the screen.

2.2.5 Repeating Commands

rogram

The editor remembers any extended command line you type. To execute

this set of extended commmands again at any time, press CTRL-G

In this

way, you can set up a search command as an extended command. If the
first occurrence of a string is not the one you need, press CTRL-G to

repeat the search. You can set up and execute complex sets of
commands many times.

editing

Note: When you give an extended command as a command group with a

repetition count, ED repeats the commands in the group that nu
times each time you press CTRL-G. See the section "Ej
Commands" for more details on extended commands.

2.3 Extended Commands

This section describes the commands available to you in extende
These commands cover

- program control
- block control

- movement

- searching text

- exchanging text
- altering text

- inserting text

mber of
xtended

d mode.

To enter extended command mode, press the ESC or ESCAPE key. Some

makes of terminal, however, send the ESCAPE character as a pireﬁx to

function keys. If your terminal is one of these, you must make 1
another key instead. This can be done on installation (see the
Technical Reference Manual for further details). Youcant

accept
ripos
en use

that key wherever you would use ESC. Once you have pressed ESC,
ESCAPE, or the key you have set up to be equivalent to ESCNPE, all
subsequent input appears on the command line at the bottom of the

2-7

ED Tripos User's Reference
\

screen. You can correct mistakes with BACKSPACE in the normal way.
To terminate the command line, press either ESC or RETURN. If you
press|ESC, the editor remains in extended mode after executing the
command line. On the other hand, if you press RETURN. it reverts to
immediate mode. To leave the command line empty, just press RETURN
after lpressing ESC to go back to immediate mode. In this case, ED
returriﬁs to immediate command mode.

Extended commands consist of one or two letters, with upper and lower
case cpnsidered the same. You can give multiple commands on the same
comm%nd line by separating them with a semicolon. Commands are
sometimes followed by an argument, such as a number or a string. A
string| is a sequence of letters introduced and terminated by a delimiter,
which| is any character except letters, numbers, space, semicolon, or
brackets. Thus, valid strings might be

/‘appy/ 123 feet! :Hello!: "1/2"

Most imeediate commands have a corresponding extended version. See
the Table of Extended Commands at the end of this chapter for a

complete list.

221 Program Control

This section provides a specification of the program control commands X
(eXit),| Q (Quit), SA (SAve), U (Undo), SH (SHow), ST (Set Tab), SL and
SR (Set Left and Set Right), and EX (EXtend).

To instruct the editor to exit, you use the command X. After you have
given the exit command, ED writes out the text it is holding in memory
to the putput, or destination file and then terminates. If you look at this
file, you can see that all the changes you made are there.

J
ED also writes a temporary backup to :T/ED-BACKUP. This backup file
remaiﬁs until you exit from ED again, at which time, ED overwrites the
file with a new backup.

2-8

Tripos User's Reference

To get out of the editor without keeping any changes, you use the Q
command. When you use Q, ED terminates immediately without writing
to the buffer and discards any changes you have made. Because of this, if
you have altered the contents of the file, ED asks you to confirm that you
really want to quit.

A further command lets you to take a 'snapshot’ copy of the file without
coming out of ED. This is the SA command. SA saves the text to a named
file or, in the absence of a named file, to the current file. For example,

SA !:doc/savedtext!
or
SA

SA is particularly useful in geographical areas subject to power|failure
or surge.

Hint: SA followed by Q is equivalent to the X command.

If you make any alterations between the SA and the Q commands, the
following message appears:

Edits will be lost — type Y to confirm:

If you have made no alterations, ED quits immediately with the contents
of your source file unchanged. SA is also useful because it allows you to
specify a filename other than the current one. It is therefore possible to
make copies at different stages and place them in different files or
directories.

To undo the last change, you use the U command. The editor makes a
copy of the line the cursor is on, and then it modifies this copy whenever
you add or delete characters. ED puts the changed copy back into the file
when you move the cursor off the current line (either by cursor i ontrol,
or by deleting or inserting a line). ED also replaces the copy when it
performs any scrolling either vertically or horizontally. The U command
discards the changed copy and uses the old version of the curre*nt line
instead.

2-9

ED | Tripos User’s Reference

WARﬁIING: ED does not undo a line deletion. Once you have moved from
the current line, the U command cannot fix the mess you have got
yourself into.

To show the current state of the editor, you use the SH command. The
screen} displays information such as the value of tab stops, current
margins, block marks, and the name of the file being edited.

Tabs dre initially set at every three columns. To change the current
setting of tabs, you use the ST command followed by a number n, which
sets taps at every n columns.

To set| the left margin and right margin, you use the SL and SR
comm%nds, again followed by a number indicating the column position.
The left margin should not be set beyond the width of the screen.

To extend margins, you use the EX command. Once you have given EX,
ED takes no account of the right margin on the current line. Once you
move tbe cursor from the current line, ED turns the margins on again.

2.3.2 Block Control

To move, insert, or delete text, you use the block control commands
describ{ed in this section.

|
You can identify a block of text with the BS (Block Start) and BE (Block
End) commands. To do this, move the cursor to anywhere on the first line
you thaf you want in the block and give the BS command. Then, move the
cursor to the last line that you want in the block, using the cursor control
commands or a search command, and give the BE command to mark the
end of the block.

Note: ane you have defined a block with BS and BE, if you make ANY

change to the text, the start and end of the block become undefined once
more. ’ﬁhe only exception to this is if you use IB (Insert Block).

2-10

Tripos User's Reference ED

To identify one line as the current block, move to the line you want, press
ESC, and type

BS;BE
The current line then becomes the current block.

Note: You cannot start or finish a block in the middle of a line. To do this,
you must first split the line by pressing RETURN.

Once you have identified a block, you can move a copy of it into another
part of the file with the IB (Insert Block) command. When you give the [B
command, ED inserts a copy of the block immediately after the current
line. You can insert more than one copy of the block, as it remains
defined until you change the text, or delete the block.

To delete a block, you use the DB (Delete Block) command. DB deletes
the block of text you defined with the BS and BE commands. However,
when you have deleted the block, the block start and end values become
undefined. This means that you cannot delete a block and then insert a
copy of it (DB followed by IB); however, you can insert a copy of the block
and then delete the block (IB followed by DB).

You can also use block marks to remember a place in a file. The SB (Show
Block) command resets the screen window on the file so that the first line
in the block is at the top of the screen.

To write a block to another file, you use the WB command (Write Block).
This command takes a string that represents a file name. For example,

WB !:doc/example!

writes the contents of the block to the file 'example’ in the directory “doc'.
(Remember: if you use the filename-divider slash (/) to separate
directories and files, you should not use slash as a delimiter). ED then
creates a file with the name that you specified, possibly destroying a
previous file with that name and finally writes the buffer to it.

2-11

ED Tripos User's Reference

To insert a file into the current file, you use the IF command (Insert
File). ED reads into memory the file with the name you gave as the
argument string to IF, at the point immediately following the current
line. For example,

IF !:doc/example!

inserts the file :doc/example into the current file beginning immediately
after the current line.

2.3.3 Moving the Current Cursor Position

The command T moves the cursor to the top of the file, so that the first
line in the file is the first line on the screen. The B command moves the
cursor to the bottom of the file, so that the last line in the file is the
bottom line on the screen.

The commands N and P move the cursor to the start of the next line and
previous line, respectively. The commands CL and CR move the cursor
one place to the left or one place to the right, while CE places the cursor
at the end of the current line, and CS places it at the start.

The command M moves the cursor to a specific line. To move, you type M
followed by the line number of the line you want as the new current line.
For example,

M 503
moves the cursor to the five hundred and third line in the file. The M
command is a quick way of reaching a known position in your file. You

can, for instance, move to the correct line in your file by giving a repeat
count to the N command, but it is much slower.

2-12

Tripos User's Reference ED

2.3.4 Searching and Exchanging

Alternatively you can move the screen window to a particular context
with the command F (Find) followed by a string that represents the text
to be located. The search starts at one place beyond the current cursor
position and continues forwards through the file. If the string is found,
the cursor appears at the start of the located string. The string must be in
quotes (or other delimiters /', ., "', and so on). In order for a match to
occur the strings must be of the same case, unless the UC command is
used (see below).

To search backwards through the text, you use the command BF
(Backwards Find) in the same way as F. BF finds the last occurrence of
the string before the current cursor position. (That is, BF looks for the
string to the left of the cursor and then through all the lines back to the
beginning of the file.) To find the earliest occurrence, you use T
(Top-of-file) followed by F. To find the last occurrence, you use B
(Bottom-of-file) followed by BF.

The E (Exchange) command takes two strings separated with delimiter
characters and exchanges the first string for the last. So, for example,

E /wombat/zebra/

would change the next occurrence of the text 'wombat' to 'zebra'. The
editor starts searching for the first string at the current cursor position
and continues through the file. After the exchange is completed, the
cursor moves to the end of the exchanged text.

You can specify empty strings by typing two delimiters with nothing
between them. If the first, or 'search’, string is empty, the editor inserts
the second string at the current cursor position. If the second string is
empty, the next occurrence of the search string is exchanged for nothing
(that is, the search string is deleted).

Note: ED ignores margin settings while you are exchanging text.
The EQ command (Exchange and Query) is a variant on the E command.

When you use EQ, ED asks you whether you want the exchange to take

2-13

ED Tripos User's Reference

place. This is useful when you want the exhange to take place in some
circumstances, but not in others. For example, after typing

EQ /wombat/zebra/
the following message
Exchange?

appears on the command line. If you respond with an N, then the cursor
moves past the search string; otherwise, if you type Y, the change takes
place as normal. You usually only give EQ in repeated groups.

The search and exchange commands usually make a distinction between
upper and lower case while making the search. To tell all subsequent
searches not to make any distinction between upper and lower case, you
use the UC command. Once you have given UC, the search string
'wombat' matches "'Wombat', WOMBAT', "WoMbAt' and so on. To have
ED distinguish between upper and lower case again, you use LC.

2.3.5 Altering Text

You cannot use the E command to insert a new line into the text. You use
the I and A commands instead. Follow the I command (Insert before)
with a string that you want to make into a new line. ED inserts this new
line before the current line. For example,

I /Insert this BEFORE the current line/
inserts the string 'Insert this BEFORE the current line' as a new,
separate line Before the line containing the cursor. You use the A
command (insert After) in the same way except that ED inserts the new
line after the current line. That is,

A /Insert this AFTER the current line/
inserts the string 'Insert this AFTER the current line’ as a new line After

the line containing the cursor.

2-14

Tripos User's Reference ED

To split the current line at the cursor position, you use the S command. S
in extended mode is just like pressing RETURN in immediate mode (see
Section 2.2.2 for further details on splitting lines).

The J command joins the next line onto the end of the current one.

The D command deletes the current line in the same way as CTRL-B in
immediate mode. The DC command deletes the character above the
cursor in the same way as CTRL-N.

2.3.6 Repeating Commands

To repeat any command a certain number of times, precede it with the
desired number. For example,

4 E /slithy/brillig/

changes the next four occurrences of 'slithy' to 'brillig’. ED verifies the
screen after each command. You use the RP (Repeat) command to repeat
a command until ED returns an error, such as reaching the end of the
file. For example, '

T; RP E /slithy/brillig/

changes all occurrences of 'slithy' to 'brillig'. Notice that you need the T
command to ensure that all occurrences of 'slithy' are changed, otherwise
only those after the current position are changed.

To execute command groups repeatedly, you can group the commands
together in parentheses. You can also nest command groups within
command groups. For example,

RP (F /bandersnatch/; 3 A/ /)
inserts three blank lines (copies of the null string) after every line
containing ‘bandersnatch’. Notice that this command line only works

from the cursor to the end of the file. To apply the command to every line
in the file, you should first move to the top of the file.

2-15

ED Tripos User's Reference

Note that some commands are possible, but silly. For example,
RP SR 60

sets the right margin to 60 ad infinitum. However, to interrupt any
sequence of extended commands, and particularly repeated ones, you
type any character while the commands are taking place. If an error
occurs, ED abandons the command sequence.

2.3.7 Executing Tripos Commands in ED

You may wish to execute a Tripos command without having to exit ED
first. To switch to another task (process), created with NEWCLI, press
CTRL-P as usual. You will then find yourself switched to a new task that
is waiting for input. To return to ED, keep pressing CTRL-P until you
find yourself in ED. (CTRL-P cycles through all the tasks that are
currently waiting for input.)

If you only wish to execute one command before returning to ED, you
may find it simpler to use DO. For example, to halt ED and list the files
in the root directory, type

DO/LIST/

Then press RETURN to return to ED again.

2-16

Tripos User's Reference ED

Quick Reference Card

Special Key Mappings
Command Action
BACKSPACE Delete character to left of cursor
ESC Enter extended command mode
RETURN Split line at cursor and create a new line
TAB Move cursor right to next tab position

(does NOT insert a TAB character)

<up-arrow > Move cursor up
<down-arrow > Move cursor down
<left-arrow > Move cursor left
<right-arrow > Move cursor right

Immediate Commands

Command Action

CTRL-A Insert line

CTRL-B Delete line

CTRL-D Scroll text down

CTRL-E Move to top or bottom of screen
CTRL-F Flip case

CTRL-G Repeat last extended command line
CTRL-H Delete character left of cursor
CTRL-I Move cursor right to next tab position
CTRL-M Return

CTRL-N Delete character at cursor

CTRL-O Delete word or spaces

CTRL-R Cursor to end of previous word

2-17

ED Tripos User's Reference

Command Action

CTRL-T Cursor to start of next word

CTRL-U Scroll text up

CTRL-V Verify screen

CTRL-Y Delete to end of line

CTRL-[Escape (enter extended mode)

CTRL-] Cursor to end or start of line
Extended Commands

This is a full list of extended commands including those that are merely
extended versions of immediate commands. In the list, /s/ indicates a
string, /s/t/ indicates two exchange strings, and n indicates a number.

Command Action

Als/ Insert line after current

B Move to bottom of file

BE Block end at cursor

BF /s/ Backwards find

BS Block start at cursor

CE Move cursor to end of line
CL Move cursor one position left
CR Move cursor one position right
CSs Move cursor to start of line
D Delete current line

DB Delete block

DC Delete character at cursor
DO /s/ Halt ED and execute s

E /sit/ Exchangesintot

EQ/s/t/ Exchange but query first

EX Extend right margin

F/s/ Find string s

I/s/ Insert line before current

IB Insert copy of block

2-18

Tripos User's Reference

ED

Command

IF /s/
8
LC

Mn
N

P

Q
RP
S
SA
SB
SH
SLn
SRn
STn
T

U
UcC
WB/s/
X

Action

Insert file s

Join current line with next
Distinguish between upper and
lower case in searches

Move to line number n

Move to start of next line
Move to start of previous line
Quit without saving text
Repeat until error

Split line at cursor

Save text to file

Show block on screen

Show information

Set left margin

Set right margin

Set tab distance

Move to top of file

Undo changes on current line
Equate U/C and l/c in searches
Write block to file s

Exit, writing text into memory

Chapter 3: EDIT - The Line Editor

This chapter describes in detail how to use the line editor EDIT. The first
part introduces the reader to the editor. The second part gives a complete
specification of EDIT. There is a quick reference card containing all the
EDIT commands at the end of the chapter.

Table of Contents

3.1 Introducing EDIT
3.1.1 Calling EDIT
3.1.2 Using EDIT Commands

3.1.2.1 The Current Line

3.1.2.2 Line Numbers

3.1.23 Selecting a Current Line

3.1.24 Qualifiers

3.1.2.5 Making Changes to the Current Line
3.1.2.6 Deleting Whole Lines

3.1.2.7 Inserting New Lines

3.1.2.8 Command Repetition

3.1.3 Leaving EDIT

3.14 A Combined Example: Pulling It All
Together

3.2 A Complete Specification of EDIT

3.2.1 Command Syntax

3.2.1.1 Command Names

3.2.1.2 Arguments

3.2.1.3 Strings

3.2.14 Multiple Strings
3.2.1.5 Qualified Strings
3.2.1.6 Search Expressions
3.2.1.7 Numbers

3.2.1.8 Switch Values
3.219 Command Groups
3.2.1.10 Command Repetition

3.22 Processing EDIT
3.2.2.1 Prompts

3.2.22 The Current Line
3.22.3 Line Numbers

3.2.24
3.2.25
3.2.2.6

3.2.3

3.2.3.1
3.2.3.2

3.2.4
3.24.1
3.2.4.2

3.2.5

3.25.1
3.252
3.2.5.3
3.254

3.2.6
3.2.6.1
3.2.6.2

3.2.7

3.2.8

3.2.8.1
3.2.8.2
3.2.8.3

3.2.9

3.2.10

3.2.10.1
3.2.10.2
3.2.10.3

Qualified Strings
Output Processing
End-of-File Handling

Functional Groupings of EDIT
Commands

Selection of a Current Line

Line Insertion and Deletion

Line Windows

The Operational Window

Single Character Operations on the
Current Line

String Operations on the Current Line
Basic String Operations

The Null String

Pointing Variant

Deleting Parts of the Current Line

Miscellaneous Current Line Commands
Repeating the Last String Alteration
Splitting and Joining Lines

[nspecting Parts of the Source: The Type
Commands

Control of Command, Input, and Output
Files

Command Files

Input Files

Output Files

Loops

Global Operations

Setting Global Changes
Cancelling Global Changes
Suspending Global Changes

3.2.11

3.2.12

3.2.13

3.2.14

3.2.15

Displaying the Program State
Terminating an EDIT Run
Current Line Verification
Miscellaneous Commands
Abandoning Interactive Editing

Quick Reference Card

Tripos User's Reference EDIT

3.1 Introducing EDIT

EDIT is a text editor that processes sequential files line by line under the
control of editing commands. EDIT moves through the input, or source
file, passing each line (after any possible alterations) to a sequential
output file, the destination file. An EDIT run, therefore, makes a copy of
the source file that contains any changes that you requested with the
editing commands.

Although EDIT usually processes the source file in a forward sequential
manner, it has the capability to move backwards a limited number of
lines. This is possible because EDIT doesn't write the lines that have
been passed to the destination file immediately, but holds them instead
in an output queue. The size of this queue depends on the amount of
memory available. If you want to hold more information in memory, you
can select the EDIT option, OPT, described in the next section, to
increase the amount.

You can make more than one pass through the text.
The EDIT commands let you

- change parts of the source
- output parts of the source to other destinations
- insert material from other sources

3.1.1 Calling EDIT

This section describes the format of the arguments you can give every
time you call the EDIT command. EDIT expects the following
arguments:

FROM/A,TO,WITH/K,VER/K,OPT/K

The command template described in Chapter 1 of the Introduction to
Tripos is a method of defining the syntax for each command. Tripos
accepts command arguments according to the format described in the
command template. For example, some arguments are optional, some

3-1

EDIT Tripos User's Reference

must appear with a keyword, and others do no need keywords because
they only appear in a specific position. Arguments with a following /A
(like FROM) must appear, but you do not have to type the keyword.
Arguments with just a following /K (such as WITH, VER, and OPT) are
optional, but you must type the keyword to specify them. Arguments
without a following / (TO, for example) are optional. Tripos recognizes
arguments without a following slash (/) by their position alone. If you
forget the syntax for EDIT, type

EDIT ?

and Tripos displays the full template on the screen. (For more details on
using commands, see Chapter 1 of the Introduction to Tripos and
Chapter 1 of this manual.)

Using another method of description, the command syntax for EDIT is as
follows:

[FROM] <file> [[TO] <file>][WITH <file>][VER <file>]
[OPT Pn|Wn|PnWn]

The argument FROM represents the source file that you want to edit.
The argument must appear, but the keyword itself is optional (that is,
Tripos accepts the FROM file by its position). It does not require you to
type the keyword FROM as well.

The TO file represents the destination file. This is the file where EDIT
sends the output including the editing changes. If you omit the TO
argument, EDIT uses a temporary file that it renames as the FROM file
when editing is complete. If you give the EDIT command STOP, this
renaming does not take place, and the original FROM file is untouched.

The WITH keyword represents the file containing the editing commands.
If you omit the WITH argument, EDIT reads from the terminal.

The VER keyword represents the file where EDIT sends error messages

and line verifications. If you omit the VER argument, EDIT uses the
terminal.

3-2

Tripos User's Reference EDIT

You can use the OPT keyword to specify options to EDIT. Valid options
are P<n>, which sets the number of previous lines available to the
integer <n>, and W<n>, which sets the maximum line length handled
to <n> characters. Unless you specify otherwise, Tripos sets the options
P40W120.

You can use OPT to increase, or decrease, the size of available memory.
EDIT uses P*W (that is, the number of previous lines multiplied by the
line width) to determine the available memory. To change the memory
size, adjust the P and W numbers. P50 allocates more memory than
usual; P30 allocates less memory than usual.
Here are some examples of how you can call EDIT:
EDIT programl TO programl_new WITH edit commands
EDIT programl OPT P50W240
EDIT programl VER ver file
Note: Unlike ED, you cannot use EDIT to create a new file. If you

attempt to create a new file, Tripos returns an error because it cannot
find the new file in the current directory.

3.1.2 Using EDIT Commands

This section introduces some of the basic EDIT commands omitting
many of the advanced features. A complete description of the command
syntax and of all commands appears in the Section 3.2, "A Complete
Specification of EDIT."

3-3

EDIT Tripos User's Reference

3.1.2.1 The Current Line

As EDIT reads lines from the source and writes them to the destination,
the line that it has 'in its hand' at any time is called the current line.
EDIT makes all the textual changes to the current line. EDIT always
inserts new lines before the current line. When you first enter EDIT, the
current line is the first line of the source.

3.1.2.2 Line Numbers

EDIT assigns each line in the source a unique line number. This line
number is not part of the information stored in the file, but EDIT
computes it by counting the lines as they are read. When you're using
EDIT, you can refer to a specific line by using its line number. A line that
has been read retains its original line number all the time it is in main
memory, even when you delete lines before or after it, or insert some
extra lines. The line numbers remain unchanged until you rewind the
file, or until you renumber the lines with the = command. EDIT assigns
the line numbers each time you enter the file. The line numbers,
therefore, may not be the same when you re-enter.

3.1.2.3 Selecting a Current Line
To select a current line in EDIT, you can use one of three methods:
- counting lines
- specifying the line number
- specifying the context
These three methods are described below.
By Line Counting
The N and P commands allow you to move to the next or previous lines. If

you give a number before the N or P command, you can move that
number of lines forward or backward. To move forward to the next line,

type

3-4

Tripos User's Reference EDIT

N
For any EDIT command, you can type either upper or lower case letters.
To move four lines forward, type

4N
to make the fourth line from the current line your new current line.
To move back to a line above the current line, type

P
The P command also takes a number. For example, type

4P
This makes the fourth line above the current line your new current line.
It is only possible to go back to previous lines that EDIT has not yet
written to the output. EDIT usually lets you go back 40 lines. To be able
to move back more than this, you specify more previous lines with the P
option when you enter EDIT (see Section 3.1.1 earlier in this chapter for
further details on the P option).
By Moving to a Specific Line Number
The M command allows you to select a new current line by specifying its
line number. You type the M command and the desired line number. For
example, the command M45 tells EDIT to Move to line 45. If you are
beyond line 45, this command moves back to it provided it is still in main

memory.

You can combine the specific line number and line counting commands.
For example,

M12; 3N

3-5

EDIT Tripos User's Reference

To separate consecutive commands on the same line, type ; (a semicolon).
By Context

You use the F command (Find) to select a current line by context. For
example,

F/Jabberwocky/

means to find the line containing 'Jabberwocky'. The search starts at the
current line and moves forward through the source until the required
line is found. If EDIT reaches the end of the source without finding a
matching line, it displays the following message:

SOURCE EXHAUSTED

It is also possible to search backwards by using the BF command
(Backwards Find). For example,

BF/gyre and gimble/

BF also starts with the current line, but EDIT moves backwards until it
finds the desired line. If EDIT reaches the head of the output queue
without finding a matching line, it displays the following message:

NO MORE PREVIOUS LINES

Notice that in the examples above, the desired text (Jabberwocky and
gyre and gimble) is enclosed in matching single slashes (/). This desired
text is called a character string. The characters you use to indicate the
beginning and end of the character string are called delimiter
characters. In the examples above, / was used as the delimiter. A number
of special characters such as : . , and * are available for use as delimiters;
naturally, the string itself must not contain the delimiter character.
EDIT ignores the spaces between the command name and the first
delimiter, but considers spaces within the string as significant, since it
matches the context exactly. For example,

3-6

Tripos User's Reference EDIT

F /tum tum tree/
does not find 'tum-tum tree' or 'tum tum tree".

If you use an F command with no argument, EDIT repeats the previous
search. For example,

F/jubjub bird/; N; F
finds the second occurrence of a line containing 'jubjub bird'. The N
command between the two F commands is necessary because an F

command always starts by searching the current line. If you omitted N,
the second F would find the same line as the first.

3.1.2.4 Qualifiers
The basic form of the F command described above finds a line that
contains the given string anywhere in its length. To restrict the search to
the beginning or the end of lines, you can place one of the letters Bor E in
front of the string. In this case, you must type one or more spaces after F.
For example,

F B/slithy toves/
means Find the line Beginning with 'slithy toves’, while

F E/bandersnatch/
means Find the line Ending with 'bandersnatch’. As well as putting
further conditions on the context required, the use of B or E speeds up the
search, as EDIT only needs to consider part of each line.
B and E as used above are examples of qualifiers, and the whole
argument is called a qualified string. A number of other qualifiers are

also available. For example,

F P/a-sitting on a gate/

3-7

EDIT Tripos User's Reference

means Find the next line containing Precisely the text 'a-sitting on a
gate’. The required line must contain no other characters, either before
or after the given string. That is to say, when you give this command,
EDIT finds the next line containing:

a-sitting on a gate
However, EDIT does not find the line:

a-sitting on a gate.

To find an empty line (Precisely nothing), you can use an empty string
with the P qualifier, for example,

F P//

You can give more than one qualifier in any order.

3.1.2.5 Making Changes to the Current Line

This section describes how to use the E, A, and B commands to alter the
text on your current line.

Exchanging strings

The E command Exchanges one string of characters in the line for
another, for example:

E/Wonderland/Looking Glass/
removes the string "Wonderland' from the current line, and replaces it
with 'Looking Glass'. Note that you use a single central delimiter to
separate the two strings. To delete parts of the line (exchange text for

nothing), you can use a null second string, as follows:

E/monstrous crow//

3-8

Tripos User's Reference EDIT

To add new material to the line, you can use the A or B commands. The A
command inserts its second string After the first occurrence of the first
string on the current line. Similarly, the B command inserts its second
string Before the first occurrence of the first string on the current line.
For example, if the current line contained

If seven maids with seven mops
then the following command sequence:
A/seven/ty/; B L/seven/sixty—/
would turn it into
If seventy maids with sixty-seven mops

If you had omitted the L qualifier from the B command above, the result
would be

If sixty-seventy maids with seven mops

because the search for a string usually proceeds from left to right, and
EDIT uses the first occurrence that it finds. You use the qualifier L to
specify that the search should proceed Leftwards. The L qualifier forces
the command that it qualifies to act on the Last occurrence of its first
argument.

If the first string in an A, B or E command is empty, EDIT inserts the
second string at the beginning or the end of the line. To further qualify
the position of the second string, you use or omit the L or the E qualifiers.
If yougive EDIT an A, B, or E command on a line that does not match the
qualified string given as the first argument, the following message
appears either on the screen or in a verification file that you specified
when you entered EDIT.
NO MATCH

See the section "Calling EDIT" for details on the verification file.

3-9

EDIT Tripos User's Reference

3.1.2.6 Deleting Whole Lines

This section describes how to remove lines of text from your file. To
delete a range of lines, you can specify their line numbers in a D
command. To use the D command, type D and the line number. If you

type a space and a second number after D, EDIT removes all the lines
from the first line number to the last. For example,

D97 104
deletes lines 97 to 104 inclusive, leaving line 105 as the new current line.
To delete the current line, type D without a qualifying number. For
example,

F/plum cake/; D
deletes the line containing 'plum cake', and the line following it becomes
the new current line. You can combine a qualified search with a delete
command, as follows:

F B/The/; 4D

This command sequence deletes four lines, the first of which is the line
beginning with "The'.

You can also type a period (.) or an asterisk (*) instead of line numbers.
To refer to the current line, type a period. To refer to the end-of-file, type
an asterisk. For example,

D. *

deletes the rest of the source including the current line.

3-10

Tripos User's Reference EDIT

3.1.2.7 Inserting New Lines

This section describes how to insert text into your file with EDIT. To
insert one or more lines of new material BEFORE a given line, you use
the I command. You can give the I command alone or with a line number,
a period (.), or an asterisk (*). EDIT inserts text before the current line if
you give [on its own, or follow it with a period (.). If you type an asterisk
(*) after I, your text is inserted at the end of the file (that is, before the
end-of-file line). Any text that you type is inserted before the line you
specified.

To indicate the end of your insertion, press RETURN, type Z, and press
RETURN again. For example,

I 468

The little fishes of the sea,
They sent an answer back to me.
Z

inserts the two lines of text before line 468.

If you omit the line number from the command, EDIT inserts the new
material before the current line. For example,

F/corkscrew/; I
He said, "I'll go and wake them, if..."
Z

This multiple command finds the line containing ‘corkscrew’ (which then
becomes the current line) and inserts the specified new line.

After an I command containing a line number, the current line is the line
of that number; otherwise, the current line is unchanged.

To insert material at the end of the file, type I*.
To save you typing, EDIT provides the R (Replace) command, the exact

equivalent of typing DI (D for Delete followed by I for Insert). For
example,

3-11

EDIT Tripos User's Reference

R19 26
In winter when the fields are white
Z

deletes lines 19 to 26 inclusive, then inserts the new material before line
27, which becomes the current line.

3.1.2.8 Command Repetition

You can also use individual repeat counts as shown in the examples for N
and D above with many EDIT commands. In addition, you can repeat a
collection of commands by forming them into a command group using
parentheses as follows:

6(F P//: D)

deletes the next six blank lines in the source. Command groups may not
extend over more than one line of command input.

3.1.3 Leaving EDIT

To end a EDIT session, you use the command W (for Windup). EDIT
'winds through' to the end of the source, copying it to the destination, and
exits. Unless you specify a TO file, EDIT renames the temporary output
file as the FROM filename.

EDIT can accept commands from a number of command sources. In the
simplest case, EDIT accepts commands directly from the terminal (that
is, from the keyboard); this is called the primary command level. EDIT
can, however, accept commands from other sources, for example,
command files or WITH files.

You can call command files from within EDIT, and further command
files from within command files, with the C command, so that each
nested command file becomes a separate command level. EDIT stops
executing the commands in the command file when it comes to the end of
the command file, or when it finds a Q. When EDIT receives a Q
command in a command file, or it comes to the end of the file, it

3-12

Tripos User's Reference EDIT

immediately stops executing commands from that file, and reverts to the
the previous command level. If EDIT finds a Q command in a nested
command file, it returns to executing commands in the command file at
the level above. If you stop editing at the primary command level, by
typing Q, or if EDIT finds a Q in a WITH file, then EDIT winds up and
exits in the same way as it does with W.

The command STOP terminates EDIT without any further processing. In
particular, EDIT does not write out any pending lines of cutput still in
memory so that the destination file is incomplete. If you only specify the
FROM argument, EDIT does not overwrite the source file with the
{incomplete) edited file. You should only use STOP if you do not need the
output from the EDIT run.

EDIT writes a temporary backup to :T/ED-BACKUP when you exit with
the W or Q commands. This backup file remains until you exit from EDIT
with these commands again, whereupon EDIT overwrites the file with a
new backup. If you use the STOP command, EDIT does not write to this
file.

3.1.4 A Combined Example: Pulling It All Together

You can meet most simple editing requirements with the commands
already described. This section presents an example that uses several
commands. The text in italics following the editing commands in the
example is a comment. You are not meant to type these comments; EDIT
does not allow comments in command lines.

Take the following source text (with line numbers):

Tweedledee and Tweedledum
agreed to a battle,

For Tweedledum said Tweedledee
ad spoiled his nice new rattle.

As black as a tar barrel
Which frightened both the heroes so
They quite forgot their quorell

BNV A WN -~

3-13

EDIT Tripos User's Reference

Execute these EDIT commands:

Ml; E/dum/dee/; E/dee/dum/ the order of the
E commands matters!

N; E/a/A/; B /a /have / now at line 2

F B/ad/; B//H/ H at line start

FP//: N; I before line after blank one
Just then flew down a monstrous crow,

Z

M6; 2(A L//,/; N) commas at end of lines

F/quore/; E/quorell/quarrel./
F is in fact redundant

W Windup
The following text (with new line numbers) is the result.

Tweedledum and Tweedledee
Agreed to have a battle,

For Tweedledum said Tweedledee
Had spoiled his nice new rattle.

Just then flew down a monstrous crow;
As black as a tar barrel,

Which frightened both the heroes so;
They quite forgot their quarrel.

OOV EaWN M

Note: If you experiment with editing this source file, you'll find that you
don't have to use the commands in the example above. For instance, on
the second line, you could use the following command:

E/a/have a/

to produce the same result. In other words, E Exchanges 'a’ for ‘have a’,
and B places 'have ' Before 'a’ to produce 'have a'.

3-14

Tripos User's Reference EDIT

3.2 A Complete Specification of EDIT

After reading the first part of this chapter on the basic features of EDIT,
you should be able to use the editor in a simple way. The rest of this
chapter is a reference section that provides a full specification of all the
features of EDIT. You may need to consult this section if you have any
problems when editing or if you want to use EDIT in a more sophisticated
way.

The features described in this section are as follows:

- Command syntax

- Control of Command, Input, and Qutput Files
- Processing EDIT

- Functional Groupings of EDIT Commands

- Line Windows

- String Operations on the Current Line

- Miscellaneous Current Line Commands

- Inspecting Parts of the Source: The Type Commands
- Control of Command, Input, and Qutput Files
- Loops

- Global Operations

- Displaying the Program State

- Terminating an EDIT Run

- Current Line Verification

- Miscellaneous Commands

- Abandoning Interactive Editing

3.2.1 Command Syntax

EDIT commands consist of a command name followed by zero or more
arguments. One or more space characters may optionally appear
between a command name and the first argument, between non-string
arguments, and between commands. A space character is only necessary
in these places to separate successive items otherwise treated as one (for
example, two numbers).

3-15

EDIT Tripos User's Reference

EDIT understands that a command is finished in any of the following
ways: when you press RETURN; when EDIT reaches the end of the
command arguments; or when EDIT reads a semicolon (;), or closing
parenthesis ()), that you have typed.

You use parentheses to delimit command groups.

To separate commands that appear on the same line of input, you type a
semicolon. This is only strictly necessary in cases of ambiguity where a
command has a variable number of arguments. EDIT always tries to
read the longest possible command.

Except where they appear as part of a character string, EDIT thinks of
upper and lower case letters as the same.

3.2.1.1 Command Names

A command name is either a sequence of letters or a single special
character (for example, #). An alphabetic command name ends with any
non-letter; only the first four letters of the name are significant. One or
more spaces may appear between command names and their arguments;
EDIT requires at least one space when an argument starting with a
letter follows an alphabetic name.

3.2.1.2 Arguments

The following sections describe the six different types of argument you
can use with EDIT commands:

- strings

- qualified strings

- search expressions
- numbers

- switch values

- command groups

3-16

Tripos User's Reference EDIT

3.2.1.3 Strings

A string is a sequence of up to 80 characters enclosed in delimiters. You
may use an empty (null) string. (A null string is exactly what it sounds
like: a non-string, that is, delimiters enclosing nothing, for example, //))
The character that you decide to use to delimit a particular string may
not appear in the string. The terminating delimiter may be omitted if it
is immediately followed by the end of the command line.

The following characters are available for use as delimiters:
/. o+ =, 2 & %

that is, common English punctuation characters (except ;) and the four
arithmetic operators.

Here are some examples of strings:

/B/
Menai Bridge
2?2

+String with final delimiter omitted

3.2.1.4 Multiple Strings

Commands that take two string arguments use the same delimiter for
both and do not double it between the arguments. An example is the A
command:

A /King/The Red /

For all such commands the second string specifies replacement text. If
you omit the second string, EDIT uses the null string. If you do this with
the A and B command, then nothing happens because you have asked
EDIT to insert nothing after or before the first string. However, if you
omit the second string after an E command, EDIT deletes the first string.

3-17

EDIT Tripos User's Reference

3.2.1.5 Qualified Strings

Commands that search for contexts, either in the current line or

scanning through the source, specify the context with qualified strings. A

qualified string is a string preceded by zero or more qualifiers. The

qualifiers are single letters. They may appear in any order. For example,
BU/Abc/

Spaces may not appear between the qualifiers. You may finish a list of

qualifiers with any delimiter character. The available qualifiers are B
{Beginning), E (End), L (Left or Last), P (Precisely), and U (Uppercase).

3.2.1.6 Search Expressions

Commands that search for a particular line in the source take a search
expression as an argument. A search expression is a single qualified
string. For example,

F B/Tweedle/

tells EDIT to look for a line beginning with the string "Tweedle'.

3.2.1.7 Numbers

A number is a sequence of decimal digits. Line numbers are a special
form of number and must always be greater than zero. Wherever a line
number appears, the characters "' and *' may appear instead. A period
represents the current line, and an asterisk represents the last line at
the end of the source file. For example,

M*

instructs EDIT to move to the end of the source file.

3-18

Tripos User's Reference EDIT

3.2.1.8 Switch Values

Commands that alter EDIT switches take a single character as an
argument. The character must be either a + or -. For example, in

V_
the minus sign (-) indicates that EDIT should turn off the verification. If
you then type V +, EDIT turns the verification on again. In this case, you
can consider + as 'on'and - as 'off".

3.2.1.9 Command Groups

To make a number of individual EDIT commands into a command group,
you can enclose them in parentheses. For example, the following line:

(£/Walrus/;e/Walrus/Large Marine Mammal/)

finds the next occurrence of 'Walrus' and changes it to 'Large Marine
Mammal'. Command groups, however, may not span more than one line
of input. For instance, if you type a command group that is longer than
one line, EDIT only accepts the commands up to the end of the first line.
Then, because EDIT does not find a closing parenthesis at the end of that
line, it displays the following error message:

Unmatched parenthesis

Note that it is only necessary to use parentheses when you intend to
repeat a command group more that once.

3-19

EDIT Tripos User's Reference

3.2.1.10 Command Repetition

EDIT accepts many commands preceded by an unsigned decimal number
to indicate repetition, for example

24N

If you give a value of zero, then EDIT executes the command indefinitely
(or until end-of-file is reached). For example, if you type

0(e /dum/dee/;n)
EDIT exchanges every occurrence of 'dum’ for 'dee’ to the end of the file.

You can specify repeat counts for command groups in the same way as for
individual commands:

12 (F/handsome/; E/handsome/hansom/; 3N)

3.2.2 Processing EDIT

This section describes what happens when you run EDIT. It gives details
about where input comes from and where the output goes, what should
appear on your screen, and what should eventually appear in your file
after you have run EDIT.

3.2.2.1 Prompts

When EDIT is being run interactively, that is, with both the command
file connected to the keyboard and the verification file connected to a
window, it displays a prompt when it is ready to read a new line of
commands. Although, if the last command of the previous line caused
verification output, EDIT does not return a prompt.

If you turn the verification switch V on, EDIT verifies the current line in
place of a prompt in the following circumstances:

3-20

Tripos User's Reference EDIT

- ifit has not already verified the current line,

- if you have made any changes to the line since it was last
verified, or

- ifyou have changed the position of the operational window.

Otherwise, when EDIT does not verify the current line, it displays a
colon character (:) to indicate that it is ready for a new line of commands.
This colon is the usual EDIT prompt.

EDIT never gives prompts when you are inserting lines.

3.2.2.2 The Current Line

As EDIT reads lines from the source file and writes them to the
destination file, the line that EDIT has in its hand at any time is called
the current line. Every command that you type refers to the current line.
EDIT inserts new lines before the current line. When you start editing
with EDIT, the current line is the first line of the source.

3.2.2.3 Line Numbers

EDIT identifies each line in the source by a unique line number. This is
not part of the information stored in the file. EDIT computes these
numbers by counting the lines as it reads them. EDIT does not assign
line numbers to any new lines that you insert into the source.

EDIT distinguishes between original and non-original lines. Original
lines are source lines that have not been split or inserted; non-original
lines are split lines and inserted lines. Commands that take line
numbers as arguments may only refer to original lines. EDIT moves
forward, or backward up to a set limit, according to whether the line
number you type is greater or less than the current line number. EDIT
passes over or deletes (if appropriate) non-original lines in searches for a
given original line.

When you type a period (.) instead of a line number, EDIT always uses
the current line whether original or non-original. (For an example of its
use, see Section 3.1.2.6, Deleting Whole Lines.)

3-21

EDIT Tripos User's Reference

You can renumber lines with the '=' command. This ensures that all
lines following the current line are original. Type

=15

to number the current line as 15, the next line 16, the next 17, and so on
to the end of the file. This is how you allocate line numbers to
non-original lines. If you do not qualify the = command with a number,
EDIT displays the message:

Number expected after =

3.2.2.4 Qualified Strings

To specify contexts for EDIT searches, you can use qualified strings.
EDIT accepts the null string and always matches it at the initial search
position, which is the beginning of the line except as specified below. In
the absence of any qualifiers, EDIT may find the given string anywhere
in a line. Qualifiers specify additional conditions for the context. EDIT
recognizes five qualifiers B, E, L, P, and U as follows:

B

where the string must be at the Beginning of the line. This qualifier may
not appear with E, L, or P.

E
where the string must be at the End of the line. This qualifier may not
appear with B, L, or P. IfE appears with the null string, it matches with
the end of the line. (That is, look for nothing at the end of a line.)

L
where the search for the string is to take place Leftwards from the end of
the line instead of rightwards from the beginning. If there is more than

one occurrence of the string in a line, this qualifier makes sure that the
Last one is found instead of the first. L may not appear with B, E, or P. If

3-22

Tripos User's Reference EDIT

L appears with the null string, it matches with the end of the line. (That
is, look leftwards from the end of the line for an occurrence of nothing.)

P
where the line must match the string Precisely and must contain no
other characters. P must not appear with B, E, or L. If P appears with a
null string, it matches with an empty line.

9)
where the string match is to take place whether or not upper or lower
case is used. (That is, as though you translated both the string and the
line into Uppercase letters before comparing them.) For example, when
you specify U, the following string

/TWEEDledum/
should match a line containing

TweedleDUM

as well as any other combination in upper or lower case.

3.2.2.5 Output Processing

EDIT does not write lines read in a forward direction to the destination
file immediately, but instead it adds them to an output queue in main
memory. When EDIT has used up the memory available for such lines, it
writes out the lines at the head of the queue as necessary. Until EDIT
has actually written out a line to the destination file, you can move back
and make it the current line again.

You can also send portions of the output to destination files other than

TO. When you select an alternative destination file, EDIT writes out the
queue of lines for the current output file.

3-23

EDIT Tripos User's Reference

3.2.2.6 End-of-File Handling

When EDIT reaches the end of a source file, a dummy end-of-file line
becomes current. This end-of-file line has a line number one greater than
the number of lines in the file. EDIT verifies the line by displaying the
line number and an asterisk.

When the end-of-file line is current, commands to make changes to the
current line, and commands to move forward, produce an error.
Although, if you contain these kinds of commands within an infinitely
repeating group, EDIT does not give an error on reaching the end-of-file
line. The E (Exchange) command is an example of a command to make
changes to the current line. The N (Next) command is an example of a
command to move forward.

3.2.3 Functional Groupings of EDIT Commands

This section contains descriptions of all EDIT commands split up by
function. A summary and an alphabetic list of commands appear later.

The following descriptions use slashes (/) to indicate delimiter characters
(that is, characters that enclose strings). Command names appear in
upper case; argument types appear in lower case as follows:

Notation Description
a,b line numbers (or . or *)
cg command group
m,n numbers
q qualifier list (possibly empty)
se search expression
s, t strings of arbitrary characters
SW switch value (+ or-)
/ string delimiter

Table 3.1 Notation for Command Descriptions

3-24

Tripos User's Reference EDIT

Note: Command descriptions that appear in the rest of this manual with
the above notation show the SYNTAX of the command; they are not
examples of what you actually type. Examples always appear as follows
in

this typeface.

3.2.3.1 Selection of a Current Line

These commands have no function other than to select a new current
line. EDIT adds lines that it has passed in a forward direction to the
destination output queue (for further details on the output queue, see
Section 3.1, Introducing EDIT). EDIT queues up lines that it has passed
in a backward direction ready for subsequent reprocessing in a forward
direction. M takes a line number, period, or asterisk. So, using the
command notation described above, the correct syntax for M is as
follows:

Ma

where Ma moves forward or backward to line ‘a' in the source. Only
original lines can be accessed by line number.

M+

makes the last line actually read from the file current line. M+ moves
through all the lines currently held in memory until the last one is
reached.

M-

makes the last line on the output queue current. This is like saying to
EDIT: 'move back as far as you can.’

N
moves forward to the next line in the source. When the current line is the
last line of the source, executing an N command does not create an error.

EDIT increases the line number by adding one to it and creates a special

3-25

EDIT Tripos User's Reference

end-of-file line. However, if you try to use an N command when you are
already at the end of the source file, EDIT returns an error.

P

moves back to the previous line. You can move more than one line back
by either repeating P, or giving a number before it. The number that you
give should be equal to the number of lines you want to move back.

The syntax for the F (Find) command is
F se

So, F finds the line you specify with the search expression 'se'. The search
starts at the current line and moves forward through the source. The
search starts at the current line in order to cover the case where the
current line has been reached as a side effect of previous commands -
such as line deletion. An F command with no argument searches using
the last executed search expression.

The syntax for the BF (Backwards Find) command is
BF se

BF behaves like F except that it starts at the current line and moves
backward until it finds a line that matches its search expression.

3.2.3.2 Line Insertion and Deletion

Commands may select a new current line as a side effect of their main
function. Those followed by in-line insertion material must be the last
command on a line. The insertion material is on successive lines
terminated by Z on a line by itself. You can use the Z command to change
the terminator. EDIT recognizes the terminator you give in either upper
or lower case. For example, using the same notation,

3-26

Tripos User's Reference EDIT

Ia

<insertion material, as many
lines as necessary >

Z

inserts the insertion material before 'a'. Remember that 'a’ can be a
specific line number, a period (representing the current line), or an
asterisk (representing the last line of the source file). If you omit a, EDIT
inserts the material before the current line; otherwise, line a becomes
the current line.

I/s/

inserts the contents of the file s (remember, 's' means any string) before
the current line.

Rab

<replacement material >
Z

Rab/s/

The R command is equivalent to D followed by I. The second line number
must be greater than or equal to the first. You may omit the second
number if you want to replace just the one line (that is, if b=a). You may
omit both numbers if you want to replace the current line. The line
following line b becomes the new current line.

The syntax for the D (Delete) command is as follows:

Dab
So, D deletes all lines from a to b inclusive. You may omit the second line
number if you want to delete just the one line (that is, if b=a). You may
omit both numbers if you want to delete the current line. The line
following line b becomes the new current line.

The syntax of the DF (Delete Find) command is

DF se

3-27

EDIT Tripos User's Reference

The command DF (Delete Find) tells EDIT to delete successive lines from
the source until it finds a line matching the search expression. This line
then becomes the new current line. A DF command with no argument
searches (deleting as it goes) using the last search expression you typed.

3.2.4 Line Windows

EDIT usually acts on a complete current line. However, you can define
parts of the line where EDIT can execute your subsequent commands.
These parts of lines are called line windows. This section describes the
commands you use to define a window.

3.2.4.1 The Operational Window

EDIT usually scans all the characters in a line when looking for a given
string. However it is possible to specify a 'line window', so that the scan
for a character starts at the beginning of the window, and not the start of
the line. In all the descriptions of EDIT context commands, ‘'the
beginning of the line' always means 'the beginning of the operational
window"'.

Whenever EDIT verifies a current line, it indicates the position of the
operational window by displaying a '>" character directly beneath the
line. For example in the following

26.
This is line 26 this is.
>

the operational window contains the characters to the right of the
pointer: 'line 26 this is.". EDIT omits the indicator if it is at the start of
the line.

The left edge of the window is also called the character pointer in this
context, and the following commands are available for moving it:

3-28

Tripos User's Reference EDIT

>
moves the pointer one character to the right.

<
moves the pointer one character to the left.

PR
Pointer Reset sets the pointer to the start of the line.
The syntax for the PA (Point After) command is

PA q/s/

Point After sets the pointer so that the first character in the window is
the first character following the string s. For example,

PA L//

moves the pointer to the end of the line.

The syntax for the PB (Point Before) command is
PB q/s/

Point Before is the same as PA, but includes the string itself in the
window.

3-29

EDIT Tripos User's Reference

3.2.4.2 Single Character Operations on the Current Line
The following two commands move the character pointer one place to the
right after forcing the first letter into either upper or lower case. If the
first character is not a letter, or is already in the required case, these
commands are equivalent to >.
The command

S
forces lower case (Dollar for Down).
The command

S

forces upper case (Percent for uP).

The' '(underscore) command changes the first character in the window

into a space character, then moves the character pointer one place to the
right.

The command
#
deletes the first character in the window. The remainder of the window

moves one character to the left, leaving the character pointer pointing at
the next character in the line. The command is exactly equivalent to

E/sl/
where s is the first character in the window. To repeat the effect, you
specify a number before the "#' command. If the value is n, for example,

then the repeated command is equivalent to the single command

E/s//

3-30

Tripos User's Reference EDIT

where s is the first n characters in the window or the whole of the
contents of the window, whichever is the shorter. Consider the following
example: i

54

deletes the next five characters in the window. If you type a number
equal to or greater than the number of characters in the window, EDIT
deletes the contents of the entire window. EDIT treats a sequence of '#'
commands in the same way as a single, repeated '#' command. So,
is the same as typing a single #, pressing RETURN after each
single #, five times.

You can use a combination of '>''%''$''_' and '#' commands to edit a
line character by character, the commands appearing under the
characters they affect. The following text and commands illustrate this:

O Oysters,, Come ANDDWALK with us
>G5 SSSSH#>>SSSSSSSS_SSSSSSSSSSHH#

The commands in the example above change the line to
O oysters, come and walk with us

leaving the character pointer immediately before the word 'us’.

3.2.5 String Operations on the Current Line
To specify which part of the current line to qualify, you can either alter

the basic string or point to a variant, as described in the next two
sections.

3-31

EDIT Tripos User's Reference

3.2.5.1 Basic String Operations

Three similar commands are available for altering parts of the current
line. The A, B and E commands insert their second (string) argument
After, Before, or in Exchange for their first argument respectively. You
may qualify the first argument. If the current line were

The Carpenter beseech
then the commands
E U/carpenter/Walrus/ Exchange

B/bese/did / Insert string before
AL//;/ Insert string after

would change the line to

The Walrus did beseech;

3.2.5.2 The Null String

You can use the null, or empty string (/) after any string command. If
you use the null string as the second string in an E command, EDIT
removes the first string from the line. Provided EDIT finds the first
string, an A or B command with a null second string does nothing;
otherwise, EDIT returns an error. A null first string in any of the three
commands matches at the initial search position. The initial search
position is the current character position (initially the beginning of the
line) unless either of the E or L qualifiers is present, in which case the
initial position is the end of the line. For example,

A//carpenter/

puts the text carpenter After nothing, that is, at the beginning of the
line. Whereas

A L//carpenter

3-32

Tripos User's Reference EDIT

puts carpenter at the end of the line After the Last nothing.

3.2.5.3 Pointing Variant
The AP (insert After and Point), BP (insert Before and Point), and EP
(Exchange and Point) commands take two strings as arguments and act
exactly like A, B, and E. However, AP, BP, and EP have an additional
feature: when the operation is complete, the character pointer is left
pointing to the first character following both text strings. So, using the
same command syntax notation,

AP/s/t/
is equivalent to

Alsitl; PA/st/
while

BP/s/t/
is equivalent to

B/s/t/, PA/ts/
and

2EP U/tweadle/Tweedle/
would change

tweadledum and TWEADLEdee
into

Tweedledum and Tweedledee

leaving the character pointer just before dee.

3-33

EDIT Tripos User's Reference

3.2.5.4 Deleting Parts of the Current Line
You use the commands DTA (Delete Till After) and DTB (Delete Till
Before) to delete from the beginning of the line (or character pointer) to a
specified string. To delete from a given context until the end of the line,
you use the commands DFA (Delete From After) and DFB (Delete From
Before). If the current line were

All the King's horses and all the King's men
then the command

DTB L/King's/
would change it to

King's men
while

DTA/horses /

would change it to

and all the King's men

3.2.6 Miscellaneous Current Line Commands
This section includes some further commands that explain how to repeat

commands involving strings, how to split the current line, and how to
join lines together.

3-34

Tripos User's Reference EDIT

3.2.6.1 Repeating the Last String Alteration

Whenever EDIT executes a string alteration command (for example, A,
B, or E), it becomes the current string alteration command. To repeat the
current string alteration command, you can type a single quote (*). The '
command has no arguments. It takes its arguments from the last A, B, or
E command.

WARNING: Unexpected effects occur if you use sequences such as
E/castle/knight/; 4('; E/pawn/queen/)

The second and subsequent executions of the ' command refer to a
different command than the first. The above example would exchange
castle and knight twice and exchange pawn and queen seven times
instead of exchanging castle and knight once and then four times
exchanging castle and knight and pawn and queen.

3.2.6.2 Splitting and Joining Lines

EDIT is primarily a line editor. Most EDIT editing commands do not
operate over line boundaries, but this section describes commands for
splitting a line into more than one line and for joining together two or
more successive lines.

To split a line before a specified context, you use the SB command. The
syntax for the SB command is

SB q/s/
SB takes an optional qualifier represented here by q, and a string /s/. SB
Splits the current line Before the context you specify with the qualifier

and string. EDIT sends the first part of the line to the output and makes
the remainder into a new, non-original current line.

3-35

EDIT Tripos User's Reference

To split a line after a specified context, you use the SA command. The
syntax for SA is

SA qg/s/

SA takes an optional qualifier and a string (q and /s/). SA Splits the
current line After the context you specify with the qualifier and string.

To concatenate a line, you use the CL command. The syntax for CL is

CL/s/
CL takes an optional string that is represented here by /s/. CL or
Concatenate Line forms a new current line by concatenating the current
line, the string you specified and the next line from the source, in that
order. If the string is a null string, you may type the command CL
without specifying a string.
For an example of splitting and joining lines, look at the text

Humpty Dumpty sat on a wall; Humpty

Dumpty had a

great fall.

The old verse appears disjointed; the lines need to be balanced. If you
make the first line the current line, the commands

SA /:; /i 2CL/ /
change the line into

Humpty Dumpty sat on a wall;
leaving

Humpty Dumpty had a great fall.

as the new current line.

3-36

Tripos User's Reference EDIT

3.2.7 Ins(fecting Parts of the Source: the Type
Commands

The following commands all tell EDIT to advance through the source,
sending the lines it passes to the verification file as well as to the normal
output (where relevant). Because these commands are most frequently
used interactively (that is, with verification to the screen), they are
known as the 'type' commands. They have this name because you can use
them to 'type' out the lines you specify on the screen. This does not
however mean that you cannot use them to send output to a file. After
EDIT has executed one of these commands, the last line it '‘typed’ (that is,
displayed) becomes the new current line.

The syntax for the T (Type) command is
Tn

Tn types n lines. If you omit n, typing continues until the end of the
source. However, you can always interrupt the typing with CTRL-C.

Note: Throughout this manual when you see a hyphen between two keys,
you press them at the same time. So CTRL-C means to hold down the
CTRL key while you type C.

When you use the T command, the first line EDIT types is the current
line, so that, for example,

F /It's my own invention/; T6
types six lines starting with the one containing 'It's my own invention'.
(Note that to find the correct line, you must type the 'I' in 'It's' in upper
case.)
The command

TP
types the lines in the output queue. Thus, TP (Type Previous) is
equivalent to EDIT executing M- followed by typing until it reaches the

last line it actually read from the source.

3-37

EDIT Tripos User's Reference

The command
TN

types until EDIT has changed all the lines in the output queue. (For more
information on the output queue, see Section 3.1, Introducing EDIT) So, a
TN (Type Next) command types N lines, where N was the number
specified as the P option. (To find out more about the P option, refer to
Section 3.1.1, Calling EDIT). The advantage of the TN command is that
everything visible during the typing operation is available in memory to
P and BF commands.

The syntax for the TL (Type with Line numbers) command is as follows:

TLn

TLn types n lines as for T, but with line numbers added. Inserted and
split lines do not have line numbers, EDIT displays a '+ + + +' instead.
For example,

20 O oysters, come and walk with us
++++ and then we'll have some tea

The original line starting with 'O oysters’ has a line number. The
non-original line, inserted after line 20, starts with + + + +.
(Remember that you can use the = command to renumber non-original
lines.)

3.2.8 Control of Command, Input and Output Files

EDIT uses four types of files:

- command

- input

- output

- verification

Once you have entered EDIT, you cannot change the verification file
with a command. (To find out more about the verification file, see Section

3-38

Tripos User's Reference EDIT

3.1.1, Calling EDIT.) The following sections describe commands that can
change the command, input, and output files that you set up when you
enter EDIT.

3.2.8.1 Command Files

When you enter EDIT, it reads commands from the terminal or the file
that you specify as WITH. To read commands from ancther file, you can
use the C command. The syntax for the command is

C s.

where the string 's' represents a filename. As Tripos uses the slash
symbol (/) to separate filenames, you should use periods (.), or some other
symbol, to delimit the filename. A symbol found in a string should not be
used as a delimiter. When EDIT has finished all the commands in the file
(or you give a Q command), it closes the file and control reverts to the
command following the C command. For example, the command

C .:T/XYZ.

reads and executes commands from the file :T/XYZ

3.2.8.2 Input Files

To insert the entire contents of a file at a specific point in the source, you
use the [and R commands. These commands are described in Section
3.1.2.7 earlier in this chapter.

Section 3.1.1 described how to call EDIT. In that section, the source file
was referred to as the FROM file. However, you can also associate the
FROM file with other files, using the command FROM. The FROM
command has the following form:

FROM .s.

where the string 's' is a filename. A FROM command with no argument
re-selects the original source file.

3-39

EDIT Tripos User's Reference

When EDIT executes a FROM command, the current line remains
current; however, the next line comes from the new source.

EDIT does not close a source file when the file ceases to be current; you
can read further lines from the source file by re-selecting it later.

To close an output file that you opened in EDIT, and that subsequently
you want to open for input (or the other way round), you must use the CF
(Close File) command. The CF command has the following form:

CF s.

where the string 's' represents a filename. When you end an EDIT
session, EDIT closes automatically all the files you opened in EDIT.

Note: Any time you open a file, EDIT starts at the beginning of that file.
If you close a file with CF, EDIT starts on the first line of that file if you
re-open it, and not at the line it was on when you closed the file.

An example of the use of the FROM command to merge lines from two
files follows:

Command Action

M10 Pass lines 1-9 from the FROM (source)
file

FROM .XYZ. Select new input, line 10 remains current

M6 Pass line 10 from FROM, lines 1-5 from
XYZ

FROM Reselect FROM

M1l4 Pass line 6 from XYZ, lines 11-13 from
FROM

FROM .XYZ. Reselect XYZ

M* Pass line 14 from FROM, the rest of XYZ

FROM Reselect FROM

CF .XYZ. Close XYZ

M* Pass the rest of FROM (lines 15 till

end-of-file)

3-40

Tripos User's Reference EDIT

3.2.8.3 Output Files

EDIT usually sends output to the file with filename TO. However, EDIT
does not send the output immediately. It keeps a certain number of lines
in a queue in main memory as long as possible. These lines are previous
current lines or lines that EDIT has passed before reaching the present
current line. The number of lines that EDIT can keep depends on the
options you specified when you called EDIT. Because EDIT keeps these
lines, it has the capability for moving backwards in the source.

To associate the output queue with a file other than that with the
filename TO, you can also use the TO command. The TO command has
the form

TO .s.
where s is a filename.

When EDIT executes a TO command, it writes out the existing queue of
output lines if the output file is switched.

EDIT does not close an output file when it is no longer current. By
re-selecting the file, you can add further lines to it. The following
example shows how you can split up the source between the main
destination TO and an alternate destination XYZ.

Command Action

M1l Pass lines 1-10 to TO
TO.XYZ. Switch output file

M21 Pass lines 11-20 to XYZ
TO

M31 Pass lines 21-30 to TO
TO.XYZ.

M41 Pass lines 31-40 to XYZ
TO

If you want to re-use a file, you must explicitly close it. The command

3-41

EDIT Tripos User's Reference

CF filename.
closes the file with the filename you specify as the argument.

These input/output commands are useful when you want to move part of
the source file to a later place in the output. For example,

Command Action

TO .:T/1. Output to temporary file
1000N Advance through source
TO Revert to TO

CF .:T/1. Close output file :T.1
12000.:7/1. Re-use as input file

If you use the CF command on files you have finished with, the amount of
memory you need is minimized.

3.2.9 Loops

You can type an unsigned decimal number before many commands to
indicate repetition, for example,

24N

You can also specify repeat counts for command groups in the same way
as for individual commands, for example,

12{F/handsome/; E/handsome/hansom/; 3N)

If you give a repeat count of zero (0), the command or command group is
repeated indefinitely or until EDIT reaches the end of the source.

3-42

Tripos User's Reference EDIT

3.2.10 Global Operations

Global operations are operations that take place automatically as EDIT
scans the source in a forward direction. You can start and stop global
operations with special commands, described in the following sections.

WARNING: Be careful when you move backwards through the source
not to leave any active or ‘enabled’ globals. These enabled globals could
undo a lot of your work!

3.2.10.1 Setting Global Changes

Three commands, GA, GB, and GE are provided for simple string
changes on each line. Their syntax is as follows:

GA q/s/t/
GB q/s/t/
GE q/s/t/

These commands apply an A, B or E command, as appropriate, to any
occurrence of string 's' in a new current line. They also apply to the line

that is current at the time the command is executed.

G commands do not re-scan their replacement text; for example, the
following command

GE/Tiger Lily/Tiger Lily/

would not loop forever, but would have no visible effect on any line.
However, as a result of the ‘change’, EDIT would verify certain lines.

EDIT applies the global changes to each new current line in the order in
which you gave the commands.

3-43

EDIT Tripos User's Reference

3.2.10.2 Cancelling Global Changes

The REWIND command cancels all global operations automatically. You
can use the CG (Cancel Global) command to cancel individual commands
at any time.

When a global operation is set up by one of the commands GA, GB, or GE,
the operation is allocated an identification number which is output to the
verification file (for example, G1). The argument for CG is the number of
the global operation to be cancelled. If CG is executed with no argument,
EDIT cancels all globals.

3.2.10.3 Suspending Global Changes

You can suspend individual global operations, and later resume using
them with DG (Disable Global) and EG (Enable Global) commands.
These take the global identification number as their argument. If you

omit the argument, all globals are turned off or on (disabled or enabled),
as appropriate.

3.2.11 Displaying the Program State

Two commands beginning with SH (for SHow) output information about
the state of EDIT to the verification file.

The command SHD (SHow Data) takes the form
SHD

and displays saved information values, such as the last search
expression.

The command SHG (SHow Globals) takes the form

SHG

3-44

Tripos User's Reference EDIT

and displays the current global commands, together with their
identification numbers. [t also gives the number of times each global
search expression matches.

3.2.12 Terminating an EDIT Run

To 'wind through' the rest of the source, you use the W command
(Windup). Note that W is illegal if output is not currently directed to TO.
EDIT exits when it has reached the end of the source, closed all the files,
and relinquished the memory. Reaching the end of the highest level
command file has the same effect as W. If you call EDIT specifying only
the FROM filename, EDIT renames the temporary output file it created
with the same name as the original (that is, the FROM filename), while
it renames the original information as the file :T/EDIT-BACKUP. This
backup file is, of course, only available until the next time EDIT is run.

The STOP command stops EDIT immediately. No further input or output
is attempted. In particular, the STOP command stops EDIT from
overwriting the original source file. Typing STOP ensures that no
change is made to the input information.

The Q command stops EDIT from executing the current command file
(EDIT initially accepts commands from the keyboard, but you can specify
a command file with the WITH keyword or with the C command) and
makes it revert to the previous one. A Q at the outermost level does the
sameasa W.

3.2.13 Current Line Verification

The following circumstances can cause automatic verification to occur:

- When you type a new line of commands for a current line that
EDIT has not verified since it made the line current, or changed
since the last verification.

- When EDIT has moved past a line that it has changed, but not yet

verified.

3-45

EDIT Tripos User's Reference

- When EDIT displays an error message.

In the first two cases, the verification only occurs if the V switch is on.
The command

Vsw

changes the setting of the V switch. It is set ON (V +) if the initial state
of EDIT is interactive (commands and verifications both connected to a
terminal), and to OFF (V-) otherwise.

To explicitly request verification of the current line, you use the
following command

?

This command verifies the current line. It is performed automatically if
the V switch is on and the information in the line has been changed. The
verification consists of the line number (or + + + + if the line is not
original), with the text on the next line.

An alternate form of verification, useful for lines containing
non-printing characters, is provided by the command

The ! command verifies the current line with character indicators. EDIT
produces two lines of verification. The first is the current line in which
EDIT replaces all the non-graphic characters with the first character of
their hexadecimal value. In the second line, EDIT displays a minus sign
under all the positions corresponding to uppercase letters and the second
hexadecimal digit in the positions corresponding to non-graphic
characters. All other positions contain space characters.

The following example uses the ? and ! commands. To verify the current

line, you use the ? command. If, for instance, the following appears when
you use the ? command:

3-46

Tripos User's Reference EDIT

?
1.
The Walrus and the ?2?

then you might try to use the E command to exchange '??' for 'Carpenter".
However, EDIT may not recognize the text it displayed with *??' as two
question marks if the 77" characters correspond to two non-graphic
characters. To find out what really is there, you use the ! command as
follows:

!
1.

The Walrus and the 11
- - 44

To correct the line, you can use the character pointer and # command to
delete the spurious characters before inserting the correct text. (For
further details on using the character pointer and # command, see
Section 3.2.4, Line Windows.)

3.2.14 Miscellaneous Commands

This section describes all those commands that do not fit neatly into any
of the previous categories. It describes how to change a termination
character, turn trailing spaces off, renumber lines, and rewind the
source file.

To change the terminator for text insertion, you use the Z command. The
Z command has the following form t

Z/s/
where /s/ represents a string. The string may be of any length up to 16
characters. The string is matched in either case. In effect, the search for

the terminator is done using the qualifiers PU. The initial terminator
string is Z.

3-47

EDIT Tripos User's Reference

To turn trailing spaces on or off, you use the TR (TRailing spaces)
command. The TR command takes the following form

TR sw

where sw represents a switch (+ for ON; - for OFF). EDIT usually
suppresses all trailing spaces. TR+ allows trailing spaces to remain on
both input and output lines.

To renumber the source lines, you use the = command. The = command
takes the form

=n

where n represents a number. The command =n sets the current line
number to n. If you then move to the lines below the current line, EDIT
renumbers all the following original and non-original lines. Although, if
you move back to previous lines after using the = command, EDIT
marks all the previous lines in the output queue as non-original. When
you rewind the source file, EDIT renumbers all the lines in the file -

original, non-original, and those previously re-numbered with the =
command.

To rewind the source file, you use the REWIND command. For example,
REWIND

This command rewinds the input file so that line 1 is the current line
again. First EDIT scans the rest of the source (for globals, and so forth).
Then it writes the lines to the destination, which is then closed and
re-opened as a new source. It closes the original source using a
temporary file as a destination. Any globals that you specify are
cancelled. EDIT does not necessarily require you to type the complete
word (that is, REWIND). To move to the beginning, you can type any of
the following: REWI, REWIN, or REWIND.

3-48

Tripos User's Reference EDIT

3.2.15 Abandoning Interactive Editing
To abandon most commands that read text, you press CTRL-C. In
particular, if you realize that a search expression has been mistyped,
then CTRL-C stops the search. Similarly the T command types to the end
of the source, but CTRL-C abandons this action.
After you press CTRL-C, EDIT responds with the message

% BREAKR

and returns to reading commands. The current line does, of course,
depend on exactly when you pressed CTRL-C.

3-49

EDIT Tripos User's Reference

Quick Reference Card

This list uses the following abbreviations:

Notation Description

qs Qualified string

t String

n Line number, or . or * (current and last line)
sW + or - (on or off)

Character Pointer Commands (Line Window Commands)

Command Action
< Move character pointer left
> Move character pointer right
Delete character at pointer
$ Lower case character at pointer
% Upper case character at pointer
_ Turn character at pointer to space
PA gs Move character pointer to after qs
PB gs Move character pointer to before qs
PR Reset character pointer to start of line

3-50

Tripos User's Reference

EDIT

Positioning Commands

Command Action
Mn Move to line n
M+ Move to highest line in memory
M- Move to lowest line in memory
N Next line
P Previous line
REWIND Rewind input file
Search Commands
Command Action
Fqgs Find string qs
BF gs Same as F, but move backwards through file
DF gs Same as F, but delete lines as they are passed

3-51

EDIT Tripos User's Reference
Text Verification

Command Action
? Verify current line
! Verify with character indicators
T Type to end of file
Tn Type nlines
TLn Type n lines with line numbers
TN Type until buffer changed
TP M-, then type to last line in buffer
Vsw Set verification on or off

Operations on the Current Line
Command Action
Aqgst Place string t after gs
APgst Same as A, but move character pointer
Bgst Place string t before gs
BPqgst Same as B, but move character pointer
CLt Concatenate current line, string t and next line
D Delete current line
DFA gs Delete from after gs to end of line
DFB gs Delete from before gs to end of line
DTAqgs Delete from start of line to after gqs
DTB gs Delete from start of line to before gs
Eqst Exchange string qs with string t
EPqgst Same as E, but move character pointer
I Insert material from terminal before line
It Insert from file t
R Replace material from terminal
Rt Replace material from file t
SAgs Split line after gs
SB gs Split line before qs

3-52

Tripos User's Reference EDIT

Globals

Command Action

GAgst Globally place t after gs

GBgst Globally place s before gs

GEqgst Globally exchange gs for t

CGn Cancel global n (all if n omitted)

DGn Disable global n (all if n omitted)

EGn Enable global n (all if n omitted)

SHG Display info on globals used
Input/Output Manipulation

Command Action

FROM Take source from original

FROM ¢t Take source from file t

TO Revert to original destination

TOt Place output lines in file t

CFt Closefile t

3-53

EDIT

Tripos User's Reference

Other Commands

SHD
STOP
TR sw

Zt

Action

Repeat previous A, B or E command

Set line number ton

Take commands from file t

Set halt at line n. If n="* then halt and unset h
Exit from command level; windup if at level 1
Show data

Stop

Set/unset trailing space removal

Windup

Set input terminator to string t

3-54

Tripos User's Reference Errors

Appendix A: Error Codes and Messages
The error messages that appear on the screen when you use the FAULT
or WHY command fall into two general categories:
1. user errors
2. programmer errors.
This appendix gives the probable cause and a suggestion for recovery for

each of these error codes. The codes appear in numerical order within
their category.

User Errors

103: insufficient free store
Probable cause:

You don't have enough physical memory on the computer to carry this
operation out.

Recovery suggestion:

First, try to stop some of the applications that are running that you don't
need. For example, close any unnecessary [/O streams. Otherwise, buy
more memory. Stop some of the tasks that are less important to you and
re-issue the command. It may be that you have enough memory, but it
has become 'fragmented’; rebooting may help.

A-1

Errors Tripos User's Reference

104: task table full

Probable cause:

Limited to 20 CLI tasks, or equivalent.

120: argument line invalid or too long
Probable cause:

Your argument for this command is incorrect or contains too many
options.

Recovery suggestion:

Consult the command specifications in Chapter 1 of this manual for the
correct argument template.

121: file is not an object module
Probable cause:

Either you misspelled the command name, or this file may not be in
loadable file form.

Recovery suggestion:
Either retype the file name, or make sure that the file is a binary

program file. Remember that in order to execute a command sequence
the command C must be used before the file name.

A-2

Tripos User's Reference Errors

202: object in use
Probable cause:

The file or directory specified is already being used by another
application in a manner incompatible with the way you want to use it.

Recovery suggestion:

If another application is writing to a file, then nobody else can read from
it. If another application is reading from a file, then nobody else can
write to it. If an application is using a directory or reading from a file,
then nobody else may delete or rename the file or directory. You must
stop the other application using the file or directory and then try again.
203: object already exists

Probable cause:

The object name that you specified is that of an object that already exists.

Recovery suggestion:

You must first delete the directory or file if you really want to re-use that
name.

204: directory not found
Probable cause:

The directory you specified is not in the current directory. This can
happen if you misspell the directory name or omit the correct path.

Recovery suggestion:
Use LIST to check on the spelling of the directory name and then retype

the command line with the correct spelling. Otherwise, include the
correct path before the directory name.

A-3

Errors Tripos User's Reference

205: object not found

Probable cause:

Tripos cannot find the device or file you specified. You have probably
made a typographical or spelling error.

Recovery suggestion:

Check device names and file names for correct spellings. You also get
this error if you attempt to create a file in a directory that does not exist.

210: invalid stream component name

Probable cause:

You have included an invalid character in the filename you have
specified, or the filename is too long. Each file or directory must be less
than 30 characters long. A filename cannot contain control characters.
212: object not of required type

Probable cause:

Maybe you've tried to do an operation that requires a filename and you
gave it a directory name or vice versa. Forexample, you might have
given the command TYPE dir, where 'dir’ is a directory. Tripos doesn't
allow you to display a directory, only files.

Recovery suggestion:

Check on the command usage in Chapter 1 of the Tripos User's
Reference.

A-4

Tripos User's Reference Errors

213: disk not validated

Probable cause:

Either you just inserted a disk and the disk validation process is in
progress, or it may be a bad disk.

Recovery suggestion:
Wait for the disk validation process to finish - it normally only takes less
than a minute. If Tripos cannot validate the disk because it is bad, then

the disk remains unvalidated. In this case, you can only read from the
disk and you must copy your information onto another disk.

214: disk write-protected

Probable cause:

This disk is write-protected. The computer cannot write over information
that is already on the disk. You can only read information from this disk.
You cannot store any information of your own here.

Recovery suggestion:

Save your information on a disk that is not write-protected, or change the
write-protect tab on the disk.

215: rename across devices attempted

Probable cause:

RENAME only changes a filename on the same device, although you can
use it to rename a file from one directory into another on the same
device.

Recovery suggestion:

Copy the file to the object device and delete it from the source device.

A-5

Errors Tripos User's Reference

216: directory not empty

Probable cause:

You cannot delete a directory unless it is empty.
Recovery suggestion:

Delete the contents of the directory. Study the command specification for
DELETE in Chapter 1 of this manual.

218: device not mounted

Probable cause:

The word 'mounted’ here means "inserted into the drive”; either you've
made a typographical error, or the disk with the desired name isn't
mounted.

Recovery suggestion:

Check the spelling of the devices, or insert the correct disk.

220: comment too big

Probable cause:

Your filenote has exceeded the maximum number of characters allowed
(80).

Recovery suggestion:

Retype the filenote adhering to these limits.

A-6

Tripos User's Reference Errors

221: disk full

Probable cause:

You do not have sufficient room on the disk to do this operation.
Recovery suggestion:

Use another disk or delete some unnecessary files or directories.

222: file is protected from deletion

Probable cause:

The file or directory has been protected from deletion.

Recovery suggestion:

You either did not mean to delete that file, or you really did mean it. If
you really did mean it, you must use the PROTECT command to alter the
protection status. Refer to the PROTECT command in the Tripos

User's Reference. Also use the LIST command to check on what the
protections of this particular file or disk.

225: not a DOS disk

Probable cause:

The disk in the drive is not a formatted DOS disk.

Recovery suggestion:

Place a suitably formatted DOS disk in the drive instead, or else format

the disk using the FORMAT command if you don't want any of the
information on it.

A-7

Errors Tripos User's Reference

226: no disk in drive

Probable cause:

You have attempted to read or write to a disk drive where there is no
disk.

Recovery suggestion:

Place a suitably formatted DOS disk in the drive.

Programmer Errors

209: packet request type unknown

Probable cause:

You have asked a device handler to attempt an operation it cannot do (for
example, the console handler cannot rename anything).

Recovery suggestion:

Check the request code passed to device handlers.

A-8

Tripos User's Reference Errors

211: invalid object lock

Probable cause:
You have used something that is not a valid lock.
Recovery suggestion:

Check your code so that you only pass valid locks to DOS calls that expect
locks.

219: seek error

Probable cause:

You have attempted to call Seek with invalid arguments.
Recovery suggestion:

Make sure that you only Seek within the file. You cannot Seek to outside
the bounds of the file.

232: no more entries in directory

Probable cause:

There are no more entries in the directory that you are examining.
Recovery suggestion:

This error code indicates that the DOS call ExNext has no more entries

in the directory you are examining to hand back to you. Stop calling
ExNext.

A-9

Tripos User's Reference

Index

{EDIT) 3.46, 3.47, 3.52
#(EDIT) 3.30, 3.31, 3.47,3.50
$(EDIT) 3.30, 3.31, 3.50
% (EDIT) 3.30, 3.31, 3.50
*(EDIT) 3.35, 3.54
*(EDIT) 3.10,3.11,3.18
+ (EDIT) 3.19, 1.58
-(EDIT)3.19

.(EDIT) 3.10, 3.18, 3.21
;1.2

__(EDIT) 3.30, 3.31, 3.50
< (EDIT) 3.29, 3.50

> (EDIT) 3.29, 3.50

< symbol 1.3

> symbol 1.3

= (EDIT) 3.22, 3.48, 3.54
?7(EDIT) 3.46, 3.52

A214,218,3.9,3.32,3.52
Abandon interactive editing 3.49
After, insert 3.9, 3.52

After, point 3.33, 3.52

ALINK 1.5

Alter baud rate 1.61

Altering text 2.14

AP 3.33,3.52

Arguments (EDIT) 3.1, 3.16
ASSEM 1.6

Assembling programs 1.6
ASSIGN 1.8

Attention flags 1.9, 1.59
Automatic newline 1.15
Automatic RH margin 2.4, 2.5

B2.12,2.18,3.9,3.10, 3.32, 3.52

B qualifier (EDIT) 3.7, 3.22

BACKSPACE key 2.6

Backwards find 2.13, 2.18, 3.6, 3.26,
3.51

Baud rate 1.61

BE 2.10,2.18

Before, insert 3.9, 3.52

Before, point 3.33, 3.52

Beginning of line, specify 3.7, 3.22

BF 2.13, 2.18, 3.6, 3.26, 3.51

Block control 2.10,2.11,2.18

Bottom of file, move to 2.12

BP 3.33,3.52

BREAK 1.9

BS2.10,2.18

€1.10,3.39,3.54
Calling EDIT 3.1
Cancel global 3.44, 3.53
CD1.13

CE2.12,2.18

CF 3.40,3.42,3.53
CG3.44,3.53
Change baud rate 1.61
Change character into a space 3.30
Change letter's case 2.5
Changing directories 1.13
Character pointer 3.28

- commands 3.50
Character strings 3.6
Character translation 1.14, 3.47
CL.2.12,2.18,3.36,3.52
CLI'1.2,1.28,1.32,1.50,1.53
Close file (EDIT) 3.40
Command (various; see below)

- files 3.38, 3.39

- groups 2.15, 3.12, 3.16, 3.19

- 1/0, redirect 1.3

-line 2.1

-list 2.17

-names 3.16

- repetition 2.7,2.15, 3.12,

3.20

-syntax 3.15
Commands, extended 2.2,2.7, 2.18
Commands, immediate 2.2, 2.3,

2.17
Comment, set file 1.35
Comments to commands, adding 1.2
Concatenate line 3.36, 3.52
CONSOLE 1.14
Console page length, set 1.15
Console page mode 1.14
Console width, set 1.14
CONTROL CODES 1.9
Contro! key combinations (ED) 2.2
COPY 1.17,1.26
CR2.12,2.18
Creating a new file 3.3
CS2.12,2.18
CTRL(ED) 2.2
CTRL-A(ED)2.4,2.17
CTRL-B(ED) 2.6,2.15,2.17
CTRL-C 3.37,3.49
CTRL-D(ED)2.6,2.17
CTRL-E (ED)2.3,2.17
CTRL-F(ED)25,2.17
CTRL-G(ED) 2.7,2.17
CTRL-H(ED) 2.3, 2.17
CTRL-1(ED)2.4,2.17
CTRLJ (ED)2.3
CTRL-K(ED)2.3
CTRL-M(ED)2.17
CTRL-N(ED)2.6,2.17
CTRL-O(ED)2.6,2.17
CTRL-P1.14,2.16
CTRL-Q 1.15, 1.16

Index

Tripos User's Reference

CTRL-R(ED)2.3,2.17
CTRL-S1.15
CTRL-T(ED)2.3,2.18
CTRL-U(ED)2.6,2.18
CTRL-V(ED)2.6,2.18
CTRL-X(ED) 2.3
CTRL-Y(ED)2.6,2.18
CTRL-{(ED)2.18
CTRL-1(ED)2.3,2.18
Current cursor position 2.4
Current directory 1.13
Current line 3.4, 3.18, 3.21, 3.25
Current line verification 3.45
Cursor control 2.3, 2.4, 2.12, 2.17,
2.18,2.19

D 2.15,2.18,3.10, 3.27, 3.52

DATE 1.19

DB 2.18

DC2.15,2.18

Dedicated keys (ED) 2.2

DEL 2.6

DELETE 1.21

Delete text 2.6, 2.15,2.17,2.18,
3.10, 3.26, 3.27, 3.28, 3.30,
3.34,3.50, 3.51, 3.52,3.53

Delimiters 2.8, 2.13, 3.6, 3.17

Destination file 3.1

DF 3.27,3.28, 3.51

DFA 3.34,3.52

DFB 3.34, 3.52

DG 3.44,3.53

DIR 1.23

Directory search list, alter 1.51

Disable global 3.44

DISKCOPY 1.25

DISKDOCTOR 1.27

Display baud rate 1.61

Displaying non-graphic characters 3.47

Distinguish between U/C and 1/c 2.19

DO 2.16,2.18

DTA 3.34,3.52

DTB 3.34,3.52

E2.13,2.14,2.18,3.8,3.9,3.32,
3.52

E qualifier 3.7, 3.22

ECHO 1.28

ED1.29,2.1-19

EDIT 1.30,2.1, 3.1-54

Editing text files 1.29, 1.30, 2.1-19,
3.1-54

EG 3.44,3.53

Enable global 3.44, 3.53

End insertion 3.11, 3.26, 3.47, 3.54

End of line, move to 2.12

End of line, specify 3.7, 3.22

End of screen, move to 2.3

End of source, move to 3.18
End-of-file handling 3.24
ENDCLI1.32,1.50

Enter extended mode 2.18
EP3.33,3.52

EQ2.13,2.18

Equate U/C & l/c in searches 2.19
Error messages (ED) 2.2
ESC2.7,2.18

EX25,2.10,2.18

Example of editing with EDIT 3.13
Exchange 2.13,3.8

Exchange and point 3.52
Exchange and query 2.13,2.18
Exchange character for space 3.30
Exchange strings 2.13, 2.18, 3.52
Executing Tripos commands from ED 2.18
Exit2.8,2.19,3.12,3.45

Exit editor and update text 2.19
Exit editor without saving text 2.19
Extend command line 1.58

Extend margins 2.10, 2.18
Extended commands 2.2, 2.7,2.18

F2.13,2.18, 3.6, 3.7, 3.26, 3.51

FAILAT 1.33,1.39

FAULT 1.34

File comment, set 1.35

File protection status, set 1.54

File size 2.1

File structure, list 1.23

File, creating a new 3.3

FILENOTE 1.35

Files, deleting 1.21

Find string 2.13,2.18,3.6,3.7,
3.26,3.51

Find string before 2.13,2.18, 3.6,
3.26

Flip letter's case 2.5, 2.17

FORMAT 1.36

FROM (EDIT) 3.2, 3.39, 3.45, 3.53

GA 3.43,3.53

GB 3.43,3.53

GE 3.43,3.53

Global operations 3.43, 3.53

Globally exchange (EDIT) 3.43, 3.53

Gilobally place after (EDIT) 3.43, 3.53

Globally place before (EDIT) 3.43,
3.53

H 3.54
Halt 2.18, 3.54
HOME 2.3

Tripoes User's Reference

Index

Horizontal scrolling 2.1

12.14,2.18,3.11, 3.27, 3.39, 3.52
IB2.10,2.11,2.18
IF(ED}2.12,2.19
IF1.11,1.33,1.37
Immediate commands 2.2, 2.3, 2.17
INFO 1.40
Input file (EDIT) 3.1, 3.38, 3.39
Input flow control 1.15
Input/output manipulation (EDIT) 3.53
Insert after current 2.14, 2.18
Insert before current 2.14, 2.18, 3.52
Insert copy of block 2.11, 2.18
Insert file 2.12, 2.19, 3.52
Insertline 2.4,2.17, 3.26
Insert terminator 3.26, 3.47
Inserting text 2.4,2.11, 2.12, 2.14,
2.17,2.18,2.19, 3.11, 3.26,
3.52
INSTALL 1.41
Interrupts 1.9

J2.15,2.19
JOIN 1.42
Joining lines 2.15,2.19, 3.35

Keywords 2.1, 3.2

L qualifier 3.9, 3.22
LAB1.11,1.39,1.43

Last, specify 3.9, 3.22
LC2.14,2.19

Leaving EDIT 3.12

Letter case, change 2.5,2.17
Letter case, flip 2.5,2.17
Line breaks 2.4,2.5

Line deletion 3.26

Line editor (EDIT) 3.1

LINE ERASE 2.6

Line insertion 3.26

Line length 2.4

Line number, move to 2.19
Line numbers 3.4, 3.18, 3.21
Line window (EDIT) 3.28
Linking code 1.5

LIST 1.44

Logical device name 1.8
Loops 3.42

Lower case 2.5,2.17, 3.16, 3.30, 3.50

M35,351

M+ 3.25,3.51

M- 3.25,3.51, 3.52
MAKEDIR 1.48
Margins 2.4,2.5,2.10

MC68000 assembly language 1.6
Message area 2.2
MOUNT 1.49
Move back as far as possible 3.25
Move character pointer left 3.29, 3.50
Move character pointer right 3.29, 3.50
Move cursor 2.3,2.17-19
~-down 2.3
-left 2.18
-right2.3,2.18
- to end-of-file 2.18
- to end/start of line 2.3, 2.18
- to line number 2.19
- to next line 2.19
- to previous line 2.19
- to top-of-file 2.19
- to top/bottom of screen 2.17
-up2.3
Move (make line the new current line)
(EDIT) 3.1, 3.4, 3.5, 3.7, 3.25,
3.51
- to end of store 3.25
- to highest line in memory 3.51
- to line number 3.5, 3.51
- to lowest line in memory 3.51
- to next line 3.4, 3.7
- to previous line 3.4, 3.5
- to top of file (EDIT) 3.48
Multiple commands 2.2
Multiple strings 3.17

N2.12,2.19,3.4,3.7,3.25,3.51

New file, creatinga 3.3

NEWCLI 1.32, 1.50,1.70

Next line, move to 2.12,2.19, 3.4,
3.7,3.25,3.51

Next word, move to 2.3

Non-interactive CLI 1,58

Non-original lines (EDIT) 3.21

Notation for command descriptions
(EDIT) 3.24

Note, set file 1.35

Null strings 3.32

Numbers 3.16, 3.18

Operational window (EDIT) 3.28
Operations on the current line 3.52
OPT (EDIT) 3.3

Original lines (EDIT) 3.21

Output file (EDIT) 3.1, 3.38, 3.41
Output processing 3.23

Overlay supervisor 1.5

P2.12,2.19,3.4,3.26,3.51

P qualifier 3.7, 3.8, 3.23
PA 3.29,3.50

iii

Index

Tripus User's Relerence

Page length, set 1.15

Page mode 1 14

Panic buttons 1.9

PATH 151

Patterns I 46, 1.59

P 3.29, 3.50

Plus sign +), use of 1.58

Point after 3,29, 3 50

Point before 3 29. 3.50

Pointer reset 3 29, 3.50

Pointing 3.29. 3 33

PR 329, 3.50

Precisely 3.7.3 8,3.23

Previous line, move to2.12. 2 19,
3.4,3.5,3.26.3 51

Previous word. move to 2.3

Process-changing key (see also
CONSOLE,CTRL-P) 1.14

Program conirol 2.8

Prompt (EDIT) 3.20, 3.21

PROMPT 1 53

PROTECT 1 54

Q23.219,312,313,3.45,3.54
Qualified strings 3 16,3 18, 3.22
Qualifiers 3 7.3.18
Quit2.8.219,3.12,3 13, 3.45,3.54
QUITT 11155

R3.11.3.12,327,3.39,3.52
Redirecting command O 1 3
Retresh screen 2.7,2 18
RELABEL 1 56

RENAME 1.37

Renumbering lines 3.22

Repeat commands 2.7,2.15.2 19, 2.17.

3.12.3.25.3 54
Repeat extended command 2.17
Repeat untilerror 2.7, 2 15, 2.19
Replace 3.11,3.12,3.27, 3 52
RETURN 24,215,217
REWI 3.51
REWIND 3.48
Rewind input file 3 48, 3.51
Rewrite screen 2.7, 2,48
Right hand margin2.4,2.5
RP 215,219
RUBOUT verification 1 14
RUN1.28,1 53

S215.219
SA29,2.19.336,3.52

Save 29,219
SB2.11,219.335.352
Screen display 22

Sereen editor K1 29,2119

Serolling 2 1.2.6,217.2 138

SEARCH 159

Search backwards for string 3 6

Search expressions 3 16,3 13

Search for any case 2.14,2.19

Seurch for specified case 2,14, 2,19

Search forward for string 3 6.3 7

Search leftwards 3 22

Searching for string 2 13,2 14.2 19,
3.6.37.316.318.3.22

Set baud rate 1 61

Set current line number 3.48

Set file protection status 1 54

Set input terminator 3.54

Set left margin2.10.2 19

Set line number 3 54

Set right margin 2,10, 2,19

Set tabs (K12 10, 2.19

Set verification switch 3 52

SET SERIAL 1.61

Set/unset trailing space removal 3.54

Setting console characteristics 1.14

Setting global changes 3 43

SH2.10,2.19,3.44

SHD 3.44.3.54

SHG 3.44, 3.53

Show block 2,11, 2.19

Show current state 2.10.2.19

Show data 3.44, 3.54

Show globals 3 44, 3.53

Show output infurmation 3.44

Single character operuations 3 30

SKIP1.11,139.1 43.1 A3

SL 210,219

SORT 1 65

Source tile 3 1

Special keys 2.17

Splitting lines 2 4.2 15.2.19. 3 35,
3.36,3 52

SR2.10.2 19

ST2.10.2.19

STACK 1 65,1 67

Start of line, move to 2 12

STATUS 1 68

STOP 3.2, 3.13.3.45.3.54

String delimiters 2 8

String operations on the current line
3.31

Strings 3.16,3 17

Suspending global operations 3 44

Swap letter case 2 5

Switch values 3 16,3 19.3 20,321

Switching task~ 2.16

System date 119

T202.2 19,437,352

Tripos User's Reference

Index

TAB(EM 24,217

TAB1.14,1.15

Take commands from file 3.54

Terminal support 1.70

Terminating EDIT 3.45

Terminating insertion 3.11

Text editor 2.1-19,3.1-54

Text verification 3.52

TL 3.38,3.52

TN 3.38,3.52

TO(EDIT) 3.2, 3.41, 3.53

Top of file, move t0 2.12, 2.19

TP 3.37,3.52

TR 3.47, 3.48, 3.54

TR+ 3.47,3.48

TR- 3.47,3.48

Trailing spaces 3.47, 3.54

Tripos commands, from ED 2.18

Turn character at pointer to space
3.50

Type (EDIT) 3.37, 3.38, 3.52

TYPE 1.8,1.69

U29,210,219

UC2.14.2.19

Undo changes on current line 2.9,
2.10,2.19

Unfamiliar terminology 1.1

Upper case 2.5,2.17, 3.16, 3.23,
3.30,3.50

V 3.20,3.46,3.52

V+ 3.46

V-3.46

vDU 1.70

VDU key mappings (ED) 2.17
VER(EDIT) 3.2

Verification 3.19

Verify current line 3.52

Verify (refresh) screen 2.7, 2.18
Verify with character indicators 3.52
Vertical scrolling 2.1, 2.6

W 3.12,3.45,3.54

WAIT 1.71

WB2.11,2.19

WHY 1.72

Width, console 1.14
Windup 3.12, 3.45, 3.54
WITH (EDIT) 3.2,3.39
Word, delete 2.6
Workspace 1.29

Write block to file 2.11,2.19

X28,2.19

7.3.11.3.26,3.27,3 47, 3.54

Tripos Programmer's Reference Manual

COPYRIGHT

This manual Copyright (c¢) 1986, METACOMCO plc. All Rights
Reserved. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic
medium or machine readable form without prior consent, in writing,
from METACOMCO plec.

TRIPOS software Copyright (c) 1986, METACOMCO plc. All Rights
Reserved. The distribution and sale of this product are intended for the
use of the original purchaser only. Lawful users of this program are
hereby licensed only to read the program, from its medium into memory
of a computer, solely for the purpose of executing the program.
Duplicating, copying, selling, or otherwise distributing this product is a
violation of the law.

TRIPOS is a trademark of METACOMCO plc.
This manual refers to [ssue 5, May 1986

Printed in the U.K

DISCLAIMER

THIS PROGRAM IS PROVIDED "AS IS" WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE RESULTS AND
PERFORMANCE OF THE PROGRAM IS ASSUMED BY YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU (AND NOT
THE DEVELOPER OR METACOMCO PLC OR ITS AFFILIATED
DEALERS) ASSUME THE ENTIRE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION. FURTHER, METACOMCO
PLC OR ITS AFFILIATED COMPANIES DO NOT WARRANT,
GUARANTEE OR MAKE ANY REPRESENTATIONS REGARDING
THE USE OF THE PROGRAM IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, CURRENTNESS, OR OTHERWISE;
AND YOU RELY ON THE PROGRAM AND RESULTS SOLELY AT
YOUR OWN RISK. IN NO EVENT WILL METACOMCO PLC OR ITS
AFFILIATED COMPANIES BE LIABLE FOR DIRECT, INDIRECT,
INCIDENTAL, OR CONSEQUENTAL DAMAGES RESULTING FROM
ANY DEFECT IN THE PROGRAM EVEN IF IT HAS BEEN ADVISED
OF THE POSSIBILITY OF IMPLIED WARRANTIES OR LIABILITIES
FOR INCIDENTAL OR CONSEQUENTAL DAMAGES, SO THE
ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY.

Tripos Programmer's Reference Manual

Chapter 1. Introduction to Programming
Chapter 2: Calling the Kernel

Chapter 3: Calling the DOS

Chapter 4: The Macro Assembler
Chapter 5: The Linker

Chapter 6: The System Debugger
Chapter 7 Full Screen Support

Chapter 8: Floating Point

Issue 5 (May 1986)

Table of Contents

1.2

1.2.1
1.2.2
1.2.3
1.2.4

1.3

1.3.1
1.3.2
1.3.3
1.3.4
1.3.5

Programming under Tripos
Creating an Executable Program
Calling Tripos Functions
Running Programs under the CLI
Running Programs as a New Task
Program Termination

Example

Tasks

Device Handler Tasks
CLI

Debug

User Tasks

Packets

QPkt and TaskWait

Device Handlers

Device Handler Packet Types
Device Drivers

Device Driver Packet Types

Chapter 1: Introduction to Programming

This section of the manual describes some of the principles involved in
writing programs to run under the Tripos operating system.

Tripos Programmer's Reference Introduction

1.1 Programming under Tripos

There are two ways in which a program can be run under Tripos: as a
command running under a CLI (Command Line Interpreter), or as a task
(process). In either case the environment is very similar, although you
should remember that a program running under the CLI is part of the
CLI task. If you run your program as a separate task, then it will have no
associated CLI or CLI variables.

Whatever method you choose, you must first create an executable
program, which will almost certainly call the Tripos resident functions
described in the next two chapters.

Note: The terms 'task’and 'process' are synonymous in Tripos.

1.1.1 Creating an Executable Program

A program may be written in any of the supported language translators
running under Tripos (for example, C or Pascal). These translators all
produce Tripos Binary Format files, which are provided as input to the
linker ALINK. The linker takes these files as input, possibly scans a
library, and produces Tripos Load Format files as output. This means
that even if you have written a program in assembler that needs no
runtime library support or combination with any other program, you
must still pass the output of the assembler through ALINK to convert
the file format. Besides scanning the language support library and the
Tripos system library, ALINK requires you to specify a startup file
followed by one or more user-program files, and this is true for linking
programs in most programming languages under Tripos.

1-1

Introduction Tripos Programmer's Reference

1.1.2 Calling Tripos Functions

Two major parts of Tripos are the Kernel and the DOS. There is no
difference in calling either the Kernel or the DOS if you program in C or
BCPL, as the Tripos system library provides a set of interface routines.
So long as you use the standard C initialization code then all the calls are
available to you.

If you wish to program in assembler, you must be aware of the different
call sequences used. To call the Kernel, place the arguments required in
registers D1 to D4 and a function code in DO, and code a TRAP #0. Tripos
then performs the function, returns the result in register D0 and a
secondary result in D1, while preserving the other registers.

To call the DOS, you need to know the library base pointer for the DOS.
To obtain this, call the Kernel routine FindDOS which returns the
pointer for you. Place this pointer into any convenient address register
and then call the offset from the base pointer corresponding to the DOS
function that you need. A set of names is provided in the standard header
file 'tripos.i". These names specify the offsets for the DOS calls as well as
the Kernel function codes.

A full example of assembly language programming is at the end of this
chapter.

1.1.3 Running Programs under the CLI

When you load a program under a CLI you type the name of the program
and a set of arguments. You may also specify input or output redirection
with the '<"and '>' symbols. The CLI sets up two initial file handles for
the program that represent the standard input and output. Unless you
redirect them, the standard input is from the keyboard and the standard
output is to the screen.

When the CLI starts a program, it allocates a stack for that program.
This stack is initially 4000 bytes but you may change the stack size with
the STACK command. Tripos obtains this stack from the general free
memory pool (sometimes referred to as the 'heap’) just before you run a
program,; it is not, however, the same stack as the CLI uses. Tripos

1-2

Tripos Programmer's Reference Introduction

pushes a suitable return address onto the stack that points to a routine to
tell the CLI to regain control and unload your program. Below this on the
stack at 4(SP) is the size of the stack in bytes, which may be useful if you
wish to perform stack checking.

Your program starts with register A0 pointing to the arguments
specified after the command name. Tripos stores the argument line in
memory within the CLI stack and this pointer remains valid throughout
your program. Register DO indicates the number of characters in the
argument line. You can use these initial values to decode the argument
line to find out what the user requires. If you are programming in C, then
the standard C startup file does this work for you and decodes the
arguments into argv and the number of arguments into arge.

While your program is running, it may corrupt any register. Tripos
function calls only corrupt the result registers D0 and D1.

To gain access to the two initial file handles that are set up by the CLI,
you call the DOS functions Input and Output. Remember that you must
find the DOS base pointer first; this can be done by calling the Kernel
function FindDOS. You should not close these file handles within your
program; the CLI opened them on your behalf and it will close them
again, if required. Again, if you are programming in C, the initial file
handles are obtained for you in the startup code and are placed into the
variables stdin and stdout.

1.1.4 Running Programs as a New Task

There are a number of small differences between writing a program to
run under a CLI and writing one to run as a separate task (process).
There are only two ways to create a distinct new task. The first way is to
write a device handler task that is dynamically created when referenced.
To do this you need to use the MOUNT command to set up a reference to
your new task. Writing a device handler task is a specialist activity, and
it is described in more detail in the Tripos Technical Reference
Manual.

1-3

Introduction Tripos Programmer's Reference

The second and more commeon way to create a new task is to generate one
from another program loaded as a CLI command. In this case the CLI
program uses LoadSeg to load the code for the new task, and then creates
a new task (process) by calling CreateProc. To set the new task running,
the CLI command then has to send it an initial packet. Although the CLI
command might then terminate, the new task keeps running until Exit is
called.

A program running as a task finds a suitable return address pushed onto
the stack, as well as the stack size on the stack below that. This is the
same as when you run a program under a CLI. The task is initialized to a
state such that it had just called TaskWait, so that it won't proceed until
it receives a packet. This initial packet is normally sent by the task that
created the new one, and may contain parameters for the new task.
Usually the startup packet is sent back as soon as possible with a return
code in the Resl field of the packet to indicate whether the initialization
worked or not. The startup packet may also pass other information, such
as pointers to shared workspace, and so on.

It is important to note that a program running as a new task has no
default input and output streams. You must ensure that your program
opens any /O channels that it needs, and that it closes them when it
terminates.

1.1.5 Program Termination

To exit from a program running under the CLI or as a task, it is sufficient
to give a simple RTS using the initial stack pointer (SP). In this case, you
should also provide a return code in DO0. This is zero if your program
succeeded, or a positive number otherwise. If you return a non-zero
number then the CLI notices an error. Depending on the current fail
value (set by the command FAILAT), a non-interactive CLI, such as one
running a command sequence set up by the Tripos C command,
terminates. A program written in the C programming language can
simply return from main(), which returns to the startup code, clears DO,
and performs an RTS.

1-4

Tripos Programmer's Reference [ntroduction

Alternatively, a program may call the Tripos function Exit which takes
the return code as argument. This instructs your program to exit no
matter what value the stack pointer has.

It is important to stress at this stage that Tripos does not control any
resources; this is left entirely to the programmer. Any files that a user
program opens must be closed before the program terminates. Likewise,
any locks it obtains must be freed, any code it loads must be unloaded,
and any memory allocated returned to the free pool. Of course, there may
well be cases where you do not wish to return all the resources you
obtained. For example, you may have written a program that loads a
code segment into memory for later use. This is perfectly acceptable, but
you need to have a mechanism for returning any memory, file locks, and
so on. For a normal program a common technique is to provide a
standard tidyup routine that puts back any resources and then calls
Exit(). You then always call tidyup rather than Exit directly.

1.1.6 Example

This simple example prints a prompt to the terminal, waits for the user
to type a response, then prints another message, and echos the response.

To start with, include a standard header file that contains useful
definitions, including the offsets from the base pointer for each DOS
function and the function codes for the Kernel calls:

INCLUDE "tripos.i"

The values of the offsets have the same name as that described in
Chapter 3, "Calling the DOS," but each one is preceded by _LVO
(Library Vector Offset) to distinguish it from the C function entry point.
Set up a macro to call the DOS to make the program more readable:

CALL MACRO

JSR _LVO\1(A2)
ENDM

1-5

Introduction Tripos Programmer's Reference

You are now ready to start the program. First, find the DOS base pointer
by calling the Kernel via a TRAP instruction:

MOVEQ #K_FindDOS,D0 Kernel function code
TRAP #0 No arguments
MOVEA.L DO,A2 DOS base pointer in AQO

You'll need to locate the channels that represent the standard input and
output. If the program has been invoked under the Command Line
Interface (CLI), then the calls Input and Qutput return the file handles
associated with these channels. If you run the program as a task, you'll
need to open a specific I/O channel. This complexity is not covered here.
Next, save the file handles in D7 and D6:

CALL Input
MOVE.L DO,D7 D7 holds stdin
CALL Output
MOVE.L DO ,D6 D6 holds stdout

Load the string for the prompt into A0 and branch to a small subroutine
that prints the text held in A0. This example uses the convention that
the length of the string is held in the initial byte pointed at by AO.

LEA.L PROMPT, A0 String ptr
BSR.S WRSTR Print message

Next, read in the string typed by the user. Set A3 to point to the buffer
for the characters, and then place this in D2 ready for the read. Add one
to the buffer pointer to skip the length count that you are going to place
in the initial byte. The file handle for the standard input comes from D6
into D1 for the call, and D3 holds the buffer size. Then call Read to read
the characters from the keyboard. The operating system call returns
when the buffer is full or when the user presses RETURN. Tripos also
handles character reflection and rubout. When the call returns, the
number of characters read is in D0, and this is placed in the byte pointed
at by A3. This ensures that the string just entered has the same format
as your other strings with the length of the string in the first byte.

1-6

Tripos Programmer's Reference

Introduction

LEA.L BUFFER,A3
MOVE.L D7,D1
MOVE.L A3,D2
ADDQ.L #1,D2
MOVEQ #30,D3
CALL Read
MOVE.B DO, (A3)

Get name buffer

Use stdin handle
Read buffer pointer
Skip length byte
Maximum name size
Fetch name

Insert length

Now print the next two strings. The first is the standard message; the
second is the string just read from the keyboard.

LEA.L MESS,AQ
BSR.S WRSTR
LEA.L BUFFER,AQ
BSR.S WRSTR

String ptr
Print message
Ptr to name
Print message

To terminate the program, call the Tripos function Exit. This function
exits the program with the return code in D1. Use a non-zero return code
if you cannot open the Tripos library.

MOVEQ #0,D1 Zero return code

EX CALL Exit

ERR MOVEQ #20,D1 Non zero return code
BRA.S EX

This subroutine is used to print a string on the console. A string in this
case is represented by a byte containing the length followed by the
characters involved. A0 is the pointer to the string and D7 holds the file
handle for the standard output, which is moved to D1 for the call. The
length byte is extracted and placed into D3, while the updated value of
A0 is used as the buffer pointer in D2. You can then call Write to do the
work for you and finally return to the caller.

1-7

Introduction Tripos Programmer's Reference

WRSTR MOVE.L D6,D1 Stdout file handle
MOVEQ #0,D3 Clear length register
MOVE.B (a0)+,D3 Get byte length of string
MOVE.L AQ,D2 String is write buffer
CALL Write
RTS

The data statements define the space for the character buffer and the
prompt strings, which are preceded by a length byte.

DATA

BUFFER DS.B 1
DS.B 30

MESS DC.B 6, 'Hello '

PROMPT DC.B 18, 'Enter your name : '
END

1.2 Tasks

Tripos tasks fall into four main types

- device handler
- CLI

- debug

- user tasks

The first two are always present, whereas the third and fourth are
usually, but not always, included. All tasks are, in fact, identical in
construction, although they are different in what they do. All four types
of task are described below.

1-8

Tripos Programmer's Reference Introduction

1.2.1 Device Handler Tasks

Very few application programs communicate directly with a device
driver, instead they communicate through a device handler and the
device handler then talks to the device driver.

Some device handlers are really very simple as all they do is provide the
standard set of Read and Write, Open and Close calls for the device they
are associated with. For example, the serial line handler task takes
Read requests and passes them on to the serial device and, in the same
way, it accepts and handles Write requests. More importantly, a device
handler task stops two programs trying to use the serial line at the same
time.

At the other end of the spectrum is the file system task which, again, is a
device handler task. This is really quite complicated because it provides
a set of Open, Read, and Write functions for files, supports the
hierarchical file system of Tripos, and maps all of this to calls to Read
and Write sectors off the disk via the device driver.

There are many task handlers: the serial line task handler, the parallel
port task handler, file system task handler, and the console task handler.
The console task supports the standard console, which, if it is connected
to a serial line, supports character reflection, rubout, and echo.
Alternatively, the console task may be connected to a built-in screen and
keyboard.

You can have multiple invocations of any of these tasks. For example, if
you have three different disks on your machine, then you have three
invocations of the file system handler task, which all share the same
code.

1-9

Introduction Tripos Programmer's Reference

1.2.2CLI

The second type of task within the Tripos system is the CLI task. CLI
stands for the Command Line Interpreter. This task communicates with
the user: it asks for the names of programs to be run, loads them from
disk, and executes them. As with other tasks, you may create multiple
invocations of the CLI task with the NEWCLI command.

1.2.3 Debug

The Debug task is not always in the system, but if it is, it is a
permanently resident system debugger. The user can connect to this
task and obtain debugging information about the system.

1.2.4 User Tasks

User tasks are created by a CLI program and can take any form required.
They normally send and receive packets in which information is passed.
They may call the standard device handler tasks or they may send
packets directly to devices. For example, a user task might be a
background print spooler created for a word processing package.

1.3 Packets

This section is complex and need only be read by an advanced
programmer who wishes to learn about the fundamental internal
workings of the Tripos operating system. It is not essential, therefore, to
read this before starting to program under Tripos.

Communication between tasks and between task and devices is achieved
by sending special messages, called packets. (Other systems may call
packets 'messages’, but the principle is the same.) To send a packet to
another task, you allocate a piece of memory and initialize certain fields
within it. All packets in Tripos have standard structure as follows. A
packet must be long word aligned, and has the following general
structure.

1-10

Tripos Programmer's Reference Introduction

Value Function Description

BPTR pktLink Link to next packet on
chain

LONG PktDest Destination

LONG PktType Packet type

LONG Resl First result field
LONG Res?2 Second result field
LONG Argl Argument; depends on packet type
LONG Arg2 Argument; depends on packet type
LONG ArgN Argument; depends on packet type

The format of a specific packet depends on its type; but in all cases, it
contains a link field which should be set to -1, the identity of the
destination, the packet type and two result fields. When Tripos sends a
packet, the destination field is overwritten with the task identifier of the
sender so that the packet can be returned.

If the destination is a Tripos device handler task or device driver, then
the packet contains a value in the PktType field which indicates an
action to be performed, such as reading some data. The argument fields
contain specific information such as the address and size of the buffer
where the characters go.

1.3.1 QPkt and TaskWait

Packets are moved from one task to another, or from a task to a device
driver, by the system primitive routine called QPkt. This transmits the
packet to the destination by simply copying a pointer to the space. The
packet itself is not physically moved. It is clear that, having sent a
packet, a routine really expects to get it back because it owns the piece of
memory. Although it is not strictly required, it is usual that whenever a
packet is sent, the sender expects the packet to return, normally with a
reply in it.

A task can pick up any packets that are waiting for it by calling a routine
called TaskWait. The TaskWait routine looks to see if there is a packet

waiting for that task. There can be many packets waiting for a single

1-11

Introduction Tripos Programmer's Reference

task. These packets are automatically queued by the system. The
TaskWait routine gets the next packet from this queue. If there isn't a
packet waiting, TaskWait puts the task to 'sleep.' In this state the task
does not run; it just waits for something to happen and gives another task
a chance to run.

While a packet is 'away’ at another task or device the memory which
represents the packet must not be altered by the sender. After a call to
QPkt and before a call to TaskWait has returned the packet is under the
control of the recipient, and the sender should only alter (or deallocate)
the message space once the packet has been sent back.

1.3.2 Device Handlers

As described earlier, each device under Tripos consists of two parts: a
device handler and a device driver. A call such as Read is implemented
by sending a packet to the device handler and this mechanism is
described in more detail here.

First of all a CLI task calls the function Read. Then the Read function
queues a packet to the device handler task that handles that particular
device (for example, if the I/O refers to a disk file, a packet is sent to the
file system task). The message has a standard form that can be roughly
translated as: "Read these bytes into this buffer which is so long.” The
CLI task then immediately calls TaskWait to wait for the reply to the
message. In the meantime, the handler task, which has been waiting for
some work, wakes up with a message that says something like "These
bytes are required.” The handler task does the work that needs to be
done and it either fulfils the request or it does not; it returns the packet
to the CLI task anyway to say whether it worked or not. This scheme
means that although the majority of programs perform synchronous I/O
(in other words, they call Read which goes QPkt followed immediately by
TaskWait()), it is not a requirement and it is perfectly possible to handle
asynchronous I/0. In this case the application program simply queues a
packet containing the read request to start the Read function and then
carries on doing something else. At a later point the application must
call TaskWait to pick up the reply. The actual packet types which must
be sent are described in more detail in the next section.

1-12

Tripos Programmer's Reference Introduction

1.3.3 Device Handler Packet Types

Tripos supports the following packet types to be sent to device handlers.
Not all types are valid to all handlers, for example a rename request is
only valid to handlers supporting a filing system. For each packet type
the arguments and results are described. The actual decimal code for
each type appears next to the symbolic name. In all cases, the Res?2 field
contains additional information concerning an error (indicated by a zero
value for Resl in most cases). To obtain this additional information, you
can call [oErr when making a standard Tripos call.

Open 0Old File

Type LONG Action.FindInput (1005)
Argl BPTR FileHandle

Arg2 BPTR Lock

Arg3 BSTR Name

Resl LONG Boolean

Attempts to open an existing file for input or output (see the function
Open in Chapter 2, "Calling Tripos," of the Tripos Programmer's
Reference Manual for further details on opening files for [/O). The file
is opened with a shared (read) lock so that other tasks may read from the
same file.

To obtain the value of lock, you call DeviceProc to obtain the handler
taskid (processid) and then [oErr which returns the lock. Alternatively
the lock and taskid can be obtained directly from the DevInfo structure.
Note that the lock refers to the directory owning the file, not to the file
itself.

The caller must allocate and initialize FileHandle. This is done by
clearing all fields to zero except for the CharPos and BufEnd fields which
should be set to -1. The ProcessID field within the FileHandle must be set
to the processid of the handler task.

The result is zero if the call failed, in which case the Res2 field provides
more information on the failure and the FileHandle should be released.

1-13

Introduction Tripos Programmer's Reterence

Open 0Old File Exclusive

Type LONG Action.FindUpdate (1004)
Argl BPTR FileHandle

Arg2 BPTR Lock

Arg3 BSTR Name

Resl LONG Boolean

Arguments as for previous entry, except that the file is locked with an
exclusive (write) lock. This is useful for an application such as a
database, where the file must not be altered by any other task.

Open New File

Type LONG Action.FindOutput (1006)
Argl BPTR FileHandle

Arg? BPTR Lock

Arg3 BSTR Name

Resl LONG Boolean

Arguments as for previous entry, except that the file is created if it did
not exist.

Read

Type LONG Action.Read (82)
Argl BPTR FileHandle Argl
Arg?2 APTR Buffer

Arg3 LONG Length

Resl LONG Actual Length

To read from a file handle, the task id is extracted from the ProcessID
field of the file handle, and the Argl field from the handle is placed in the
Argl field of the packet. The buffer address and length are then placed in
the other two argument fields. The result indicates the number of
characters read; see the function Read for details. An error is indicated
by returning -1 whereupon the Res2 field contains more information.

1-14

Tripos Programmer's Reference Introduction

Write

Type LONG Action.Write (87)
Argl BPTR FileHandle Argl
Arg2 APTR Buffer

Arg3 LONG Length

Resl LONG Actual Length

The arguments are the same as those for Read. See the Write function for
details of the result field.

Close

Type LONG Action.End (1007)
Argl BPTR FileHandle Argl
Resl LONG TRUE

You use this packet type to close an open file handle. The task id of the
handler is obtained from the file handle. The function normally returns
TRUE. After a file handle has been closed, the space associated with it
should be returned to the free pool.

Seek

Type LONG Action.Seek (1008)
Argl BPTR FileHandle Argl
Arg?2 LONG Position

Arg3 LONG Mode

Resl LONG OldPosition

This packet type corresponds to the SEEK call. It returns the old
position, or -1 if an error occurs. The task id is obtained from the file
handle.

Introduction Tripos Programmer's Reference

WaitChar

Type LONG Action.WaitChar (20)
Argl LONG Timeout

Resl LONG Boolean

This packet type implements the WaitForChar function. You must send
the packet to a console handler task, with the timeout required in Argl.
The packet returns when either a character is waiting to be read, or
when the timeout expires. If the result is TRUE, then at least one
character may be obtained by a subsequent READ.

ExamineObject

Type LONG Action.ExamineObject (23)
Argl BPTR Lock

Arg2 BPTR FileInfoBlock

Resl LONG Boolean

This packet type implements the Examine function. It extracts the task
id of the handler from the ProcessID field of the lock. If the lock is zero,
then it uses the default file handler, which is kept in the FiHand field of
the task. The result is zero if it fails, with more information in Res2. The
FileInfoBlock returns with the name and comment fields as BSTRs.

ExamineNext

Type LONG Action.ExamineNext (24)
Argl BPTR Lock

Arg2 BPTR FileInfoBlock

Resl LONG Boolean

This call implements the ExNext function, and the arguments are
similar to those for Examine above. Note that the BSTR representing the
filename must not be disturbed between calls of ExamineObject and
different calls to ExamineNext, as it uses the name as a place saver
within the directory being examined.

1-16

Tripos Programmer's Reference Introduction

DiskInfo

Type LONG Action.DiskInfo (25)
Argl BPTR InfoData

Resl LONG TRUE

This implements the Info function. A suitable lock on the device would
normally obtain the task id for the handler. This packet can also be sent
to a console handler task, in which case the Volume field in the [nfoData
contains the window pointer for the window opened on your behalf by the
console handler.

Parent

Type LONG Action.Parent (29)
Argl BPTR Lock

Resl LONG ParentLock

This packet returns a lock representing the parent of the specified lock,
as provided by the ParentDir function call. Again it must obtain the task
id of the handler from the lock, or from the Fihand field of the current
task if the lock is zero.

DeleteObject

Type LONG Action.DeleteObject (16)
Argl BPTR Lock

Arg? BSTR Name

Resl LONG Boolean

This packet type implements the Delete function. It must obtain the lock
from a call to IoErr() immediately following a successful call to
DeviceProc which returns the task id. The lock actually refers to the
directory owning the object to be deleted, as in the the Open New and
Open Old requests.

1-17

Introduction Tripos Programmer's Reference

CreateDir

Type LONG Action.CreateDir (22)
Argl BPTR Lock

Arg2 BSTR Name

Resl BPTR Lock

This packet type implements the CreateDir function. Arguments are the
same as for DeleteObject. The result is zero or a lock representing the
new directory.

LocateObject

Type LONG Action.LocateObject (8)
Argl BPTR Lock

Arg2 BSTR Name

Arg3 LONG Mode

Resl BPTR Lock

This implements the Lock function and returns the lock or zero.
Arguments as for CreateDir with the addition of the Mode as arg3. Mode
refers to the type of lock, shared or exclusive.

CopyDir

Type LONG Action.CopyDir (19)
Argl BPTR Lock

Resl BPTR Lock

This implements the DupLock function. If the lock requiring duplication
is zero, then the duplicate is zero. Otherwise, the task id is extracted
from the lock and this packet type sent. The result is the new lock or zero
ifan error was detected.

Tripos Programmer's Reference Introduction

FreeLock

Type LONG Action.FreeLock (15)
Argl BPTR Lock

Resl LONG Boolean

This call implements the UnLock function. It obtains the task id from the
lock. Note that freeing the zero lock takes no action.

SetProtect

Type LONG Action.SetProtect (21)
Argl Not used

Arg?2 BPTR Lock

Arg3 BSTR Name

Arg4 LONG Mask

Resl LONG Boolean

This implements the SetProtection function. The lock is a lock on the
owning directory obtained from DeviceProc as described for DeleteObject
above. The least significant four bits of 'Mask' represent Read, Write,
Execute, and Delete in that order. Delete is bit zero.

SetComment

Type LONG Action.SetComment (28)
Argl Not used

Arg2 BPTR Lock

Arg3 BSTR Name

Arg4 BSTR Comment

Resl LONG Boolean

This implements the SetComment function. Arguments as for SetProtect
above, except that arg4 is a BSTR representing the comment.

Introduction Tripos Programmer's Reference

RenameOb ject

Type LONG Action.RenameObject (17)
Argl BPTR FromLock

Arg2 BPTR FromName

Arg3 BPTR ToLock

Arg4 BPTR ToName

Resl LONG Boolean

This implements the Rename function. It must contain an owning
directory lock and a name for both the source and the destination. The
owning directories are obtained from DeviceProc as mentioned under the
entry for DeleteObject.

Inhibit

Type LONG Action.Inhibit (31)
Argl LONG Boolean

Resl LONG Boolean

This packet type implements a filing system operation that is not
available as a Tripos call. The packet contains a Boolean value
indicating whether the filing system is to be stopped from attempting to
verify any new disks placed into the drive handled by that handler task.
If the Boolean is true, then you may swap disks without the filesystem
task attempting to verify the disk. While disk change events are
inhibited, the disk type is marked as "Not a DOS disk” so that other
tasks are prevented from looking at the disk.

If the Boolean is false, then the filesystem reverts to normal after having
verified the current disk in the drive.

This request is useful if you wish to write a program such as DISKCOPY
where there is much swapping of disks that may have a half completed
structure. If you use this packet request then you can avoid having error
messages from the disk validator while it attempts to scan a half
completed disk.

1-20

Tripos Programmer's Reference Introduction

RenameDisk

Type LONG Action.RenameDisk (9)
Argl BPTR NewName

Resl BPTR Boolean

Again, this implements an operation not normally available through a
function call. The single argument indicates the new name required for
the disk currently mounted in the drive handled by the file system task
where the packet is sent. The volume name is altered both in memory
and on the disk.

Flush
Type LONG Action.Flush (27)

This packet type implements another operation not normally available
through a function call. It tells the filing system to write out any cached
blocks and to turn off the disk light. This call is useful in an application
program such as a database where the program wishes to make sure that
the disk really has been updated.

GetParameters
Type LONG Action.GetParameters (991)
Argl BPTR Parameter buffer

The buffer structure of the argument is as follows:

1-21

Introduction Tripos Programmer's Reference

Value Function Description

LONG Width The terminal width

BOOL Tab Software tab expansion flag
(TRUE = ON, FALSE = OFF)

LONG Process Process switching code or 0 if
turned off

LONG PageLengthHeight of the terminal screen

in lines
LONG TabStop Tab expansion size if expansion
flag is ON
BOOL AutoNL Automatic \n at end of line flag
BOOL IFC Input flow control enabling flag

This packet type will return from a console handler the currently set
values of the parameters as shown above.

SetParameters
Type LONG Action.SetParameters (990)
Argl BPTR Parameter buffer

The buffer structure of the argﬁment is as shown above under
GetParameters

This packet type will set the parameters given in the buffer as the
current working parameters in a console handler.

Act.SC.Mode
Type LONG Act.SC.Mode (994)
Argl BOOL Single character mode flag

The single argument indicates to a console handler what mode all
subsequent read or write requests will be performed in for the issuing
task. If the argument is TRUE, the console handler is placed into single
character mode. In single character mode all output requests are sent to

1-22

Tripos Programmer's Reference Introduction

the screen untranslated by any options that may be in effect at the time.
This also means that read requests are returned as soon as the requested
buffer is full (that is, not when the user presses RETURN).

1.3.4 Device Drivers

Packets are also used to communicate between tasks and devices. The
device handler task needs to communicate with its associated device
driver and it does this by sending packets. In much the same way as an
application program creates a packet and sends it to a device handler,
the device handler receives packets from a program, creates further
packets, and sends these to the device driver. The device driver never
creates any packets; it receives packets from the handler and sets up an
I/0 request to the hardware to perform this action. For example, when a
disk device driver receives a request to read data from the disk, it sets up
the hardware to start doing the read. It does not send the packet back
because the read has not finished yet. When the device driver has set up
the request some other task within the system is free to execute.
Eventually, the device driver fields an interrupt. Hopefully it is the
interrupt saying that the read has completed; in which case the device
driver takes the packet in question, puts the return code into it, and
sends the packet back. As far as the device handler task is concerned, it
sends a packet to the device driver and gets the packet when the job is
done.

1.3.5 Device Driver Packet Types

Packets sent to a device have the following general structure.

1-23

Introduction Tripos Programmer's Reference

Field Name Description

0 Link Link to another packet

4 Taskid Task identifier of sender
8 Type Command type

12 Resl Primary result

16 Res2 Secondary result

20 Unit Unit number

24 Buffer Pointer to buffer area
28 Size Size of buffer area

32 Offset Byte offset

The standard command types are Read, Write, and Reset. All devices
support at least these three types. The value of byte offset is usually only
used by devices such as disks, and specifies the offset in bytes where the
read or write is to start. The value of Resl is normally the actual number
of bytes read or written. If it is zero then an error has occurred, and more
information is available in Res2.

Specific Device Commands and Arguments
Serial line

Command: GetParam
Buffer: Baud Rate Long
300, 9600, etc
Parity Long
O=none, l=0dd,2=even, 3=space, 4=mark
Data bits Long
5, 6, 7, or 8
Stop bits Long
0=1 bit, 1=1.5 bits, 2=2 bits

Used to get the buffer.

1-24

Tripos Programmer's Reference Introduction

Command: SetParam
Buffer: Baud Rate Long
300, 9600, etc
Parity Long
0=none,l=0dd,2=even, 3=space,4=mark
Data bits Long
5, 6, 7 or 8
Stop bits Long
0=1 bit, 1=1.5 bits, 2=2 bits

Used to set the parameters for a serial device.
Disk

Command: FormatTrack
Buffer: not used

Used to format an entire track, destroying any previous information.

Command: Status

Buffer: not used

Resl: 0 if disk in drive, 1 if disk read only,
2 if disk if disk not ready

Determines whether there is a disk in the drive or not. Ideally, this
request is sent by the file system and only returns when a disk is inserted
or removed. However, as some hardware may not be capable of
supporting this, the packet may be returned at once with the current
status of the disk. The packet is sent again every 3 seconds or so, and
each time the device must determine whether a disk is in the drive or
not.

Command: MotorOff
Buffer: not used

Used to turn the motor and the associated drive select light on a floppy

disk off. It may be ignored for a hard disk. When the select light is off,
you may remove the disk from the drive.

1-25

Chapter 2: Calling the Kernel

This chapter describes the functions provided by the Tripos kernel. To
help you, it provides the following: an explanation of the syntax, a full
description of each function, and a quick reference card of the available
functions.

Table of Contents

2.1 Syntax
2.2 Kernel Functions

Quick Reference Card

Tripos Programmer's Reference Calling the Kernel

2.1 Syntax

The syntax used in this chapter shows the C function call for each Tripos
function and the corresponding register you use when you program in
assembler.

1. Register values

The letter/number combinations (D0...Dn) represent registers. The text
to the left of an equals sign represents the result of a function. A register
(that is, D0) appearing under such text indicates the register value of the
result. Text to the right of an equals sign represents a function and its
arguments, where the text enclosed in parentheses is a list of the
arguments. A register (for example, D2) appearing under an argument
indicates the register value of that argument.

Note that not all functions return a result, and not all functions take an
argument.

2. Case

The letter case (that is, lower or upper case) IS significant. For example,
you must enter the word 'GetMem' with the first letter of each component
word in upper case.

3. Boolean returns

Non-zero (TRUE or SUCCESS), zero (FALSE or FAILURE).

4. Values

All values are longwords (that is, 4 byte values or 32 bits).

2-1

Calling the Kernel Tripos Programmer's Reference

5. Code, Format, Argument, and Result

'‘Code:' introduces the function code. 'Argument:’ and 'Result:’ provide
further details on the syntax used after 'Format:' Result describes what
is returned by the function (that is, the left of the equal sign). Argument
describes what the function expects to work on (that is, the list in
parentheses). Figure 2-A should help explain the syntax.

Format of function result = Function({ argument)
Register Register
Example vector := GetMem(size)
DO D1

Figure 2-A: Format of Functions and Registers

When calling kernel functions (routines) in C, use the call sequence as
shown above. When calling in Assembler, place the arguments in the
registers as shown and place the function code (the number listed after
'Code:") in DO. Then perform TRAP #0. Results are returned in D0 and
D1; all other registers are preserved.

If a function fails, it returns the value 0 to DO and outputs the relevant
error code to D1.

2.2 Kernel Functions

This reference section describes the functions provided by the Tripos
kernel. Each function is arranged alphabetically under the following
headings: Memory Management, Task Management, Device
Management, Message Passing, and Miscellaneous. These headings
indicate the action of the functions they cover. Under each function
name, there is a brief description of the function's purpose, a
specification of the format and the register values, a fuller description of
the function, and an explanation of the syntax of the arguments and
result.

2-2

Tripos Programmer's Reference Calling the Kernel

Memory Management

FreeMem
Purpose: To free memory previously acquired by GetMem.
Code: 2
Form: FreeMem(vector)

D1
Argument : vector = address of a block of memory
Description:

A pointer to a vector allocated by GetMem is passed as argument. An
attempt to free a vector which does not appear to have been allocated by
GetMem results in the aborting of the issuing task. A call of
Freemem(0) is permissable and has no effect.

See also: GetMem
GetMem
Purpose: To allocate memory from the system.
Code: 1
Form: vector := GetMem(size)
DO D1
Argument: size = size in bytes
Result: vector = address of space allocated

2-3

Calling the Kernel Tripos Programmer's Reference

Description:

The size of the required vector is passed as argument. The result is zero if
the call failed; otherwise it is a pointer to an area of memory with bytes
numbered from 0 to size -1.

It is possible that this routine might detect the corruption of free
memory, caused, for example, by a previous program. In this case a

system abort occurs.

See also: FreeMem

Task Management

AddTask

Purpose: To add a new task.
Code: 3
Form:

taskid =

DO
AddTask(segvec, stacksize, pri, name)
D1 D2 D3 D4

Argument: segvec - pointer to a segment vector

stacksize - integer
pri-integer
name - string

Result: taskid - task identifier

2-4

Tripos Programmer's Reference Calling the Kernel

Description:

AddTask creates a task with the name ‘name'. That is to say, AddTask
allocates a task control structure from the free memory area and then
initializes it.

AddTask takes a pointer to a segment vector as the argument 'segvec'.
This points to the sections of code that you intend to run as a new task,
and includes the shared system library segment as well as the segment
containing the code for the new task.

'stacksize’ represents the size of the root stack in bytes when AddTask
activates the task. 'pri' specifies the required priority of the new task.
The result is the task identifier of the new task, or zero if the routine
failed.

The argument 'name’ specifies the task name.

A zero return code implies an error of some kind.

Note: You would normally use CreateProc instead.

See also: ChangePri, RemTask

ChangePri

Purpose: To change the priority of a task.

Code: 35

Form: res := ChangePri(taskid, newpriority)
DO D1 D2

Argument: taskid = task identifier

newpriority = new priority

2-5

Calling the Kernel Tripos Programmer's Reference

Description:

The routine is passed the task number of the task which is to have its
priority changed. The priority that the specified task is to adopt is passed
as newpriority; this is a positive number. Lowest priority tasks have
small numbers; for example, any task created by the RUN command has
a priority around 500 while a CLI has a priority around 1000. The result
is non-zero if it worked. Calling this routine may cause a change of
current task.

See also: AddTask, RemTask

Forbid

Purpose: To disallow task rescheduling.
Code: 6

Form: Forbidy{()

Description:

A task which issues Forbid stops any other task from running. It is as
though every other task in the system had been held (see also Permit and
Hold).

Once a task has issued Forbid, it cannot, for example, perform any I/O as
this requires another task to run. The main use of Forbid and Permit is
to enclose a piece of code which manipulates a shared datastructure. You
can ensure that two programs do not alter the same datastructure at the
same time (with disastrous consequences) by surrounding the sensitive
code with a Forbid/Permit pair.

See also: Permit, Hold

2-6

Tripos Programmer's Reference Calling the Kernel

Hold

Purpose: To place a task into HELD state. .
Code: 9
Form: result := Hold(taskid)
DO D1
Argument: taskid = task identifier
Description:

Hold places the specified task into held state. The task will perform no
work until it is released. The result is non-zero if the routine worked.

See also: Release

Permit

Purpose: To allow task rescheduling.
Code: 5

Form: Permit ()

Description:

Permit undoes the effect of Forbid. You may only use Permit after using
Forbid.

See also: Forbid

2-7

Calling the Kernel Tripos Programmer's Reference

Release

Purpose: To place a task in an unHELD state.

Code: 10

Form: result := Release{ taskid)
DO D1

Argument : taskid = task identifier

Description:

Release reverses the effect of Hold. That is to say, it releases a held task
and allows it to run. The result is non-zero if the call worked.

See also: Hold

RemTask

Purpose: To remove a task from the system.

Code: 4

Form: res := RemTask(taskid)
DO D1

Argument: taskid = task identifier

Description:

The task specified by the taskid is deleted if possible. It is only possible to
delete tasks which have an empty work queue (that is, which have no
packets waiting to be extracted via TaskWait). In addition, only the
current task or a task which is 'dead’ may be deleted.

2-8

Tripos Programmer's Reference Calling the Kernel

The result is non-zero if the deletion worked - the returned value will not,
of course, be available if the current task is being deleted. A value of zero
indicates an error.

See also: AddTask, EndTask
SetFlags
Purpose: To set attention flags.
Code: 36
Form: result := SetFlags(taskid, mask)
DO D1 D2
Argument: taskid = task identifier of task in which to set flags

mask = bit mask of flags set
Description:

The id of the task whose flags are to be set is passed, along with a mask
indicating which flags are to be set. A binary 1 indicates selection, 0
otherwise. Four flags are available, corresponding to the action of
CTRL-C to CTRL-F typed at the task. The result is non-zero if the flags
have been set as requested.

See also: TestFlags

2-9

Calling the Kernel Tripos Programmer's Reference

SuperMode

Purpose: To enter supervisor mode.
Code: 7

Form: SuperMode()
Description:

The current task is set into supervisor state.

See also: UserMode

TestFlags

Purpose: To test the task's flag word.

Code: 17

Form: result := TestFlags(mask)
DO D1

Argument: mask = bit mask of flags to test

Result: result = mask of flags which are set

Description:

The argument 'mask’ indicates the selection of flags to be tested. A
binary 1 indicates selection, 0 otherwise. There are four flags available,
corresponding to CTRL-C to CTRL-F typed at the terminal, or set via
SetFlags.

The result is TRUE if at least one of the selected flags is set. Register D1
then holds the result of ANDing the contents of the flagword (prior to
testing), with the specified mask. The result is FALSE if none of the
selected flags is set. All selected flags are cleared.

2-10

Tripos Programmer's Reference Calling the Kernel

[t is normal for all programs written under Tripos to call TestFlags(1) at
suitable points to determine if the user has pressed CTRL-C. If the
routine returns TRUE then the program should normally terminate
after issuing an appropriate message.

See also: SetFlags
UserMode

Purpose: To exit to user mode.
Code: 8

Form: UserMode ()
Description:

UserMode lets you put the task back into user mode after using
SuperMode.

See also: SuperMode

2-11

Calling the Kernel Tripos Programmer's Reference

Device Management

AddDevice

Purpose: To add a new device to the system.

Code: 19

Form: deviceid := AddDevice(address)
DO D1

Argument: address = DCB address

Result: deviceid = device identifier

Description:

AddDevice initializes the device associated with the Device Control
Block (DCB). It initializes the interrupt vectors specified inthe DCB, and
calls the device Open entry point. The deviceid is zero if AddDevice fails;
otherwise it is the device identifier.

See also: RemDevice

RemDevice

Purpose: To remove a device from the system.
Code: 20

Form: RemDevice(deviceid)

D1

2-12

Tripos Programmer's Reference Calling the Kernel

Argument : deviceid = device identifier

Description:

The device identifier from a previous call of AddDevice is the deviceid.
RemDevice calls the device Close entry point, and resets the interrupt

vector associated with the device.

See also: AddDevice

Message Passing

DQPkt
Purpose: To reclaim a packet.
Code: 43
Form: bool := DQPkt(packet, id)
D1 D2

Argument: packet = packet address

id = task/device identifier
Result: bool = boolean return
Description:

The routine is passed the id of a task or device whose work queue is
searched first for the packet specified as 'packet’. The result is True if
the packet is reclaimed; otherwise it is False (for example, if the packet
is not on the queue).

See also: QPkt, TaskWait, TestWkQ

2-13

Calling the Kernel Tripos Programmer's Reference

FindTask

Purpose: To return the identity of the current task.
Code: 21

Form: tcbhb := FindTask()

Result: tcb = current task control block
Description:

The routine returns the current task control block, which is used as a
parameter to many of the kernel calls.

See also: QPkt, TestWkQ

QPkt

Purpose: To send a message.

Code: 12

Form: result := QPkt(packet, senderid)
DO D1 D2

Argument: packet = address of packet

senderid = identifier of sender
Description:

This routine is central to the action of Tripos. The packet is merely a
pointer to a block of memory with certain fields used to hold specific
items of information. The format of packets to be sent to specific device
handlers and tasks, as well as a general description of packets, are
provided in Chapter 1 of this manual.

2-14

Tripos Programmer's Reference Calling the Kernel

All fields in a packet are longwords, and the packet structure must be
longword aligned. This can be achieved by either using space obtained by
a call to GetMem, or by ensuring that only longword values are declared
on the stack from which the packet has been obtained.

The first element is used by the system as a link field, and must be set,
before the call to QPkt, to -1. Note that when a packet is returned by
TaskWait the value -1 is replaced in this field.

The second element must indicate the destination. This is positive for a
task and negative for a device. The timer device always has the identity
-1. This field will be replaced by the value given as senderid, so that the
packet will be returned to the sender. This value may refer to some other
task if required but this will cause the packet to be returned to another
task which must be expecting this. Normally the value specified as
senderid will be the identity of the current task or device. For a task, this
is obtained from the id field of the current TCB. The current TCB is
returned from a FindTask kernel call.

The third element in a packet is used to hold a type code while the next
two elements are used as result fields and the rest are used as argument
fields.

The result will be non-zero if the packet was sent successfully, and the
first element of the packet will be set to a value other than -1. The second
element will be set to the issuing task's id. Calling this routine may
cause a change of current task. An error occurs if the first element is not
equal to -1 or if the destination is invalid.

See also: DQPkt, FindTask, TaskWait, TestWkQ

2-15

Calling the Kernel Tripos Progsrammer's Reference

TaskWait
Purpose: To wait for the next packet to arrive at the task.
Code: 41
Form: packet := TaskWait()

DO
Result: packet = address of next packet arriving at this task
Description:

The routine checks to see if there is a packet waiting for this task; if so,
the packet is removed from the work queue and returned as the result. If
the task queue is empty, then the routine waits indefinitely for a packet
to arrive. When it does, the address of the packet is returned as the
result. The packet link field is cleared to -1, and the destination field of
the packet will have been set to the identity of the packet sender. Thus
the packet returned from TaskWait is ready to be returned to the sender
via the QPkt call.

See also: DQpPkt, QPkt, TestWkQ

TestWkQ

Purpose: To test if there is anything on the work queue.
Code: 14
Form: bool := TestWkQ(tcb)
D1
Argument: tcb = task control block
Result: bool = boolean return

2-16

Tripos Programmer's Reference Calling the Kernel

Description:

The result is TRUE if there is a packet waiting on the work queue of the
task specified as the argument; otherwise it is FALSE. This is useful
when a program wishes to detect whether an event has happened, rather
than waiting indefinitely for the event to occur.

See also: DQPkt, FindTask, QPkt, TaskWwait

Miscellaneous

FindDOS

Purpose: To return the DOS library base pointer.
Code: 18
Form: address := FindDOS()

DO
Result: address = address of DOS library
Description:

This function returns the base library pointer, which is used to call any
of the functions listed in the next chapter.

2-17

Calling the Kernel Tripos Programmer's Reference

RootStruct
Purpose: To return a pointer to the rootnode.
Code: 22
Form: address = RootStruct()

DO
Result: address = address of the rootnode
Description:

This function returns a pointer in the rootnode. For further details of
this structure, see Chapter 3, "Tripos Data Structure," of the Tripos
Technical Reference Manual.

2-18

Tripos Programmer's Reference Calling the Kernel

Quick Reference Card

Memory Management:

FreeMem GetMem

Task Management:
AddTask Permit Supermode
ChangePri Release TestFlags
Forbid RemTask UserMode
Hold SetFlags

Device Management:
AddDevice RemDevice

Message Passing:
DQPkt QPkt TestWkQ
FindTask TaskWait

Miscellaneous:
FindDOS RootStruct

2-19

Calling the Kernel

Tripos Programmer's Reference

AddDevice
AddTask
ChangePri
DQPkt
FindDOS
FindTask
Forbid

FreeMem

GetMem
Hold
Permit
QPkt
Release
RemDevice
RemTask
RootStruct
SetFlags
SuperMode

TaskWait

To add a new device to the system.

To add a new task.

To change the priority of a task.

To reclaim a packet.

To return the DOS library base pointer.
To return current task identity.

To disallow task rescheduling.

To free memory previously acquired
GetMem.

To allocate memory from the system.
To place a task into HELD state.

To allow task rescheduling.

To send a message.

To place a task in an unHELD state.
To remove a device from the system.
To remove a task from the system.
To return a pointer to the rootnode.
To set attention flags.

To enter supervisor mode.

by

To wait for the next packet to arrive at the

task.

2-20

Tripos Programmer's Reference Calling the Kernel

TestFlags To test the task's flag word.
TestWkQ To test if there is anything on the work queue.
UserMode To exit to user mode.

2-21

Chapter 3: Calling the DOS

This chapter describes the functions provided by the Tripos Disk
Operating System (DOS). To help you, it provides the following: an
explanation of the syntax, a full description of each function, and a quick
reference card of the available functions.

Table of Contents

3.1 Syntax
3.2 Tripos Functions

Quick Reference Card

Tripos Programmer's Reference Calling the DOS

3.1 Syntax

The syntax used in this chapter shows the C function call for each Tripos
function and the corresponding register you use when you program in
assembler.

1. Register values

The letter/number combinations (D0...Dn) represent registers. The text
to the left of an equals sign represents the result of a function. A register
(that is, DO) appearing under such text indicates the register value of the
result. Text to the right of an equals sign represents a function and its
arguments, where the text enclosed in parentheses is a list of the
arguments. A register (for example, D2) appearing under an argument
indicates the register value of that argument.

Note that not all functions return a result.

2. Case

The letter case (that is, lower or upper case) IS significant. For example,
you must enter the word 'FileInfoBlock' with the first letter of each
component word in upper case.

3. Boolean returns

-1 (TRUE or SUCCESS), 0 (FALSE or FAILURE).

4. Values
All values are longwords (that is, 4 byte values or 32 bits). Values

referred to as "string” are 32 bit pointers to NULL terminated series of
characters.

3-1

Calling the DOS Tripos Programmer's Reference

5. Format, Argument and Result

Look at 'Argument:’ and 'Result:’ for further details on the syntax used
after 'Format:'. Result describes what is returned by the function (that is,
the left of the equal sign). Argument describes what the function expects
to work on (that is, the list in parentheses). Figure 3-A should help
explain the syntax.

Format of function result = Function(argument)
Register Register
Example lock = CreateDir(name)
DO D1

Figure 3-A: Format of Functions and Registers

3.2 Tripos Functions

This reference section describes the functions provided by the Tripos
Disk Operating System. Each function is arranged alphabetically under
the following headings: File Handling, Task Handling, and Loading
Code. These headings indicate the action of the functions they cover.
Under each function name, there is a brief description of the function's
purpose, a specification of the format and the register values, a fuller
description of the function, and an explanation of the syntax of the
arguments and result. To use any of these functions, you must link with
the DOS library. The DOS library interface routines will be supplied in
the run-time support library for the language you are using (for example,
C = CLIB).

3-2

Tripos Programmer's Reference Calling the DOS

File Handling
Close
Purpose: To close a file for input or output.
Form: Close(file)
D1
Argument: file - file handle
Description:

The file handle 'file’ indicates the file that Close should close. You obtain
this file handle as a result of a call to Open. You must remember to close
explicitly all the files you open in a program. However, you should not
close inherited file handles opened elsewhere.

See also: Open

CreateDir

Purpose: To create a new directory.

Form: lock = CreateDir(name)
DO D1

Argument: name - string

Result: lock - pointer to a lock

3-3

Calling the DOS Tripos Programmer's Reference

Description:

CreateDir creates a new directory with the name you specified, if
possible. It returns an error if it fails. Remember that Tripos can only
create directories on devices which support them, for example, disks.

A return of zero means that Tripos has found an error (such as: disk write
protected), you should then call IoErr(); otherwise, CreateDir returns a
shared read lock on the new directory.

CurrentDir

Purpose: To make a directory associated with a lock the
current working directory.

Form: oldLock = CurrentDir(lock)
DO D1

Argument: lock - pointer to a lock

Result: oldLock - pointer to a lock

Description:

CurrentDir makes current a directory associated with a lock. [t returns
the old current directory lock.

A value of zero is a valid result here and indicates that the current
directory is the root of the initial start-up disk.

See also: Lock

3-4

Tripos Programmer's Reference Calling the DOS

DeleteFile

Purpose: To delete a file or directory.

FPorm: success = DeleteFile(name)
DO D1

Argqument : name - string

Result: success - boolean

Description:

DeleteFile attempts to delete the file or directory 'name'. It returns an
error if the deletion fails. Note that you must delete all the files and any
directories within a directory before you can delete the directory itself.

DupLock

Purpose: To duplicate a lock.

Form: newLock = DupLock({ lock)
DO D1

Argument : lock - pointer to a lock

Result: newLock - pointer to a lock

Description:

DuplLock takes a shared filing system read lock and returns another
shared read lock to the same object. It is impossible to create a copy of a
write lock. (For more information on locks, see under Lock.)

3-5

Calling the DOS

Tripos Programmer's Reference
P

Examine
Purpose:

Form:
Argument:

Result:

Description:

To examine a directory or file associated with a lock.

success = Examine{ lock, FileInfoBlock)
DO D1 D2

lock - pointer to a lock
FileInfoBlock - pointer to a file info block

success - boolean

Examine fills in information in the FileInfoBlock concerning the file or
directory associated with the lock. This information includes the name,
size, creation date, and whether it is a file or directory.

Note: FileInfoBlock must be longword aligned. You can ensure this in
the language C if you use GetMem. (See Chapter 2, "Calling the Kernel,"
for further details on GetMem.)

Examine gives a return code of zero if it fails.

3-6

Tripos Programmer's Reference Calling the DOS

ExNext

Purpose: To examine the next entry in a directory.

Form: success = ExNext(lock, FileInfoBlock)
DO D1 D2

Argument: lock - pointer to a lock

FileInfoBlock - pointer to a file info block
Result: success - boolean
Description:

This routine is passed a lock, usually associated with a directory, and a
FileInfoBlock filled in by a previous call to Examine. The FileInfoBlock
contains information concerning the first file or directory stored in the
directory associated with the lock. ExNext also modifies the
FileInfoBlock so that subsequent calls return information about each
following entry in the directory.

ExNext gives a return code of zero if it fails for some reason. One reason
for failure is reaching the last entry in the directory. However, [oErr()
holds a code that may give more information on the exact cause of a
failure. When ExNext finishes after the last entry, it returns
ERROR__NO__MORE__ENTRIES

So, follow these steps to examine a directory:

1) Use Examine to get a FileInfoBlock about the directory you
wish to examine.

2) Pass ExNext the lock related to the directory and the
FileInfoBlock filled in by the previous call to Examine.

3) Keep calling ExNext until it fails with the error code held in
[oErr() equal to ERROR__NO__MORE__ENTRIES.

3-7

Calling the DOS Tripos Programmer's Reference

4) Note that if you don't know what you are examining, inspect the
type field of the FileInfoBlock returned from Examine to find
out whether it is a file or a directory which is worth calling
ExNext for.

The type field in the FileInfoBlock has two values: if it is negative, then
the file system object is a file; if it is positive, then it is a directory.

Info

Purpose: Returns information about the disk.

Form: success = Info{ lock, Info Data)
DO D1 D2

Argument: lock - pointer to a lock

Info_ Data - pointer to an Info__Data structure
Result: success - boolean
Description:
Info finds out information about any disk in use. 'lock’ refers to the disk,
or any file on the disk. Info returns the Info__ Data structure with

information about the size of the disk, number of free blocks and any soft
errors. Note that Info__Data must be longword aligned.

3-8

Tripos Programmer's Reference Calling the DOS

Input
Form:
file = Input()
DO
Result: file - file handle
Description:

To identify the program's initial input file handle, you use Input.

See also: Output

IoErr

Purpose: To return extra information from the system.
Form: error = IOErr()
DO
Result: error - integer
Description:

I/O routines return zero to indicate an error. When an error occurs, call
this routine to find out more information. Some routines use [oErr(), for
example, DeviceProc, to pass back a secondary result.

3-9

Calling the DOS Tripos Programmer's Reference

IsInteractive

Purpose: To discover whether a file is connected to a virtual
terminal or not.

Form: bool = IsInteractive (file)
DO D1

Argument: file - file handle

Result: bool - boolean

Description:

The function IsInteractive gives a boolean return. This indicates
whether or not the file associated with the file handle 'file’ is connected to
a virtual terminal.

3-10

Tripos Programmer's Reference Calling the DOS

Lock

Purpose: To lock a directory or file.

Form: lock = Lock(name, accessMode)
DO D1 D2

Argument: name - string

accessMode - integer
Result: lock - pointer to a lock
Description:

Lock returns, if possible, a filing system lock on the file or directory
‘name’. If the accessMode is ACCESS READ, the lock is a shared read
lock; if the accessMode is ACCESS _ WRITE, then it is an exclusive write
lock. If Lock fails (that is, if it cannot obtain a filing system lock on the
file or directory) it returns a zero.

Note that the overhead for doing a Lock is less than that for doing an
Open, so that, if you want to test to see if a file exists, you should use
Lock. Of course, once you've found that it exists, you have to use Open to
open it.

3-11

Calling the DOS Tripos Programmer's Reference

Open
Purpose: To open a file for input or output.
Form: file = Open(name, accessMode)
DO D1 D2
Argument: name - string
accessMode - integer
Result: file - file handle
Description:

Open opens 'mame' and returns a file handle. If the accessMode is
MODE__ OLDFILE (=1005), Open opens an existing file for reading or
writing. However, Open creates a new file for writing if the value is
MODE__ NEWFILE (=1006). The 'name’ can be a filename (optionally
prefaced by a device name), a simple device such as NIL:, or some other
device, such as SER:, or *, meaning the terminal.

Note that OPEN__OLDFILE has a shared lock, whereas
OPEN__UPDATE has an exclusive lock.

For further details on these devices see Chapter 1 of the Introduction
to Tripos. If Open cannot open the file 'name' for some reason, it
returns the value zero (0). In this case, a call to the routine IloErr()
supplies a secondary error code.

For testing to see if a file exists, see the entry under Lock.

Tripos Programmer's Reference Calling the DOS

Output
Form:
file = Qutput()
DO
Result: file - file handle
Description:

To identify the program's initial output file handle, you use Output.

See also: Input
ParentDir
Purpose: To obtain the parent of a directory or file.
Form: Lock = ParentDir(lock)
DO D1
Argument : lock - pointer to a lock
Result: lock - pointer to a lock
Description:

This function returns a lock associated with the parent directory of a file
or directory. That is, ParentDir takes a lock associated with a file or
directory and returns the lock of its parent directory.

Note: The result of ParentDir may be zero (0) for the root of the current
filing system.

3-13

Calling the DOS Tripos Programmer's Reference

Read

Purpose: To read bytes of data from a file.
Form: actualLength =
DO
Read(file, buffer, length)
D1 D2 D3
Argument: file - file handle

buffer - pointer to buffer
length - integer

Result: actualLength - integer
Description:

You can copy data with a combination of Read and Write. Read reads
bytes of information from an opened file (represented here by the
argument 'file’) into the memory buffer indicated. Read attempts to read
as many bytes as fit into the buffer as indicated by the value of length.
You should always make sure that the value you give as the length really
does represent the size of the buffer. Read may return a result indicating
that it read less bytes than you requested, for example, when reading a
line of data that you typed at the terminal.

The value returned is the length of the information actually read. That is
to say, when ‘'actualLength' is greater than zero, the value of
'actualLength' is the the number of characters read. A value of zero
means that end-of-file has been reached. Errors are indicated by a value
of -1. Read from the console returns a value when a return is found or the
buffer is full.

A call to Read also modifies or changes the value of IoErr(). IoErr() gives
more information about an error (for example, actualLength equals -1)

when it is called.

See also: Write

3-14

Tripos Programmer's Reference Calling the DOS

Rename
Purpose: To rename a directory or file.
Form: success = Rename(oldName, newName)
DO D1 D2
Argument : oldName - string
newName - string
Result: success - boolean
Description:

Rename attempts to rename the file or directory specified as 'oldName'
with the name 'newName'. If the file or directory 'newName' exists,
Rename fails and returns an error.

Both the 'oldName' and the 'mewName' can be complex filenames
containing a directory specification. In this case, the file will be moved
from one directory to another. However, the destination directory must
exist before you do this.

Note: It is impossible to rename a file from one volume to another.

Calling the DOS Tripos Programmer’s Reference

Seek

Purpose: To move to a logical position in a file.
Form: oldPosition =
DO
Seek(file, position, mode)
D1l D2 D3
Arqument: file - file handle

position - integer
mode - integer

Result: oldPosition - integer
Description:

Seek sets the read/write cursor for the file 'file’ to the position 'position’.
Both Read and Write use this position as a place to start reading or
writing. If all goes well, the result is the previous position in the file. If
an error occurs, the result is -1. You can then use IoErr() to find out more
information about the error.

'mode' can be OFFSET__BEGINNING (=-1), OFFSET__CURRENT
(=0) or OFFSET__END (=1). You use it to specify the relative start
position. For example, 20 from current is a position twenty bytes forward
from current, -20 from end is 20 bytes before the end of the current file.

To find out the current file position without altering it, you call to Seek
specifying an offset of zero from the current position.

To move to the end of a file, Seek to end-of-file offset with zero position.
Note that you can append information to a file by moving to the end of a

file with Seek and then writing. You cannot Seek beyond the end of a file.

See also: Read, Write

3-16

Tripos Programmer's Reference Calling the DOS

SetComment

Purpose: To set a comment.

Form: Success = SetComment(name, comment)
DO D1 D2

Argument: name - file name

comment - pointer to a string
Result: success - boolean
Description:

SetComment sets a comment on a file or directory. The comment is a
pointer to a null-terminated string of up to 80 characters.

SetProtection

Purpose: To set file, or directory, protection.

Form: Success = SetProtection(name, mask)
DO D1 D2

Argument: name - file name

mask - the protection mask required
Result: success - boolean
Description:

SetProtection sets the protection attributes on a file or directory. The
lower four bits of the mask are as follows:

3-17

Calling the DOS Tripos Programmer's Reference

bit 3: if 1 then reads not allowed, else reads allowed.

bit 2: if 1 then writes not allowed, else writes allowed.

bit 1: if 1 then execution not allowed, else execution allowed.
bit 0: if 1 then deletion not allowed, else deletion allowed.

Bits 31-4 Reserved.

Only delete is checked for in the current release of Tripos.

UnLock

Purpose: To unlock a directory or file.
Form: UnLock(lock)

: D1
Argument : lock - pointer to a lock
Description:

UnLock removes a filing system lock obtained from Lock, DupLock, or
CreateDir.

See also: CreateDir, DupLock, Lock

3-18

Tripos Programmer's Reference Calling the DOS

WaitForChar

Purpose: To indicate whether characters arrive within a time
limit or not.

Form: bool = WaitForChar(file, timeout)
DO D1 D2
Argument: file - file handle

timeout - integer
Result: bool - boolean
Description:

If a character is available to be read from the file associated with the
handle 'file’ within a certain time, indicated by 'timeout', WaitForChar
returns -1 (TRUE); otherwise, it returns 0 (FALSE). If a character is
available, you can use Read to read it. Note that WaitForChar is only
valid when the [/O streams are connected to a virtual terminal device.
'timeout’ is specified in system ticks.

WaitForChar only works for the console handler in single character
mode.

3-19

Calling the DOS Tripos Programmer’s Reference

Write
Purpose: To write bytes of data to.a file.
Form: returnedLength =
DO
Write(file, buffer, length)
D1 D2 D3

Argument: file - file handle

buffer - pointer to buffer

length - integer
Result: returnedLength - integer
Description:

You can copy data with a combination of Read and Write. Write writes
bytes of data to the opened file 'file’. 'length' refers to the actual length of
data to be transferred; 'buffer’ refers to the buffer size.

Write returns a value that indicates the length of information actually
written. That is to say, when 'length' is greater than zero, the value of
length’ is the number of characters written. A value of -1 indicates an
error. The user of this call must always check for an error return which
may, for example, indicate that the disk is full.

3-20

Tripos Programmer's Reference Calling the DOS

Task Handling

CreateProc
Purpose: To create a new task (process).
Form:
process =
DO
CreateProc(name, pri, segment, stackSize)
D1 D2 D3 D4
Argument: name - string
pri - integer
segment - pointer to a segment
stackSize - integer
Result: process - task (process) identifier
Description:

CreateProc creates a task with the name 'name'. That is to say,
CreateProc allocates a task control structure from the free memory area
and then initializes it.

CreateProc takes a segment list as the argument 'segment'. This
segment list represents the section of code that you intend to run as a
new task. CreateProc enters the code at the first segment in the segment
list, which should contain suitable initialization code or a jump to such.’

3-21

Calling the DOS Tripos Programmer's Reference

‘'stackSize' represents the size of the root stack in bytes when CreateProc
activates the task. 'pri' specifies the required priority of the new task.
The result is the task identifier of the new task, or zero if the routine
failed.

The argument 'name’ specifies the task name.

A zeroreturn code implies an error of some kind.

See also: LoadSeg, UnLoadSeg

DateStamp

Purpose: To obtain the date and time in internal format.
Form: v:= DateStamp(v)

Argument: v - pointer

Description:

DateStamp takes a vector of three longwords that is set to the current
time. The first element in the vector is a count of the number of days.
The second element is the number of minutes elapsed in the day. The
third is the number of ticks elapsed in the current minute. A tick
happens 50 times a second. DateStamp ensures that the day, minute,
and tick are consistent. All three elements are zero if the date is unset.

3-22

Tripos Programmer's Reference Calling the DOS

Delay
Purpose: To delay a task for a specified time.
Form: Delay(timeout)
D1
Argument: timeout - integer
Description:

The function Delay takes an argument 'timeout'. 'timeout' allows you to
specify how long the task should wait in ticks (50 per second).

DeviceProc
Purpose: To return the task (process) identifier of the task
handling that I[/O.
Form: process = DeviceProc(name)
DO D1
Argument: name - string
Result: process - task (process) identifier
Description:

DeviceProc returns the task identifier of the task that handles the device
associated with the specified name. If DeviceProc cannot find a task
handler, the result is zero. If 'name' refers to a file on a mounted device,
then IoErr() returns a pointer to a directory lock.

3-23

Calling the DOS Tripos Programmer’s Reference

Exit

Purpose: To exit from a program.

Form: Exit(returnCode)
D1

Argument: returnCode - integer

Description:

- Exit acts differently depending on whether you are running a program
under a CLI or not. If you run, as a command under a CLI, a program that
calls Exit, the command finishes and control reverts to the CLI. Exit
then interprets the argument 'returnCode' as the return code from the
program.

If you run the program as a distinct task, Exit deletes the task and
releases the space associated with the stack and task structure.

Note: The space associated with the segment list is not released.

Loading Code

Execute
Purpose: To execute a CLI command.
Form: Success =
DO
Execute(commandString, input, output)

D1 D2 D3

3-24

Tripos Programmer's Reference Calling the DOS

Argqument : commandString - string
input - file handle
output - file handle

Result: Success - boolean
Description:

This function takes a string (commandString) that specifies a CLI
command and arguments, and attempts to execute it. The CLI string can
contain any valid input that you could type directly at a CLI, including
input and output indirection using > and <.

The input file handle will normally be zero, and in this case the Execute
command will perform whatever was requested in the commandString
and then return. If the input file handle is non-zero then after the
(possibly null) commandString is performed subsequent input is read
from the specified input file handle until end of file is reached.

In most cases the output file handle must be provided, and will be used by
the CLI commands as their output stream unless redirection was
specified. If the output file handle is set to zero then the current output,
specified as *, is used.

The Execute function may also be used to create a new interactive CLI
task just like those created with the NEWCLI function. In order to do
this you should call Execute with an empty commandString, and pass a
file handle relating to an interactive input stream as the input file
handle. The output file handle should be set to zero. The CLI will read
commands from the input stream, and will use the same stream for
outpuf. This new CLI can only be terminated by using the ENDCLI
command. For this command to work the program C:RUN must be
present in C:.

3-25

Calling the DOS Tripos Programmer's Reference

LoadSeg

Purpose: To load a load module into memory.

Form: segment = LoadSeg(name)
DO D1

Argument: name - string

Result: segment - pointer to a segment

Description:

The file 'name’ is a load module produced by the linker. LoadSeg takes
this and scatter loads the code segments into memory, chaining the
segments together on their first words. It terminates the list with a zero
link word to indicate the end of the chain.

If an error occurs, LoadSeg unloads any loaded blocks and returns a false
(zero) result.

If all goes well (that is, LoadSeg has loaded the module correctly), then
Loadseg returns a pointer to the beginning of the list of blocks. Once you
have finished with the loaded code, you can unload it with a call to
UnLoadSeg. (For using the loaded code, see under CreateProc.)

See also: CreateProc, UnLoadSeg

3-26

Tripos Programmer's Reference Calling the DOS

UnLoadSeg

Purpose: To unload a segment previously loaded by LoadSeg.
Form: UnLoadSeg(segment)
D1
Argument: segment - pointer to a segment
Description:

UnLoadSeg unloads the segment identifier that was returned by
LoadSeg. 'segment' may be zero.

Miscellaneous
VDU
Purpose: To set up full-sereen support.
Form: Res = VDU(code, handle, &row, &col)
DO D1 D2 D3 D4
Argument: code - operation code
handle - value returned from initialization call
&row - address of the variable holding the row
&col - address of the variable holding the column
Description:

The VDU routine has the following specification. Before the routine can
be used, the system must be initialized. This is done by calling the VDU
function with the vdu__init call; this will turn the console handler into
single character mode and initialize the vdu as required. The console
handler must be turned back into normal mode afterwards by using the

3-27

Calling the DOS Tripos Programmer's Reference

vdu__uninit call. The value returned from the initialization call is a
handle which must be passed when making any further calls as the
second argument. The first argument is always the code for the required
operation, and the other two arguments are the addresses of the
variables holding the physical row and column positions. These are
updated suitably if the implementation of a particular feature causes the
cursor to be moved from the current physical position. If the cursor is
moved as a side effect, then it will not be restored; it is the responsibility
of the caller to move it back if required. A common programming
technique is to maintain the logical cursor position and the physical
position. The values whose addresses are passed to the VDU routine
represent the physical location. When the cursor is to be displayed for a
long period it is placed back at the logical position.

The different calls available are listed in Chapter 7 of the Tripos
Programmer's Reference Manual.

3-28

Tripos Programmer's Reference Calling the DOS

Quick Reference Card
File Handling:
Close [nput Rename
CreateDir [oErr Seek
CurrentDir IsInteractive SetComment
DeleteFile Lock SetProtection
DupLock Open Unlock
Examine QOutput WaitForChar
ExNext ParentDir Write
Info Read
Task Handling:
CreateProc Delay Exit
DateStamp DeviceProc
Loading Code:
Execute LoadSeg UnloadSeg
Miscellaneous:
VDU

3-29

Calling the DOS

Tripos Programmer's Reference

Close
CreateDir
CreateProc

CurrentDir

DateStamp
Delay
DeleteFile

DeviceProc

DupLock

Examine

Execute
Exit
ExNext
Info
Input
[oErr

IsInteractive

To close a file for input or output.
To create a new directory.
To create a new task (process).

To make a directory associated with a lock the
current working directory.

To obtain the date and time in internal format.
To delay a task for a specified time.
To delete a file or directory.

To return the task (process) identifier of the
task handling that I/O.

To duplicate a lock.

To examine a directory or file associated with
a lock.

To execute a CLI command.

To exit from a program.

To examine the next entry in a directory.

To return information about the disk.

To identify the initial input file handle.

To return extra information from the system.

To discover whether a file is connected to a
virtual terminal or not.

3-30

Tripos Programmer's Reference

Calling the DOS

LoadSeg

Lock

Open

Output
ParentDir
Read

Rename

Seek
SetComment
SetProtection

UnloadSeg

Unlock
VDU

WaitForChar

Write

To load a load module into memory.

To lock a file or directory.

To open a file for input or output.

To identify the initial output file handle.
To obtain the parent of a directory or file.
To read bytes of data from a file.

To rename a file or directory.

To move to a logical position in a file.

To set a comment.

To set file, or directory, protection.

To unload a segment previously loaded by
LoadSeg.

To unlock a file or directory.
To set up full screen support.

To indicate whether characters arrive within a
time limit or not.

To write bytes of data to a file.

3-31

Chapter 4: The Macro Assembler

This chapter describes the Tripos Macro Assembler. It gives a brief
introduction to the 68000 microchip. This chapter is intended for the
reader who is acquainted with an assembly language on another
computer.

Table of Contents

41

4.2

43
4.3.1
432
43.2.1
4.3.2.2
4.3.2.3
4.3.2.4
4.3.25

44
441
4.4.2
443
444
4.5
4.6

4.7

Introduction to the 68000 Microchip
Calling the Assembler

Program Encoding
Comments

Executable Instructions
Label Field

Local Labels

Opcode Field

Operand Field
Comment Field

Expressions

Operators

Operand Types for Operators
Symbols

Numbers

Addressing Modes

Variants on Instruction Types

Directives

Tripos Programmer's Reference Macro Assembler

4.1 Introduction to the 68000 Microchip

This section gives a brief introduction to the 68000 microchip. It should
help you to understand the concepts introduced later in the chapter. It
assumes that you have already had experience with assembly language
on another computer.

The memory available to the 68000 consists of

- the internal registers (on the chip), and
- the external main memory.

There are 17 registers, but only 16 are available at any given moment.
Eight of them are data registers named DO to D7, and the others are
address registers called A0 to A7. Each register contains 32 bits. In
many contexts, you may use either kind of register, but others demand a
specific kind. For instance, you may use any register for operations on
word (16 bit) and long word (32 bit) quantities or for indexed addressing
of main memory. Although, for operations on byte (8 bit) operands, you
may only use data registers, and for addressing main memory, you may
only use address registers as stack pointers or base registers. Register
A7 is the stack pointer, this is in fact two distinct registers; the system
stack pointer available in supervisor mode and the user stack pointer
available in user mode.

The main memory consists of a number of bytes of memory. Each byte
has an identifying number called its address. Memory is usually (but not
always) arranged so that its bytes have addresses 0, 1, 2, ..., N-2, N-1
where there are N bytes of memory in total. The size of memory that you
can directly access is very large - up to 16 million bytes. The 68000 can
perform operations on bytes, words, or long words of memory. A word is
two consecutive bytes. In a word, the first byte has an even address. A
long word is four consecutive bytes also starting at an even address. The
address of a long word is the even address of its lowest numbered first
byte.

As well as holding items of data being manipulated by the computer, the
main memory also holds the instructions that tell the computer what to

do. Each instruction occupies from one to 5 words, consisting of an

4-1

Macro Assembler Tripos Programmer’s Reference

operation word between zero and four operand words. The operation
word specifies what action is to be performed (and implicitly how many
words there are in the whole instruction). The operand words indicate
where in the registers or main memory the items to be manipulated are,
and where the result should be placed.

The assembler usually executes instructions one at a time in the order
that they occur in memory, like the way you follow the steps in a recipe
or play the notes in a piece of written music. There is a special register
called the program counter (PC) which you use to hold the address of the
instruction you want the assembler to execute next. Some instructions,
called jumps or branches, upset the usual order, and force the assembler
to continue executing the instruction at a specific address. This lets the
computer perform an action repeatedly, or do different things depending
on the values of data items.

To remember particular things about the state of the computer, you can
use one other special register called the status register (SR).

4.2 Calling the Assembler

The command template for assem is
PROG=FROM/A,TO/K,VER/K,LIST/K,HDR/K,EQU/K,OPT/K,INC/K
Alternatively, the format of the command line can be described as

assem <source file > [TO <object file>]
[LIST <listingfile>]
[VER <verification file >]
[HDR <header file>]
[EQU <equate file >]
[OPT <options>]
[INC <include dirlist>]

If the assembler cannot find the source filename you have specified, it
appends a ".asm" suffix to the filename you supplied and tries again. By
default, it produces an object file with a ".obj" suffix although it is
possible to inhibit this (see the list of options at the end of this section).

4-2

Tripos Programmer’s Reference Macro Assembler

Thus to assemble "fred.asm" to produce "fred.obj", you need only type
assem fred

The TO keyword can be used to override the assembler's default choice of
name for the object file being produced. Thus

assem fred TO ofile

assembles fred.asm, producing binary output in "ofile" rather than in
"fred.obj".

The assembler does not produce a listing file by default. It can be made
to do so by specifying a file via the LIST option or by using the L option
(see later) which produces a file with a " Ist" suffix. Thus

assem fred LIST lstfile

assembles "fred.asm", produces a binary file "fred.obj" and a listing file
"listfile." However,

assem fred OPT L
does the same except the listing file is "fred.Ist" rather than "lstfile."
As the assembler is running, it generates diagnostic messages (errors,
warnings, and assembly statistics) and sends them to the screen unless
you specify a verification file.
To force the inclusion of the named file in the assembly at the head of the
source file, you use HDR <filename > on the command line. This has the
same effect as using

INCLUDE "<filename>"
on line 1 of the source file.
To set up the list of directories that the assembler should search for any
INCLUDEJ files, you use the INC keyword. You should specify as many

directories as you require after the INC, separating the directory names

4-3

Macro Assembler Tripos Programmer's Reference

by a comma (,), a plus sign (+), or a space. Note that if you use a space,
you must enclose the entire directory list in double quotes (").

The order of the list determines the order of the directories where the
assembler should search for INCLUDEd files. The assembler initially
searches the current directory before any others. Thus any file that you
INCLUDE in a program must be in the current directory, or in one of the
directories listed in the INC list. For instance, if the program ‘fred'
INCLUDES, apart from files in the current directory, a file from the
directory 'intrnl/incl’, a file from the directory 'include/asm’, and a file
from the directory ‘extrnl/incl’, you can give the INC directory list in
these three ways:

assem fred INC intrnl/incl, include/asm,extrnl/incl
assem fred INC intrnl/incl+include/asm+extrnl/incl
assem fred INC "intrnl/incl include/asm extrnl/incl"

The EQU keyword allows equated symbols to be extracted from the
source to the specified file. This can be used to help build a header file
from a program sprinkled with equates.

The OPT keyword allows you to pass certain options to the assembler.
Each option consists of a single character (in either upper or lower case),
possibly followed immediately by a number. Valid options follow here:

S produces a symbol dump as a part of the object file.

D inhibits the dumping of local labels as part of a symbol dump. (For
C programmers, any label beginning with a period is considered as
alocal label).

C ignores the distinction between upper and lower case in labels.

X produces a cross-reference table at the end of the listing file.

L produces a listing file with the default suffix (" Ist").

N inhibits production of object files.

Examples

assem fred.asm TO fred.o

4-4

Tripos Programmer's Reference Macro Assembler

assembles the file fred.asm and produces an object module in the file
fred.o.

assem fred OPT LSX
assembles the file fred.asm, produces an object module in the file

fred.obj, which includes a symbol dump, and produces a listing file in
fred.Ist, which also contains a cross-reference listing.

4.3 Program Encoding

A program acceptable to the assembler takes the form of a series of input
lines that can include any of the following:

- Comment or Blank lines
- Executable Instructions
- Assembler Directives

4.3 1 Comments

To introduce comments into the program, you can use three different
methods:

1. Type a semicolon (;) anywhere on a line and follow it with the
text of the comment. For example,

CMPA.L Al,A2 ; Are the pointers equal?

2. Type an asterisk (*) in column one of a line and follow it with
the text of the comment. For example,

* This entire line is a comment

3. Follow any complete instruction or directive with a least one
space and some text. For example,

4-5

Macro Assembler Tripos Programmer's Reference

MOVEQ #I10,D0 place initial value in DO

In addition, note that all blank lines are treated by the assembler as
comment lines.

4.3.2 Executable Instructions
The source statements have the general overall format:
[<label>] <opcode> [<operand>[,<operand>]...][<comment>]

To separate each field from the next, press the SPACEBAR or TAB key.
This produces a separator character. You may use more than one space
to separate fields.

4.3.2.1 Label Field
A label is a user symbol, or programmer-defined name, that either

a) Starts in the first column and is separated from the next field by
at least one space,

or

b) Starts in any column, and is followed immediately with a colon

).

If a label is present, then it must be the first non-blank item on the line.
The assembler assigns the value and type of the program counter, that is,
the memory address of the first byte of the instruction or data being
referenced, to the label. Labels are allowed on all instructions, and on
some directives, or they may stand alone on a line. See the specifications
of individual directives in Section 4.7 for whether a label field is allowed.

Note: You must not give multiple definitions to labels. Also, you must
not use instruction names, directives, or register names as labels.

4-6

Tripos Programmer's Reference Macro Assembler

4.3.2.2 Local Labels

Local labels are provided as an extension to the MOTOROLA
specification. They take the form nnn$ and are only valid between any
proper (named) labels. Thus, in this example code segment

Labels Opcodes Operands
FOO: MOVE.L D6,DO0
1s: MOVE.B (AQ)+, (AL)+
DBRA DO,18
MOVEQ #20,D0
BAA: TRAP #4

the label 1$ is only available from the line following the one labelled
FOO to the line before the one labelled BAA. In this case, you could then
use the label 1§ in a different scope elsewhere in the program.

4.3.2.3 Opcode Field

The Opcode field follows the Label field and is separated from it by at
least one space. Entries in this field are of three types.

1. The MC68000 operation codes, as defined in the MC68000
User Manual.

2. Assembler Directives.

3. Macro invocations.
To enter instructions and directives that can operate on more than one
data size, you use an optional Size-Specifier subfield, which is separated

from the opcode by the period (.) character. Possible size specifiers are as
follows:

4-7

Macro Assembler Tripos Programmer's Reference

B - Byte-sized data (8 bits)

W - Word-sized data (16 bits)

L - Long Word-sized data (32 bits)
or Long Branch specifier

S - Short Branch specifier

The size specifier must match with the instruction or directive type that
you use.

4.3.2.4 Operand Field

If present, the operand field contains one or more operands to the
instruction or directive, and must be separated from it by at least one
space. When you have two or more operands in the field, you must
separate them with a comma (,). The operand field terminates with a
space or newline character (a newline character is what the assembler
receives when you press RETURN), so you must not use spaces between
operands.

4.3.2.5 Comment Field

Anything after the terminating space of the operand field is ignored. So
the assembler treats any characters you insert after a space as a
comment.

4 4 Expressions

An expression is a combination of symbols, constants, algebraic
operators, and parentheses that you can use to specify the operand field
to instructions or directives. You may include relative symbols in
expressions, but they can only be operated on by a subset of the
operators.

Tripos Programmer's Reference Macro Assembler

4.4.1 Operators
The available operators are listed below in order of precedence.

Monadic Minus, Logical NOT (- and)
Lshift, Rshift (< < and > >)

Logical AND, Logical OR (& and!)
Multiply, Divide (* and /)

Add, Subtract (+ and -)

G LD

To override the precedence of the operators, enclose sub-expressions in
parentheses. The assembler evaluates operators of equal precedence
from left to right. Note that you should not have any spaces in an
expression: a space is regarded as a delimiter between fields.

4.4.2 Operand Types for Operators

In the following table, 'A" represents absolute symbols, and R represents
relative symbols. The table shows all the possible operator/operand
combinations, with the type of the resulting value. 'x' indicates an error.
The Monadic minus and the Logical not operators are only valid with an
absolute operand.

Operands
Operators I 2= T RopR | Aop R | R op &
+ A X R R
- A A X R
* A X X X
/ A X X X
& A b'4 X X
! A X X X
>> A X X X
<< A X X X

Table 4-A: Operand Types for Operators

4-9

Macro Assembler Tripos Programmer’s Reference

4.4.3 Symbols

A symbol is a string of up to 30 characters. The first character of a
symbol must be one of following:

- An alphabetic charcter (a-z, or A-Z).
- Anunderscore (__).
- A period (.).

The rest of the characters in the string can be any of these characters or
also numeric (0 through 9). In all symbols, the lower case characters (a-z)
are not treated as synonyms with their upper case equivalents (unless
you use the option C when you invoke the assembler). So 'fred' is
different from 'FRED' and 'FRed'. However, the assembler recognizes
instruction opcodes, directives, and register names in either upper or
lower case. A label equated to a register name with EQUR is also
recognized by the assembler in either upper or lower case. Symbols can
be up to 30 characters in length, all of which are significant. The
assembler takes symbols longer than this and truncates them to 30
characters, giving a warning that it has done so. The Instruction names,
Directive names, Register names, and special symbols CCR, SR, SP and
USP cannot be used as user symbols. A symbol can be one of three types:

Absolute

a) The symbol was SET or EQUated to an Absolute value
Relative

a) The symbol was SET or EQUated to a Relative value

b) The symbol was used as a label

4-10

Tripos Programmer's Reference Macro Assembler

Register

a) The symbol was set to a register name using EQUR (This is
an extension from the MOTOROLA specification)

There is a special symbol *, which has the value and type of the current
program counter, that is, the address of the current instruction or
directive that the assembler is acting on.

4.4.4 Numbers

You may use a number as a term of an expression, or as a single value.
Numbers ALWAYS have absolute values and can take one of the

following formats:

Decimal
(a string of decimal digits)

Example: 1234

Hexadecimal
(§ followed by a string of hex digits)

Example: $89AB

Octal
(@ followed by a string of octal digits)

Example: @743

Binary
(% followed by zeros and ones)

Example: %10110111

4-11

Macro Assembler Tripos Programmer's Reference

ASCII Literal
{(Up to 4 ASCII characters within quotes)

Examples: 'ABCD' ™'

Strings of less than 4 characters are justified to the right, using NUL as
the packing character.

To obtain a quote character in the string, yvou must use two quotes. An
example of this is

lItllsl

4.5 Addressing Modes

The effective address modes define the operands to instructions and
directives, and you can find a detailed description of them in any good
reference book on the 68000. Addresses refer to individual bytes, but
instructions, Word and Long Word references, access more than one
byte, and the address for these must be word aligned.

In the following table, Dn represents one of the data registers (D0-DT),
'An’ represents one of the address registers (A0-A7, SP and PC), 'a’
represents an absolute expression, 'r' represents a relative expression,
and 'Xn' represents An or Dn, with an optional W' or 'L’ size specifier.
The syntax for each of the modes is as follows:

4-12

Tripos Programmer's Reference Macro Assembler

Table 4-B: Macro Assembler Address Modes and Registers
Address Mode Description and Examples

Dn Data Register Direct
Example: MOVE Do0,D1

An Address Register Direct
Example: MOVEA AQ0,A1

(An) Address Register Indirect
Example: MOVE DO0,(A1)

(An)+ Address Register Indirect Post Increment
Example: MOVE (A7)+,D0

-(An) Address Register Indirect Pre Decrement
Example: MOVE DO0,-(AT)

a(An) Address Register Indirect with
(16-bit) Displacement
Example: MOVE 20(A0),D1

a{An,Xn) Address Register Indirect with Index
(a is an 8-bit Displacement)
Example: MOVE 0(A0,D0),D1
MOVE 12(A1,A0.L),D2
MOVE 120(A0,D6.W),D4

4-13

Macro Assembler

Tripos Programmer's Reference

Address Mode

a

r(PC)

(continuation of 4-B)
Description and Examples

Short absolute (16 bits)
Example: MOVE $1000,D0

Long absolute (32 bits)
Example: MOVE $10000,D0

Program Counter Relative with Displacement
{(when label is already defined)
Example: MOVE ABC,D0

(ABC is relative and

already defined)
Note that when an instruction such as
MOVE ABC,D0is encountered the assembler
will use the "program counter relative with
displacement” mode whenever the symbol used
has already been defined.

Long absolute with Relocation

Example: MOVE ABC,D0
(ABC isrelative but
yet to be defined)

Program Counter Relative with

(16-bit) Displacement

Example: MOVE ABC(PC),D1
(ABC is relative and
already defined)

Example: MOVE DEF(PC),D0
(DEF is relative but
yet to be defined)

4-14

Tripos Programmer's Reference Macro Assembler

(continuation of 4-B)
Address Mode Description and Examples

r(Xn) Program Counter Relative with Index
(where r is an 8-bit relocatable symbol.
Note that this is shorthand form of r(PC,Xn))
Example: MOVE ABC(D0.L),D1
(ABC is relative)

r(PC,Xn) Program Counter Relative with Index
(where r is an 8-bit relocatable symbol)
Example: MOVE ABC(PC,D0.L),D1
(ABC is relative)

#a Immediate data
Example: MOVE #1234,D0

USP)
CCR) Special addressing modes
SR)
Example: MOVE AQ,USP
MOVE D0,CCR
MOVE D1,SR

4-15

Macro Assembler Tripos Programmer's Reference

4.6 Variants on Instruction Types

Certain instructions (for example, ADD, CMP) have an address variant
(that refers to address registers as destinations), immediate and quick
forms (when immediate data possibly within a restricted size range
appears as an operand), and a memory variant (where both operands
must be a postincrement address).

To force a particular variant to be used, you may append A, Q, I or M to
the instruction mnemonic. In this case, the assembler uses the specified
form of the instruction, if it exists, or gives an error message.

If, however, you specify no particular variant, the assembler
automatically converts to the 'T', A’ or 'M' forms where appropriate.
However, it does not convert to the 'Q’ form. For example, the assembler
converts the following:

ADD.L A2,Al
to
ADDA.I. A2,Al

4.7 Directives

All assembler directives (with the exception of DC and DCB) are
instructions to the assembler, rather than instructions to be translated
into object code. At the beginning of this section, there is a list of all the
directives (Table 4-C), arranged by function; at the end there is an
individual decription for each directive, arranged by function.

Note that the assembler only allows labels on directives where specified.
For example, EQU is allowed a label. It is optional for RORG, but not
allowed for LLEN or TTL.

The following table lists the directives by function:

4-16

Tripos Programmer's Reference Macro Assembler

Table 4-C: Directives

Assembly Control
Directive Description
SECTION Program section
RORG Relocatable origin
OFFSET Define offsets
END Program end
Symbol Definition
Directive Description
EQU Assign permanent value
EQUR Assign permanent register value
REG Assign permanent value
SET Assign temporary value
Data Definition
Directive Description
DC Define constants
DCB Define Constant Block
DS Define storage

4-17

Macro Assembler Tripos Programmer's Reference

(continuation of 4-C)

Listing Control
Directive Description
PAGE Page-throw to listing
LIST Turn on listing
NOLIST (NOL) Turn off listing
SPC n Skip n blank lines
NOPAGE Turn off paging
LLEN n Set line length (60 < = n <= 132)
PLENn Set page length (24 <= n <= 100)
TTL Set program title (max 80 chars)
NOOBJ Disable object code output
FAIL Generate an assembly error
FORMAT No action
NOFORMAT No action

Conditional Assembly
Directive Description
CNOP Conditional NOP for alignment
IFEQ Assemble if expression is 0
IFNE Assemble if expression is not 0
IFGT Assemble if expression > 0
IFGE Assemble if expression > =0
IFLT Assemble if expression < 0
IFLE Assemble if expression <=0
IFC Assemble if strings are identical
IFNC Assemble if strings are not identical
IFD Assemble if symbol is defined
IFND Assemble if symbols is not defined
ENDC End of conditional assembly

4-18

Tripos Programmer's Reference Macro Assembler

Macro Directives

Directive Description

MACRO Define a macro name
NARG Special symbol

ENDM End of macro definition
MEXIT Exit the macro expansion

External Symbols

Directive Description
XDEF Define external name
XREF Reference external name

General Directives

Directive Description

INCLUDE Insert file in the source
MASK2 No action

IDNT Name program unit

4-19

Macro Assembler Tripos Programmer's Reference

Assembly Control Directives

SECTION Program Section

Format: [<label>] SECTION <name>[,<type>]

This directive tells the assembler to restore the counter to the last
location allocated in the named section (or to zero if used for the first

time).

<name> is a character string optionally enclosed in double quotes.
<type> if included, must be one of the following keywords:

CODE indicates that the section contains relocatable code. This is
the default.

DATA indicates that the section contains initialised data (only).

BSS indicates that the section contains uninitialised data

The assembler can maintain up to 255 sections. Initially, the assembler
begins with an unnamed CODE section. The assembler assigns the
optional symbol <labels> to the value of the program counter after it
has executed the SECTION directive. In addition, where a section is
unnamed, the shorthand for that section is the keyword CODE.

4-20

Tripos Programmer's Reference Macro Assembler

RORG Set Relative Origin
Format: [<labeli>] RORG <absexp>

The RORG directive changes the program counter to be <absexp> bytes
from the start of the current relocatable section. The assembler assigns
relocatable memory locations to subsequent statements, starting with
the value assigned to the program counter. To do addressing in
relocatable sections, you use the 'program counter relative with
displacement' addressing mode. The label value assignment is the same
as for SECTION.

OFFSET Define offsets
Format: OFFSET <absexp>

To define a table of offsets via the DS directive beginning at the address
<absexp>, you use the OFFSET directive. Symbols defined in an
OFFSET table are kept internally, but no code-producing intructions or
directives may appear. To terminate an OFFSET section, you use a
RORG, OFFSET, SECTION, or END directive.

END End of program
Format.: [<label>] END

The END directive tells the assembler that the source is finished, and
the assembler ignores subsequent source statements. When the
assembler encounters the END directive during the first pass, it begins
the second pass. If, however, it detects an end-of-file before an END
directive, it gives a warning message. If the label field is present, then
the assembler assigns the value of the current program counter to the
label before it executes the END directive.

4-21

Macro Assembler Tripos Programmer's Reference

Symbol Definition Directives

EQU Equate symbol value

Format: <label > EQU <exp>

The EQU directive assigns the value of the expression in the operand
field to the symbol in the label field. The value assigned is permanent, so

you may not define the label anywhere else in the program.

Note: Do not insert forward references within the expression.

EQUR Equate register value
Format: <label> EQUR <register >

This directive lets you equate one of the processor registers with a user
symbol. Only the Address and Data registers are valid, so special
symbols like SR, CCR, and USP are illegal here. The register is
permanent, so you cannot define the label anywhere else in the program.
The register must not be a forward reference to another EQUR
statement. The assembler matches labels defined in this way without
distinguishing upper and lower case.

4-22

Tripos Programmer's Reference Macro Assembler

REG Define register list

Format: <label> REG <register list>

The REG directive assigns a value to label that the assembler can
translate into the register list mask format used in the MOVEM

Instruction. <register list> is of the form

R1[-R2]{/R3[-R4]]...

SET Set symbol value
Format: <label > SET <exp>

The SET directive assigns the value of the expression in the operand
field to the symbol in the label field. SET is identical to EQU, apart from
the fact that the assignment is temporary. You can always change SET
later on in the program.

Note: You should not insert forward references within the expression or
refer forward to symbols that you defined with SET.

4-23

Macro Assembler Tripos Programmer's Reference

Data Definition Directives

DC Define Constant
Format: [<label>] DC[.<size>] <list>

The DC directive defines a constant value in memory. It may have any
number of operands, separated by commas (,). The values in the list must
be capable of being held in the data location whose size is given by the
size specifier on the directive. If you do not give a size specifier, DC
assumes it is .W. If the size is .B, then there is one other data type that
can be used: that of the ASCII string. This is an arbitrarily long series of
ASCII characters, contained within quotation marks. As with ASCII
literals, if you require a quotation mark in the string, then you must
enter two. If the size is .\W or .L, then the assembler aligns the data ontoa
word boundary.

DCB Define Constant Block
Format: [<label>] DCBI[.<size>] <absexp>,<exp>

You use the DCB directive to set a number (given by <absexp>) of
bytes, words, or longwords to the value of the expression <exp>.
DCB. <size> n,exp is equivalent to repeating n times the statement
DC. <size > exp.

4-24

Tripos Programmer's Reference Macro Assembler

DS Define Storage
Format: [<label>] DS[.<size>] <absexp>

To reserve memory locations, you use the DS directive. DS, however,
does no initialisation. The amount of space the assembler allocates
depends on the data size (that you give with the size specifier on the
directive), and the value of the expression in the operand field. The
assembler interprets this as the number of data items of that size to
allocate. As with DC, if the size specifier is .\W or .L, DS aligns the space
onto a word boundary. So, DS.W 0 has the effect of aligning to a word
boundary only. If you do not give a size specifier, DS assumes a default of
.W.See CNOP for a more general way of handling alignment.

Listing Control Directives

PAGE Page Throw
Format: PAGE
Unless paging has been inhibited, PAGE advances the assembly listing

to the top of the next page. The PAGE directive does not appear on the
output listing.

4-25

Macro Assembler Tripos Programmer's Reference

LIST Turn on Listing
Format: LIST

The LIST directive tells the assembler to produce the assembly listing
file. Listing continues until it encounters either an END or a NOLIST
directive. This directive is only active when the assembler is producing a
listing file. The LIST directive does not appear on the output listing.

NOLIST Turn off Listing

Format: NOLIST
NOL

The NOLIST or NOL directive turns off the production of the assembly
listing file. Listing ceases until the assembler encounters either an END
or a LIST directive. The NOLIST directive does not appear on the
program listing.

SPC Space Blank Lines
Format: SPC <number >
The SPC directive outputs the number of blank lines given by the

operand field, to the assembly listing. The SPC directive does not appear
on the program listing.

4-26

Tripos Programmer's Reference Macro Assembler

NOPAGE Turn off Paging
Format: NOPAGE

The NOPAGE directive turns off the printing of page throws and title
headers on the assembly listing.

LLEN Set Line Length
Format: LLEN <number >

The LLEN directive sets the line length of the assembly listing file to the
value you specified in the operand field. The value must lie between 60
and 132, and can only be set once in the program. The LLEN directive
does not appear on the assembly listing. The default is 132 characters.

PLEN Set Page Length
Format: PLEN < number >

The PLEN directive sets the page length of the assembly listing file to
the value you specified in the operand field. The value must lie between
24 and 100, and you can only set it once in the program. The default is 60
lines.

4-27

Macro Assembler Tripos Programmer's Reference

TTL Set Program Title
Format: TTL <title string >

The TTL directive sets the title of the program to the string you gave in
the operand field. This string appears as the page heading in the
assembly listing. The string starts at the first non-blank character after
the TTL, and continues until the end of line. It must not be longer than 40
characters in length. The TTL directive does not appear on the program
listing.

NOOBJ Disable Object Code Generation
Format: NQOBJ
The NIOOBJ directive disables the production of the object code file at the

end of assembly. This directive disables the production of the code file,
even if you specified a file name when you called the assembler.

FAIL Generate a user error
Format: FAIL

The FAIL directive tells the assembler to flag an error for this input line.

FORMAT No action
Format: FORMAT

The assembler accepts this directive but takes no action on receiving it.
FORMAT is included for compatibility with other assemblers.

4-28

Tripos Programmer's Reference Macro Assembler

NOFORMAT No action
Format: NOFORMAT

The assembler accepts this directive but takes no action on receiving it.
NOFORMAT is included for compatibility with other assemblers.

Conditional Assembly Directives

CNOP Conditional NOP

Format: [<label>] CNOP <number >, <number >

This directive is an extension from the Motorola standard and allows a

section of code to be aligned on any boundary. In particular, it allows any

data structure or entry point to be aligned to a long word boundary.

The first expression represents an offset, while the second expression

represents the alignment required for the base. The code is aligned to the

specified offset from the nearest required alignment boundary. Thus
CNOP 0,4

aligns code to the next long word boundary while

CNOP 2,4

aligns code to the word boundary 2 bytes beyond the nearest long word
aligned boundary.

4-29

Macro Assembler Tripos Programmer's Reference

IFEQ Assemble if expresion = 0

IFNE Assemble if expression < > 0

IFGT Assemble if expression > 0

IFGE Assemble if expression > =0

IFLT Assemble if expression < 0

IFLE Assemble if expression <= 0

Format: IFxx <absexp>

You use the [Fxx range of directives to enable or disable assembly,
depending on the value of the expression in the operand field. If the
condition is not TRUE (for example, IFEQ 2+ 1), assembly ceases (that
is, it is disabled). The conditional assembly switch remains active until
the assembler finds a matching ENDC statement. You can nest
conditional assembly switches arbitrarily, terminating each level of
nesting with a matching ENDC.

IFC Assemble if strings are identical

IFNC Assemble if strings are not identical

Format: IFC <string >, <string>
IFNC <string >, <string >

The strings must be a series of ASCII characters enclosed in single
quotes, for example, 'FOQ' or " (the empty string). If the condition is not
TRUE, assembly ceases (that is, it is disabled). Again the conditional
assembly switch remains active until the assembler finds a matching
ENDC statement.

4-30

Tripos Programmer's Reference Macro Assembler

IFD Assemble if symbol defined

IFND Assemble if symbol not defined

Format: IFD <symbol name >
IFND <symbol name >

Depending on whether or not you have already defined the symbol, the
assembler enables or disables assembly until it finds a matching ENDC.

ENDC End conditional assembly
Format: ENDC
To terminate a conditional assembly, you use the ENDC directive, set up

with any of the 8 [Fxx directives above. ENDC matches the most recently
encountered condition directive.

Macro Directives

MACRO Start a macro definition
Format: <label > MACRO

MACRO introduces a macro definition. ENDM terminates a macro
definition. You must provide a label, which the assembler uses as the
name of the macro; subsequent uses of that label as an operand expand
the contents of the macro and insert them into the source code. A macro
can contain any opcode, most assembler directives, or any previously
defined macro. A plus (+) sign in the listing, marks any code generated
by macro expansion. When you use a macro name, you may append a
number of arguments, separated by commas. If the argument contains a
space (for example, a string containing a space) then you must enclose
the entire argument within < (less than) and > (greater than) symbols.

4-31

Macro Assembler Tripos Programmer's Reference

The assembler stores up and saves the source code that you enter (after a
MACRO directive and before an ENDM directive) as the contents of the
macro. The code can contain any normal source code. In addition, the
symbol \ (backslash) has a special meaning. Backslash followed by a
number n indicates that the value of the nth argument is to inserted into
the code. If the nth argument is omitted then nothing is inserted.
Backslash followed by the symbol '@’ tells the assembler to generate the
text .nnn', where nnn is the number of times the \(@ combination has
been encountered. This is normally used to generate unique labels
within a macro.

You may not nest macro definitions, that is, you cannot define a macro
within a macro, although you can call a macro you previously defined.
There is a limit to the level of nesting of macro calls. This limit is
currently set at ten.

Macro expansion stops when the assembler encounters the end of the
stored macro text, or when it finds a MEXIT directive.

NARG Special symbol
Format: NARG

The symbol NARG is a special reserved symbol and the assembler
assigns it the index of the last argument passed to the macro in the
parameter list (even nulls). Outside of a macro expansion, NARG has the
value 0.

ENDM Terminate a macro definition
Format: ENDM

This terminates a macro definition introduced by a MACRO directive.

4-32

Tripos Programmer's Reference Macro Assembler

MEXIT Exit from macro expansion
Format: MEXIT

You use this directive to exit from macro expansion mode, usually in
conjunction with the IFEQ and IFNE directives. It allows conditional
expansion of macros. Once it has executed the directive, the assembler
stops expanding the current macro as though there were no more stored
text to include.

External Symbols
XDEF Define an internal label as an external entry
point
Format: XDEF <label> [, <label > ...]

One or more absolute or relocatable labels may follow the XDEF
directive. Each label defined here generates an external symbol
definition. You can make references to the symbol in other modules
(possibly from a high-level language) and satisfy the references with a
linker. If you use this directive or XREF, then you cannot directly
execute the code produced by the assembler.

4-33

Macro Assembler Tripos Programmer's Reference

XREF Define an external name
Format: XREF <label> [, <label>.]

One or more labels that must not have been defined elsewhere in the
program follow the XREF directive. Subsequent uses of the label tell the
assembler to generate an external reference for that label. You use the
label as if it referred to an absolute or relocatable value depending on
whether the matching XDEF referred to an absolute or relocatable
symbol.

The actual value used is filled in from another module by the linker. The
linker also generates any relocation information that may be required in
order for the resulting code to be relocatable.

External symbols are normally used as follows. To specify a routine in
one program segment as an external definition, you place a label at the
start of the routine and quote the label after an XDEF directive. Another
program may call that routine if it declares a label via the XREF
directive and then jumps to the label so declared.

4-34

Tripos Programmer's Reference Macro Assembler

General Directives

INCLUDE Insert an externalfile
Format: INCLUDE "<file name>"

The INCLUDE directive allows the inclusion of external files into the
program source. You set up the file that INCLUDE inserts with the
string descriptor in the operand field. You can nest INCLUDE directives
up to a depth of three, enclosing the file names in quotes as shown.
INCLUDE is especially useful when you require a standard set of macro
definitions or EQUs in several programs.

You can place the definitions in a single file and then refer to them from
other programs with a suitable INCLUDE. It is often convenient to place
NOLIST and LIST directives at the head and tail of files you intend to
include via INCLUDE. Tripos searches for the file specification first in
the current directory, then in each subsequent directory in the list you
gave in the INC option.

MASK2 No action
Format: MASK2

The assembler accepts the MASK2 directive, but it takes no action on
receiving it.

4-35

Macro Assembler Tripos Programmer's Reference

IDNT Name program unit
Format: IDNT <string>

A program unit, which consists of one or more sections, must have a
name. Using the IDNT directive, you can define a name consisting of a
string optionally enclosed in double quotes. If the assembler does not find
a IDNT directive, it outputs a program unit name that is a null string.

4-36

Chapter 5: The Linker

This chapter describes the Tripos Linker. The Tripos Linker produces a
single binary load file from one or more input files. It can also produce
overlaid programs.

Table of Contents

5.1

5.2

5.2.1
5.2.2
5.2.3
5.2.4

5.3

5.3.1
5.3.2
5.3.3

5.4

Introduction

Using the Linker

Command Line Syntax
WITH Files

Errors and Other Exceptions
MAP and XREF Output

Overlaying
OVERLAY Directive
References To Symbols
Cautionary Points

Error Codes and Messages

Tripos Programmer's Reference Linker

5.1 Introduction

ALINK produces a single binary output file from one or more input files.
These input files, known as object files, may contain external symbol
information. To produce object files, you use your assembler or language
translator. Before producing the output, or load file, the linker resolves
all references to symbols.

The linker can also produce a link map and symbol cross reference table.

Associated with the linker is an overlay supervisor. You can use the
overlay supervisor to overlay programs written in a variety of
languages. The linker produces load files suitable for overlaying in this
way.

You can drive the linker in two ways:

1. from a Command line. You can specify most of the information
necessary for running the linker in the command parameters.

2. from a Parameter file. As an alternative, if a program is being
linked repetitively, you can use a parameter file to specify all the
data for the linker.

These two methods can take three types of input files:
1. Primary binary input. This refers to one or more object files that

form the initial binary input to the linker. These files are always
output to the load file, and the primary input must not be empty.

2. Overlay files. If overlaying, the primary input forms the root of
the overlay tree, and the overlay files form the rest of the
structure.

5-1

Linker Tripos Programmer's Reference

3.

Libraries. This refers to specified code that the linker incorporates
automatically. Libraries may be resident or scanned. A resident
library is a load file which may be resident in memory, or loaded
as part of the 'library open’call in the operating system. A scanned
library is an object file within an archive format file. The linker
only loads the file if there are any outstanding external references
to the library.

The linker works in two passes.

1.

In the first pass, the linker reads all the primary, library and
overlay files, and records the code segments and external symbol
information. At the end of the first pass, the linker outputs the
map and cross reference table, if required.

If you specify an output file, then the linker makes the second pass
through the input. First it copies the primary input files to the
output, resolving symbol references in the process, and then it
copies out the required library code segments in the same way.
Note that the library code segments form part of the root of the
overlay tree. Next, the linker produces data for the overlay
supervisor, and finally outputs the overlay files.

In the first pass, after reading the primary and overlay input files, the
linker inspects its table of symbols, and if there are any remaining
unresolved references, it reads the files, if any, that you specified as the
library input. The linker then marks any code segments containing
external definitions for these unresolved references for subsequent
inclusion in the load file. The linker only includes those library code
segments that you have referenced.

5-2

Tripos Programmer's Reference Linker

5.2 Using the Linker

To use the linker, you must know the command syntax, the type of input
and output that the linker uses, and the possible errors that may occur.
These are explained here.

5.2.1 Command Line Syntax.
The ALINK command has the following parameters:

ALINK [FROM | ROOT] files [TO file] [WITH file]
[VER file] [LIBRARY | LIB files] [MAP file]
[XREF file} [WIDTH n} [SMALL]

where 'file' means a single file name, 'files' means zero or more file
names, separated by a comma or plus sign, and 'n' is an integer.

The keyword template is

"FROM=ROOT,TO/K,WITH/K,VER/K,LIBRARY = LIB/K,
MAP/K,XREF/K,WIDTH/K,SMALL/S"

The following are examples of valid uses of the ALINK command:

ALINK a
ALINK ROOT a+b+c+d MAP map—file WIDTH 120
ALINK a,b,c TO output LIBRARY :flib/lib,obj/newlib

When you give a list of files, the linker reads them in the order you
specify.

The parameters have the following meanings:

FROM: specifies the object files that you want as the primary
binary input. The linker always copies the contents of
these files to the load file to form part of the overlay root.
At least one primary binary input file must be specified.
ROOT is a synonym for FROM.

5-3

Linker

Tripos Programmer's Reference

TO:

WITH:

VER:

LIBRARY:

MAP:

XREF:

WIDTH:

SMALL

specifies the destination for the load file. If this parameter
is not given, the linker omits the second pass.

specifies files containing the linker parameters, for
example, normal command lines. Usually you only use one
file here, but, for completeness, you can give a list of files.
Note that parameters on the command line override those
in WITH files. You can find a full description of the syntax
of these files in section 5.2.2 of this manual.

specifies the destination of messages from the linker. If
you do not specify VER, the linker sends all messages to
the standard output (usually the terminal).

specifies the files that you want to be scanned as the
library. The linker includes only referenced code
segments. LIB is a valid alternative for LIBRARY.

specifies the destination of the link map.
specifies the destination of the cross reference output.

specifies the output width that the linker can use when
producing the link map and cross reference table. For
example, if you send output to a printer, you may need this
parameter.

optimizes the use of space during linking. If you use this
switch, then you must sacrifice speed; SMALL may use
less space than usual, but it is slow. You would use
SMALL if your previous attempt to link failed through
lack of memory.

5-4

Tripos Programmer's Reference Linker

5.2.2 WITH Files

WITH files contain parameters for the linker. You use them to save
typing a long and complex ALINK command line many times.

A WITH file consists of a series of parameters, one per line, each
consisting of a keyword followed by data. You can terminate lines with a
semicolon (;), where the linker ignores the rest of the line. You can then
use the rest of the line after the semicolon to include a comment. The
linker ignores blank lines.

The keywords available are as follows:

FROM (or ROOT) files

TO file
LIBRARY files
MAP [file]
XREF [file]
OVERLAY

tree specification

#

WIDTH n

where 'file' is a single filename, ‘files' is one or more filenames, '[file]' is
an optional filename, and 'n' is an integer. You may use an asterisk
symbol (*) to split long lines; placing one at the end of a line tells the
printer to read the next line as a continuation line. If the filename after
MAP or XREF is omitted, the output goes to the VER file (the terminal
by default).

Parameters on the command line override those in a WITH file, so that
you can make small variations on standard links by combining command
line parameters and WITH files. Similarly, if you specify a parameter
more than once in WITH files, the linker uses the first occurrence.

Note: In the second example below, this is true even if the first value
given to a parameter is null.

5-5

Linker Tripos Programmer's Reference

Examples of WITH files and the corresponding ALINK calls:
ALINK WITH link-file

where 'link-file' contains

FROM obj/main,obj/s
TO bin/test
LIBRARY obj/lib

MAP

XREF X0

is the same as specifying

ALINK FROM obj/main,obj/s TO bin/test
LIBRARY obj/lib XREF xo

The command
ALINK WITH lkin LIBRARY ""
where 'lkin' contains
FROM bin/prog,bin/subs
LIBRARY nag/fortlib
TO linklib/prog
is the same as the command line
ALINK FROM bin/prog,bin/subs TO linklib.prog
Note: In the example above, the null parameter for LIBRARY on the

command line overrides the value 'nag/fortlib’ in the WITH file, and so
the linker does not read any libraries.

Tripos Programmer's Reference Linker

5.2.3 Errors and Other Exceptions

Various errors can occur while the linker is running. Most of the
messages are self-explanatory and refer to the failure to open files, or to
errors in command or binary file format. After an error, the linker
terminates at once.

There are a few messages that are warnings only. The most important
ones refer to undefined or multiply-defined symbols. The linker should
not terminate after receiving a warning.

If any undefined symbols remain at the end of the first pass, the linker
produces a warning, and outputs a table of such symbols. During the
second pass, references to these symbols become references to location
zero.

If the linker finds more than one definition of a symbol during the first
pass, it puts out a warning, and ignores the later definition. The linker
does not produce this message if the second definition occurs in a library
file, so that you can replace library routines without it producing
spurious messages. A serious error follows if the linker finds
inconsistent symbol references, and linking then terminates at once.

Since the linker only uses the first definition of any symbol, it is
important that you understand the following order in which files are
read.

1. Primary (FROM or ROOT) input.
2. Overlay files.
3. LIBRARY files.

Within each group, the linker reads the files in the order that you specify

in the file list. Thus definitions in the primary input override those in the
overlay files, and those in the libraries have lowest priority.

5-7

Linker Tripos Programmer'’s Reference

5.2.4 MAP and XREF Output

The link map, which the linker produces after the first pass, lists all the
code segments that the linker output to the load file in the second pass, in
the order that they must be written.

For each code segment, the linker outputs a header, starting with the
name of the file (truncated to eight letters), the code segment reference
number, the type (that is, data, code, bss, or COMMON), and size. If the
code segment was in an overlay file, the linker also gives the overlay
level and overlay ordinate.

After the header, the linker prints each symbol defined in the code
segment, together with its value. It prints the symbols in ascending
order of their values, appending an asterisk (*) to absolute values.

The value of the WIDTH parameter determines the number of symbols
printed per line. If this is too small, then the linker prints one symbol on
each line.

The cross reference output also lists each code segment, with the same
header as in the map.

The header is followed by a list of the symbols with their references.
Each reference consists of a pair of integers, giving the offset of the
reference and the number of the code segment in which it occurs. The
code segment number refers to the number given in each header.

5-8

Tripos Programmer's Reference Linker

5.3 Overlaying

The automatic overlay system provided by the linker and the overlay
supervisor allows programs to occupy less memory when running,
without any alterations to the program structure.

When using overlaying, you should consider the program as a tree
structure. That is, with the root of the tree as the primary binary input,
together with library code segments and COMMON blocks. This root is
always resident in memory. The overlay files then form the other nodes
of the tree, according to specifications in the OVERLAY directive.

The output from the linker when overlaying, as in the usual case, is a
single binary file, which consists of all the code segments, together with
information giving the location within the file of each node of the overlay
tree. When you load the program only the root is brought into memory.
An overlay supervisor takes care of loading and unloading the overlay
segments automatically. The linker includes this overlay supervisor in
the output file produced from an link using overlays. The overlay
supervisor is invisible to the program running.

5.3.1 OVERLAY Directive

To specify the tree structure of a program to the linker, you use the
OVERLAY directive. This directive is exceptional in that you can only
use it in WITH files. As with other parameters, the linker uses the first
OVERLAY directive you give it.

The format of the directive is

OVERLAY
Xfiles

-

#
Note: The overlay directive can span many lines. The linker recognizes a

hash (sharp sign '#") or the end-of-file as a terminator for the directive.

5-9

Linker Tripos Programmer's Reference

Each line after OVERLAY specifies one node of the tree, and consists of a
count X and a file list.

The level of a node specifies its 'depth' in the tree, starting at zero, which
is the level of the root. The count, X, given in the directive, consists of
zero or more asterisks, and the overlay level of the node is given by X+ 1.

As well as the level, each node other than the root has an ordinate value.
This refers to the order in which the linker should read the descendents
of each node, and starts at 1, for the first "offspring’ of a parent node.

Note: There may be nodes with the same level and ordinate, but with
different parents.

While reading the OVERLAY directive, the linker remembers the
current level, and, for each new node, compares the level specified with
this value. If less, then the new node is a descendent of a previous one. If
equal, the new node has the same parent as the current one. If greater,
the new node is a direct descendant of the current one, and so the new
level must be one greater than the current value.

A number of examples may help to clarify this:

Directive Level Ordinate Tree

OVERLAY ROOT
a 1 1 AN
b 1 2 abec
c 1 3
#
OVERLAY ROOT
a 1 1 /\
b 1 2 a b
*c 2 1 /|
*d 2 2 c d
#

5-10

Tripos Programmer's Reference Linker

OVERLAY —ROOT-

a / /1IN N\
b /7 1N\
*C ab e £ 1
*3 /1 VAN
e c d g h k
£ /1

*g ij

*h
**i
**j
*k
1
#

HNWWNNEF NN
VW NFB W N

Figure 5-A

The level and ordinate values given above refer to the node specified on
the same line. Note that all the files given in the examples above could
have been file lists. Single letters are for clarity. For example, Figure
5-B

ROOT bin/mainaaa

OVERLAY
bin/mainbbb,bin/mainccc,bin/mainddd
*bin/makereal
bin/trbblock,bin/transint,bin/transrc
bin/transri

bin/outcode

#

Figure 5-B

specifies the tree in the following figure:

5-11

Linker Tripos Programmer's Reference

bin/mainaaa

/\

bin/mainbbb bin/outcode
bin/mainccc
bin/mainddd

/\

bin/makereal bin/trbblock
bin/transint
bin/transr
bin/transri

Figure 5-C
During linking, the linker reads the overlay files in the order you
specified in the directive, line by line. The linker preserves this order in
the map and cross reference output, and so you can deduce the exact tree

structure from the overlay level and ordinate the linker prints with each
code segment.

5.3.2 References To Symbols

While linking an overlaid program, the linker checks each symbol
reference for validity.

Suppose that the reference is in a tree node R, and the symbol in a node S.
Then the reference is legal if one of the following is true:

5-12

Tripos Programmer's Reference Linker

a. RandSare the same node,
b. RisadescendentofS,or
¢. RistheparentofS.

References of the third type above are known as overlay references. In
this case, the linker enters the overlay supervisor when the program is
run. The overlay supervisor then checks to see if the code segment
containing the symbol is already in memory. If not, first the code
segment, if any, at this level, and all its descendents are unloaded, and
then the node containing the symbol is brought into memory. An overlaid
code segment returns directly to its caller, and so is not unloaded from
memory until another node is loaded on top of it.

For example, suppose that the tree is:

/

0O——2mw

/
D

\
F

/
B
/1IN
!
E
When the linker first loads the program, only A is in memory. When the
linker finds a reference in A to a symbol in B, it loads and enters B. If B
in turn calls D then again a new node is loaded. When B returns to A,
both B and D are left in memory, and the linker does not reload them if
the program requires them later. Now suppose that A calls C. First the
linker unloads the code segments that it does not require, and which it
may overwrite. In this case, these are B and D. Once it has reclaimed the
memory for these, the linker can load C.

Thus, when the linker executes a given node, all the node’s ‘ancestors’, up
to the root are in memory, and possibly some of its descendents.

5-13

Linker Tripos Programmer's Reference

5.3.3 Cautionary Points

The linker assumes that all overlay references are jumps or subroutine
calls, and routes them through the overlay supervisor. Thus, you should
not use overlay symbols as data labels.

Try to avoid impure code when overlaying because the linker does not
always load a node that is fresh from the load file.

The linker gives each symbol that has an overlay reference an overlay
number. It uses this value, which is zero or more, to construct the overlay
supervisor entry label associated with that symbol. This label is of the
form 'OVLYnnnn', where nnnn is the overlay number. You should not
use symbols with this format elsewhere.

The linker gathers together all program sections with the same section
name. [t does this so that it can then load them together in memory.

5-14

Tripos Programmer's Reference

5.4 Error Codes and Messages

These errors should be rare. If they do occur, the error is probably in the
compiler and not in your program. However, you should first check to see
that you sent the linker a proper program ({for example, an input
program must have an introductory program unit that tells the linker to

expect a program).

Invalid Object Modules

2 Invalid use of overlay symbol

3 Invalid use of symbol

4 Invalid use of common

5 Invalid use of overlay reference

6 Non-zero overlay reference

7 Invalid external block relocation
8 Invalid bss relocation

9 Invalid program unit relocation
10 Bad offset during 32 bit relocation
11 Bad offset during 16/8 bit relocation
12 Bad offset with 32 bit reference

13 Bad offset with 16/8 bit reference
14 Unexpected end of file

15 Hunk end missing

16 Invalid termination of file

Premature termination of file
Premature termination of file

Internal Errors

19
20
21
22

Invalid type in hunk list

Internal error during library scan
Invalid argument freevector
Symbol not defined in second pass

5-15

Chapter 6: The System Debugger - DEBUG

This chapter describes the use of the Tripos system debugger. This is a
resident task that can be used to inspect and alter store, to set
breakpoints, and to single step through a program.

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

Table of Contents

Debugging

Examining Store
Updating Store

Printing Styles
Expressions

Continuing from Aborts
Breakpoints and Tracing
Disassembly

Backtrace

Miscellaneous Commands

Quick Reference Card

Tripos Programmer's Reference DEBUG

6.1 Debugging

The DEBUG task in Tripos lets you monitor and modify the code or data
of any other task in the system, or of the kernel or device drivers. It has
facilities for debugging user programs, and also for handling aborts,
whether they occur in a task which is regarded as a user program, or one
of the standard system tasks.

DEBUG can work in one of two modes: as a Tripos task communicating
with the user via the console handler in the normal way, or in standalone
mode with machine interrupts turned off, driving the console keyboard
and output device directly. You enter DEBUG Task mode by pressing
CTRL-P until you select Task 2. Each time you press CTRL-P, you select
the next available task (process); if you find that you have selected a task
that you do not want, then you can press CTRL-P again to select the next
task, and so on. You enter DEBUG standalone mode while handling an
abort or breakpoint; this means that the normal action of Tripos is
suspended until you give a C or H command.

Aborts are the general name given to exceptional conditions in Tripos.
They may arise from an exception or TRAP instruction; in particular the
Tripos routine ABORT causes a TRAP 1 instruction and hence an entry
to DEBUG in standalone mode. Many internal Tripos routines call
ABORT if something unexpected happens - for example, the library
routine SENDPKT aborts if a packet other than the one that it was
expecting returns. In this case the argument to ABORT is passed to
DEBUG and printed out as part of the abort message. A value is also
passed when an exception occurs - for example, a bus error (normally an
invalid pointer).

When you enter DEBUG in the standalone mode, DEBUG displays a
standard message of the form:

" ABORT Tn: rc message
where n is the task number of the aborting task, or 0 if the idle task was
running (normally an abort in an interrupt handler), or -1 if a section of

the machine code kernel was running. The reason for the abort is given

6-1

DEBUG Tripos Programmer's Reference

by rc (return code), which is either the argument passed to ABORT or a
number specific to the exception condition. The Tripos command FAULT
rc gives more information about the meaning of the numbers.

The DEBUG task may be entered in normal, task mode by selecting task
2 with CTRL-P. In this case, you may use the RUBOUT key (DEL or
BACKSPACE) and any console handler escapes; input is not transmitted
to DEBUG until ESC or RETURN is pressed. In standalone mode
commands are entered at once and RUBOUT discards the current
command and displays '?77".

6.2 Examining Store

Store can be examined in a number of ways. The general form for a
location in memory is a letter followed by a number. Absolute store
locations can be examined by using the command letter 'A’ or 'a’ (all
command letters can be entered in upper or lower case). The number
following refers to the BCPL memory address. Thus

A256
refers to the store location with the BCPL address 256. As BCPL
addresses are four times smaller than machine addresses, the actual
byte address of that location is 1024. Byte addresses can be specified
instead, if required, with the command letter 'M'. Thus

M1024
refers to the same location.
Hexadecimal notation can be used if required; in this case the
hexadecimal number must be prefaced by the symbol '#'. This notation
can be used anywhere a number is expected, so the store location above
can also be referenced with the syntax

A #100

or

6-2

Tripos Programmer's Reference DEBUG

M#400

Notice that spaces between the command letter and the argument are
optional.

The above mechanism allows a store location to be specified, but does not
actually print out the data stored there. It merely causes DEBUG to
remember the value specified as the 'current expression’. The value of
the current expression can be examined at any time with the command
'="'. This command displays the value of the current expression, if one
exists; otherwise it gives an error. DEBUG indicates all errors by
reflecting two question marks: 77",

It is common to set the current location and examine the contents as a
sequence of commands on a single line, but this is not compulsory. For
example,

A256 =

sets the current expression to the contents of the location with BCPL
address 256, and then displays the value out. Other commands (which do
not alter the value of the current expression) may be inserted between
the setting and examining as follows:

A256
some other command

It is common to want to look at a number of store locations, and this can
be done with the T command. The T command takes as an argument a
number that indicates the number of locations to be typed out. The
command starts at the current expression and does not alter the current
expression. Thus

A256 T20

types the contents of location A256, A257 and so on up to A275. As the
current location is not altered, you can also give the commands:

DEBUG Tripos Programmer's Reference

A256
T20
T10

This sequence of commands sets the current location to A256, types 20
locations from A2586, types 10 locations from A256, and then types the
contents of A256.

DEBUG knows a great deal about the structure of store as manipulated
by Tripos. It checks to see that the location referenced through A and M
commands belongs inside the memory space used by Tripos. This is done
to ensure that Bus Errors are not accidentally generated, but in some
cases it is useful to access memory addresses outside the range of actual
memory used by Tripos. In particular, input/output control and status
ports appear in the memory address space of the 68000, and access may
be required to these. In this case the command Y is used, which behaves
Jjust like A except that the check on the value following Y is not made.

Note: As no checks are made, you must use the Y command with care!

One of the most useful store locations known to DEBUG is the global
vector of the current task. The current task is set to the one that aborted
in standalone mode, and, initially, to task 1 in task mode. It can be
altered by means of the S command to select a different task.

WARNING: An error occurs if an attempt is made to select a task that
does not exist.

Global vector locations are referenced by means of the 'G' command.
Thus

S3 GO T20
selects task 3, sets the current expression to the start of the global vector,

and then displays the values of the first 20 globals. Similarly, you might
issue the commands:

6-4

Tripos Programmer's Reference DEBUG

S1 G81 =
which print the value of global 81 of task 1.

One of the central data structures in Tripos is the Task Control Block -
see the Tripos Technical Reference Manual for a full description
of this. Locations within the TCB for the current task can be accessed by
means of the W command in a similar fashion to the G command.

The register set for a particular task are dumped when a task aborts, and
so in standalone mode the command R refers to the memory where this
register dump has been kept. The registers are stored D0-D7, A0-A7, SR,
PC. The status register (SR) is saved in a long-word location even though
it is only 2 bytes long. Thus DO can be referenced by R0, A0 by R8, and
the Program Counter (PC) by R17. Because it is often useful to look at all
of the registers, another command is available that simply displays all
the registers in suitable form,; this is "' (colon). Colon (:) always displays
the registers in hexadecimal.

6.3 Updating Store

As explained above, the = command types the value of the current
expression. Store locations can also be examined with the /' (slash)
command. This command not only displays the value of the current
expression, but also opens it ready for updating. The location remains
open until a RETURN is pressed; this means that in task mode the
command /' immediately followed by a RETURN simply displays the
value stored in the location, opens it, and then closes it immediately. In
standalone mode DEBUG recognizes the /' command at once, displays
the current value, and waits with the location opened for the next
command.

Only locations that are open may be updated. To update an opened
location, you use the U (Update) command. U takes a new number as an
argument; it then overwrites the old value with this number. Because
the location is closed when you press RETURN, the U command must
follow the /' command; in standalone mode the old value is printed once
the location is opened, while in task mode the value is printed after the
update has been made (but the previous value is printed). Thus

6-5

DEBUG Tripos Programmer's Reference

A256 / U123

opens location A256 and alters the value to 123. To close a location, you
can press RETURN or give a DEBUG command other than U, =, or §
(see below).

The next location can be opened with the N (Next) command. This acts
just as if the location following the one from which the current
expression was obtained was opened by the /' command. Thus

A256 / U123 N U456

replaces A256 with the value 123, and then opens location A257 and
replaces that with the value 456.

BCPL programs often contain pointers to other parts of store. DEBUG
knows about this, and the I (Indirect) command can be used to perform
indirection on the current expression, just like the ! operator in BCPL.
Thus

A256 I

takes the value stored at location A256 and uses this as the next address
to open. This means that if A256 contained 100, then after this command
line was executed the location A100 would be opened, and could be
updated (until RETURN is pressed, that is).

In a similar fashion, you can also use the J command to perform
indirection, but in this case the value used as the pointer is assumed to be
a byte address. For example,

A256 J

takes the value stored at A256 (for instance, 100) and opens the location
referenced by that as a byte address (M100 or A25).

Notice that registers can be altered by opening the register dump using

the R (Register) command; in this case the register is reloaded when
normal execution continues.

6-6

Tripos Programmer's Reference DEBUG

WARNING: Updating any memory location is potentially dangerous.

6.4 Printing Styles

To set the style in which values are typed, you use the '$' command,
which takes a letter as an argument. If the style is altered while a
location is open or immediately following an = command, the value is
reprinted in the new style but is not changed permanently. In all other
cases the change is made for good.

The default style is $F, which displays data as follows: if the value
appears to be a machine pointer to a BCPL-style function entry point, the
name of the function is printed. Thus

G81 =

displays the name of the function held as global 81 ('loadseg"). Function
names are truncated to 7 characters and may have been omitted with a
code generator option. If the value in question does not appear to be a
function, it is printed in decimal if it is a small number, and in
hexadecimal if it is large.

$X sets the style to always print values in hexadecimal, $D always prints
values in decimal and $O prints values in octal. Characters can be
printed when style $C is selected. This style should be used with care in
standalone mode: if the characters include control codes, bizarre effects
may be produced on intelligent terminals. Finally, the style $S attempts
to print values as BCPL strings. In this case values are examined and if
they are valid pointers to store the pointer is assumed to be a string. The
first byte at the destination is used as a count and subsequent characters
are printed out. Invalid pointers are printed in decimal.

6-7

DEBUG Tripos Programmer's Reference

6.5 Expressions
Up to now it has been assumed that the value of the current expression is

the content of a store location obtained with commands like A. In fact the
current expression can be just a number. For example,

123 =

sets the current expression to the value 123 and then displays 123. More
usefully, you might type:

#A05C =

to translate hexadecimal to decimal (assuming the current style was $F
or $D). Setting the style to hexadecimal or octal will convert in the other
direction.

You can also enter the ASCII value of a character by preceding it with a
single quote (). Thus, to find the ASCII representation of the letter A,
you could type

IA =

which sets the current expression to the required value and then prints
it.

It has also been assumed so far that all numbers must be entered as a
single decimal number, or a hexadecimal number preceded by '#'. In fact
the current expression can be set to just that - an expression that will be
evaluated. The expression consists of a numbers in either style, or the
values of store locations, linked together with a number of operators.
For example,

Al23 + 56 =
prints the contents of A123 added to 56.

The operators are as follows:

6-8

Tripos Programmer's Reference DEBUG

+ Addition

- Subtraction
Multiplication

Division

Integer remainder

Shift places left

Shift places right
Logical AND

Logical OR

Indirection (as in BCPL)

W ooP *

-—R vV A

These operators can be combined as required, with brackets to indicate
precedence.

If one of these operators is found as a command, it acts on the current
expression. For example,

+3 =

i N

1+
+ 1
first evaluates 1+2+ 3, sets the current expression to 6, and prints this

out. The command +1 then sets the current expression to its old value
plus 1, and prints this out, giving 7.

The same syntax for an expression can also be used wherever a number
would be valid, but in this case the expression must be enclosed in
brackets. So

A (250+6)

sets the current expression to the value of A256.

DEBUG Tripos Programmer's Reference

6.6 Continuing from Aborts

An abort causes entry into standalone DEBUG, and suspends the normal
action of Tripos. The cause may be examined by any of the DEBUG
commands, but eventually you will want to continue with Tripos. To do
this, you can use the C (Continue) command, which asks Tripos to
continue. If the cause of the abort was a program calling the routine
ABORT, then the routine returns and the execution continues.

For other aborts typing C will not work (for example, after a Bus Error
the same instruction is tried over and over again). In this case there are
three options. The first is the most drastic, and involves typing Z or
pressing the reset button. They have the same effect and Tripos must be
restarted. This may be the only option open if a program has gone wild
and overwritten store.

For less serious cases there are two other alternatives. Typing H holds
the current task and allows others to continue. If you have a spare CLI,
you can continue working from that, while the other task remains held.
The task can be released by entering DEBUG again, making it the
current task via the S command, and typing C.

Holding a task is useful if it is looping - the debug task and console
handler run at higher priorities than any CLI and so you can always
switch to the debug task and hold the offending CLI task. Generally, you
need a spare CLI if you have held task 1, and the NEWCLI command can
be used to do this. If you have not yet made a new CLI then a facility
within DEBUG can be used.

The DEBUG V' (backslash) command accepts a line of text that you would
normally type at a CLI. DEBUG then passes the text over to the RUN
command which executes it. For example, typing

\newcli

to DEBUG is the same as typing RUN NEWCLI to a CLI. Of course, any
valid command can follow the "V, but asking for a new CLI is often the
most useful. The \' command can only be used when DEBUG is in task
mode, and cannot be used in standalone mode. If a task aborts and you
wish to hold it and carry on working on a new CLI, but have not got a

6-10

file:///newcl

Tripos Programmer's Reference) DEBUG

spare one, you should proceed as follows.

Type H to hold the current task. Other tasks now run normally,
including the console handler. Press CTRL-P to select DEBUG in task
mode. (CTRL-P cycles through the available tasks, so you may need to
press it several times before you get task 2.) Now create a new CLI by
typing \newcli, and select the new CLI with CTRL-P.

The final way out of an abort is to type K. This command calls the
KILLTASK primitive, which causes the command in error to execute the
BCPL routine TIDYUP. The standard TIDYUP routine attempts to clear
up the world, but cannot close files that are open but not selected, nor can
it release space allocated by calls to GetMem. If you have written your
own TIDYUP command, then this is called and will, hopefully, return all
the resources it was using.

6.7 Breakpoints and Tracing
Breakpoints may be set with the B (Breakpoints) command, which
should be followed by an argument in the range 1-9 to indicate the

number of the breakpoint to be set. The breakpoint is set at the value of
the current expression. For example,

G81 Bl
sets breakpoint 1 at the value of global 81, which would normally be a
routine entry point. The value of the current expression is taken to be the

byte address of the place where the breakpoint is to be set.

The values of currently set breakpoints can be inspected by means of the
command

BO

A breakpoint can be deleted by setting the current location to zero and
then specifying the breakpoint; for example:

6-11

file:///newcli

DEBUG Tripos Programmer's Reference

0 B1

After a breakpoint has been found, the program may be continued by
typing 'C’, which causes one further instruction to be executed and
control returned to DEBUG. A further 'C' continues execution.
Alternatively, typing a period (.) causes the program to be traced an
instruction at a time, using the hardware trace facility of the 68000.

6.8 Disassembly

The Tripos system debugger contains a disassembler. The D
(Disassemble) command may be used to obtain 20 lines of program
disassembly. The disassembly starts at the 'current disassembly
location'. This is either set by quoting a byte address after the D
command, or is picked up from the previous value. After disassembly,
DEBUG updates the current disassembly location to the location of the
last instruction it encountered. After an abort or breakpoint, however, it
sets the current disassembly location to the program counter of the
offending instruction. No output is produced if an attempt is made to
start disassembly at an odd byte address.

When a breakpoint or trace exception is encountered, the current
instruction is disassembled and printed out after the !! message.

The registers may be examined by means of the RO T17 construction;
however, the "' command displays all the registers in hexadecimal, along
with their names. This is useful when tracing through code with the .
command.

6-12

Tripos Programmer's Reference DEBUG

6.9 Backtrace

The Tripos system debugger also knows about the structure of BCPL
stacks used under Tripos, and these can be inspected by means of the E
(Examine) command. The E command takes a letter which indicates the
action to be performed. The simplest action is to ask for a complete
backtrace of the stack; this is done by EB. In standalone mode there is no
way to stop this display rushing off the top of the screen if it is too long.

The other way of performing a backtrace through the stack is
interactively. The normal command to enter interactive mode is ET,
although any of the others listed below may also be used. Once in
interactive mode a special set of subcommands are available that alter
the stack display; any of these can also be requested from the normal
DEBUG command level by preceding them by the E command. The
interactive mode is terminated by typing B (which gives the
non-interactive backtrace) or by pressing RETURN.

If the interactive command sequence is left at a particular stack frame,
you can use the command letter L to refer to the local variables at that
stack frame level. As with other command letters, you follow L with a
number that indicates the local variable in question. Thus, once you had
selected a suitable stack frame, you could type:

LO T20

to print the value of the first 20 local variables. As with all BCPL
implementations, these values are, in fact, firstly the arguments to the
routine, then the local variables or contents of vectors. There is no
indication if the actual local variables have in fact been exhausted, so
that L99 in one stack frame may, in fact, refer to L2 in a higher frame.

The interactive commands are as follows. Except for B they all change
the values obtained by the L command.

do a non-interactive backtrace.

set the stack pointer to the current value.
set the stack base to the current value.
go to next coroutine stack.

ZWnCow

6-13

DEBUG Tripos Programmer's Reference

T go to the top of the outermost active coroutine stack; the
stack base is obtained from the global vector and the stack
pointer from the registers if available, otherwise from the
value saved in the TCB at the last interrupt or kernel call.

U go up to the top of the current stack.

D go down one level on the current stack, or to the top of the
next coroutine stack; this generates the next line of the
backtrace.

v verify the current stack level.

When a new stack pointer or stack base is selected it is verified by typing
the appropiate line of backtrace output. This contains the name of the
function, the base of the stack frame and the first few local variables.

6.10 Miscellaneous Commands

The X' command executes a BCPL callable function, using DEBUG's
global vector and stack. The current expression should be the function to
be called, as for the 'B' command. It may be followed by up to 4
arguments, separated by spaces. The current expression is set to the
result.

There are ten user variables available called VO to V9. These may be
updated and examined in the same way as any other store location, and
can be used whenever any other value would be valid.

The O command can be used to specify an offset. This is used when
printing out values - the locations are specified in absolute terms and
also relative to the offset if this is non-zero. The value specified is a byte
offset. Once an offset has been set up, the value of the offset is added to
the value given after the M and D commands. This means that once a
program is loaded an offset can be specified that is the start of the
program in memory. Subsequent references to store can be made by
specifying the relative address after M and D commands; the actual base
address offset will be added in by DEBUG.

6-14

Tripos Programmer'’s Reference DEBUG

Quick Reference Card

Location names:

A <integer>
G <integer >
L<integer>
M<integer>
R<integer >
V <integer>
W <integer>
Y <integer >

Commands:

B <integer >
C
D<integer >
E

EB

ED

EL

EN

ES

ET

EU

EV

H

I

J

N
O<integer>
S<integer>
T <integer >
U<e>

X...

Z

Absolute store location <integer > as BCPL address
Global variable <integer >

Local variable <integer>

Absolute store location <integer> as byte address
Register <integer>

Variable <integer >

TCB location <integer >

absolute store location <integer> (suppress checks)

set/delete Breakpoint or list all
Continue/release task

Disassemble from byte address <integer >
trace Environment

non-interactive Backtrace

Down one level

set stack level to current value

Next coroutine

set Stack base to current value

Top of stack

Up to top of current coroutine

Verify current level

Hold current task

BCPL Indirection

byte indirection

Next location

set Offset to be used with M command
Select task

Type contents of <integer > locations
Update current location with <e>
eXecute function (up to 4 <integer>s as args)
enter bootstrap and restart

6-15

DEBUG Tripos Programmer's Reference

$ set style

$C characters

$D decimal

$F function

$0 octal

$X hexadecimal

/ open current location

\<text> Execute <text> as a command

= type current value
Trace one instruction
display registers

6-16

Chapter 7: Full Screen Support

This chapter describes the full screen support available under Tripos. In
particular, it describes the use of the VDU routine.

Table of Contents

7.1 Introduction

7.2 VDU

Tripos Programmer's Reference Full Screen Support

7.1 Introduction

Tripos offers a number of commands that use specific actions from a
reasonably intelligent VDU. Unfortunately the control codes for these
actions can differ from terminal to terminal.

In order to provide support for a number of different terminals, Tripos
allows the user to specify which terminal is to be used. The command
VDU <name> sets up the terminal as'<name > type. If your terminal
is not one of those already supported, turn to Chapter 4, "Installation," of
the Tripos Technical Reference Manual for instructions on how
to install it.

The VDU command works by reading a file called DEVS:VDU and
constructing, from the specification found there, a section of interpreted
code. This code is stored in the console task associated with the CLI.

7.2VDU
The VDU DOS call has the following format:
Res = VDU(code, id, &row, &col)

Before this routine can be used, however, the system must be initialized.
This is done by calling the VDU function with the vdu.init call. Vdu.init
sets the console handler into single character mode and initializes the
vdu as required. The console handler must be turned back into normal
mode afterwards with the vdu.uninit call.

The value returned from the initialization call is an id which must be
passed when making any further calls as the second argument. The first
argument is always the code for the required operation, and the other
two arguments are the addresses of the variables holding the physical
row and column positions. These are updated suitably only if the
implementation of a particular feature causes the cursor to be moved
from the current physical position and will not be updated if the cursor
movement is expected (for example, vdu.left). If the cursor is moved as a

7-1

Full Screen Support Tripos Programmer's Reference

side effect, then it will not be restored; it is the responsibility of the caller
to move it back if required. A common programming technique is to
maintain the logical cursor position and the physical position. The
values whose addresses are passed to the VDU routine represent the
physical location. When the cursor is to be displayed for a long period it
is placed back at the logical position.

The different calls available are described below.

id = VDU (vdu.init)

This call switches the console handler into single character mode, and
initializes the VDU (for example, placing into page mode). When in
single character mode any key typed at the keyboard is sent
immediately, unlike buffered mode when a line is sent only when return
is pressed. If the vdu in use has not been defined, the value returned will
be zero. Otherwise a screen handle will be returned which must be
quoted as the second argument whenever a call is made to the VDU
function.

VvDU(vdu.uninit, id)

terminates the use of the VDU in any special way. Unless this call is
made the console handler will remain in single character mode, and
normal operation of the system will be impossible.

length := VDU(vdu.length, id, &row, &col)
width := VDU(vdu.width, 1id, &row, &col)

returns the number of lines and the number of characters per line on the
screen of the VDU.

7-2

Tripos Programmer's Reference Full Screen Support

char := VDU(vdu.getchar, id)

returns the next character typed at the keyboard. The system will wait
until the character is typed. This call will return the translated
character if one has been specified in the VDU definition file.

The characters expected by the ED program and others are as in Table
7-A. All, none or some may be mapped to specialized keys. It is normal
for at least the cursor movement keys to be mapped to these control
codes. Note that CTRL-S and CTRL-Q are not used as these may be used
for flow control.

Action Code Control Combination
Insert line #X01 CTRL-A
Delete line #X02 CTRL-B
Scroll down #X04 CTRL-D
Cursor to end screen #X05 CTRL-E
Flip case #X06 CTRL-F
Repeat last command #X07 CTRL-G
Cursor left #X08 CTRL-H
Tab #X09 CTRL~1I
Cursor down #X0A CTRL-J
Cursor up #X0B CTRL-K
Return #X0D CTRL—-M
Delete char #X0E CTRL-N
Delete word #X0F CTRL-0
Cursor word left #X12 CTRL-R
Cursor word right #X14 CTRL-T
Scroll up #X15 CTRL-U
Verify screen #X16 CTRL-V
Cursor right #X18 CTRL-X
Deol #X19 CTRL-Y
Escape #X1B CTRL-[
Cursor to end line #X1D CTRL-]
Table 7-A

Full Screen Support Tripos Programmer's Reference

VDU(vdu.setcursor, id, &col, &row)

positions the cursor at the col and row specified. The top left hand corner
of the screen is position 0,0. Note that the values are passed by reference.

VDU(vdu.left, 1id, &row, &col)
vDU(vdu.right, id, &row, &col)
VDU(vdu.up, id, &row, &col)
VvDU(vdu.down, id, &row, &col)

moves the cursor one place in the specified directions. This should not be
called if it would move the cursor off the edge of the screen.

VDU(vdu.dell, id, &row, &col)

deletes the current line on the VDU and shuffles up any lines left on the
screen to fill the gap. The bottom line is erased.

VDU(vdu.insl, id, &row, &col)

shuffles down all lines from the current line downwards to make room for
a new line. The current line is cleared for input.

vDU(vdu.deol, id, &row, &col)

deletes all characters from the cursor to the end of the line.

Tripos Programmer's Reference Full Screen Support

res := VDU(vdu.insc, id, &row, &col)

shuffles all the characters above and to the right of the cursor one
position right. Any character beyond the end of the screen is lost. The
character position above the cursor is cleared to a space.

Not all VDUs are capable of this operation. The result returned indicates
if it is possible - a TRUE result indicates that the operation has worked,
whereas a FALSE result indicates that the VDU cannot support this
function.

res := VDU(vdu.delc, id, &row, &col)

shuffles all characters to the right of the cursor one position left. The last
position on the line is cleared to a space. Not all terminals may support
this - the result indicates this as detailed above.

VDU(vdu.scrollup, id, &row, &col)

scrolls all the characters on the screen up one line. The bottom line
cleared to blanks. This may be implemented by either a cursor down at
the bottom of the screen (often this is the quickest way), or by a delete
line at the top of the screen, or in any other way defined in the vdu
specification.

VDU(vdu.scrolldown, id, &row, &col)

scrolls all the characters on the screen down by one line. The top line is
cleared to blanks. This may be implemented via a cursor up at the top of
the screen, or an insert line at the top of the screen, or in any other way.

Full Screen Support Tripos Programmer's Reference

il

res
res

VDU(vdu.highlighton, id, &row, &col)
VDU({ vdu.highlightoff, id, &row, &col)

sets the screen highlight on or off. The highlight may be extra bright,
inverse video, underlined or even nothing at all. It may last for the rest of
the line or the rest of the screen (it should always be explictly turned off
at the end of the line). Again the result is true or false depending on
whether the terminal is capable of supporting this action.

7-6

Chapter 8: Floating Point

This chapter describes the implementation of floating point in Tripos.

8.1

8.2

83

8.4

Table of Contents

Floating Point Format
Calling Sequence
Condition Codes

Floating Point Functions

Tripos Programmer's Reference Floating Point

8.1 Floating Point Format

Floating point calculations can be single or double precision. The
formats of both are described below.

8.1.1 Single Precision

The format for single precision floating point can be expressed as follows:

Bit positions 31-0

31 30 23 22 0

| s | B....... E| Meeveoeoooon.. M | 1 Long word
Where

S - Signbit (0 - positive, 1 - negative)
E - Binary exponent (127 excess)
M - Normalised mantissa (1. MMMMMMMMM)

8.1.2 Double Precision

The format for double precision floating point can be expressed as
follows:

Bit positions 63-0

63 62 52 51 0

| s | EB....... E| Moveiueannn.. M | 2 Long words
Where

S - Signbit (0 - positive, 1 - negative)
E - Binary exponent (103 excess)
M - Normalised mantissa (1. MMMMMMMMM)

8-1

Floating Point Tripos Programmer's Reference

8.2 Floating Point Calling Sequence

The calling sequences are different for single and double precision; both
are included below.

8.2.1 Single Precision

The single-precision floating point calling sequence is as follows:
MOVE.L <numl>,D1
MOVE.L <num2>,D2
JSR FPop

Onreturn, D1 holds D1 op D2.

8.2.2 Double Precision

The double-precision floating point calling sequence is as follows:

MOVE.L #numl, D1l
MOVE.L #num2,D2

JSR DFPop
numl: DS.L 2
num2: DS.L 2

The operation performed is (D1) op (D2). The registers remain
unchanged.

8-2

Tripos Programmer's Reference

Floating Point

8.3 Condition Codes

The following condition codes are set:

X - Undefined

N - Ifresultis <0
Z - IfresultisO

V - Ifunderflow or overflow
C - Ifoverflow

8.4 Functions

The following functions are provided:

FPADD
FPSUB
FPMUL
FPDIV
FPTST
FPNEG
FPCMP

DFPADD
DFPSUB
DFPMUL
DFPDIV
DFPTST
DFPNEG
DFPCMP

D1 (set condition codes)

DL + D2 —>
D1 - D2 -—>
D1 * D2 ->
D1 / D2 ->
Test

-D1 -> D1

D1 - D2 (set condition codes)

(D1)
(D1)
(D1)
(D1)

+ (D2)
- (D2)
* (D2)
/ (D2)

D1
D1
D1
D1

->
->
->
->

(D1)
(D1)
(D1)
(D1)

Test (Dl) (set condition codes)
-> (D1)
- (D2) (set condition codes)

—-(Dl)
(D1)

Tripos Programmer's Reference

6.9

76.9

776.3

" (double quote) 4.4, 4.20
*(single quote) 4.12, 4.30
,{comma) 4.4,4.8,4.24
:(colon) 4.6,6.5,6.12,6.16

; (semicolon) 4.5

. (period) 4.7, 4.10, 4.24, 6.12,6.16
.L(longword) 4.12, 4.25
Wi{word) 4.12, 4.24,4.25

(hash, or sharp sign) 5.9, 6.2
$command 6.6,6.7,6.16

$C command 6.16

$D Command 6.16

$F command 6.16

$0 command 6.16

$X command 6.16

%6.9

& 49,69

*(asterisk) 4.5, 4.9,4.11,5.5, 5.8,
+4.4,49,4.31,6.9
-49,6.9

/4.9,6.5,6.16

\(backslash) 4.32, 6.10, 6.16
\@4.32

__(underscore) 4.10

| Logical OR 6.9

" Logical NOT 4.8
<1.2,4.31,6.9

<<49

>1.2,4.31,6.9

>>49

=6.3,6.5,6.7,6.16

4(SP) 1.3

A49,62,64,6.15
A01.3,1.6,1.7
A0-A74.1,4.12
All6
Abort 6.1, 6.10,6.12
- after Bus Error 6.10
- message 6.1
- task number 6.1
Absolute expression 4.12
Absolute origin 4.17
Absolute store location 6.2, 6.15
Absolute symbol 4.9, 4.10, 4.34
Access memory addresses 6.4
Add (+)4.9
AddDevice 2.12,2.13
Adding a new device 2.12
Adding a new task 2.4
Addition 6.9
Address 4.1,4.12,4.13,4.16,4.22,
6.3

-mode 4.12, 4.13
-register 4.1,4.12,4.16, 4.22
- variant 4.16
Address, byte 4.1
Addressing, indexed 4.1
AddTask 2.4,2.6,2.9
Aligning code 4.29
Aligning data 4.24
Alignment on long word boundary 4.29
Alignment on word boundary 4.25
ALINK 1.1,5.1
ALINK keyword template 5.3
ALINK parameters 5.3
Allow task rescheduling 2.7
Alter store 6.1
AND4.8
AND, Logical 6.9
APTR 1.14
Argl 1.11
Arg2 1.11
arge 1.3
Arguments 2.1, 3.1
argv 1.3
ASCII characters 4.30
ASCII literal 4.12
ASCII string 4.24
ASSEM 4.2
Assem, examples of calling 4.4
Assemble if condition 4.18, 4.30, 4.31
Assembler 1.2,2.2,4.1-36
-command line 4.2
-directives 4.5,4.7,4.16
- file suffixes 4.2
-options 4.4
-output 1.1
Assembly control 4.17, 4.20
Assembly listing 4.25, 4,26, 4.27
Assembly statistics 4.3
Assign permanent value 4.17
Assign temporary value 4.17
Asynchonous I/0 1.12
Attention flags 2.9,2.10
Automatic overlaying 5.9

B48,6.11,6.13,6.15
Backtrace 6.13,6.14
BCPL1.2,6.2,6.15

- indirection 6.15

- memory address 6.2
Binary 4.11
Binary Format, Tripos 1.1
Bit mask 2.9, 2.10, 3.17
Boolean returns 2.1, 3.1
BPTR1.14,1.15,1.16,1.17
Branches 4.2
Breakpoints 6.11,6.12

Index Tripos Programmer’s Reference
BSS 4.20 Comment, set file or directory 3.17

BSTR 1.14,1.16,1.18, 1.19
BufEnd field 1.13

Buffer allocation 1.24

Buffer pointer 1.7

Buffer size 1.6

Bus Error 6.10

Byte address 6.2, 6.6

Byte identification in memory 4.1
Byte indirection 6.15

Byte operations 4.1

C 6.1,6.10,6.12,6.15
C (programming language) 1.2, 1.3,
1.4,2.1,2.2
Coption 4.4
C:3.25
Calling routines in Assembler 1.2
Calling routines in BCPL 1.2
Calling routines inC 1.2
Calling the DOS 1.2,1.5
Calling the Kernel 1.5
Case (Upper/lower) 2.1, 3.1
Case distinction (assem option) 4.4,
4.10,4.22
CCR4.10,4.22
ChangePri2.5
Changing a task's priority 2.5
Character print style 6.16
Character reflection 1.9
Characters (VDU) 7.3
Characters, return 3.19
CharPos field 1.13
Checking for packet on queue 2.16
Checking the packet queue; see
TaskWait 1.11
Clean up world after abort 6.11
Clear line for input 7.4
CLI1.1,1.2,1.3,1.4,1.6,1.8,
3.23,3.24,6.10,7.1
-stack 1.2
-task 1.8,1.10,1.12
- task priority 2.6
Close 1.9,1.15,2.13,3.3
Closing files 1.5
CNOP 4.18,4.25,4.29
CODE 4.20
Code segments 5.2,5.4,5.8,5.9,
5.12,5.13
Code, loading and unloading 1.5
Combination of operators 6.9
Command line input 5.1
Command Line Interpreter (see CLI} 1.1
Command line, assembler 4.2
Commands (DEBUG) 6.15
Comment field 4.8

Comments in programs 4.5
COMMON blocks 5.9
Communication between tasks and
devices 1.10,1.23
Conditional assembly 4.18, 4.29, 4.30,
4.31
Conditional directive 4.31
Conditional expansion of macros 4.33
Conditional NOP 4.18, 4.29
CONSOLE 6.7
Console handler 1.9,1.16,1.17, 3.19,
6.1,6.2
- escapes in task mode 6.2
- modes 1.22
- process 1.16, 1.17
Constant value assignment 4.24
Constants, define 4.17
Continue after breakpoint 6.12
Continue task 6.15
Continuing from aborts 6.10
Control codes 6.7, 7.3
Control of listing 4.18
CopyDir 1.18
Corruption of memory 2.4
Create a new directory - see CreateDir
Create a new process - see CreateProc
CreateDir 1.18,3.3,3.4
CreateProc 1.4,2.5,3.21
Cross reference output 5.4, 5.12
Cross reference table 4.4,5.1,5.2,
5.4
CTRL-A7.3
CTRL-B7.3
CTRL-C29,2.10,2.11
CTRL-D2.9,2.10,7.3
CTRL-E2.9,2.10,7.3
CTRL-F2.9,2.10,7.3
CTRL-G7.3
CTRL-H 7.3
CTRL-17.3
CTRL-J 7.3
CTRL-K 7.3
CTRL-M 7.3
CTRL-N 7.3
CTRL-07.3
CTRL-P6.1,6.2,6.11
CTRL-Q7.3
CTRL-R7.3
CTRL-S7.3
CTRL-T7.3
CTRL-U 7.3
CTRL-V73
CTRL-X17.3
CTRL-Y 7.3
CTRL-{ 7.3

http://TaskWaitl.il

Tripos Programmer's Reference

Index

CTRL-|17.3
Currentdirectory 4.4

Current disassembly location 6.12
Current expression 6.3, 6.8, 6.9

Current location 6.3
Current program counter 4.11
CurrentDir 3.4
Cursordown 7.3

Cursor left 7.3

Cursor position 7.4

Cursor right 7.3

Cursor to end-of-line 7.3
Cursor to end-of-screen 7.3
Cursorup 7.3

Cursor word left 7.3
Cursor word right 7.3

D6.12,6.14,6.15
Doption 4.4
D01.2,1.3,1.4,1.6,2.2
D0-D7 4.1,4.12
D11.3,1.6,1.7,2.2
D1-D41.2

D21.6,1.7

D31.6,1.7

D6 1.6

D71.6

DATA 4.20

Data definition 4.17, 4.24
Data labels 5.14

Data register 4.1, 4.12, 4.22
Data size 4.7, 4.25

Data type 4.24

Date and time, get 3.22
DateStamp 3.22
DC4.16,4.17,4.24
DCB2.12,4.16,4.17,4.24
Dead state, task in 2.8
Dead task 2.8
DEBUG6.1

DEBUG modes 6.1
Debugtask 1.8,1.10,6.1

Debugging commands 6.14, 6.15

Debugging user programs 6.1
Decimal 4.11,6.16
-print style 6.16
Default /O streams 1.4
Default line length 4.27
Default page length 4.27
Default printing style ($F) 6.7
Define a macro name 4.19
Define an external name 4.34
Define an internal label as an
external entry point 4.33

Define constant block 4.17, 4.24

Define constants 4.17

Define external name 4.19
Define offset 4.17, 4.21
Define register list 4.23
Define storage 4.17, 4.25
Detay 3.23

- process 3.23
Delete 1.17

- breakpoint 6.11, 6.15

- character at cursor 7.3

-current line 7.4

-line 7.3

- task 2.8

-toend of line 7.3, 7.4

-word 7.3
DeleteFile 3.5

DeleteObject 1.17,1.18,1.19, 1.20
Device Control Block - see DCB

Device
-driver 1.9,1.21,1.23
-handler 1.3,1.8,1.9,1.10,
1.12,1.13,1.23
- management 2.12
-names 3.12

- packet structure 1.23, 1.24

- packet types 1.23

DeviceProc 1.13,1.17, 1.19, 1.20,

3.9,3.23
Devinfo 1.13
DEVS:VDU 7.1
DFPADD 8.3
DFPCMP 8.3
DFPDIV 8.3
DFPMUL 8.3
DFPNEG8.3
DFPSUB 8.3
DFPTST 8.3
Diagnostic messages 4.3
Direct access of memory 4.1
Directive 4.6,4.16, 4.19
-names 4.6,4.10
Directory
-entry, examine next 3.7
- list (for file inclusion)
4.3,4.35
-lock 3.3,3.4,3.11,3.23
Directory,
-create a new 3.3
- delete 3.5
-examine 3.6,3.7,3.8
- make current 3.4
- parent 3.13
-rename 3.15
- unlock 3.18
Disable assembly 4.30

Disable object code generation 4.28
Disable object code output 4.18

iii

Index

Tripos Programmer's Reference

Disallow task rescheduling 2.6
Disassemble from byte address 6.15
Disassembler 6.12
Disassembly 6.12
Disk
- device 1.25
- information, return 3.8
-size 3.8
- validator 1.20
DISKCOPY 1.20
DiskInfo 1.17
Display registers in hexadecimal 6.5
Divide 4.9
Division 6.9
DOS1.2
- base pointer 1.3, 1.5
-calls 1.2
- functions 3.2
- library base pointer, return 2.17
- library interface 3.2
Double precision floating point 8.1
Down one level on the current stack
6.14,6.15
DQPkt 2.13, 2.15,2.16, 2.17
Drive motor, turn off 1.25
D54.17,4.21,4.25
Dumping local labels 4.4
Duplicate lock 3.5
DUPLock 3.5

E6.13,6.15
EB6.13,6.15
Echo 1.9
ED6.15
EL6.15
Empty string 4.30
EN6.15
Enable assembly 4.30
Encoding programs (Assembler) 4.5
END4.17,4.21,4.26
End interactive mode 6.13
End macro definition - see ENDM
End of conditional assembly - see ENDC
End of program - see END
ENDC 4.18, 4.30, 4.31
ENDCLI 3.25
ENDM 4.19, 4.31,4.32
EndTask 2.9
Enter bootstrap and restart 6.15
Enter DEBUG task 6.2
Enter interactive mode 6.13
Enter standalone mode 6.1,6.2,6.10
Enter task mode 6.1
EQU 4.2,4.10,4.17,4.22,4.23,4.35
Equate
- file (see EQU)

- register value 4.22

- symbol value 4.22
EQUR4.11, 4.17,4.22
Error

- codes 5.15

- information 3.9

- messages 4.3,5.7,5.15
Error,

-DEBUG (77 6.3

- internal 5.15

- user 4.28
ES6.15
ESCAPE 7.3
ET6.13,6.15
EU6.15
EVe.15
Examine 1.16, 3.6, 3.7, 3.8

- current location 6.3

- directory or file 3.6,3.7,3.8

- next directory entry 3.7

- registers 6.12

- stack interactively 6.13

- store 6.2

- structure of stack 6.13
ExamineNext 1.16
ExamineObject 1.16
Example of OVERLAY 5.10
Example of valid uses of ALINK 5.3
Example program 1.5
Examples of WITH files 5.6
Exceptions 5.7,6.1
Exclusive write lock 3.12
Executable Instructions 4.6
Execute 3.24

- BCPL callable function 6.14

- function 6.15

- text as a command 6.16
Exit1.4,1.5,1.7,3.24

-from a program 1.4, 3.24

- from macro expansion 4.33

- the macro expansion 4.19

- to user mode 2.11

" ExNext1.16,3.7

Expression 4.8, 6.8
-syntax 6.9
External
- file, insertion 4.35
- main memory 4.1
-name, definition 4.34
- reference generation 4.34
External symbol 4.19, 4.33, 4.34
- definition 4.33
- information 5.2

FAIL4.18,4.28
FAILAT 1.4

Tripos Programmer's Reference

Index

Failure value 1.4
FAULT®6.2
FiHand field 1.16, 1.17
File
-format 1.1
-handle 1.3,1.2,1.6,3.13
- handling calls 3.2, 3.29
- Info data structure 3.8
- lock 3.11
-order 5.7
- position, find 3.16
- system task handler 1.9
File,
- close for [/0 3.3
- delete 3.5
-examine 3.6, 3.7,3.8
- find length 3.16
-openfor /10 3.12
- read bytes from 3.14
-rename 3.15
-unlock 3.18
- write bytes to 3.19, 3.20
FileHandle 1.13, 1.15
FilelnfoBlock 1.186, 3.6, 3.8
Filing system locks 3.11
Find and point at logical position in
file 3.16
Find current position in file 3.16
Find current task identity 2.14
Find length of open file 3.16
FindDOS 1.2, 1.3,2.17
FindTask 2.14, 2.15, 2.17
Flagan error 4.28
Flipcase 7.3
Floating point calling sequence 8.2
Floating point format 8.1
Floating point functions 8.3
Flush 1.21
Forbid 2.6,2.7
Format2.1,3.1
FORMAT 4.18, 4.28
Format disk track 1.25
FormatTrack 1.25
Forward reference 4.22,4.23
FPADDS8.3
FPDIV 8.3
FPMULS8.3
FPNEGS8.3
FPSUB8.3
FPTST 8.3
Free blocks 3.8
Free memory 1.2,1.5,2.5
-area2.5
- heap 1.2
FreeLock 1.19
FreeMem 2.3,2.4

FROM 5.3,5.5
Function code 2.1, 2.2
Functions (DOS) 3.2

G6.4,6.15

General directives 4.19, 4.35
Generate a user error 4,28
Generate an assembly error 4.18
GetMem 2.3,2.15,3.6

GetParam 1.24

Get Parameters 1.21

Global variable 6.15

Global vector of the current task 6.4

H6.1,6.10,6.15
Handling aborts in standard system
task 6.1
Handling aborts in user program 6.1
HDR 4.2
Header 5.8
Header file 4.2, 4.3
Heap 1.2
Held state, task in 2.7
Hexadecimal 4.11
- notation 6.2
- print style 6.16
Hold 2.6,2.7,2.8
Hold current task 6.10, 6.15

16.6,6.15
/o
-channels 1.4, 1.6
- handling 1.12, 3.23
- streams 1.4
I/0, closing files for 3.3
Idle task 6.1
IDNT 4.19, 4.36
IFC 4.18,4.30
IFD 4.18,4.31
IFEQ 4.18, 4.30, 4.33,
IFGE 4.18, 4.30
IFGT 4.18, 4.30
IFLE 4.18,4.30
IFLT 4.18, 4.30
IFNC4.18,4.30
IFND 4.18,4.31
IFNE 4.18, 4.30, 4.33
Immediate data 4.16
INC4.2,4.3,4.4,4.35
INCLUDE 4.19,4.35
Including - see INC
Indexed addressing 4.1
Indirection 6.6, 6.9, 6.15
[nfo 1.17,3.8
InfoData 1.17
Inhibit 1.20

Index

Tripos Programmer's Reference

Initial input file handle 3.9
Initial output file handle 3.13
Initialized data 4.20
Initialize the VDU 3.27,7.2
Input 1.3,1.6,3.9

- file handle 3.9

- streams 1.4

-to ALINK 5.1

-to DEBUG 6.2
Insert

- anexternal file 4.35

- file in the source 4.19

-line 7.3

-space 7.5
Inspect store 6.1
Inspect value of currently set

breakpoints 6.11
Instruction 4.1, 4.6

- destinations 4.16

-names 4.6, 4.10

-types 4.16
Integer remainder 6.9
Interactive backtrace 6.13
Interactive mode subcommands 6.13
Interface routines 1.2
Internal date and time 3.22
Internal errors 5.15
Internal registers 4.1
Interrupt handler 6.1
Interrupts 1.23
Invalid object modules 5.15
Inverse video ON 7.6
IoErr1.13,1.17,3.9
IsInteractive 3.10

J46.6,6.15
Jumps 4.2

Ké6.11

Kernel 1.2

Kernel function codes 1.2

Kernel functions 2.2

Key mapping (VDU) 7.3
Keyword template for ALINK 5.3
Keywords 5.5

KILLTASK 6.11

L6.13,6.15

L (Long Branch specifier) 4.8

L (Longword-sized data - 32 bits) 4.8
Label field 4.6, 4.22, 4.23

Labels 4.6, 4.16, 4.34

Language support libraries 1.1
Length byte 1.7

Length of title 4.28

Level of a node 5.10

Libraries (Linker) 5.2
LIBRARY 5.4, 5.5
Library code segments 5.9
LIBRARY files 5.7
Line length 4.18, 4.27
Link map 5.1,5.4,5.8,5.12
Linker (ALINK) 1.1,5.1-15
- output 5.8
Linking programs - see Linker
LIST 4.2,4.18,4.26,4.35
Listing 4.26
- control 4.18, 4.25
-file4.2,4.4
- file suffix 4.3
Listing, turn on/off 4.18
LLEN 4.18,4.27
Loadfile5.1,5.4,5.8
- destination 5.4
Load Format, Tripos 1.1
Load module into memory 3.26
Loading code calls 3.24, 3.29
LoadSeg 1.4, 3.26
Local labels 4.4, 4.7
Local variable 6.13, 6.15
Locate Object 1.18
Location contents 6.3
Location names 6.15
Locations within the TCB 6.5
Lock 1.18,3.3,3.4,3.5,3.6,3.7,
3.8,3.11,3.18,3.23
Lock,
- directory 3.6, 3.7, 3.8
- duplicate 3.5
-file 3.6,3.7,3.8
-free 1.5
Logical AND 4.9, 6.9
Logical NOT 4.9,4.9
Logical OR 4.9,6.9
Logical position in file, find and
point at 3.16
LONG1.13,1.14,1.15,1.16, 1.17
Longword
-alignment 3.6, 3.8, 4.29
- operations 4.1
-size 4.12,4.24
Looping tasks 6.10
Lower case, use of 2.1, 3.1
Lshift (< <) 4.9

M6.2,64,6.15
Machine code kernel 6.1
Machine interrupts 6.1
MACRO 4.19,4.31
Macro definition,
-start 4.31
- terminate 4.32

vi

http://K6.ll

Tripos Programmer's Reference

Macro directives 4.19, 4.31
Macro expansion 4,31, 4.32, 4.33
- mode, exit from 4.33
Macro invocations 4.7
Main memory 4.1
main() 1.4
MAP 54.55.5.8
Map (Linker) 5.2
MASKZ24.19.4.35
Memory 4.1
address 4.6
-allocation 2.3
- corruption 2.4
- location format 6.2
-management 2.3
-size 4.1
-variant 4.16
Memory,
-direct access of 4.1
- load module into 3.26
Message destination 5.4
Message passing 2.13
Messages (see Packets) 1.10
MEXIT 4.19, 4.32
Mode 1.18
Modify code of another task 6.1
Modify data of another task 6.1
Monadic minus 4.9
Monitor code 6.1
MotorOff 1.25
Motorola extension 4.11
MOUNT 1.3
Move cursor
-down 73,74
-left7.3,7.4
- left one word 7.3
- right 7.3,7.4
- right one word 7.3
-toend-of-line 7.3
-to end-of-screen 7.3
~up7.3,7.4
Multiple definitions of labels 4.6
Multiply (*14.9,6.9

N6.6,6.13.6.15

Noption 4.4

NARG 4.19,4.32
NEWCLI3.25,6.10

Next coroutine stack 6.13
Next location 6.6, 6.15
Next location, open 6.6
Nextroutine 6.15
NIL:3.12

Node level 5.10, 5.11
Node ordinate value 5.10
Nodes of the overlay tree 5.9

NOFORMAT 4.18, 4.29
NOL - see NOLIST
NOLISTINOL) 413,426, 4.35

Non-interactive backtrace 6.13,6.15

NOOBJ 1.18,4.28
NOPAGE 4.18, 4.27
Null string 4.30, 4.36
Numbers $.11

06.14,6.15
Object code 4.16, 4.18, 1.28
- file 4.28
-output 4.18
Object file 4.2, 4.4, 4.28,5.1,5.3
- inhibition 4.4
- specification 5.3
suffix 4.2
Object module 4.28
QOctal 4.11
Octal print style 6.16
OFFSET 4.17, 4.21
Offset
-definition 4.17
- from alignment boundary 4.29
- termination 4.21
- to by used with M command 6.15
Offsets for the DOS calls 1.2

Offsets for the Kernel function codes

1.2
Opcode field 4.7
Open1.9,1.13.2.12,3.12

- current expression for updating 6.5

- current location (/) 6.16
- file for /0 3.12
-file, find length of 3.16
-new 1.17
-new file 1.14
- next location 6.6
-old 1.17
-old file 1.13, 1.1 4
Opening files 1.5
Operand 4.9
-field 4.8, 4.22, 4.23,4.25,
4.26,4.27,4.28, 1430, 4.35
- types for operators 4.9
- word 4.2
QOperands 4.9
Operation codes 4.7
Operation word 4.2
QOperator precedence 4.8, 6.9
Operators 4.8,4.9,6.8,6.9
OPT 4.2,4.4
Options to ASSEM 4.2

Options to the assembler, passing 4.4

OR, Logical 6.9
Order of overlay files 5.12

Index

Tripes Programmer's Reference

Ordinate value 5.10, 5.11
Origin, absolute 4.17
Origin, relocatable - see RORG
Output 1.3,1.6,3.13
- file handle 3.13
-streams 1.4
OVERLAY 5.5,5.9,5.10
- file order 5.12
-files (Linker) 5.1,5.2,5.7
number 5.14
references 5.13, 5.14
- supervisor 5.1,5.2,5.9,5.13.
5.14
- supervisor entry label 5.14
-symbols 5.14
-terminator 5.9
-tree 5.1,5.2
Overlaying 5.1, 5.9, 5.10
Overriding operator precedence 4.9
Overriding the choice of object
filename 4.3
Overwritten store 6.10

Packet 1.4,1.10,1.11, 1.12,1.16
-destination field 1.11
-link field 1.11
-queue 1.11,1.12
- structure 1.11
- switching 1.11
-type 1.11,1.13,1.16

Packet,

reclaima 2.13
-sendal.21,2.14
- wait for 2.16

PAGE 4.18.4.25

Page
- heading 4.28

length 4.18, 4.27
- mode 7.2
-throw 4.18, 4.25, 4.27

Paging 4.18, 4.25,4.27

Parallel port task handler 1.9

Parameter files 5.1,5.4, 5.5

Parameters, get 1.24

Parameters, set for serial device 1.23

Parent 1.17

ParentDir 3.13

PC#6.5

Permanent register value, assign
-see EQUR

Permanent value, assign
-see EQU or REG

Permit 2.6,2.7

PktType 1.11

PLEN 4.18, 4.27

Postincrement address 4.16

Precedence of operators 4.9
Primary binary input (Linker) 5.1
Primary files 5.2
Primary input 5.7
Print style 6.7,6.16
Print value 6.3,6.5,6.14
- of current expression 6.5
Priority 2.5,2.6,3.21,5.7
-inlinking 5.7
-of CLI task 2.6
- of process 2.5, 3.22
-of RUN command 2.6
-of task 2.5, 3.21
Process (see also Task} 1.1
- handling calls 3.21, 3.29
-id 1.13
- identifier 3.23
Process, create a new 3.21
ProcessiD 1.16
ProcessID field 1.13,1.14
Program counter (PC) 4.2, 4.6, 4.20,
4.21,6.5,6.12
- relative with displacement 4.21
Program encoding (Assembler) 4.5
Program end (see also END) 4.17
Program section (see also SECTION)
4.17,4.20
Program source 4.35
Program title 4.18, 4.28
Program, exit from 3.24
Protection, set file or directory 3.17

QPkt 1.11,1.12,2.13,2.14,2.15,
2.16,2.17

R6.5 6.6.6.15
R (Relative symbols} 4.9
Read 1.6,1.9,1.12,1.14, 1.15, 116,

1.22,1.24,3.19

- bytes from file 3.14
Reference external name 4.19
Reference Global vector locations 6.4
Reference to symbols 5.12
Refering to a standard set of

definitions 4.35
REG 4.17,4.23
Register 2.1, 4.11,6.15

- corruption 1.3

-dump 6.6

-dump location 6.5

list, define 4.23

-names 4.6, 4.10

-values 21,31
Registers,

-address 4.1

data 4.1

viii

Tripos Programmer’s Reference

-internal 4.1

Relative expression 4.12

Relative origin, set 4.21

Relative symbol value 4.10

Relative symbols R 4.9

Release 2.7,2.8

Release task 2.8, 6.15

Reloading registers 6.7

Relocatable code 4.20

Relocatable memory locations,
assigning 4.21

Relocatable origin 4.17

Relocatable symbol 4.34

Relocation information,
generation of 4.34

RemDevice 2.12

Removing a device - see RemDevice

Removing a task - see RemTask

Removing floppy disks from drive 1.25

RemTask 2.5,2.6,2.8

Rename 1.20, 3.15

RenameDisk 1.21

RenameObject 1.20

Repeat last command line 7.3

Repetitive linking 5.1

Res11.11,1.13,1.24

Resl field 1.4

Res21.11,1.13,1.24

Reserve memory locations 4.25

Reserved symbol 4.32

Reset 1.24,6.10

Resident system debugger (see also
DEBUG)1.10

Resource control 1.5

Restart 6.15

Result field 1.11

Result registers 1.3

Results 2.1, 3.1

RETURN 7.3

Return code 6.2

RETURN in DEBUG task 6.2

Returning file locks 1.5

Returning memory 1.5

ROOT 5.5

Root stack 2.5, 3.21

Rootnode pointer, return 2.18

RootStruct 2.18

RORG 4.17,4.21

Rshift (> >)4.9

RTS 1.4

RUBOUT 1.9

RUBOUT in DEBUG task 6.2

RUN 3.25

RUN command priority 2.6

Running a program as a separate task
1.3

Running a program under aCL.I 1.3

$6.4,6.13.6.15
Soption 4.4
S (Short Branch specifier) 4.8
Screen highlight 7.6
Screen line length 7.2
Screen line width 7.2
Scroll down 7.3. 7.5
Scrollup 7.3,7.5
SECTION 4.17,4.20,4.21
Seek 1.15,3.16
Segment identifier 3.27
Segment list 2.5, 3.21
Segment, unload 3.27
Select another task 6.4
Select Task 6.15
Sending a message (packet) 2.14
Separation character 4.4, 4.6,4.8
Serial line 1.9
- device 1.24
- task handler 1.9
SET 4.10, 4.17,4.23
Set breakpoints 6.1, 6.11,6.15
Set current expression 6.3
Set current location 6.3
Set function 6.16
Set line length 4,18, 4.27
Set page length 4.18, 4.27
Set print style 6.7, 6.16
-as BCPL strings ($9) 6.7
- to characters ($C) 6.7
-todecimal ($D)6.7
- to hexadecimal ($X) 6.7
- tooctal (30) 6.7
Set program title 4.18, 4.28
Set relative origin 4.21
Set SP to current value 6.13
Set stack base to current value 6.13
Set symbol value 4.23
SetComment 1.19,3.17
SetFlags 2.9,2.10,2.11
SetParam 1.25
Set Parameters 1.22
SetProtect 1.19
SetProtection 1.19, 3.17
Setting attention flags 2.9
Shared datastructure 2.6
Shared read lock 3.12
Shift places left 6.9
Shift places right 6.9
Shuffle characters left 7.5
Shuffle characters right 7.5
Shuffle lines down 7.4
Single character mode 1.22, 3.19
Single-precision floating point 8.1

Index

Tripos Programmer's Reference

Single step through program 6.1
Size specifier 4.8,4.12,4.24,4.25
Skip lines 4.18
SMALL 5.4
Source statement syntax 4.6
Source termination 4.21
Sources of input to linker 5.1
SP4.10
Space 4.4
-atthe startof a line 4.5
-or blank lines 4.26
SPC 4.18,4.26
Special keys (VDU 7.3
Special register 4.2
Special symbol (NARG) 4.19
Specify an offset 6.14
Specify destination of cross
reference output 5.4
Specify files containing ALINK
parameters 5.4
Specify files to be scanned as the
library 5.4
Specify output width 5.4
Specify terminal 7.1
Specify the destination for the load
file 5.4
Specify the destination of messages
5.4
Specify the destination of the link
map 5.4
Specify the object file 5.3
SR 4.10,4.22,6.5
STACK 1.2
Stack
base 6.14, 6.15
-checking 1.3
- display 6.13
-frame 6.13
-level to current value 6.15
- pointer (SP) 1.3, 1.4, 1.5, 4.1,
6.13,6.14
-size 1.3
Stack, size of root 2.5, 3.21
Standalone mode 6.1,6.5,6.13
Standard console 1.9
Standard file header 1.5
Standard header file 1.2
Standard input 1.2, 1.6
Standard macro definitions, include
4.35
Standard output 1.2, 1.6, 1.7
Start a macro definition 4.31
Startup code (C) 1.3, 1.4
Startup file (for) 1.3
Startup file 1.1
Startup packet 1.4

Status 1.25
Status register (SR) 4.2, 6.5
stdin 1.3
stdout 1.3
Storage, define 4.17
Store locations 6.2, 6.3
Store pointers 6.6
String 4.10.4.12,4.30
- descriptor 4.35
-length 1.6
Subtract(-) 4.9
Subtraction 6.9
Suffixes to assembler files 4.2
SuperMode 2.10,2.11
Supervisor mode 2.10,2.11, 4.1
-enter 2.10
-exit2.11
Symbol 4.10
- cross reference table 5.1
- defined, assemble if 4.31
- definition 4.17, 4.22, 4.31
-dump 4.4
- not defined, assemble if 4.31
-reference 5.12
- value, set 4.23
Syntax 2.1, 3.1
- for address mode 4.13
System
- debugger 1.10
information, return 3.9
- library segment 2.5
System stack pointer
- see stack pointer
System tick - see Tick

T6.3,6.13,6.15
Tab 7.3
Task 1.1, 1.8 (see also Process)
- Control Block (see TCB)
- control structure 2.5
management 2.4
- mode 6.5
-number 2.6, 6.1
Task, add anew 2.4
TaskWait 1.4,1.11,1.12,2.8,2.13,
2.15,2.16,2.17
TCB6.5,6.15
Temporary value, assign - see SET
Terminate a macro definition 4.32
Terminate interactive mode 6.13
Terminate use of VDU 7.2
TestFlags 2.9, 2.10,2.11
TestWkQ 2.13,2.14, 2.15,2.16
Tick 3.19, 3.22
TIDYUP6.11
Tidyup routine 1.5

http://TIDYUP6.il

Tripos Programmer's Reference

Index

Timeout character arrival 3.19
Title header, turn off 4.27
Title header, turnon 4.28
Title length 4.28
Title of program 4.18, 4.28
TO4.2,54, 5.5
Top of outermost active coroutine 6.13
Top of stack 6.14, 6.15
Trace 6.11,6.12,6.15,6.16
-down one level 6.15
-one instruction (.) 6.16
environment 6.15
- exception 6.12
- instructions 6.12
- next routine 6.15
- up to top of current coroutine
6.15
TRAP #01.2,22
TRAP1.5,6.1
Tree nodes 5.9
Tree specification 5.5
Tree structure 5.9,5.12
Tripos Binary Format 1.1
Tripos functions, calling 1.2
Tripos stacks 6.13
Tripos system debugger (DEBUG) 6.1
Tripos system library 1.1, 1.2
Tripos task mode 6.1
Tripos.i 1.2
TTL 4.18,4.28
Turn off drive motor 1.25
Turn off listing 4.18, 4.26
Turn off paging 4.18, 4.27
Turn on listing 4.18, 4.26
Type contents of locations 6.15
Type current value 6.16
Type out number of locations 6.3
Type value of current expression 6.5

U6.5,6.14,.6.15
Unheld state, task in 2.8
Cninitialized data 4.20
Unload segment 3.27
UnLoadSeg 3.27
Unlock 1.19.3.18

- adirectory (see UnLock)

-afile 3.18
Unnamed sections 4.20
Updating locations 6.5, 6.12,6.15
Updating registers 6.6, 6.7
Updating store 6.5
Upper case, use of 2.1, 3.1
User

-error 4.28

-mode 2.11, 4.1

- stack pointer

(see Stack pointer)
symbol 4.6, 4.22
-task 1.8,1.10
UserMode 2.10, 2.11
Using less memory 5.9
Using the Linker 5.3
USP 4.10,4.22

V6.14,6.15
Value of current expression (=) 6.3
Values 2.1, 3.1
Variable 6.15
Variants 4.16
VDU 3.27,3.29,7.1
VDU_INIT 3.27
VER4.2,5.4
Verification file 4.2, 4.3
Verify current level 6.15
Verify screen 7.3
Verify the current stack level 6.14
Virtual terminal, connection to a
3.10,3.19
Volume 3.15
- field 1.17
-name 1.21

W6.5,6.15

W (Word-sized data - 16 bits) 4.8

Wait for packet 2.16

WaitChar 1.16

WaitForChar 1.16, 3.19

Warning messages 4.3, 5.7

WIDTH 54,55

WITH 5.4,5.5,5.9

Word boundary, alignment on 4.24

Word operations 4.1

Word size 4.12,4.24

Work queue, check - see TaskWait or
TestWkQ

Write 1.7, 1.9, 1.15,1.24, 3.20

Write bytes to file 3.20

X 6.14,6.15

X option 4.4

XDEF 4.19, 4.33

XREF 4.19,4.34,5.4,55,5.8
Y 6.4,6.15

76.10, 6.15
Zoption 4.4

xi

Tripos Technical Reference Manual

COPYRIGHT

Tripos Technical Reference Manual Copyright (c) 1986,
METACOMCO plc. All Rights Reserved. This document may not, in
whole or in part, be copied, photocopied, reproduced, translated, or
reduced to any electronic medium or machine readable form without
prior consent, in writing, from METACOMCO plc.

Tripos software Copyright (c) 1986, METACOMCO plc. All Rights
Reserved. The distribution and sale of this product are intended for the
use of the original purchaser only. Lawful users of this program are
hereby licensed only to read the program, from its medium into memory
of a computer, solely for the purpose of executing the program.
Duplicating, copying, selling, or otherwise distributing this product is a
violation of the law.

This manual refers to Issue 6, September 1986

Printed in the U.K

DISCLAIMER

THIS PROGRAM IS PROVIDED "AS IS" WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE RESULTS AND
PERFORMANCE OF THE PROGRAM IS ASSUMED BY YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU (AND NOT
THE DEVELOPER OR METACOMCO PLC OR ITS AFFILIATED
DEALERS) ASSUME THE ENTIRE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION. FURTHER, METACOMCO
PLC OR ITS AFFILIATED COMPANIES DO NOT WARRANT,
GUARANTEE OR MAKE ANY REPRESENTATIONS REGARDING
THE USE OF THE PROGRAM IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, CURRENTNESS, OR OTHERWISE;
AND YOU RELY ON THE PROGRAM AND RESULTS SOLELY AT
YOUR OWN RISK. IN NO EVENT WILL METACOMCO PLC OR ITS
AFFILIATED COMPANIES BE LIABLE FOR DIRECT, INDIRECT,
INCIDENTAL, OR CONSEQUENTAL DAMAGES RESULTING FROM
ANY DEFECT IN THE PROGRAM EVEN IF IT HAS BEEN ADVISED
OF THE POSSIBILITY OF IMPLIED WARRANTIES OR LIABILITIES
FOR INCIDENTAL OR CONSEQUENTAL DAMAGES, SO THE
ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY.

Tripos Technical Reference Manual

Chapter 1: Filing System
Chapter 2: Tripos Binary File Structure
Chapter 3: Tripos Data Structures

Chapter 4: Installing Tripos

[ssue 5 (May 1986)

Chapter 1: The Filing System

This chapter describes the Tripos filing system. It includes information
on how to patch a disk corrupted by hardware errors.

Table of Contents

1.1

1.1.1
1.1.2
1.1.3
1.1.4
1.1.5

1.2

Tripos File Structure
Root Block

User Directory Blocks
File Header Block
File List Block

Data Block

DISKED - The Disk Editor

Tripos Technical Reference Filing System

1.1 Tripos File Structure

The Tripos file handler uses a disk that is formatted with blocks of equal
size. It provides an indefinitely deep hierarchy of directories, where each
directory may contain other directories and files, or just files. The
structure is a pure tree - that is, loops are not allowed.

There is sufficient redundancy in the mechanism to allow you to patch
together most, if not all, of the contents of a disk after a serious hardware
error, for example. To patch the contents of a disk, you can use the
DISKED command. For further details on the syntax of DISKED, see
Section 1.2, "DISKED - The Disk Editor," later in this chapter. Before
you can patch together the contents a disk, you must understand the
layout. The subsections below describe the layout of disk pages.
Generally, you only use DISKED if DISKDOCTOR fails to fix your disks.
There are some things that DISKDOCTOR cannot resolve, and so you
should learn how to use DISKED in order to cope when DISKDOCTOR
fails. (See Chapter 1 of the Tripos User's Reference Manual fora
description of DISKDOCTOR.)

1.1.1 Root Block

The root of the tree is the Root Block, which is at a fixed place on the disk.
The root is like any other directory, except that it has no parent, and its
secondary type is different. Tripos stores the name of the disk volume in

the name field of the root block.

Each filing system block contains a checksum, where the sum (ignoring
overflow) of all the words in the block is zero.

The figure on the following page describes the layout of the root block.

1-1

Filing System Tripos Technical Reference

pmmmmm e +

0| T.SHORT | Type
[|

1| 0 | Header key (always 0)
[|

2 | 0 | Highest seq number (always 0)
[|

3 | HT SIZE | Hashtable size (= blocksize-56)
[E— |

4 | 0 l

| l
| hash |
| table |

Figure 1-A: Root Block

1-2

Tripos Technical Reference

Filing System

SIZE-51

SIZE-50

SIZE-49

SIZE-24

SIZE-23

SIZE-22

SIZE-21

SIZE-20

SIZE-7

SIZE-6

SIZE-5

SIZE-4

SIZE-3

SIZE-2

SIZE-1

{hash .
. table) .

TRUE if Bitmap on disk is valid
Used to indicate the blocks

containing the bitmap

Volume last altered
date and time

Volume name as a BCPL string
of <= 30 characters

Volume creation date
and time

Hash chain (always 0)
Parent directory (always 0)
Extension (always 0)

Secondary type indicates
root block

Figure 1-A: Root Block (continued)

1-3

Filing System Tripos Technical Reference

1.1.2 User Directory Blocks

The following figure describes the layout of the contents of a user
directory block.

O — +

0 | T.SHORT | Type
[E—— |

1 | OWN KEY | Header key (pointer to self)
[— |

2 | 0 | Highest seg number (always 0)
[E——— |

3 | 0 |
[|

4 | 0 |

-

Figure 1-B: User Directory Blocks

1-4

Tripos Technical Reference

Filing System

SIZE-S1

SIZE-50

SIZE-48

SIZE-47

SIZE-46

SIZE-24

SIZE-23

SIZE-22

SIZE-21

SIZE-20

SIZE-4

SIZE-3

SIZE-2

SIZE-1

(hash
table)

| TICKS |

| NAME |

Protection bits

Unused (always 0)

Stored as a BCPL string

Creation date and time

Stored as a BCPL string
of <= 30 characters

Next entry with same hash value
Back pointer to parent directory
Extension (always 0)

Secondary type

Figure 1-B: User Directory Blocks (continued)

User directory blocks have type T.SHORT and secondary type
ST.USERDIRECTORY. The six information words at the start of the
block also indicate the block's own key (that is, the block number) as a
consistency check and the size of the hash table. The 50 information
words at the end of the block contain the date and time of creation, the
name of the directory, a pointer to the next file or directory on the hash

1-5

Filing System Tripos Technical Reference

chain, and a pointer to the directory above.

To find a file or subdirectory, you must first apply a hash function to its
name. This hash function yields an offset from the start of the block to
the position in the hash table, which is the key of the first block on a
chain linking those with the same hash value (or zero, if there are none).
Tripos reads the block with this key and compares the name of the block
with the required name. If the names do not match, it reads the next
block on the chain, and so on.

1.1.3 File Header Block

The following figure describes the layout of the file header block.

0 | T.SHORT | Type

1 | OWN KEY | Header key

2 |HIGHEST SEQ| Total no. of data blocks in file
3 | DATA SIZE | Number of data block slots used

4 | FIRST DATA| First data block

Figure 1-C: File Header Block

1-6

Tripos Technical Reference Filing System

DATA BLK 3|

|
| DATA BLK 2! List of data block keys
SIZE-51 | DATA BLK 1|
e |
SIZE-50 | Spare |
| —mmm - |
SIZE-48 | PROTECT | Protection bits
| =mm e |
SIZE-47 | BYTESIZE | Total size of file in bytes
| - |
SIZE-46 | |
| COMMENT | Comment as BCPL string
SIZE-24 | |
e |
SIZE-23 | DAYS | Creation date and time
[~=mmm - |
SIZE-22 | MINS |
| <mm e |
SIZE-21 | TICKS |
| == |
SIZE-20 | FILE | Stored as a BCPL string
| NAME | of <= 30 characters
e |
SIZE-4 | HASHCHAIN | Next entry with same hash value
e |
SIZE-3 | PARENT | Pointer to parent directory
| =mmmm - |
SIZE-2 | EXTENSION [0 or first extension block
e |
SIZE-1 | ST.FILE | Secondary type
pomm +

Figure 1-C: File Header Block (continued)

Each file starts with a file header block, which has type T.SHORT and
secondary type ST.FILE. The start and end of the block contain name,
time, and redundancy information similar to that in a directory block.
The body of the file consists of data blocks with sequence numbers from 1

1-7

Filing System Tripos Technical Reference

upwards. Tripos stores the addresses of these blocks in consecutive
words downwards from offset size-51 in the block. In general, Tripos does
not use all the space for this list and the last data block is not full.

1.1.4 File List Block
If there are more blocks in the file than can be specified in the block list,
then the EXTENSION field is non-zero and points to another disk block

which contains a further data block list. The following figure explains
the structure of the file list block.

1-8

Tripos Technical Reference Filing System

Fmm e +
0 | T.LIST | Type
e —— |
1 | OwN KEY | Header key
R |
2 |BLOCK COUNT | Size of block
e |
3 | DATA SIZE | Same as above
. |
4 | FIRST DATA | First data block
T |
5 | CHECKSUM |
E—— l
6 | |
! |
/ /
\ \
| BLOCK N+3 |
| BLOCK N+2 | Extended list of data block keys
SIZE-51| BLOCK N+1 |
—— |
SIZE-50| |
| info | (unused)
I l
E— |
SIZE-4 | 0 | Next in hash list (always 0)
| - |
SIZE-3 | PARENT | File header block of this file
e —— |
SIZE-2 | EXTENSION | Next extension block
—— |
SIZE-1 | ST.FILE | Secondary type
o +

Figure 1-D: File List Block

There are as many file extension blocks as required to list the data blocks
that make up the file. The layout of the block is very similar to that of a
file header block, except that the type is different and the date and
filename fields are not used.

1-9

Filing System

Tripos Technical Reference

1.1.5 Data Block

The following figure explains the layout of a data block.

0 | T.paTa |

DATA

Type

Header key
Sequence number
Size in bytes

Next data block

Figure 1-E: Data Block

Data blocks contain only six words of filing system information. These
six words refer to the following:

- type(T.DATA)

- pointer to the file header block

- sequence number of the data block
- number of bytes of data

- pointer to the next data block

- checksum

1-10

Tripos Technical Reference Filing System

Normally, all data blocks except the last are full (that is, they have a size
= blocksize-24). The last data block has a forward pointer of zero.

1.2 DISKED - The Disk Editor

To inspect or patch disk blocks, you can use the Tripos disk editor,
DISKED. Because DISKED writes to the disk directly, you should use it
with care. Nevertheless, you can use it to good effect in recovering
information from a corrupt floppy disk, for example. The template for
DISKED is as follows:

DISKED "DEV/A"

The device parameter must be the name of the disk you wish to edit,
followed by a colon (:). This name can refer to a disk drive (for example,
DF0:), or to a volume (for example, MyDisk:).

You should only use DISKED with reference to the layout of a Tripos
disk. (For a description of the layout, see subsections 1.1.1 to 1.1.5 in the
first part of the chapter.) DISKED knows about this structure - for
example, the R (Root block) command prints the key of the root block.

Suppose that you give the R command and obtain the key to the root
block. You can then give the G (Get block) command followed by this key
number to read the block into memory. Once you have used G to get the
block, you can use the I (Information) command to print out the
information contained in the first and last locations of the block. These
locations indicate the type of block, the name, the hash links, and so on.
If you then specify a name after an H (Hash) command, DISKED gives
you the offset on a directory page that stores as the first key, headers
with names that hash to the name you supplied. If you then type the
number that DISKED returns followed by a slash (/), DISKED displays
the key of that header page. You can then read this with further G
commands, and so on.

Consider deleting a file that, due to hardware errors, makes the filing
system restart task fail. First, you must locate the directory page that
holds the reference to the file. You do this by searching the directory
structure from the root block, using the hash codes. Then, you must

1-11

Filing System Tripos Technical Reference

locate the slot that references the file - this is either the directory block
or a header block on the same hash chain. This slot should contain the
key of the file's header block. To set the slot to zero, you type the slot
offset, followed by a slash (/) followed by zero (that is, <offset>/0). Then
correct the checksum with the K {checKsum) command. You should
disable the write protection with X and write back the updated block
with P (for Put block) or W (for Windup). You should then change the BM
valid flag in the root block from -1 (TRUE) to 0 (FALSE). This causes the
disk validator to run when the disk is next inserted. There is no need to
do anything else, as the blocks that the file used in error become
available once more after the disk validation process has successfully
scanned the disk.

DISKED commands are all single characters, sometimes with
arguments.

The following is a complete list of the available commands.

Tripos Technical Reference

Filing System

Command Function
Bn Set logical block number base to n
Cn Display n characters from current offset
G[n] Get block n from disk (default is the current block
number)
H name Calculate hash value of name
I Display block information
K Check block checksum (and correct if wrong)
L(lwbupb] Locate words that match Value under Mask (lwb
and upb restrict search)
Mn Set Mask (for L and N commands) to n
N [lwb upb] Locate words that do not match Value under Mask
Pn Put block in memory to block n on disk
{(default is the current block number)
R Display block number of Root Block
Q Quit (do not write to disk)
Schar Set display Style
char = C -> characters
S-> string
O -> octal
X -> hex
D -> decimal
T Iwb upb Type range of offsets in block
Vn Set Value for L and N commands
w Windup (=PQ)
X Invert write protect state
Yn Set cYlinder base to n
Z Zero all words of buffer
number Set current word offset in block
= Display values set in program
/[n] Display word at current offset or update value to n
‘chars' Put chars at current offset

Table 1.A: DISKED Commands

To indicate octal or hex, you can start numbers with # or #X (that is, #
for octal, #X for hex). You can also include BCPL string escapes (*N and
so forth) in strings.

Chapter 2: Binary File Structure

This chapter describes the structure of binary object files under Tripos,
as produced by assemblers and compilers. It also describes the format of
binary load files, which are produced by the linker and read into memory
by the loader.

Table of Contents

2.1 Introduction
2.1.1 Terminology
22 Object File Structure
2.2.1 hunk__unit
2.2.2 hunk__name
223 hunk__code
2.2.4 hunk_ data
2.2.5 hunk__bss
2.2.6 hunk_ reloc32
2.2.7 hunk__relocl6
2.2.8 hunk__reloc8
2.29 hunk__ext
2.2.10 hunk__symbol
2.2.11 hunk _debug
2.2.12 hunk end

2.3 Load Files
2.3.1 hunk__header
2.3.2 hunk__overlay
2.3.3 hunk break

2.4 Examples

Tripos Technical Reference Binary File Structure

2.1 Introduction

This chapter describes the structure of binary object files under Tripos,
as produced by assemblers and compilers. It also describes the format of
binary load files, which are produced by the linker and read into memory
by the loader. The format of load files supports overlaying. Apart from
describing the format of load files, this chapter explains the use of
common symbols, absolute external references, and program units.

2.1.1 Terminology
Some of the technical terms used in this chapter are explained below.
External References

You can use a name to specify a reference between separate program
units. The data structure lets you have a name longer than 16Mbytes,
although the linker restricts names to 255 characters. When you link the
object files into a single load file, you must ensure that all external
references match corresponding external definitions. The external
reference may be of size byte, word, or long; external definitions refer to
relocatable values or absolute values. Relocatable byte and word
references refer to PC-relative address modes and these are entirely
handled by the linker. However, if you have a program containing
longword relocatable references, relocation may take place when you
load the program.

Note that these sizes only refer to the length of the relocation field; it is
possible to load a word from a long external address, for example, and the
linker makes no attempt to check that you are consistent in your use of
externals.

2-1

Binary File Structure Tripos Technical Reference

Object File

An assembler or compiler produces a binary image, called an object file.
An object file contains one or more program units. It may also contain
external references to other object files.

Load File

The linker produces a binary image from a number of object files. This
binary image is called a load file. A load file does not contain any
unresolved external references.

Program Unit

A program unit is the smallest element the linker can handle. A program
unit can contain one or more hunks; object files can contain one or more
program units. If the linker finds a suitable external reference within a
program unit when it inspects the scanned libraries, it includes the
entire program unit in the load file. An assembler usually produces a
single program unit from one assembly (containing one or more hunks);
a compiler such as FORTRAN produces a program unit for each
subroutine, main program, or BLOCK DATA. Hunk numbering starts
from zero within each program unit; the only way you can reference
other program units is through external references.

Hunks

A hunk consists of a block of code or data, relocation information, and a
list of defined or referenced external symbols. Data hunks may specify
initialized data or uninitialized data (bss). bss hunks may contain
external definitions but no external references nor any values requiring
relocation. If you place initialized data blocks in overlays, the linker
should not normally alter these data blocks, since it reloads them from
disk during the overlay task. Hunks may be named or unnamed, and
they may contain a symbol table in order to provide symbolic debugging
information. They may also contain a further debugging information for
the use of high level language debugging tools. Each hunk within a
program unit has a number, starting from zero.

Tripos Technical Reference Binary File Structure

Scanned library

A scanned library consists of object files that contain program units
which are only loaded if there are any outstanding external references to
them. You may use object files as libraries and provide them as primary
input to the linker, in which case the input includes all the program units
the object files contain. Note that you may concatenate object files.

Node

A node consists of at least one hunk. An overlaid load file contains a root
node, which is resident in memory all the time that the program is
running, and a number of overlay nodes which are brought into memory
as required.

2.2 Object File Structure

An object file is the output of the assembler or a language translator. To
use an object file, you must first resolve all the external references. To do
this, you pass the object file through the linker. An object file consists of
one or more program units. Each program unit starts with a header and
is followed by a series of hunks joined end to end, each of which contains
a number of 'blocks' of various types. Each block starts with a longword
which defines its type, and this is followed by zero or more additional
longwords. Note that each block is always rounded up the nearest
longword boundary. The program unit header is also a block with this
format.

The format of a program unit is as follows:

- Program unit header block
- Hunks

2-3

Binary File Structure Tripos Technical Reference

The basic format of a hunk is as follows:

- Hunk name block

- Relocatable block

- Relocation information block

- External symbol information block
- Symbol table block

- Debug block

- End block

You may omit all these block types, except the end block.

The following subsections describe the format of each of these blocks.
The value of the type word appears in decimal and hex after the type
name, for example, hunk__unit has the value 999 in decimal and 3E7 in
hex.

2.2.1 hunk__unit (999/3E7)

This specifies the start of a program unit. It consists of a type word,
followed by the length of the unit name in longwords, followed by the

name itself padded to a longword boundary with zeros, if required. In
diagramatic form, the format is as follows:

| l
| longwords |
l of l
| name l

Figure 2-A: Hunk__ unit (999/3E7)

2-4

Tripos Technical Reference Binary File Structure

2.2.2hunk_name (1000/3E8)

This defines the name of a hunk. Names are optional; if the linker finds
two or more named hunks with the same name, it combines the hunks
into a single hunk. Note that 8 or 16 bit program counter relative
external references can only be resolved between hunks with the same
name. Any external references in a load format file are between different
hunks and require 32 bit relocatable references; although, as the loader
scatter loads the hunks into memory, you cannot assume that they are
within 32K of each other. Note that the length is in longwords and the
name block, like all blocks, is rounded up to a longword boundary by
padding with zeros. The format is as follows:

| |
| longwords |
| of I
| name |

Figure 2-B: Hunk__name (1000/3E8)

2.23 hunk code (1001/3E9)

This defines a block of code that is to be loaded into memory and possibly
relocated. Its format is as follows:

Binary File Structure Tripos Technical Reference

l |
| longwords |
| of |
| |

code

Figure 2-C: Hunk__code (1001/3E9)

2.2.4hunk__data (1002/3EA)
This defines a block of initialized data which is to be loaded into mermory
and possibly relocated. The linker should not alter these blocks if they

are part of an overlay node, as it may need to reread them from disk
during overlay handling. The format is as follows:

| I
| longwords |
| of |
l |

data

Figure 2-D: Hunk__data (1002/3EA)

2-6

Tripos Technical Reference Binary File Structure

2.2.5hunk__bss (1003/3EB)

This specifies a block of uninitialized workspace which is allocated by the
loader. bss blocks are used for such things as stacks and for FORTRAN
COMMON blocks. It is not possible to relocate inside a bss block, but
symbols can be defined within one. Its format is as follows:

Figure 2-E: Hunk__bss (1003/3EB)

where N is the size of block you require in longwords. The memory used
for bss blocks is zeroed by the loader when it is allocated.

The relocatable block within a hunk must be one of hunk_ code,
hunk__data or hunk__bss.

2.2.6 hunk__reloc32 (1004/3EC)

A hunk__reloc32 block specifies 32 bit relocation that the linker is to
perform within the current relocatable block. The relocation information
is a reference to a location within the current hunk or any other within
the program unit. Each hunk within the unit is numbered, starting from
zero. The linker adds the address of the base of the specified hunk to each
of the longwords in the preceding relocatable block that the list of offsets
indicates. The offset list only includes referenced hunks and a count of
zero indicates the end of the list. Its format is as follows:

Binary File Structure Tripos Technical Reference

| N2 |

I Nn I

Figure 2-F: Hunk__ reloc32 (1004/3EC)

2-8

Tripos Technical Reference Binary File Structure

2.2.7hunk__reloc16 (1005/3ED)

A hunk__reloc16 block specifies 16 bit relocation that the linker should
perform within the current relocatable block. The relocation information
refers to 16 bit program counter relative references to other hunks in the
program unit. The format is the same as hunk_ reloc32 blocks. These
references must be to hunks with the same name, so that the linker can
perform the relocation while it coagulates (that is, gathers together)
similarly named hunks.

2.2.8 hunk__reloc8 (1006/3EE)

A hunk__reloc8 block specifies 8 bit relocation that the linker should
perform within the current relocatable block. The relocation information
refers to 8 bit program counter relative references to other hunks in the
program unit. The format is the same as hunk__reloc32 blocks. These
references must be to hunks with the same name, so that the linker can
perform the relocation while it coagulates similarly named hunks.

2.2.9 hunk__ext (1007/3EF)
This block contains external symbol information. It contains entries

both defining symbols and listing references to them. Its format is as
follows:

2-9

Binary File Structure Tripos Technical Reference

Figure 2-G: Hunk__ext (1007/3EF)

where there is one ‘symbol data unit' for each symbol used, and the block
ends with a zero word.

Each symbol data unit consists of a type byte, the symbol name length
(three bytes), the symbol name itself, and further data. You specify the
symbol name length in longwords, and pad the name field to the next
longword boundary with zeros.

The type byte specifies whether the symbol is a definition or a reference,

etc. Tripos uses values 0-127 for symbol definitions, and 128-255 for
references.

2-10

Tripos Technical Reference Binary File Structure

At the moment, the values are as follows:

Name Value Meaning

ext__symb 0 Symbol table

ext_ def 1 Relocatable definition

ext_ abs 2 Absolute definition

ext_ ref32 129 32 bit reference to symbol
ext__common 130 32 bit reference to COMMON
ext_ refl6 131 16 bit reference to symbol
ext_ ref8 132 8 bit reference to symbol

Table 2-A: External Symbols

The linker faults all other values. For ext__def there is one data word,
the value of the symbol. This is merely the offset of the symbol from the
start of the hunk. For ext__abs there is also one data value, which is the
absolute value to be added into the code. The linker treats the value for
ext__res in the same way as ext__def, except that it assumes the hunk
name is the library name and it copies this name through to the load file.
The type bytes ext_ ref32, ext_ refl6 and ext__ref8 are followed by a
count and a list of references, again specified as offsets from the start of
the hunk.

The type ext_ common has the same structure except that it has a
COMMON block size before the count. The linker treats symbols
specified as common in the following way: if it encounters a definition for
a symbol referenced as common, then it uses this value (the only time a
definition should arise is in the FORTRAN Block Data case). Otherwise,
it allocates suitable bss space using the maximum size you specified for
each common symbol reference.

The linker handles external references differently according to the type
of the corresponding definition. [t adds absolute values to the long, word,
or byte field and gives an error if the signed value does not fit.
Relocatable 32 bit references have the symbol value added to the field
and a relocation record is produced for the loader. 16 and 8 bit references
are handled as PC-relative references and may only be made to hunks
with the same name so that the hunks are coagulated by the linker
before they are loaded. It also possible for PC relative references to fail if

2-11

Binary File Structure Tripos Technical Reference

the reference and the definition are too far apart. The symbol data unit
formats are as follows:

ext def/abs/res

| NL longwords |
| of symbol name |

| NL longwords I
| of symbol name |

| NR longwords |
| of symbol references |

Figure 2-H: Symbol Data Unit

2-12

Tripos Technical Reference Binary File Structure

ext_common

l
| NL longwords |
| of symbol name |

|
] NR longwords |
| of symbol references [

(continuation of Figure 2-H)

2.2.10 hunk _symbol (1008/3F0)

You use this block to attach a symbol table to a hunk so that you can use
a symbolic debugger on the code. The linker passes symbol table blocks
through attached to the hunk and, if the hunks are coagulated,
coagulates the symbol tables. The loader does not load symbol table
blocks into memory; when this is required, the debugger is expected to
read the load file. The format of the symbol table block is the same as the
external symbol information block with symbol table units for each name
you use. The type code of zero is used within the symbo! data units. The
value of the symbol is the offset of the symbol from the start of the hunk.
Thus the format is as follows:

2-13

Binary File Structure Tripos Technical Reference

Figure 2-I: Hunk__symbol (1008/3F0)

where each symbol data unit has the following format.

|
| NL longwords |
I of symbol name |

Figure 2-J: Symbol Data Unit

Tripos Technical Reference Binary File Structure

2.2.11 hunk__debug (1009/3F1)

Tripos provides the debug block so that an object file can carry further
debugging information. For example, high level language compilers may
need to maintain descriptions of data structures for use by high level
debuggers. The debug block may hold this information. Tripos does not
impose a format on the debug block except that it must start with the
hunk__debug longword and be followed by a longword that indicates the
size of the block in longwords. Thus the format is as follows:

| |
I longwords I
l of l
| debug data |

Figure 2-K: Hunk _debug (1009/3F'1)
2.2.12hunk__end (1010/3F2)

This specifies the end of a hunk. It consists of a single longword,
hunk__end.

2-15

Binary File Structure Tripos Technical Reference

2.3 Load Files

The format of a load file (that is, the output from the linker) is similar to
that of an object file. In particular, it consists of a number of hunks with a
similar format to those in an object file. The main difference is that the
hunks never contain an external symbol information block, as all
external symbols have been resolved, and the program unit information
is not included. In a simple load file that is not overlaid, the file contains
a header block which indicates the total number of hunks in the load file.
This block is followed by the hunks, which may be the result of
coagulating a number of input hunks if they had the same name. This
complete structure is referred to as a node. Load files may also contain
overlay information. In this case, an overlay table follows the primary
node, and a special break block separates the overlay nodes. Thus the
load file structure can be summarized as follows, where the items
marked with an asterisk (*) are optional.

- Primary node
- Overlay table block (*)
- Overlay nodes separated by break blocks (*)

The relocation blocks within the hunks are always of type
hunk__reloc32, and indicate the relocation to be performed at load time.
This includes both the 32 bit relocation specified with hunk__reloc32
blocks in the object file and extra relocation required for the resolution of
external symbols.

Each external reference in the object files is handled as follows. The
linker searches the primary input for a matching external definition. If it
does not find one, it searches the scanned library and includes in the load
file the entire program unit where the definition was defined. This may
make further external references become outstanding. At the end of the
first pass, the linker knows all the external definitions and the total
number of hunks that it is going to use. These include the hunks within
the load file. On the second pass, the linker patches the longword
external references so that they refer to the required offset within the
hunk which defines the symbol. It produces an extra entry in the
relocation block so that, when the hunks are loaded, it adds to each
external reference the base address of the hunk defining the symbol.

2-16

Tripos Technical Reference Binary File Structure

Before the loader can make these cross hunk references, it needs to know
the number and size of the hunks in the nodes. The header block provides
this information, as described below. The load file may also contain
overlay information in an overlay table block. Break blocks separate the
overlay nodes.

2.3.1 hunk__header (1011/3F3)

This block gives information about the number of hunks that are to be
loaded, and the size of each one.

2-17

Binary File Structure Tripos Technical Reference

| N1 longwords |
| of name |

| N2 longwords |
| of name |

Figure 2-L: Hunk__header (1011/3F3)

The format of the hunk__header is described in Figure 2-L. The first part
of the header block contains the names that the loader must open when
this node is loaded. Each name consists of a long word indicating the
length of the name in longwords and the text name padded to a longword
boundary with zeros. The name list ends with a longword of zero. The
names are in the order in which the loader is to open them.

2-18

Tripos Technical Reference Binary File Structure

When it loads a primary node, the loader allocates a table in memory
which it uses to keep track of all the hunks it has loaded. This table must
be large enough for all the hunks in the load file, including the hunks in
overlays. The next longword in the header block is therefore this table
size, which is equal to the maximum hunk number referenced plus one.

The next longword F refers to the first slot in the hunk table the loader
should use when loading.

The next longword L refers to the last hunk slot the loader is to load as
part of this loader call. The total number of hunks loaded is therefore L -
F+1.

The header block continues with L - F + 1 longwords which indicate the
sizes of each hunk which is to be loaded as part of this call. This enables
the loader to preallocate the space for the hunks and hence perform the
relocation between hunks which is required as they are loaded. One hunk
may be the bss hunk with a size given as zero; in this case the loader uses
an operating system variable to give the size as described in hunk__bss
above.

2.3.2 hunk__overlay (1013/3F5)

The overlay table block indicates to the loader that it is loading an
overlaid program, and contains all the data for the overlay table. On
encountering it, the loader sets up the table, and returns, leaving the
input channel to the load file still open. Its format is as follows:

2-19

Binary File Structure Tripos Technical Reference

| Overlay |
| data |
I table |

Figure 2-M: Hunk__ overlay (1013/3F5)

The first longword is the upper bound of the complete overlay table (in
longwords).

M is the maximum level the overlay tree uses with the root level being
zero. The next M+ 1 words form the ordinate table section of the overlay
table.

The rest of the block is the overlay data table, a series of eight-word
entries, one for each overlay symbol. If O is the maximum overlay
number used, then the size of the overlay data table is (O + 1)*8, since the
first overlay number is zero. So, the overlay table size is equal to
(O+1)*8 + M+1.

2-20

Tripos Technical Reference Binary File Structure

2.3.3 hunk__break (1014/3F6)

A break block indicates the end of an overlay node. [t consists of a single
longword, hunk__ break.

2.4 Examples

The following simple sections of code show how the linker and loader
handle external symbols. For example,

IDNT A
XREF BILLY,JOHN
XDEF MARY

* The next longword requires relocation

0000' 0000 0008 DC.L FRED
0004' 123C OOFF MOVE.B #SFF,Dl
0008' 7001 FRED MOVEQ #1,DO
* External entry point
000A' 4E71 MARY NOP
000C' 4EB9 0000 000COC JSR BILLY Call external
*Now reference the external
0012' 2239 0000 0000 MOVE.L JOHN,D1l
END

produces the following object file

2-21

Binary File Structure Tripos Technical Reference

hunk unit

00000001 Size in longwords
41000000 Name, padded to lword
hunk code

00000006 Size in longwords

00000008 123COOQFF 70014E71 4EB90000 00002239 00000000
hunk_reloc32

00000001 Number in hunk 0
00000000 Hunk 0

00000000 Offset to be relocated
00000000 Zero to mark end

hunk_ ext

01000001 XDEF, Size 1 longword
4D415259 MARY

0000000A Offset of definition
81000001 XREF, Size 1 longword
4A4F484E JOHN

00000001 Number of references
00000014 Offset of reference
81000002 XREF, Size 2 longwords
42494cC4cC BILLY

59000000 (zeros to pad)
00000001 Number of references
0000000E Offset of reference
00000000 End of external block
hunk end

The matching program to this is as follows:

IDNT B
XDEF BILLY, JOHN
XREF MARY

6000' 2A3C AAAA AAAA MOVE.L #SAAAAAAAA,DS
* External entry point
0006' 4E71 BILLY NOP
* External entry point
0008' 7201 JOHN MOVEQ #1,D1
* Call external reference
000A' 4EF9 0000 0000 JMP MARY
END

2-22

Tripos Technical Reference Binary File Structure

and the corresponding output code would be

hunk_unit

00000001 Size in longwords
42000000 Unit name

hunk_code

00000004 Size in longwords
2A3CAAAA AAAAAET71 72014EF9 00000000
hunk ext

01000001 XDEF, Size 1 longword
4A4F484E JOHN

00000008 Offset of definition
01000002 XDEF, Size 2 longwords
42494cC4C BILLY

59000000 (zeros to pad)
00000006 Offset of definition
81000001 XREF, Size 1 longword
4D415259 MARY

00000001 Number of references
0000000C Offset of reference
00000000 End of external block
hunk_end

Once you have passed this through the linker, the load file will have the
following format.

2-23

Binary File Structure Tripos Technical Reference

hunk header

00000000 No hunk name

00000002 Size of hunk table
00000000 First hunk

00000001 Last hunk

00000006 Size of hunk 0

00000004 Size of hunk 1

hunk code

00000006 Size of code in longwords

00000008 123COOFF 70014E71 4EB90000 00062239 00000008
hunk _reloc32

00000001 Number in hunk 0
00000000 Hunk 0

00000000 Offset to be relocated
00000002 Number in hunk 1
00000001 Hunk 1

00000014 Offset to be relocated
0000000E Offset to be relocated
00000000 Zero to mark end

hunk end

hunk_code

00000004 Size of code in longwords

2A3CAAAA AAAA4E71 72014EF9 0000000A
hunk_reloc32

00000001 Number in hunk 0
00000000 Hunk 0

0000000C Offset to be relocated
00000000 Zero to mark end

hunk _end

When the loader loads this code into memory, it reads the header block
and allocates a hunk table of two longwords. It then allocates space by
calling an operating system routine and requesting two areas of sizes 6
and 4 longwords respectively. Assuming the two areas it returned were
at locations 3000 and 7000, the hunk table would contain 3000 and 7000.

The loader reads the first hunk and places the code at 3000; it then
handles relocation. The first item specifies relocation with respect to
hunk 0, so it adds 3000 to the longword at offset 0 converting the value
stored there from 00000008 to 00003008. The second item specifies

2-24

Tripos Technical Reference Binary File Structure

relocation with respect to hunk 1. Although this is not loaded, we know
that it will be loaded at location 7000, so this is added to the values stored
at 300E and 3014. Note that the linker has already inserted the offsets
00000006 and 00000008 into the references in hunk 0 so that they refer
to the correct offset in hunk 1 for the definition. Thus the longwords
specifying the external references end up containing the values
00007006 and 00007008, which is the correct place once the second hunk
is loaded.

In the same way, the loader loads the second hunk into memory at
location 7000 and the relocation information specified alters the
longword at 700C from 0000000A (the offset of MARY in the first hunk)
to 0000300A (the address of MARY in memory).

2-25

Chapter 3: Tripos Data Structures

This chapter describes Tripos data structures in memory and in files. It
does not describe the layout of a disk, which is described in Chapter 1.

Table of Contents

3.1 Introduction

3.2 Global Data Structure
3.2.1 BLKLIST

3.2.2 DAYS, MINS and TICKS
3.2.3 INFO

3.2.4 KSTART

3.2.5 TASKTAB

3.2.6 Task Control Block (TCB)
3.2.7 The Task State

3.2.8 TCBList

3.2.9 Device Table

3.2.10 Free Memory Allocation
3.2.11 Info Substructure

3.3 File Info Structure
3.4 Segment Lists
3.5 File Handles

3.6 Locks

Tripos Technical Reference Data Structures

3.1 Introduction

This chapter describes the data structures within Tripos, including the
format of a task, central shared data structures, and the structure of
handler requests.

In addition to normal values such as integers and pointers, Tripos uses
BPTR. BPTR is a BCPL pointer, which is a pointer to a longword-aligned
memory block divided by 4. So, to read a BPTR in C, you simply shift left
by 2. To create a BPTR, you must either use memory obtained via a call
to GetMem or a structure on your stack when you know you have only
allocated longwords on the stack so far (the initial stack is longword
aligned). You should then shift this pointer right by 2 to create the
BPTR.

Tripos also has a BSTR, which is a BCPL string. BSTR consists of a
BPTR to memory that contains the length of the string in the first byte,
and the bytes within the string following.

3.2 Global Data Structure

This section describes the rootnode. The rootnode is the central point
from which all the system structures in memory can be found. It is a
vector containing pointers to the main chains and tables, and certain
other information detailed below. In fact, the location of the rootnode is
the only fixed location in memory. All other data structures are
obtainable from the rootnode. The value zero is usually used as a null
pointer (for example, to mark the end of chains). In the box diagrams,
each cell represents one machine word (longword).

3-1

Data Structures Tripos Technical Reference

3.2.1 BLKLIST

This points to the start of the area from which memory is allocated by
GetMem. Fuller details of the free memory layout are given later.

3.2.2 DAYS, MINS and TICKS

The clock interrupt routine maintains the date and time in these three
words. DAYS is the number of days since the start of 1978 (that is,
January Ist, 1978 is day 0). MINS is the number of minutes since
midnight. TICKS is the number of clock ticks since the last minute
boundary. The time is updated at a frequency given by the system
constant TICKSPERSECOND.

3.2.3INFO
The INFO field points to a substructure used to hold information about
device assignments, details of machine type, etc. This substructure may

be extended without altering the structure of the rootnode. Fuller details
are given later.

3.2.4 KSTART
This value is assembled into the rootnode, and is the means by which the

bootstrap finds the kernel entry point after loading the system into
memory.

3-2

Tripos Technical Reference

Data Structures

| TASKTAB -+-->

BPTR to the task table
M/c pointer to the device table

M/c pointer to the TCB of the highest
priority task in the system

M/c pointer to the TCB of the current
task

BPTR to the block list

M/c address of TCB of DEBUG task.
Days since start of 1978

Minutes since midnight

Clock ticks in current minute
Unused

Memory size in units of 1K words
BPTR to vector of extra information

M/c address of kernel entry
point (used by bootstrap)

3-3

Data Structures Tripos Technical Reference

3.2.5 TASKTAB

TASKTAB —>+———=——=————— +
| UPPERBOUND | Maximum valid table offset
| ~mm e |
| —+-—> Pointer to TCB of task 1
| <=mmm e |
| -+--> Pointer to TCB of task 2
| === |
| I
/ /
/ /
| I
|-===mm- I
| -+~-> Pointer to the TCB of
to—m————————— + task UPPERBQUND

This table enables a task control block to be found from its corresponding
task id. Unused elements contain zero.

3-4

Tripos Technical Reference

Data Structures

3.2.6 Task Control Block (TCB)

—— > +
[LINK -+--> Points to the TCB of next
| | highest priority
e |
| TASKID [The task's identity
| | (a positive integer)
e ——— |
| PRIORITY [(a positive integer)

I |

e 1

| WORKQ -+--> Points to the first packet
| | on the task's work queue
e —— |

| WORKQTAIL -+--> Points to the last packet

| | on the task queue, or WORKQ

| GLOBALBASE —+-->

| STACKBASE -+-->

if nothing on the queue

The task state (see below)

The break flags

Upperbound of the store block
for stack & global vector

BPTR to the code segments
for the task

BPTR to global zero

BPTR to base of root stack

Save area

3-5

Data Structures Tripos Technical Reference

Each task in the system has a task control block (TCB) which contains
information relating to the task. There are two parts to a TCB. The first
part contains information used by the operating system for controlling
the task. The second part contains the save area used to hold the
machine registers, program counter, and processor status, when a task
suspends itself or is interrupted.

3.2.7 The Task State

This is held in the least significant 4 bits of the state field. All the
remaining bits are zero. The significance of each bit is as follows:-

0001: Packet bit. If this bit is set, the task has at least one packet
on its work queue. Ifclear, then the work queue is empty.

0010: Held bit. This bit is set when the task is in held state. It
means that the task will not be selected for running, even
though it might otherwise be eligible. Its primary purpose
is as a debugging aid.

0100: Wait bit (dead state). This is set when the task is waiting for
a packet to arrive. The task will not run while its work
queue is empty. Note that this bit pattern dictates that the
task is dead since a task that has called TaskWait will have
also set the interrupted bit (see below).

1000: Interrupted bit. When this bit is set, the task has been
interrupted. The task will run again when the interrupt
service routine is complete, and any higher priority tasks it
may have activated are once again held up.

All of the 16 possible bit patterns are valid. This means that the task
selector can rapidly decide how to deal with a task, by using the state to
index a table of routine addresses.

Tripos Technical Reference Data Structures

Flags

These also indicate states of the task, but do not affect scheduling, and so
live in a separate word. They are set and tested by using the kernel
primitives SetFlags and TestFlags. They are useful as a cheap signal
between tasks, and are used to implement break.

The console handler responds to CTRL-C, CTRL-D, CTRL-E, and
CTRL-F by setting flags #B0001 to #B1000 respectively in the currently
selected task. Conventionally, the #B0001 flag is recognized by
commands and causes them to finish. Flag #B0010 is inspected by the
CLI between commands, and causes termination of command sequences.

SegVec

This pointer leads to all the program sections which comprise the code of
the task. The TCB pointer addresses a vector, each element of which
either points to a chain of sections, or is zero.

Data Structures Tripos Technical Reference

SegVec
|
|

pmm—— +

| upPB | Upperbound of vector

| ~———- |

[———>

| ~———- |

| B s T T —— + pmm e + pmm e —— +

| -———= | l —+=—>| —+==>| 0 l

l I | —=———=— | | == I R l

/ /| I I | l l
| One | | | l l

/ /] | | I |

| | | section | | o I

|-~ | | | | l I |

I o | e — + prm e ———— + Fmm—————— +

[

| 0 | (i.e. unused)

e

| S

|

Conventionally, the first offset is used for the Tripos system library, and
the second is used for code specific to this task.

3.2.8 TCBList

As well as being addressed by the task table, the TCBs are linked into a
chain, for the benefit of the scheduler. The TCBList field of the rootnode
points to the TCB of highest priority, whose link field points to the TCB
of next highest priority. The chain links all the TCBs in order of
decreasing priority, ending with that of the idle task, which has a
priority of zero, and link of zero. No two tasks may have the same
priority, so the correct chain order is well defined.

3-8

Tripos Technical Reference Data Structures

The scheduling rule is very simple: the highest priority task which is free
to run is the one that should be running. A task is free to run if it is not
held, and, if it is waiting or dead, its work queue is not empty. Whenever
the task selector is entered, it is handed the TCB of the highest priority
task which might be runnable. If it cannot run this task, it just chains
down the TCB list until it finds one that it can run. The idle task is
always free to run, so the task selector cannot fall off the end of the chain.

3.2.9 Device Table

DEVTAB->+——-—————————— +
| UPPERBOUND | Maximum valid table offset

—-+——> Pointer to DCB of device -1

—+--> Pointer to DCB of device -2

-+——> Pointer to DCB of
____________ | device -UPPERBQUND

This table is used to find the device control block from the corresponding
device id. Unused locations contain zero. Device ids are negative
integers; the value -1 is used for the clock.

3-9

Data Structures Tripos Technical Reference

3.2.10 Free Memory Allocation

Blocks of memory are allocated and freed by the kernel primitives
GetMem and FreeMem. Memory is allocated from an area which starts
at the address given by the BLKLIST field of the rootnode. This area is
divided into contiguous blocks, which each consist of an even number of
words. The first word of each block is used both to indicate the length of
the block (and hence the start of the next), and to record whether or not
the block is allocated. As all block lengths are even, the least significant
bit of the length is not needed, and so this is used to indicate allocation:

Free block:

o +
| n [1]
[|
| |
| |
| 2n-1 words |
| |
| |
e +

Allocated block:
e +
| n [o]

The end of the block list is marked by a word containing zero.

3-10

Tripos Technical Reference Data Structures

3.2.11 Info Substructure

To access a further substructure with the following format, you use the
Info pointer.

Value Function Description

BPTR McName Network name of this machine
BPTR DevInfo Device list

BPTR Segments Resident Segment List

BPTR Devices Resident Device List

APTR NetHand Unused; currently zero
DevInfo

The DevInfo structure is a linked list. You use it to identify all the device
names that Tripos knows about; this includes ASSIGNed names and disk
volume names. There are two possible formats for the list entries
depending on whether the entry refers to a disk volume or not. For an
entry describing a device or a directory (via ASSIGN) the entry is as
follows:

Value Function Description

BPTR Next Pointer to next list entry or zero
LONG Type List entry type (device or dir)
APTR Task Handler task or zero

BPTR Lock File system lock or zero

BSTR Handler File name of handler or zero
LONG StackSize Stack size for handler task

LONG Priority Priority for handler task

LONG Startup Startup value, pass to handler
BPTR SegList SegList for handler task or zero
BPTR GlobVec Unused

BSTR Name Name of device or ASSIGNed name

The Next field links all the list entries together, and the name of the
logical device name is held in the Name field.

3-11

Data Structures Tripos Technical Reference

The Type field is 0 (dt__device) or 1 (dt__dir). You can make a directory
entry with the ASSIGN command. This command allocates a name to a
directory that you can then use as a device name. If the list entry refers
to a directory, then the Task refers to the file system task handling that
disk, and the Lock field contains a pointer to a lock on that directory.

If the list entry refers to a device, then the device may or may not be
resident. If it is resident, the Task identifies the handler task, and the
Lock is normally zero. If the device is not resident, then the Task is zero
and Tripos uses the rest of the list structure in the following way.

If the SegList is zero, then the code for the device is not in memory. The
Handler field is a string specifying the file containing the code (for
example, SYS:L/RAM-HANDLER). A call to LoadSeg loads the code
from the file and inserts the result into the SegList field.

Tripos now creates a new handler task with the SegList, StackSize, and
Pri values.

The new task is passed a message containing the name originally
specified, the value stored in Startup and the base of the list entry. The
new handler task may then decide to patch into the Task slot the task id
or not as required. If the task slot is patched, then subsequent references
to the device name use the same handler task; this is what the RAM:
device does. If the task slot is not patched, then further references to the
device result in new task invocations.

The DEV.STARTUP field in the DevInfo structure has the following
structure for a device running the file system (for example, DFn and
anything placed there by the MOUNT command):

Value Function Description

LONG Unit Unit number

BSTR DevName BSTR to device name
BPTR Envec BPTR to ENVEC

An ENVEC has the following structure:

Tripos Technical Reference Data Structures

Value

LONG
LONG
LONG
LONG
LONG
LONG
LONG

LONG
LONG

LONG
LONG
LONG

Function

Size
BSize
SecOr
Surfno
Secno
Blkno
RBlkno

Palloc
Interl

Lcn
Hcn
Cblkno

Description

Size (always 11)

Size of block (always 128)

Sector origin (not used, always 0)
Number of surfaces (=> 1)

Not used (always 1)

Number of blocks per track

Number of reserved blocks

(2 for bootstrap disks)
Preallocation factor (not used, 0)
Interleave factor (normally 0,
only used when writing)

Lowest cylinder number

Highest cylinder number

Number of cache blocks needed

(=> 3)

If the type field within the list entry is equal to 2 (dt__volume), then the
format of the list structure is slightly different.

Value

BPTR
LONG
APTR
BPTR
LONG
LONG
LONG
BPTR
LONG
LONG
BSTR

Function

Next
Type
Task
Lock
Volbays
VolMins
VolTicks
LockList
DiskType
Spare
Name

Description

Pointer to next list entry or zero
List entry type (volume)

Handler task or zero

File system lock

Volume creation date

List of active locks for volume
Type of disk

Not used

Volume name

In this case, the name field is the name of the volume, and the Task field
refers to the handler task if the volume is currently inserted; or to zero if
the volume is not inserted. To distinguish disks with the same name,
Tripos timestamps the volume on creation and then saves the timestamp
in the list structure. Tripos can therefore compare the timestamps of

3-13

Data Structures Tripos Technical Reference

different volumes whenever necessary.

[f a volume is not currently inserted, then Tripos saves the list of
currently active locks in the LockList field. It uses the DiskType field to
identify the type of disk, currently this is always a Tripos disk. The disk
type is up to four characters packed into a longword and padded on the
right with nulls.

Resident Segment List

This is a list of segments held in memory either as part of the resident
Tripos image, or because they have been brought into memory and added
to this list by a CLI command. Each list entry includes a segment name,
a use count and a pointer to the segment list.

Value Function Description

BPTR Next Pointer to next list entry or zero
BSTR name Name of this segment

LONG Use Use count

BPTR SegList Pointer to segment list

Resident Device List

This list is very similar to the segment list described above, but in this
case it contains all the devices currently available within the system,
and which have been installed via a call to AddDevice. Each list entry
holds a device name, a use count and a device identifier.

Value Function Description

BPTR Next Pointer to next list entry or zero
BSTR name Name of this device

LONG Use Use count

LONG DevicelID Identifier for this device

3-14

Tripos Technical Reference Data Structures

3.3 File Info Structure

The structure of the FileInfoBlock data area manipulated by Examine
and ExNext is as follows:

Value Function Description

LONG DiskKey Key number of the object

LONG DirEntryType Primary entry type

BYTE FileName{108] Object name in the form
used by BSTR

LONG Protection Protection flags

LONG EntryType Secondary entry type

LONG Size File size in bytes

LONG NumBlocks Number of filing system
blocks occupied

DateStamp Date Days,Mins,Ticks of the
creation date

BYTE Comment[116] Object comment in the

form used by BSTR

3.4 Segment Lists
To obtain a segment list, you call LoadSeg. The result is a BPTR to
allocated memory. The length of the memory block is 4 more than the
size of the segment list entry, allowing for the link field.
The SegList is a list linked together by BPTRs and terminated by zero.
The remainder of each segment list entry contains the code loaded. Thus
the format is

Value Function Description

LONG NextSeqg BPTR to next segment or zero

LONG FirstCode First value from binary file

3-15

Data Structures Tripos Technical Reference

3.5 File Handles

File handles are created by the Tripos function Open, and you use them
as arguments to other functions such as Read and Write. Tripos returns
them as a BPTR to the following structure.

Value Function Description

LONG Link Not used

LONG Interact Boolean, TRUE if interactive

LONG ProcessID Task id of handler task

BPTR Buffer Buffer for internal use

LONG CharPos Character position for internal use
LONG BufEnd End position for internal use

APTR ReadFunc Function called if buffer exhausted

APTR WriteFunc Function called if buffer full
APTR CloseFunc Function called if handle closed
LONG Argl Argument

LONG Arg2 Argument

Most of the fields are only used by Tripos internally; normally Read or
Write uses the file handle to indicate the handler task and any
arguments to be passed. Values should not be altered within the file
handle by user programs, except that the first field may be used to link
file handles into a singly linked list. The file handle type affects Argl
and Arg2.

3-16

Tripos Technical Reference Data Structures

3.6 Locks

The filing system extensively uses a data structure called a lock. This
structure serves two purposes. First, it serves as the mechanism to open
files for multiple reads or a single write. Note that obtaining a shared
read lock on a directory does not stop that directory being updated.

Second, the lock provides a unique identification for a file. The lock
contains the actual disk block location of the directory or file header and
is thus a shorthand way of specifying a particular file system object.

The structure of a lock is as follows.
Value Function Description

BPTR NextLock BPTR to next in chain, else zero
LONG DiskBlock Block number of directory/filehdr
LONG AccessType Shared or exclusive access
APTR ProcessID Process ID of handler task
BPTR VolNode Volume entry for this lock

Because Tripos uses the NextLock field to chain locks together, you
should not alter it. The filing system fills in the DiskBlock field to
represent the location on disk of the directory block or the file header
block. The AccessType serves to indicate whether this is a shared read
lock, when it has the value -2, or an exclusive write lock when it has the
value -1. The ProcessID field contains a pointer to the handler task for
the device containing the file to which this lock refers. Finally the
VolNode field points to the node in the DevInfo structure that identifies
the volume to which this lock refers. Volume entries in the Devinfo
structure remain there if a disk is inserted or if there are any locks open
on that volume.

Note that a lock can also be a zero. The special case of lock zero indicates
that the lock refers to the root of the initial filing system.

3-17

Chapter 4: Installation

This chapter describes how to install Tripos on a new computer. This
ranges from simply installing a new type of VDU to writing a complete
set of device drivers for a new piece of hardware.

Table of Contents

41
4.2
4.3

44

4.4.1
4.4.2
443
444
4.4.5

4.5

45.1
4.5.2
4.5.3
454

4.6

4.7

Introduction
VDU Installation
Mount

System Generation

Memory Specification

Task and Segment Declarations
Device Declaration

The INFO Substructure
Example

Device Drivers

Device Control Blocks (DCB)
Device Driver Code
Examples of Device Drivers
Device Dependent Library

Device Handlers

Porting Tripos

Tripos Technical Reference Installation

4.1 Introduction

The Tripos operating system consists of a number of devices drivers and
tasks. Each hardware peripheral has a device associated with it; a device
normally consists of a device driver and a device handler. The device
driver is a very low-level routine that communicates with the hardware;
the device handler is a task that provides a high-level interface between
other tasks in the system and the device driver.

This chapter describes how to install Tripos on a new computer. At the
very simplest this means installing a particular make of VDU; this
process is described in Section 4.2, "VDU Installation." A more complex
case is installing a new disk drive on an existing Tripos implementation.
The MOUNT command is used to do this, and the format of the
specification files used by MOUNT are described in Section 4.3.

A more complex case is when Tripos is being moved to a new make of
computer. In this case you must learn how to create a new system image
and how to write new device drivers. The rest of this chapter describes
how to do this.

Besides a variable number of tasks and devices, a Tripos computer
contains system libraries, exception handlers, and a small absolute area
of memory known as the rootnode. The layout of the rootnode is described
in Section 3.2, "Global Data Structure.” The contents of a Tripos system
image, which is loaded into memory when a system is booted, is
constructed by a program called SYSLINK. This program and the
process of system generation is described in Section 4.4,

The design of device drivers is described in Section 4.5; this covers the
standard commands that must be supported by a device driver as well as
the extra commands required by certain specific devices such as serial
lines and disks. A complete example of a serial device and a disk device is
included.

Section 4.6 covers the design of a device handler task. In most Tripos
systems this is not required, as standard handler tasks exist for disks,
serial and parallel lines and primary console. However, if a special

4-1

Installation Tripos Technical Reference

purpose peripheral is to be included, then this section describes the
structure that is needed to provide a new device handler.

Section 4.7 provides a brief outline of how to port Tripos to your machine.

4.2 VDU Installation

Tripos offers a number of commands that use specific actions from a
reasonably intelligent VDU (for example, ED). Unfortunately the
control codes for these actions can differ from terminal to terminal.

In order to provide support for a number of different terminals, Tripos
allows the user to specify which type of terminal they are going to use.
The command VDU <name > sets up the terminal as <name > type.

The VDU command works by reading a file called DEVS:VDU and
constructing, from the specification found there, a section of interpreted
code. This code is stored in the console task associated with the CLI. Look
at the file (using TYPE) and determine if your terminal is already in
there. If so, you are in luck. All that you need to do is to issue the
command VDU followed by the type of terminal you are using. For
example,

VDU tvi

if your terminal is a Televideo 950. The VDU command is normally
placed in the file SYS:S/STARTUP-SEQUENCE in order to save issuing
it every time you startup Tripos. This file contains the commands that
Tripos executes each time it is started.

If your terminal is not in the list then you must specify the commands
needed to drive it. This involves adding information to the file
DEVS:VDU and should not be attempted until you are used to the editor
EDIT. You can, of course, use ED if you have another terminal available
whose type is already known.

You can see the general layout of the file from those entries already in it.
The entry starts with the word 'VDU"' followed by the terminal name

(maximum 15 characters) followed by a semicolon. There are then two

4-2

Tripos Technical Reference Installation

sections. The first defines the output from programs such as ED, while
the second describes any changes you may wish to make to characters
entered as input to ED. Each section starts with the word 'output' or
‘input' and is terminated by 'end’, followed by a semicolon.

The output section contains a number of action names which may be
entered in any order. Each name may be followed by a number of
directives which tell the system what to do. The most common is the
word 'send’, followed by a list of values separated by commas. Each value
is sent to the terminal when the editor wishes to execute the required
action. Values can be specified as a number in decimal, a number in
hexadecimal preceded by 'H', a control character if a character is
preceded by '** (up arrow), or as an actual character enclosed in single
quotes (). Thus, in order to move the cursor down, your terminal might
need to be sent linefeed (Hex 0A or CTRL-J). You would specify this as
one of the following:

cursordown send HOA;
cursordown send “J;
cursordown send 10;

Alternatively, your terminal might need to be sent Escape followed by
the letter 'D’ as follows:

cursordown send H1B,'D':;

Each name and associated set of directives must be terminated by a
semicolon. There are three other possible directives. The first two
directives represent the X (or column) and Y (or row) position of the
cursor; these are 'xpos' and 'ypos'. ED assumes that position 0,0 is the top
left hand corner of the screen; many terminals require a fixed offset to be
added to the value sent to position the cursor. This value must be given
even if it is zero. Thus you might position the cursor by sending CTRL-P
followed by the X position offset by 32, then the Y position offset by 32.
For example:

setcursor send "P xpos 32 ypos 32;

Alternatively, you might have to send escape, an equals character, then
the Y position followed by the X position with no offset. For example:

4-3

Installation Tripos Technical Reference

setcursor send HI1B,'=' ypos 0 xpos 0;

Finally, some action requests may involve moving the cursor as a side
effect; for example, scrolling the screen up by one line. In this case, you
should not send the actual control codes to move the cursor as ED thinks
it knows where the cursor is on the screen. Instead, you should use the
directive 'goto' followed by the X position, then the Y position. This tells
ED to position the cursor and to keep track of where it is on the screen.
Eventually, of course, ED uses the values defined to physically move the
cursor. Thus, to scroll up the screen, you might specify the following:
move to the bottom line and execute a linefeed. In other words,

scrolldown goto 0,23 send HOA;
The action requests are as follows.

init
This is called before any other calls and allows the terminal to be set up
(for example programming function keys). It is optional.

uninit

This is called when ED has finished and allows you to undo anything
done in the init section, such as switching back to roll mode from page
mode. It is optional.

length, width

These two specify length and width of the terminal and if omitted default
to 24 lines and 80 characters respectively. If used they must be followed
by the directive 'return’, then the value required, then the semicolon.

highlighton, highlightoff

The 'highlighton' action is used to make the terminal highlight any text
sent to the screen until a 'highlightoff’ action. The effect on the screen
may be chosen to be any special effect such as inverse video, underlining
or whatever. The only proviso is that the effect must not take up a
character position. The action can be omitted if your terminal cannot do
this.

4-4

Tripos Technical Reference Installation

insertchar, deletechar

Some terminals are capable of making room for a character in the middle
of a line by moving any characters to the right up by one place. They can
usually also delete a character by moving the characters to the right
back towards the start of the line to close up the line of text. If your
terminal supports this, then the values to be sent should be entered here;
otherwise the action names can be omitted and ED rewrites the entire
line where required.

insertline, deleteline, deol, clearscreen

These are the actions of inserting a line and shuffling text down, deleting
a line and shuffling text up, deleting all characters from the cursor
position to the end of the line and clearing the entire screen. These
actions must be defined. Often inserting and deleting lines can be done
on terminals with split pages by splitting the page and scrolling one of
the halves to get the correct effect.

cursorup, cursordown, cursorleft, cursorright
These are the action requests to move the cursor one place at a time.
They must be defined.

setcursor
This action routine is called to move the cursor by more than one place.
The specification generally uses the 'xpos' and 'ypos' directives.

scrollup, scrolldown

These action routines enable ED to scroll the text on the screen up or
down. Some terminals take much longer doing it one way (such as
deleting a line at the top of the screen for scrollup) than another (such as
performing a reverse line feed at the top of the screen). Scroll down can
often be implemented by sending a linefeed at the bottom of the screen.
These routines will often contain the 'goto’ directive and they must be
defined.

The input routine allows multiple control codes sent by a terminal to be
mapped to a single control code to control the editor. For example, a
cursor right key might send CTRL-L when ED expects CTRL-X to be the
code to do this. To get around this problem, you can include the line

4-5

Installation Tripos Technical Reference

~

map "L to "X;

in the input section. The line must start with the word 'map’, which is
followed by a number of input characters transmitted from the terminal.
The single value which is to be sent to ED is given after the word 'to".
Multiple input sequences are allowed, when, for example, a function key
sends escape followed by one or more characters. In this case the line
might read

map H1B,'A' to "J:

Notice that if you map out a control code normally used by ED, then you
must provide a suitable replacement. The above example makes Escape
by itself unavailable, so you should define some character sequence to
map to Escape. Character sequences starting with the same control code
must be of the same length to avoid ambiguity. Only control codes may
be mapped. Do not attempt to map the control codes CTRL-S and
CTRL-Q onto anything as these are defined to be flow control characters
which stop and start output from Tripos.

A complete example follows.

4-6

Tripos Technical Reference Installation

Vdu Newbury;

Output;
length return 24;
width return 80;
scrollup goto 0,23 send HOA;
scrolldown goto 0,0 send HOL;
setcursor send H16 xpos H20 ypos H20;
insertline send HQOLl;
deleteline send HO02;
highlighton send H12;
highlightoff send H13;
insertchar send HOF;
deletechar send HOE;
deol send H19;
cursorup send HOB;
cursordown send HOA;
cursorleft send H08;
cursorright send HOC;
clearscreen send HI1F;

End;

Input;
map HOC to “X;:

End;

In addition, you may wish to set the serial line parameters. This is done
by the SET-SERIAL command. (See Chapter 1, "Tripos Commands," of
the Tripos User's Reference Manual for a specification of this
command.) If you always wish a particular output port to have certain
parameters, then a suitable SET-SERIAL command can be placed into
the file called SYS:S/STARTUP-SEQUENCE. This file contains
commands which Tripos executes each time it is started; it commonly
contains commands to configure the terminal such as CONSOLE as well
as SET-SERIAL commands for the serial lines.

4-7

Installation Tripos Technical Reference

MOUNT

When Tripos is booted the system knows about a number of devices
which correspond to physical peripherals. A system might start with
DFO0: as a floppy disk, DHO: as a hard disk, SER: as the serial port and so
on. A list of available devices can be obtained from the ASSIGN
command.

Further devices can be made available with the MOUNT command. This
command reads a specification file and makes the device you specified
available for use. The device is not actually initialized until it is first
referenced. (A standard device, such as SER:, is automatically
MOUNTed, and is only initialized when first referenced.) A brief
specification of MOUNT can be found in Chapter 1, "Tripos Commands,"
inthe Tripos User's Reference Manual.

The file which MOUNT reads giving details of available devices is called
DEVS:MOUNTFILE. The information presented in the file is placed into

a new entry in the DevInfo structure described in the previous chapter.
This file has entries of the form:

<devicename> <arguments> #
separated by spaces or newlines. A device name is a name followed by
colon (for example, HDO:) and the arguments consist of keywords
followed by equals followed by a value. For example:

HDO: Device = disk0

Each argument may be on a separate line, or on the same line if
terminated by a semicolon.

Comments may be added to DEVS:MOUNTFILE if they are enclosed in

/* */ pairs. For example:

Reserved = 2 /* Not to be used for storage */

4-8

Tripos Technical Reference Installation
The argument keywords and their expected values are as follows:
Keyword Description
Device The name of the disk driver device
Unit The unit number to be used
BytesPerBlock The size of each block in bytes
SectorQOrigin The lowest sector number on a track
SectorsPerBlock Number of sectors in a block
Interleave The interleave factor
LowCyl The lowest cylinder number
HighCyl The highest cylinder number
Surfaces The number of surfaces on the disk
BlocksPerTrack The number of blocks on each track
Reserved The number of reserved blocks (not for storage)
Buffers The number of cache buffers to be used
Notes:
1. A large disk may be partitioned by using different values for

LowCyl and HighCyl on the same disk.

. More than one description can be placed on a line if the separator

character ;' is used.

. Numbers are assumed to be decimal unless they are preceeded by

0x, in which case they are treated as hex.

. Comments may be placed in the file in the same way as in C.
. Descriptions are separated by the # character.
. The '="character associating a value with a keyword is optional.

. The SectorOrigin value is often 0 or 1. Commonly one sector is

used for one block, so that SectorsPerBlock is 1. The Interleave
factor is only used when writing data onto disks, and defaults to 1
if omitted. An interleave factor of n will cause consecutive blocks
of a file to be written into sectors s, s+ n and so on.

4-9

Installation

Tripos Technical Reference

For example:

DFO0:

#

Device = floppydisk

Unit =0

Surfaces = 2

SectorOrigin =0

BytesPerBlock = 1024

SectorsPerBlock = 1

BlocksPerTrack = 4

Reserved =1 /* For bootstrap */
Interleave =0

LowCyl = 0 ; HighCyl = 79

Buffers = 5

The algorithm that the file handler uses to convert a byte offset to the
disk into the track, sector surface, and so on is as follows. Imagine the
disk to be made up of several disks, each with an upper and lower side,
where each disk has a series of tracks, starting at the outer edge of the
disk and continuing towards the centre, and each track contains a
number of blocks (0-n). The order starts with Side 0 (the upper surface of
the top 'disk"), Block 0 (the first block), Track 0 (the outermost track),
continues through Blocks 0-n on Track 0, Side 0, then through Blocks 0-n
on Track 0, Side 1 and so on down to Side n. This is followed by Blocks
0-n, Track 1, Sides 0-n, Blocks 0-n, Track 2, Sides 0-n, and so on to Track

n.

4-10

Tripos Technical Reference Installation

4.4 System Generation

A Tripos operating system image consists of a number of executable
binary segments, which may have been produced by the assembler or by
a compiler. These segments are copied by the system linker SYSLINK
into a Tripos operating system image file that can then be installed with
the INSTALL command. The SYSLINK program builds the system
image file according to a set of instructions. For instance, the program is
instructed as to the files that should be included, the size and layout of
the memory of the target machine, and the details of the filing system
that is to be used.

The command template for SYSLINK is as follows:
SYSLINK "FROM/A,TO/A,MAP/K,OPT/K"

The FROM argument should be the name of a file of commands for the
linker describing the system to be built, and the TO argument should be
the name of the required system image file. The MAP keyword may be
used to obtain a map of the system; in which case it should be followed
with a suitable filename for the mapping output. The OPT keyword may
be used to supply options; the letter "W’ followed by an integer specifies
the workspace size, and 'F' specifies full map output, rather than the
abbreviated form given by default. The 'S' option tells SYSLINK to
produce an output file in Motorola S-Record format rather than the
standard Tripos binary format.

The action of SYSLINK is to read the instructions given to it, and to
produce a complete system image file. This file is specific to the
hardware of the target machine, and is in the form of a large section of
code containing a number of absolute references. Any relocatable
sections are relocated for the address in memory allocated in the target
machine by SYSLINK.

All code sections are allocated in such a way that they resemble
segments loaded by the library routine LoadSeg, and thus UnLoadSeg
may be used on them later if required. This is useful in reclaiming the
space used by initialization segments, for example. Control blocks and
other system structures such as the rootnode are preallocated and
initialized.

4-11

Installation Tripos Technical Reference

SYSLINK also handles the layout of absolute store, and ensures that
sections of assembler specified as absolute are loaded in the correct
place. This enables interrupt locations and TRAP vectors to be set up
~ when the system image file is loaded. All unallocated store is set up so
that GetMem and FreeMem operates correctly without any further
initialization.

The linker operates in three phases: first, it reads the command file,
checking for syntax errors and building a tree structure representing the
declarations; second, it scans the tree checking the validity and
consistency of the declarations; third, it reads the required code segment
files and writes out the system image file.

The syntax for the command file is as follows:

= <declaration>; [<declaration>:1*
= <star><declaration>
= <segment-decl>
= TASKTAB <n>
= <task-decl>
= DEVTAB <n>
= <device—-decl>
= INFO <info-decl>
= ABSMIN <n>
= ABSMAX <n>
= TCBSIZE <n>
= STOREMIN <n>
= STOREMAX <n>
= MCADDRINC <n>
= ROOTNODE <n>
= MEMORYSIZE <n>
= SEGMENT <name> <name-list>
= TASK <n> PRIORITY <n>
STACK <n> SEGMENTS <name—-list>
= DEVICE <n> DRIVER <name>
= <name> [, <name>]*
= (<info-decl> | <info-list>)
= [<info-elem> [, <info-elem>]*]
= <name> | <n> | <string>

<commandfile>
<declaration>

<segment-decl>
<task-decl>

L I L e T S Y N Y T Y S ¥ ST S PO S PR Y

L I T Y S X S Y S S T T

<device-decl>
<name-list>
<info-decl>
<info-list>
<info-elem>

L TR YR TR Y'Y
s es e av as

4-12

Tripos Technical Reference Installation

Layout characters space, tab, and newline are ignored, except that they
terminate names and numbers. <star> is the character '*'. <n> is a
string of one or more digits that may be preceeded by '#' to denote an
octal number, or by '#X' to denote a hexadecimal number. <name> isa
string of one or more characters, except layout characters, ', ',', and not
starting with a digit. SEG is allowed as an abbreviation for SEGMENT,
SEGS for SEGMENTS, PRI for PRIORITY, and DEV for DEVICE.

Keywords are accepted in either case.

4.4.1 Memory Specification

The initial part of a command file specifies the size and layout of
memory. The declarations ABSMIN and ABSMAX define the limits of
absolute store, parts of which may be defined by absolute sections of
assembler code read during the link process. STOREMIN and
STOREMAX define the limits of available memory that may be used as
free store. The memory thus defined are allocated by SYSLINK from
both high and low memory address. Low store is used for system data
structures, while high store is used for code segments. The area defined
by ABSMIN and ABSMAX may not overlap with that defined by
STOREMIN and STOREMAX. The value MEMORYSIZE is used to
specify the complete amount of memory available on the target computer
- in particular this value is used to determine valid memory references in
DEBUG. The number after MEMORYSIZE should be size of the memory
in units of 1K BCPL words - thus a 256K machine would be specified as
64.

When Tripos starts up the initialization section of the kernel starts at
the value specified by MEMSIZE and checks to see if there is any
memory beyond that specified. If so then the free list and the value of
MEMSIZE are modified to use all the available store. This means that it
is normal to inform SYSLINK that there are only 100Kbytes of memory
available, and to use a further 28K for the system bootstrap. Thus Tripos
may be booted into a machine with 128Kbytes of memory or more, and
will determine how much memory is actually present when it starts.

The location of the rootnode, which is the central Tripos data structure,
is specified after the keyword of the same name as a BCPL address. This

4-13

Installation Tripos Technical Reference

must match the value returned by RootStruct() which is specified in the
Tripos kernel.

The size of each Task Control Block (TCB) is given in BCPL words after
the keyword TCBSIZE. Again this must match the value specified in the
kernel.

Finally the keyword MCADDRINC is used to specify the factor by which
BCPL addresses must be multiplied to obtain a machine address. For the
68000 this is always 4.

4.4.2 Task and Segment Declarations

A segment declaration declares a segment name which will be used later
in the SYSLINK file. It is followed by a number of filenames, separated
by commas. Each segment name represents one or more binary files
provided as part of the Tripos kit. The system library is specified here,
and is made available to every task in the system. A segment is only
included in the system image file if it is used as part of a task
specification, and it is only ever included once. Multiple references to the
same segment share the code. However, identical files included as part of
the definition of different segments may be included more than once, and
these files are not shared.

If the SEGMENT description is preceded by an asterisk ("*'), then the
segment is taken as an initialization segment. This simply means that
the segment is placed lower down in memory than resident segments, all
segments being allocated store from high to low addresses. Thus if the
initialization segment is then UNLOADSEGed after its job is complete,
the space returned is coagulated with the rest of free store, rather than
leaving a 'hole’ in memory that is otherwise permanently allocated.

A TASKTAB declaration sets the size of the task table; otherwise a
default of 10 is assumed. This value limits the maximum number of tasks
available in a Tripos system.

Each task that is to be part of the initial system must be specified with
the TASK declaration. This declaration must be followed by the task
number, the priority follows the keyword PRIORITY and the stack size is

4-14

Tripos Technical Reference Installation

given in longwords after STACK. Note that this stack size is the size
given to the root stack of the task. Any coroutines run from the root stack
have their own stack size specified at that time. In particular, all
commands run from the CLI are run as a coroutine, and the stack size for
this is specified by means of the STACK command.

The final part of a task declaration is the segment list. This refers to code
segments defined via a SEGMENT directive. The keyword SEGMENTS
is followed by a list of segment names, with the system library segment
specified first, and the segment specific to the task specified second.

Finally, if the task declaration is preceded by an asterisk ('*'), then the
task in question is identified as the initial task that is started when the
Tripos image is entered. This asterisk should normally precede the
declaration of task 1.

It would be possible to include any other tasks required in the system
here, but most other tasks which may be needed are created dynamically
once the system is running. If an extra task is added here then it would
need to be woken up by some other task sending a suitable packet to it.

4.4.3 Device Declarations

The next stage in describing a Tripos image is to specify the devices that
are to be used. Again, devices can be created dynamically with the
AddDevice primitive, but it is normal for at least a disk device and a
terminal device to be declared as part of the initial image.

The size of the device table limits the maximum number of devices
available in Tripos in the same way as the size of the task table limits the
number of tasks. This size is specified by the DEVTAB declaration. If it
is omitted is defaults to 10.

Each device is declared by means of the DEVICE keyword. This is
followed by the device number. The devices are normally identified as
negative numbers in Tripos, with task numbers being positive. This
allows task 0 to represent the idle task. By convention, device -1 is
always the clock device. The device number is followed by the keyword
DRIVER and the name of the file in which the driver code is to be found.

4-15

Installation Tripos Technical Reference

This code file is another binary load file such as may be produced by the
linker ALINK.

4.4 4 The INFO Substructure

The rootnode is the basis of all Tripos data structures, and contains a
number of fixed locations which are used within Tripos. However, one of
the slots in the rootnode is a pointer to a further substructure that
represents other, variable data structures. This structure is described in
full in the previous chapter, but parts of it may be preallocated by
SYSLINK. The INFO keyword is followed by a list enclosed in brackets.
Each member of the list may be a further set of brackets or a number,
string, or name. Each bracket represents a further substructure that is
pointed at by the list element preceding it.

This is the most complicated part of the SYSLINK file, and is best
described with reference to the example in the next section. An overview
of the structures that must be defined is given here. The first entry is the
machine name - this can be any name enclosed in quotes and is currently
unused. It will be used in network systems. The next entry is the DevInfo
structure. This contains the names of all the devices which will appear in
the system when booted. Other file system devices are made available
through the MOUNT command. The devices must include CON: as this
is the device which the startup code attempts to open. It must also have a
disk device specified. More than one disk device may be specified, but a
disk device must be the first element in the list, which means the last
entry in the section in the file. This disk device is used as the system
disk, and by altering the disk device here you can alter the disk which is
used by default. For example, two versions of system image could be
produced; one would use a floppy disk as the system disk and one would
use the hard disk.

The entry for the CON: device should be copied from the example
directly, and any other serial lines to be supported should also be entered
with different unit numbers or device names. The device name specified
here is a cross reference to the devices named in the device list.

4-16

Tripos Technical Reference Installation

Any disk entry must contain the file system startup information. This is
described in Chapter 3, and is a pointer to a table of disk parameters
specifying such information as the number of tracks, sectors, surfaces
and so on. The information is represented in the SYSLINK file as
another bracketed entry containing the parameters. Thus in order to
change the size of the system disk the disk parameters would have to be
changed.

The next entry in the Info structure is the resident segment list. This
must contain entries for the syslib, cli and restart sections. It can also
contain any other segments which you would like resident, along with an
initial use count.

In a similar fashion the next entry, the resident device list, contains the
names and device numbers of resident devices. The entry for the timer
must appear, and refer to device -1. This matches up with the actual code
specified in the device section where the code for device -1 is handled.
Similarly the driver named as that being used by CON: must appear
here, as must the name of the disk driver referenced as the device driver
used for the disk device.

4.4 5 Example

In the following example, a normal Tripos image is produced. There are
two tasks specified; task 1 being the initial CLI and task two the system
debugger.

In this example, bold typeface is used for the SYSLINK directives, upper

case for file names and lower case for SYSLINK defined names such as
those for segments.

4-17

Installation Tripos Technical Reference

[Tripos link file

absmin #X0000;
absmax #X032F;
storemin #X4000;
storemax #X8FFF;
memorysize 36;
rootnode 512;
tcbsize 29;
mcaddrinc 4;

The first part of the file specifies various constants, most of which should
not be changed. This example places the absolute memory, including the
rootnode and exception vectors, from 0 to 32F longwords. The main
memory used as heap starts at 4000 longwords ($10000 byte address) and
extends up to 8FFF longwords. Tripos will attempt to resize itself into
any memory which can be found beyond the end of this high limit. The
value of memorysize is set to 36, being the number of 4Kbyte blocks in
the heap memory.

In this example the rootnode is placed at BCPL address 512 ($800 byte
address), the size of each TCB is 100 longwords and the address
increment is 4.

seg syslib klib.obj,
jacket.obj,
mlib.obj,
dlib.obj,
blib.obj,
extras.obj,
io.obj;

The segment lists come next. The first segment list specifies the system
library syslib. The contents should be kept as supplied, and not changed.

seg debug taskint.obj,

debug.obj,
debug-disasm.obj;

4-18

Tripos Technical Reference Installation

The debug segment is specified as containing a task interface module and
the the two debug code modules. A smaller, cutdown debugger can
replace the full version.

seg cohand taskint.obj,cohand.obj;
seg cli taskint.obj,cli.obj,cli-init.obj;
seqg fihand taskint.obj,
access.obj,
bitmap.obj,
bufalloc.obj,
disc.obj,
exinfo.obj,
main.obj,
support.obj,
work.obj,
moveb.obj,
state.obj,
init.obj;
seg restart taskint.obj,
restart.obj;

The console handler, cli, file system and file system restart segments are
specified in a similar fashion. These segment declarations should not
normally be altered.

tasktab 20;

*task 1 pri 1000 stack 400 segs syslib,cli;
task 2 pri 2000 stack 300 segs syslib,debug;

The task declaration section defines task 1 as the cli task, using the
system library segment and the cli segment. Task two is defined as the
debugger is a similar fashion.
devtab 20;
dev -1 driver bin.clock-driver;

dev -2 driver bin.tty-driver;
dev -3 driver bin.disc-driver;

4-19

Installation Tripos Technical Reference

The device declaration section is where you must start to specify the
devices which you have written. In this example there are only three
devices, being the minimal sytem. These devices are the clock device, the
serial line (tty) device and a generic disk device for both floppies and
hard disks. Remember that the clock device must be device -1.

info (| Machine name
"68000",
| Initial device configuration
(0,
o, 0, 0, 0, 300, 3000,
(0, "serial"), cohand, 0, "CON"),
6, 0, 0, 0, 300, 2999,
(1, "serial"), cohand, 0, "AUX"),
o, 0, 0, 0, 210, 2500,
(0, "disc", (11,256,0,2,1,4,4,0,
0,0,79,5)).
fihand, 0, "DFO"),
o, 0, 0, 0, 210, 2499,
(L, "disc", (11,256,0,4,1,8,1,0,
0,0,359,5)),
fihand, 0, “DHO"),
| Segment list
(((0, "restart", 1, restart),
"cli®, l, cli),
"syslib", 1, syslib),
| Device list
(((0, "timer", 1, -1),
"serial", 1, -2),
"disc", 2, -3),
| spare
0
)i

The final part of the file describes the Info structure which is required.
Each entry nested in brackets creates a pointer to the entry in memory.
Thus there are five main entries in this example, where many entries
contain further pointers. The first main entry is the name of the
machine. Although useful for a network machine it is not otherwise used.
It can be any string enclosed in quotes.

4-20

Tripos Technical Reference Installation

The second entry specifies the Devinfo substructure which describes the
devices that are available in the system. This is specified as a list, so that
the four starting brackets represent the four elements in the list. The
last list element is the first described, and is the definition for the CON:
device. This takes a stack of 300 long words and a priority of 3000. The
startup information is a pointer to two longs, the first being the unit
number (0) and the second being the name of the device ("serial"). This
name is a reference to the name given to the tty device -2 in the Device
list later on. The next entry in the CON: description is the segment list
name described earlier, and this is followed by an unused slot and finally
the name of the device itself.

In a similar fashion the other three entries in the list refer to AUX: (an
extra serial line) and two disks, DF0: and DHO: being the floppy and hard
disk unit respectively. The system will boot and make DHO: the initial
system disk SYS: because it is given as the element at the head of the list
(the last to be described).

The entries for the disks are slightly different to that for CON:. The stack
sizes required are less and the code segment used is the file system
segment. In this implementation both the floppy and the hard disk use
the same driver, called "disc” and another reference to the name in the
device list. In other implementations the two device drivers would be
different. The main difference in the entries for the disks is the startup
information, which is the set of parameters required for the disk handler.
This is more fully described in the previous chapter, but it includes the
size of the disk, number of heads, tracks and so on.

The next main entry in the Info structure is the resident segment list.
The syslib, debug and cli segments have already been referenced in the
task section, and the cohand and fihand segments have been referenced
in the Devinfo substructure above. The file system task requires the
restart segment to be held in the resident segment list, while commands
such as NEWCLI expect the cli and system library segments to be
resident as well. This entry places them there, gives them suitable
names and sets the use count to 1.

4-21

Installation Tripos Technical Reference

In a similar fashion the resident device list gives a name to the clock,
serial and disk devices. The names are used in the Devinfo structure
entries and the device numbers match up with the negative device
numbers used in the device specification section.

The final entry is zero, and is reserved for the network device handler.
Any more slots required by a particular installer may be specified
beyond the current end of this structure.

4.5 Device Drivers

Device drivers connect Tripos to a peripheral. For each peripheral that
has an interrupt, there is a device driver: a serial line device driver, a
disk device driver, a parallel port device driver, and so on. (All
interrupts are handled by drivers.) A device driver consists of two parts:
the Device Control Block (DCB), and the actual driver code. This section
outlines the DCB, describes the actual driver code, and provides, as an
example, a full description of a serial line driver.

4.5.1 Device Control Block (DCB)

The DCB has a structured layout as shown in Figure 4-A below.

0 Head Pointer to first packet on work queue
4 Tail Pointer to last packet on work gqueue
8 QAct Action routine used by QPKT

12 DQAct Action routine used by DQPKT

16 Pri Priority of this device

20 1d Device id of this device

24 Open Device Open routine

28 Close Device Close routine

32 StartI0 Device StartIO routine

36 AbortIO Device AbortIO routine

40 RecallIO Device RecallIO routine

44 NITB Number of Interrupt Transfer Blocks

Each DCB contains all of these locations, and is followed by NITB (that
is, the number of Interrupt Transfer Blocks). There is always at least one

4-22

Tripos Technical Reference Installation

Interrupt Transfer block (ITB), and there is an ITB for each different
interrupt vector handled by this device. The format of an ITB is as

follows.
0 (private)
6 Offset Offset of base of DCB
10 Next Pointer to next ITB using this vector
14 Code Interrupt routine
18 Vector Interrupt vector address
22 RecallQ Recall queue
26 UserData User data area
30 Packet Packet to be returned

The user is responsible for setting up the following fields within a DCB.

Priority of device

Number of ITBs

Each ITB

Offset and interrupt vector within each ITB
Routine entry points

4.5.2 Device Driver Code

The entry points within the DCB (see Figure 4-A) are pointers into entry
points into the code of the device driver itself. The following entry points
must be provided:

Open
Close
StartIO
AbortIO
Interrupts
RecalllO

Each of these is described below.

4-23

Installation Tripos Technical Reference

Open
Open(dcb)

The Open entry point is the code that gets called when you initialize a
device. This is the code that sets up initial data structures, resets the
peripheral and whatever else needs to be done upon initialization.

Close

Close(dcb)
In the same way, Close undoes all the things done by Open.
StartlO

StartIO(dcb pkt)

The StartIO call is the entry point that is called when a packet arrives for
the device. The arriving packet will have a packet type associated with
it; an instruction indicating the type of I/O that is required (for example,
reading or writing). Normally, upon being received, a packet has to
translate the command it contains to hardware-specific commands and
then return having set up hardware that causes an interrupt later.
When the interrupt does occur, the interrupt handler for the device is
called.

The called packet is queued to the head of the driver's work queue and
exits from RecalllO if anything is on the driver's work queue.

Note that the function of StartlO is hardware specific.

AbortIO
AbortIO(dcb, pkt)
The AbortlO entry point is used to cancel a request. There is a standard

call inside the kernel called DQPkt and this is used to cancel an /O
request. The action of DQPKkt is as follows:

4-24

Tripos Technical Reference Installation

1. It looks at the specified device driver to see if the packet is still on
the work queue for the device driver. If it is, it takes it off the work
queue and the device driver never gets to see the packet.

2. DQPkt looks at the work queue of the task that is issuing the call
to see whether, in fact, the packet has already come back and is
sitting on the task work queue. If the packet cannot be found on
either of the work queues, then the system calls AbortIO with the
address of the packet and this gives the device driver a chance to
take the packet of an internal work queue and to cancel any [/O
which may be pending.

Interrupt
Interrupt(dcb, itb)

You should do as little work as possible in the interrupt routine. The code
should normally turn off the interrupt and reschedule a call to RecalllO.
The Interrupt entry point is called as a hardware interrupt, stopping
whatever was going on (possibly a lower priority interrupt) and
inhibiting interrupts at this or any lower level. You must not spend too
much time in the interrupt handler, nor must you make any kernel calls.

The result from the routine has three possible values. A negative value
indicates that this interrupt routine cannot handle the interrupt and the
system will then go on to call another interrupt handler in the same
chain. A value of zero indicates that the interrupt has been handled but
no call to RecalllO is required. This is commonly the case when an
interrupt occurs but no packet is waiting. A positive value requests that
RecalllO be called. The RecalllO entry point will be called as quickly as
possible after the interrupt, but not immediately if the interrupted task
was in the middle of a kernel call. The Interrupt routine should ensure
that no further interrupts can occur until the RecalllO routine has had a
chance to deal with the situation and turn interrupts back on.

Consider transmitting data from a buffer into a serial port. In most cases
the Interrupt routine will get called when the hardware is ready to
transmit again. In most cases the Interrupt routine will move another
character out of the buffer into the hardware, increment a pointer and
return zero indicating that no RecalllO is required. When the buffer has

4-25

Installation Tripos Technical Reference

been transmitted the transmit interrupt should be turned off and a call to
RecalllO requested. The RecalllO routine will then return the packet
which initiated the request. [t may also see if any more packets are
waiting on some internal queue and handle those if required.

In the same way an interrupt handler for a more complex device such as
as a disk would make a request for RecalllO to be called when the disk
interrupted after a DMA read or write request had been satisfied.

RecalllO
RecalllO(dcb, itb)

At the RecalllO entry point, it is normal for the device driver to look at
the return codes and send the packet that caused the interrupt back with
either a zero or a non-zero return code indicating the result of the
request.

Again, consider a disk transfer interrupt, where all that is done in the
interrupt routine is to turn the interrupt off. Soon afterwards the
RecalllO routine is called, where the status port can be read and the
packet involved sent back to the client task.

Once the RecalllO has been called, the kernel sees if there are any
packets waiting on the device driver work queue. If so, it calls the
StartIO entry point once more so the next request can be handled.

4.5.3 Examples of Device Drivers

The following examples describe the design of three different device
drivers. Firstly a disk device driver is presented, with a large amount of
commentary describing what is happening. Secondly a more complicated
serial line driver is included, and the final example is the special case of
the clock device.

4-26

Tripos Technical Reference Installation

Disk Device Driver

The first example is that of a very simple device driver: a disk device
driver for a single disk unit, with a very simple hardware interface,
using no internal packet queues or units. In this example, you are taken
through each step in the design of the driver, and some code is provided
to illustrate what you would write.

The first step is to define the Device Control Block or DCB. This begins
with a cross reference to all the external names that are needed. For
example:

XREF Open
XREF Close
XREF StartIO
XREF AbortiIo
XREF RecalllIO
XREF Int

This is followed by the standard DCB structure. The only value that you
must specify is the device priority, which indicates the relative priority
of this device with respect to others. The structure appears as follows:

Base DC.L 0 Work Queue Head
DC.L Base Work Queue Tail
DC.L 0 Qpkt Action routine
DC.L 0 DQpkt Action routine
DC.L 8 Queue Priority
DC.L 0 Device identifier

Next, you provide a totally standard layout for the entry points. These
externals are filled in when Tripos loads the code.

DC.L Open
DC.L Close
DC.L Startio
DC.L AbortIO
DC.L RecalllIO

4-27

Installation Tripos Technical Reference

You then place the number of interrupt transfer blocks (ITB), one in this
case, followed by the ITB itself. You must remember to fill in the address
of the interrupt routine (the external Int) and the memory vector location
($100). Note that this value is the vector offset, not the vector number.

DC.L 1 Number of ITB

DS.W 3 (Used by kernel)

DC.W Base-* OQOffset to DCB

DC.L 0 Pointer to next ITB
DC.L Int Interrupt routine
DC.L $100 Interrupt offset

DC.L 0 Recall Q

DC.L 0 User data area

DC.L 0 Packet to be returned
END

The second file contains the disk driver. For the purposes of simplicity,
the DCB and the driver are in two separate files in this example;
however, you can have both of them in one file if you wish. All the
functions in the driver conform to the C calling convention, and so
although the DCB must be written in assembler the driver may be
written in C. The first few lines of the driver should include the standard
header file and define the externals referenced in the DCB:

INCLUDE "tripos.i"

XDEF Open
XDEF Close
XDEF Startlio

XDEF AbortIO
XDEF RecalllO
XDEF Int

After this you provide some standard offsets for the packet structure, the
command values, and standard constants:

4-28

Tripos Technical Reference Installation

P_UNIT EQU P ARGl

P_BUF EQU P_ARG2

P SIZE EQU P_ARG3

P_OFF EQU P _ARG4

* Disc driver specific commands
C_FORMAT EQU 4

C_STATUS EQU 5

C_MOTOR EQU 6

* Standard constants

E_UT EQU 12 Unknown type error

A private data area is kept with information about each unit controlled
by this driver. You can define the structure of this area as follows:

* Private data area structure

InitD EQU 0

ActD EQU InitD+S1D+1

FormD EQU ActD+§15+1

StatD EQU FormD+S$0F+1

MaxData EQU StatD+s$07+1

MaxUnit EQU 2 Maximum number of units supported

Next, you define the IO locations that you need. The actual hardware in
this example is a Motorola VME Intelligent Disk Controller, MVME315.
The details of which are immaterial here.

IDC_BASE EQU SFF0000

IDC_CMDSENT EQU 1IDC_BASE+$101
IDC_CMDBUF EQU IDC BASE+$105
IDC_MSGSENT EQU IDC_BASE+$181
IDC_STATBUF EQU IDC_BASE+$185

IPC_STC EQU IDC_STATBUF+12
IDC_STATUS EQU IDC_STATBUF+16
MCR EQU SFEOOF1

4-29

Installation Tripos Technical Reference

You now come to the first of the entry points, Open. This is called with
the DCB as an argument. All system routines may corrupt D0-D3 and
A0/A1; these are the registers Lattice C corrupts when a function is
called. The job to be done here is to get the device id, which is initialized
into the DCB, and copy it into a private area to make it easier to access.
Next, you initialize the controller, and then the device. For example:

Open MOVEA.L 4(SP),Al Get DCB ptr
MOVE.L D_Id(Al),Devid Save my device 1D
* Reset the IDC
LEA.L InitIDC,AQ
BSR SendC
* Now Reset all the devices
LEA.L Unit0,Al

BSR ResetAll
LEA.L Unitl,Al
BSR ResetAll
RTS

The Close routine, in this case, has nothing to do. It is called with the
DCB as an argument.

Close RTS

The StartIO routine is called with the DCB and the new packet as
argument. The first thing to do is to extract the command type and see
what is to be done. Besides the standard three functions of read, write,
and reset, the disk device is also required to implement format, status,
and motor off commands.

StartIO MOVE.L 8(sp),A0 Extract packet address
MOVE.L P _TYPE(AO),DO0 Get packet action type
MOVE.L P_UNIT(AC),Dl ..and unit number
LEA.L UnitBase,Al Set up pointer to

* data area
MULU #MaxData,Dl Make offset to unit
* data area

* Point to correct unit area
ADDA.L D1,Al

4-30

Tripos Technical Reference Installation

CMP.L #C_READ, DO Check for valid types
BEQ.S Read
CMP.L #C_WRITE, DO

BEQ Write

CMP.L #C_RESET, DO
BEQ ResetAll
CMP.L #C_FORMAT, DO
BEQ DoFormat
CMP.L #C_STATUS, DO
BEQ DoStatus

CMP.L #C~MOTOR,DO
BNE. S Invalid

At this point you handle the motor timeout command. On this hardware
you cannot actually turn the motor off, so instead you turn an LED off to
signal that the disk may be removed from the drive. That done, you
branch to a standard packet return code section. For example:

BCLR #4,MCR Blank the display
BRA.S PktRet

If, on getting here, the packet contains an invalid action code, you return
an error in the packet:

Invalid
CLR.L P_RES1(A0) Set error result
MOVE.L #E UT,P_RES2(A0) Error code

Now you return the packet. Packets may be returned in any of these
routines except the interrupt routine. You must unlink the packet from
the work queue in the DCB and then call a subroutine to return the
packet. You then see if there is another packet waiting at the head of the
work queue; if there is, you set it to be the packet parameter and loop
back to the start again:

4-31

Installation Tripos Technical Reference

PktRet MOVE.L 4(SP).,Al Extract DCB address
MOVE.L (AO0),(Al) Unlink pkt from work Q
CMPA.L D Tail(Al),A0 Check if last packet
BNE.S 5§ No, more to come
MOVE.L Al,D Tail(Al) Set initial tail ptr

5§ BSR Return

TryNext TST.L (Al)
BEQ.S 6S
MOVE.L (Al),8(SP)
BRA StartIO

6S RTS

At this point you handle a read or write request. As the two commands
are identical apart from one byte, you can patch the command area
accordingly:

Read MOVE.B #$10,ActD+4(Al) Patch to be READ
BRA.S DoIt

Write MOVE.B #$20,ActD+4(Al) Patch to be WRITE

Now insert the buffer address, the number of 512-byte data blocks, and
the block number obtained from the byte offset specified in the packet.
When this is done, code a jump to the SendC routine, which then sends
the command and returns.

Dolt MOVEM.L P_BUF(AQ0),D1-D3 Get buf, size, offset
LEA.L ActD(Al),A0 Point to command
ORI.L #$3D000000,D1 Add in memory modifier
MOVE.L D1,10(A0) Update command area
MOVEQ #9,D1
ASR.L D1,D2 = # 512 byte blocks
MOVE.W D2,6(A0) Set no. of blocks
ASR.L D1,D3 Into block offset
MOVE.L D3,16(A0) And slot that in
BSET #4,MCR Turn display on
BRA SendC

4-32

Tripos Technical Reference Installation

Here you must handle the format command. The arguments are identical
to the Read and Write commands and, again, jump to the SendC routine
to send the command to the controller:

DoFormat
MOVE.L P_OFF(A0),D3 Fetch Offset
MOVEQ #9,D1
ASR.L D1,D3 Into block offset
LEA.L FormD(Al),AQ Load command buffer
MOVE.L D3,10(A0) And slot that in
BSET #4,MCR Turn display on
BRA SendC

At this point you must implement the 'return device status.' In an ideal
world, this packet should be returned only when the disk status changes
(that is, on a door interrupt). However, this hardware, along with many
others, does not implement door open and close interrupts. You must,
therefore, test the current state and return the packet at once. The
packet is only sent again after a suitable delay of three seconds or so.
The status packet contains no arguments, and returns one of three
values. Zero indicates that no disk is present in the drive. A value of one
indicates that a write protected disk is inserted, and a value of two
indicates a read/write disk.

DoStatus
LEA.L StatD(Al),A0 Issue command
BRA SendC

This standard subroutine is called from Open and also when the Reset
command is received.

ResetAll
LEA.L InitD(Al),AQ Initialize the device
BRA SendC Do it

This entry point returns the packet held in A0, and returns the value
TRUE.

4-33

Installation Tripos Technical Reference

Return MOVE.L AQ,Dl Return the packet
MOVE.L #-1,(AQ) Set notinuse
MOVE.L Devid,D2
MOVEQ #K_QPkt,DO

TRAP #0
MOVEQ #-1,D0
RTS

The AbortlO call is called with the DCB and a packet address as
arguments. It would normally only be used when a private queue of
packets was being maintained, and then you would unchain the packet
from this private queue. In this case, however, there is no work to be
done.

AbortIO RTS Nothing to do

The system calls the RecalllO routine after an Interrupt call has
indicated that this is needed. The call is normally only scheduled You
when there is a packet to be moved back to a client. RecalllO is called
with the DCB as the first argument, and the address of the Interrupt
Transfer Block (ITB) that was associated with the interrupt. In this case,
you know the packet that contains the command that caused the
interrupt is at the head of the DCB work queue, so the first thing to do is
to remove it from this queue:

RecalllIO
MOVE.L 4(SP),Al Extract DCB address
MOVEA.L (Al),A0 Get packet address
MOVE.L (A0),(Al) Unlink pkt from work Q
CMPA.L D Tail(Al),A0Q Check if last packet
BNE.S 7s No, more to come

MOVE.L Al,D Tail(Al) Set initial tail ptr

The next stage is to see if the command worked. In the case of this
hardware, you extract the status code and insert it into the result field. If
the result indicates an error, you branch onwards. Firstly, however, a
check is made to find out whether the current request is a 'status’
command since this command is handled specially.

4-34

Tripos Technical Reference Installation

7$

5%

CMPI.B
BNE.S
MOVEQ
MOVE.B
BTST
BNE.S
MOVEQ
BTST
BNE.S
MOVEQ
MOVE.L
BRA.S

#$72,IDC_STTYPE See if STATUS request

6S No, so carry on
#0,D1 Assume not ready

IDC _STATUS,DO Get status byte
#7,D0 Check ready

5% Drive not ready
$#1,D1 Assume write protected
#5,D0 Check if so

58 Bit set so protected
#2,D1 Value is in D1
D1,P_RES1(AO0) Set result

9s

Otherwise you return the size requested to indicate no error, and then, in
all cases, you jump back to the shared code to return the packet. It is only
at this point that you set the hardware to allow further interrupts. If you
allowed further interrupts any earlier, Tripos would get confused with
another recall queued up behind this one, both attempting to take the
same packet off the head of the packet queue.

63

8%

9s

75

MOVEQ.L
LEA.L
MOVEP.W
MOVE.L
BEQ.S
CLR.L
BRA.S
MOVE.L

CLR.B

BRA

MOVEQ.L
LEA.L
MOVEP.W
MOVE.L
BEQ.S
CLR.L
BRA.S

#0,D0

IDC_STC,Al

0(Al),DO Get two status codes
DO,P_RES2(A0) Set secondary result
8S No error

P_RES1(A0) Flag error

9s And return pkt

P _SIZE(AQ),P_RES1(A0Q)

Return length requested
IDC_MSGSENT All done, allow further

interrupts
Return
#0,D0
IDC_STC,Al
0(Al),DO Get two status codes
DO,P_RES2(AQ) Set secondary result
6S No error
P_RES1(A0) Flag error
9s And return pkt

4-35

Installation Tripos Technical Reference

The final entry point is the Interrupt routine. This is called with the DCB
and the ITB as arguments. As this is actually called as an interrupt, as
little work as possible should be done here. The system uses the value
returned by Interrupt to determine what should be done next. If the
Interrupt routine returns a negative value, then this interrupt routine
could not handle the interrupt, so it must have been for another device
using the same interrupt slot. The system then calls the next routine in
the chain. If the value returned is zero, then the interrupt was for this
device, but no recall is required. This is because either there is no packet
waiting on the queue, or because the interrupt routine has done all the
work required at this point. A positive value returned indicates that a
packet is to be moved, and so a later call of recall is requested. Normally
the interrupt routine must turn off the interrupt; in this example the
interrupt is turned off as soon as it is acknowledged by the hardware.
The interruption is very short.

Int MOVEA.L 4(SP),A0 Get DCB
MOVEQ #1,D0 Assume pkt present
TST.L D_Head(A0) Check if true
BNE. S 58 Yes
CLR.B IDC_MSGSENT All done, allow more ints
MOVEQ #0,D0 .. no, don't recall
58 RTS

The rest of the driver is merely a subroutine and data areas. This
subroutine sends the command that A0 points at, and requests that an
interrupt be given when the command has completed. Most of the details
are hardware specific.

4-36

Tripos Technical Reference Installation

SendC TST.B IDC CMDSENT Check last command sent
BNE.S SendC Wait until swallowed
MOVE.L A3,-(SP) Save A3
LEA.L IDC_CMDBUF,A3 Point to command buffer
CLR.W DO
MOVE.B 2(A0),DO Get size of command
BRA.S 28 Jump to end of loop

* Send the bytes of the command

13 MOVE.B (A0)+, (A3)

- ADDQ.L #2,A3

2$ DBRA Do, 1s

MOVE.B #$80,IDC_CMDSENT Flag we sent it
MOVE.L (SP)+,A3
RTS

Finally the data area, which contains the control function codes to be
sent to the controller via the SendC subroutine, plus the device id
location.

DATA
UnitBase

* Unit 0 is the floppy disk
Unit0 EQU *

InitFDC DC.B $02,$00,51D,506,540,508,532,$01
DC.B $08,$02,502,500,500,550,$00,500
DC.B $00,$00,500,$00,$01,$00,500,500
DC.B $00,$00,$00,500,503
CNOP 0,2

ActF DC.B $02,$00,815,%806,510,501,$00,S00
DC.B $02,$00,$3D,$00,5$00,500,$00,$00
DC.B $00,500,$00,$00,503
CNOP 0,2

FormF DC.B $02,s00,507,$06,$40,502,$03,500
DC.B $00,$00,$00,$00,500,500,500

CNOP 0,2
StatF DC.B $02,$00,$07,506,$30,502,503
CNOP 0,2

4-37

Installation Tripos Technical Reference

* Unit 1 will be the hard disc

Unitl DC.L 0 Pkt queue

*

InitHDC DC.B $02,$00,$1D,s$00,%40,508,500,500
DC.B $20,504,5$01,500,$01,$68,500,$80
DC.B $01,$69,50B,$00,$0D,5$00,300,$00
DC.B $00,%00,500,5$00,s03
CNOP 0,2

ActH DC.B $02,$00,$15,500,810,$01,500,500
DC.B $02,%00,$3D,$00,$00,$00,$00,300
DC.B $00,$00,500,$00,$03
CNOP 0,2

FormH DC.B $02,5$00,$0F,$00,%40,501,500,508
DC.B $02,500,$00,500,500,$00,$03

CNOP 0,2

StatH DC.B $02,$00,%07,500,$30,$02,503
CNOP 0,2

Devid DC.L 0

*

* General commands to the IDC

*

InitIDC DC.B $02,%00,$1D,$00,$50,$00,$40,580
DC.B $00,500,800,500,$00,$00,$00,$00
DC.B $00,$00,$00,500,$00,$00,500,$00
DC.B $00,$00,300,500,503,300

END

Serial Device Driver

The next example is of a slightly more complicated device, being a driver
for a serial device. This supports two different units. Firstly the DCB,
which is similar to the disk example but which contains four ITBs. You
might at first think that there would be only two ITBs as there are two
interrupts from this device; one for each unit. But although there is no
difference between a reception interrupt and a transmission interrupt it
is convenient to imagine that there is.

4-38

Tripos Technical Reference [nstallation

The driver has been written so that the two cases of read (reception) and
write (transmission) are distinct. If an interrupt occurs the read entry
point will be called via the ITB with the value IntR. If it was a read
interrupt then it will be handled. If it was instead a write interrupt then
the IntR interrupt routine will return a negative value, indicating that
the interrupt could not be handled. The kernel will then use the next ITB
in the chain for this interrupt vector to see if can be handled there. This
will be the ITB with the value IntW for the interrupt routine, which
should now be able to cope.

The user data area of the ITB is used to point to the unit data structure in
the driver. This area contains different packet queues for the different
units, and also contains the device address in memory. Thus each ITB
has a different combination of IntR, IntW, Unit0 and Unitl.

XREF Open

XREF Close

XREF StartIO
XREF AbortIO
XREF RecalllO
XREF IntR,IntwW
XREF Unit0,Unitl

Base DC.L 0 Work Queue Head
DC.L Base Work Queue Tail
DC.L 0 Opkt Action routine
DC.L 0 DQpkt Action routine
DC.L 10 Queue Priority
DC.L 0 Device identifier

* Links to entry points
DC.L Open
DC.L Close
DC.L StartIOo
DC.L AbortIO
DC.L RecallIO

* Interrupts used
DC.L 4 Number of ITBs

4-39

Installation

Tripos Technical Reference

* Unit 0 Write
DS.W
DC.W
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L

* Unit 0 Read
DS.W
DC.W
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L

* Unit 1 Write
DS.W
DC.W
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L

* Unit 1 Read
DS.W
DC.W
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L

3
Base—-*

Intw
s$70

Unit0

Base—*

IntR
$70

Unito0

Base-*

Intw
s74

Unitl

Base-—*

IntR
$74

Unitl

(Used by kernel)
Offset to DCB

Pointer to next ITB
Interrupt routine
Interrupt offset
Recall Q

User data area

Packet to be returned

(Used by kernel)
Offset to DCB

Pointer to next ITB
Interrupt routine
Interrupt offset
Recall Q

User data area

Packet to be returned

(Used by kernel)
Offset to DCB

Pointer to next ITB
Interrupt routine
Interrupt offset
Recall Q

User data area

Packet to be returned

(Used by kernel)
Offset to DCB

Pointer to next ITB
Interrupt routine
Interrupt offset
Recall Q

User data area

Packet to be returned

4-40

Tripos Technical Reference [nstallation

The serial device driver is presented here. The majority of the code is
identical to that used in the disk driver, so little extra commentary is
added. Note, however, the two commands specific to the terminal driver -
GPARMS & SPARMS.

INCLUDE "tripos.i"
* Standard linkage

XDEF Open

XDEF Close

XDEF StartIO
XDEF AbortIO
XDEF RecalllO
XDEF IntR,Intw
XDEF Unit0,Unitl

* Packet offests

P_UNIT EQU P_ARG1
P_BUF EQU P_ARG2
P_SIZE EQU P_ARG3

* TTY commands

C_SPARMS EQU 8
C_GPARMS EQU 9

* Parameter buffer offsets
A_SPEED EQU 0
A_BPW EQU 4
A _STOPBITS EQU 8
A_PARITY EQU 12

* Standard constants

E UT EQU 12 Unkown type error

4-41

Installation

Tripos Technical Reference

* Private data area structure

* Queue of read packets not yet handled

* Queue of write packets not yet handled

ReadQ EQU 0
WriteQ EQU 8
ReadB EQU 16
ReadL EQU 20
WriteB EQU 24
WritelL EQU 28
Device EQU 32
Speed EQU 36
Bpw EQU 40
StopBits EQU 44
Parity EQU 48
UnitDat EQU 32
MaxData EQU 52
MaxUnit EQU 2

Read buffer base

Read buffer limit

Write buffer current base
Write buffer limit

Device register base

Uninitialised data size
Maximum data size per unit
Maximum number of units supported

* Device register offsets

DReg
SReg
MReg
CReg

EQU
EQU
EQU
EQU

AN O

* Tnitialistaion values

Clockrate EQU $3E
IStopBits EQU S4E
EQU $24

InitCR

*

9600 baud, Internal clocks

1 stop bit, 8 bits, async 1l6x
Normal mode, RTS active, DTR
inactive, TxEN*, RXEN

4-42

Tripos Technical Reference

Installation

khkkdkhkkkhhkhkhhkhkkkhkkk

* The Open routine

* Open(dcb)

khkkhkkhkkhkkhkhkhkkkhkkkk

Open

MOVEA.L 4(SP),Al
MOVE.L D _Id(Al),Devid

* Now Reset all the devices

LEA.L
BSR
LEA.L
BSR
RTS

Unit0,Al
ResetAll
Unitl,Al
ResetAll

khkkkkkhkhkhkkhhkkkhkkkk

* The Close routine

* Close(dcb)

khkkkkkkkkxkkhkkkhkkkkk

Close RTS

Get DCB ptr
Save my device ID

khkhkhkkhkhkhkkkkkkhhkkhkhkhhkhkhhkhhkdhkhkkhkhkhkikhkhkhhhkhkhkkhhkkhkhkhkhhkrthkkk

* The StartIO routine. Called with the dcb and packet

* as arguments

* StartIO(dcb,

pkt)

khkkkhkhkhkhhhkhkhkhkkhkhkhkkhhkhkhkhkhhhhkhkhkhkhkhhkhkhkhhkhkhhkhhhkkrhkhthkki

StartIO MOVE.L
MOVE.L
MOVE.L
CMPA.L
BNE.S
MOVE.L

58 MOVE.L
MOVE.L
LEA.L

MULU

ADDA.L

8(SP),A0
4(SP),Al
(A0),(ALl)
D_Tail(Al),AO
5%

Al,D Tail(Al)
P_TYPE(AO),DO
P_UNIT(A0),Dl
UnitBase,Al

#MaxData,Dl

D1,Al

4-43

Extract packet address
Extract DCB address
Unlink pkt from work Q
Check if last packet
No, more to come

Set initial tail ptr
Get packet action type
..and unit number

Set up pointer to data
area

Make offset to unit
data area

Point to correct unit
area

Installation Tripos Technical Reference

CMP.L #C_READ, DO Check for wvalid types
BEQ.S Read

CMP.L #C_WRITE, DO
BEQ Write

CMP.L #C_RESET,DO
BEQ ResetAll

CMP.L #C_GPARMS, DO
BEQ GParms

CMP.L #C_SPARMS, DO
BEQ SParms

* Invalid action request

CLR.L P _RES1(AQ) Set error result
MOVE.L #E UT,P_RES2(A0) Error code
BRA Return Return the packet

* Handle a read request

Read MOVE.L A2,-(SP)
TST.L ReadQ(Al) Will it be the first ?
BNE.S 1s No so just g it
LEA.L ReadQ(Al) ,A2 Get queue ptr

BSR.S Add2Q

BSR.S ReadInit

BRA.S 28
* Slot this packet onto an internal queue until the
* request can be handled

1s LEA.L ReadQ(Al) ,A2 Get queue ptr
BSR.S Add2Q

28 MOVEA.L (SP)+,A2
RTS

4-44

Tripos Technical Reference

Installation

ReadInit

Add2Q

TakeQ

1s

MOVE.L
MOVE.L
BEQ
ADD.L
MOVE.L
MOVE.L
MOVEA.L
BSET
RTS

MOVE.L
MOVE.L
MOVE.L
CLR.L
MOVE.L
MOVE.L
RTS

MOVE.L
MOVE.L
BNE.S
MOVE.L
RTS

P_BUF(AQ),A2
P_SIZE(AQ0),DO
WorkDone
A2,DO0
DO,ReadL(Al)
A2 ,ReadB(Al)
Device(Al),A2
#1,CReg(A2)

A3,-(SP)
4(A2),A3
A0, (A3)
(A0)
AQ,4(A2)
(SP)+,A3

(a2),A0
(A0), (A2)
1s
A2,4(A2)

* Handle a Write request
* Al = Unit data area
* Corrupted A0/A1/D0/D1

*
Write

MOVE.L
TST.L
BNE.S
LEA.L
BSR.S

BSR.S
BRA.S

A2,-(SP)
WriteQ(Al)
1s

WriteQ(Al),A2
Add2Q

WriteInit
2$

Load buffer pointer
Fetch size

Set up buffer end
Set up read buffer

DTR active

Fetch tail pointer
Add pkt to.end of Q
Set as end

Save in tail slot

And exit

Save A2
Will it be head

Point to queue head
Add to the queue,
restore A2

* Add the packet to the internal write g

4-45

Installation Tripos Technical Reference

1s LEA.L WriteQ(Al), A2 Point to queue head
BSR.S Addz2Q Add to the queue,
restore A2
28 MOVEA.L (SP)+,A2
RTS
*
Writelnit

MOVE.L P_BUF(AQ),A2 Load buffer pointer
MOVE.L P_SIZE(AQ0),DO Fetch size

BEQ WorkDone

ADD.L A2,DO

MOVE.L DO,WriteL(Al) Set up buffer end

MOVE.B (A2)+,DO Fetch first char

MOVE.L A2,WriteB(Al) Save buffer storage area

* Turn TX interrupts on & handle the buffer.

*

*

MOVEA.L Device(Al),A2 Fetch device register

base
MOVE.B DO,DReg(A2) Send char
BSET #0,CReg(A2) Enable transmitter

RTS

ResetAll MOVEA.L Device(Al),A0

*

TST.B CReg (AQ0) Point to MR1
MOVE.B #IStopBits,MReg(AQ) Set control bits
MOVE.B #Clockrate,MReg(AQ) Set baud rate
MOVE.B #InitCR,CReg(A0)

RTS

* Get parameters command

*

GParms

* Fetch

* Fetch

* Fetch

* Fetch

MOVE.L A2,-(SP)

MOVE.L P_BUF(A0),A2
current speed

MOVE.L Speed(Al), (A2)+
current bits per word
MOVE.L Bpw(Al),(A2)+
current no. of stop bits
MOVE.L StopBits(Al),(A2)+
current parity

MOVE.L Parity(Al),(A2)+

4-46

Tripos Technical Reference

Installation

MOVEA.L (SP)+,A2
MOVE.L #-1,P RES1(A0)
BRA Return

*

* Set parameters command

*

SParms MOVEM.L A2-A3,-(SP)

* Fetch parameter buffer
MOVE.L P_BUF(AQ0),A2
BSR SP2

* Save as new speed

TRUE result

Save Regs

MOVE.L A SPEED(A2),Speed(Al)

* Save as new bits per word

MOVE.L A BPW(A2),Bpw(Al)

* Save as new no. of stop bits

MOVE.L A STOPBITS(A2),StopBits(Al)

* Save as new parity

MOVE.L A PARITY(A2),Parity(Al)

MOVEM.L (SP)+,A2/A3

BRA Return
*
* SP2 sets EPCI parameters
* Inputs A2 - Parameter buffer
* Al - Unit data area
* AQ - Packet
*
* Corrupted - D0/A3/Dl
*
SP2 MOVE.L A SPEED(A2),DO
CMP.L Speed(Al),DO
BEQ.S 3s
LEA.L SpeedTab,A3
1$ TST.W (A3)
BEQ.S 4s
CMP.W (A3)+,D0
BEQ.S 2s
ADDQ.L #2,A3
BRA.S 1s
43 MOVE.L #0,P RES1(AQ)
RTS

4-47

Fetch required speed
Same as before ?
If EQ yes

Load Speed table
Any more ?

If EQ no

This one ?

If EQ yes

Skip control bytes
Round again

Set fail

Installation Tripos Technical Reference
28 MOVE.W (A3),DO Fetch code
MOVEA.L Device(Al),A3 Load device address
TST.B CReg(A3) Point to MRl
TST.B MReg(A3) Point to MR2
MOVE.B MReg(A3),D1 Fetch MR2
ANDI.B #S$F0,D1 Mask previous speed
OR.B D0,DL Insert new speed
TST.B MReg(A3) Point to MR2
MOVE.B D1,MReg(A3) Set new speed
3s MOVEA.L Device(Al),A3 Ensure device pointer
TST.B CReg(A3) Point to MRl
MOVE.B MReg(A3),D1 Fetch current MR1
MOVE.L A BPW(A2),D0 Fetch required BPW
CMP.L Bpw(Al),DO Same as before ?
BEQ.S 58 If EQ yes
* Make appropriate value
SUBQ.B #5,D0
* Shift up to correct slot
LSL.B #2,D0
ANDI.B #SF3,D1l Remove previous value
OR.B DO,D1 Slot in new value
58 MOVE.L A STOPBITS(A2),D0 Fetch no. of stopbits
CMP.L StopBits(Aal),D0O Same as before ?
BEQ.S 6S If EQ yes
* Make appropriate value
ADDQ.B #1,DO
LSL.B #6,D0 To correct slot
ANDI.B #$3F,D1 Mask previous value
OR.B DO,D1 Insert new wvalue
6S MOVE.L A PARITY(A2),DO Fetch parity code
CMP.L Parity(Al),DO Same as before
BEQ.S 7% If EQ yes
TST.B DO No parity ?
BEQ.S 61$ If EQ yes
CMP.B #1,D0 0dd parity ?
BEQ.S 628 If EQ yes
MOVE.B #$30,D0 Otherwise even parity
BRA.S 61S
62S MOVE.B #$1,DO Set odd parity value
61$ ANDI.B $SCF,D1l Mask previous value

4-48

Tripos Technical Reference [nstallation

LSL.B #4,D0 To correct slot

OR.B DO,D1 Insert new value
7S TST.B CReg(A3) Point to MR1

MOVE.B DIl1,MReg(A3) Set new MR1

MOVE.L #-1,P_RES1(AOQ)

RTS

*

* A0 = Packet

* Corrupted DO/D1l/D2

*

WorkDone
MOVE.L P_SIZE(AO0),P RES1(AQ)

*

* Return the packet in AQ, and return the value TRUE.

* Corrupts DO/D1/D2

Return MOVE.L AO0,D1 Return the packet
MOVE.L #-1,(A0) Set notinuse
MOVE.L Devid,D2
MOVEQ #K_QPkt,DO

TRAP #0
MOVEQ #-1,D0
RTS

Ahkkhkhkhhhhkhhkhkkhdhkhkhkhkhkhkhkhrthhhkhhkddhkhhrhhhhhrhhhhhkhkhhkrhhkkkk

* The AbortIO call. Cancel the request packet specified
* as argument
* AbortIO(dcb, pkt)
khkkhkkhkhkkhkhkhkkhkhkhkhkhkhkhhhkhhkhkhhkhhhhhkthhhkhkhhkhkkhkhthhkthkhhhhthhk
AbortIO MOVEA.L 8(SP),A0Q Fetch packet

MOVE.L A2,-(SP)

MOVE.L P_UNIT(AQ),DO

LEA.L UnitBase,Al

MULU #MaxData, DO

ADDA.L DO,Al

LEA.L ReadQ(Al),A2 Load read g
CMPI.L #C_READ,P_TYPE(A0) Read command ?
BEQ.S 1s If EQ yes

* Qtherwise load write g
LEA.L WriteQ(Al),A2
13 MOVE.L A2,-(SP) Save g head

4-49

Installation

Tripos Technical Reference

33 CMPA.L (A2).,A0
BEQ.S 23
MOVEA.L (A2),A2
CMPA.L #0,A2
BNE.S 3s
ADDQ.L #4,SP

* Otherwise restore A2
MOVE.L (SP)+,A2
RTS

2s MOVE.L (AQ0),(A2)
MOVE.L (SP)+,AQ
TST.L (A2)
BNE.S 9s
MOVE.L A2,4(AQ)

5% TST.L (AD)
BNE.S 9s
MOVE.L 12(SP),A0
CMPI.L #C_READ,P TYPE(AO)
BEQ.S 8S
CLR.L WriteB(Al)
BRA.S 6S

8$ CLR.L ReadB(Al)
BRA.S 6S

9s CMPA.L A2,A0
BNE.S 63

* Otherwise fetch new head packet
MOVE.L (A0),A0
CMPI.L #C_READ,P_TYPE(AQ)
BEQ.S 75

* Otherwise issue new write
BSR WritelInit
BRA.S 6S

73 BSR ReadInit

6S MOVE.L (SP)+,A2
RTS

4-50

This packet ?

If EQ yes
Otherwise chain on
Any more ?

If NE yes

Junk list head

And exit

Unlink

Restore g head

Last packet ?

If NE no

Set new end pointer
Anything left on g
If NE yes

Fetch packet again
Read command?

If EQ yes

Set no write buffer

Set no read buffer
And exit

Was packet at head?

If NE no

Read command?
If EQ yes

Issue new read

And exit

Tripos Technical Reference

Installation

AR EEEE S SR SRR RS R RS S SRR R R SRR ER AR R R R R R AR R ERERSE RS

* O A A

itb)

The Recall Routine. This entry point is called when
there is a packet to be moved back to a client.
Packets to be returned are held on another queue
within the unit storage area

* RecallIO(dcb,

kkkhkkhkhkhkhkhhkhkhkhkhkkkhkhkhkkhkkkhkhkhhkhkhkhkhkhkhhhkhkrhhkhhkhhhkhhhrrhhkk

RecallIO

1s

33

23

43
5%

MOVEA.L

MOVEA.L ITB_PKT(Al),A0
MOVEA.L ITB_USR(Al),Al
$C_READ,P_TYPE(AO)

CMP.L
BNE.S
BSR
TST.L
BEQ.S
MOVE.L
MOVE.L
BSR
MOVEA.L
BRA.S
CLR.L
MOVE.L
RTS

BSR
TST.L
BEQ.S
MOVE.L
MOVE.L
BSR
MOVEA.L
BRA.S
CLR.L
RTS

8(spP),Al

25

WorkDone
ReadQ(Al)

1s
ReadQ(Al),AQ
A2,-(SP)
ReadInit
(SP)+,A2

3s

ReadB(Al)
Device(Al),AQ

WorkDone
WriteQ(Al)

4s
WriteQ(Al),AQ
A2,-(SP)
Writelnit
(SP)+,A2

58

WriteB(Al)

4-51

Fetch ITB
Fetch packet
Fetch unitbase
Read action

If NE no
Return pkt

DTR already inactive

Installation

Tripos Technical Reference

khkkdkhkhkhkhkkhkhkhkhkhkhkhkkkhkhkhkhkhkhkhkkhkhkhkkhhkhkhbhhhhrkkthkhkhhkhkkdkx

* The interrupt routine
res = Int(dcb, itb)

res <

res >

* F X X X A A X A

IntR MOVEQ.L #1,D0
LEA.L ReadI,A0
BRA.S Dispatch

*

* IntW handles write requests

*

Intw MOVEQ.L #0,DO
LEA.L WriteI,AQ

Dispatch
MOVEA.L 8(SP),Al

MOVEM.L A2/A3,-(SP)
MOVEA.L ITB USR(Al),Al
MOVEA.L Device(Al),A3
BTST DO, SReg(A3)

BNE.S 1s

MOVEM.L (SP)+,A2/A3

MOVEQ.L #-1,DO0
RTS
1s JMP (A0)

* Handle Read interrupt

Readl MOVE.B DReg(A3),D0
BCLR ¥1,CReg(A3)
MOVEA.L ReadB(Al),A2

CMPA.L #0,A2
BEQ.S IntE

IntR handles read requests

0 =-> Interrupt not handled
res = 0 -> Interrupt handled, do not recall
0

—> Interrupt handled, recall me
khkkkkkkhkkhkhkkkkkkhhkkkhkhkhkhkkkkhkhkhkhkhkhkkhkhkhkhkikhkhkkkhkhkkk

Status bit to test

Status bit to test

Fetch ITB

Save regs

Fetch unitbase

Get pointer to data port
Handlable by this
routine?

If NE yes

Otherwise restore regs
And reject interrupt

Call correct routine

Read to cancel interrupt
DTR inactive

Buffer present?
No recall no work

Tripos Technical Reference Installation

MOVE.B DO, (A2)+ Copy byte
CMPA.L ReadL(Al),A2 End of buffer?
BEQ.S 3s$
MOVE.L A2,ReadB(Al) Update buffer pointer
BRA.S IntE No recall
3s
LEA.L ReadQ(Al),A2
BSR TakeQ Get waiting packet
*
IntO MOVEM.L (SP)+,A2/A3 Restore A2/A3

MOVEA.L 8(SP),Al

MOVE.L AQ0,DO

MOVE.L DO,ITB_PKT(Al) Ask to be recalled
RTS

* Exit used when no Recall required

IntE MOVEM.L (SP)+,A2/A3 Restore A2/A3
MOVEQ #0,D0
RTS

* Handle Write interrupt

Writel MOVEA.L WriteB(Al),A2 Get buffer ptr

CMPA.L #0,A2 Buffer ready?

BEQ.S IntE No recall, no work
CMPA.L WriteL(Al),A2 Any more to do?
BLT.S 5$ Yes, do it

BCLR #0,CReg(A3) Disable transmitter

* Fetch packet head packet
LEA.L WriteQ(Al),A2
BSR TakeQ Unlink it
BRA.S IntO
* Place character into port
5% MOVE.B (A2)+,DReg(A3)
MOVE.L A2,WriteB(Al) Replace buffer ptr
BRA.S IntE
PAGE

4-53

[nstallation Tripos Technical Reference

* Data areas used by the driver

* DATA
UnitBase

*

Unit0 DC.L 0,*

DC.L 0,*

DS.B UnitDat-16

DC.L SFEOOAL USART control port
DC.L 9600,8,0,0

Unitl DC.L 0,*
DC.L 0,*
DS.B UnitDat-16
DC.L SFEQOB1 USART control port

DC.L 9600,8,0,0
*

Devid DC.L 0

*

SpeedTab DC.W 19200,15
DC.W 9600,14
DC.W 7200,13
DC.W 4800,12
DC.W 3600,11
DC.W 2400,10
DC.W 2000,9
DC.W 1800,8
DC.W 1200,7
DC.W 600,6
DC.W 300,5
DC.W 150,4
DC.W 110,2
DC.W 75,1
DC.W 50,0
DC.W 0,0 Terminate table
END

4-54

Tripos Technical Reference

Clock Device Driver

The final example is the clock device. This is a slightly special case
because the action of the timer is different from the others. Firstly it only
copes with one special packet which contains a number of ticks. When
the specified number of ticks have expired the packet is returned.
Secondly at every tick (20ms) the device is interrupted and the time,
stored in the root node, is updated. The device is implemented as a
standard device, but maintains a private packet queue in which the
packets are ordered by their expiration time. The DCB is fairly standard,

as follows.

XREF
XREF
XREF
XREF
XREF
XREF

Base DC.L
DC.L
DC.L
DC.L
DC.L
DC.L

Open

Close

StartIO

AbortIO

RecalllIO

Int
b Work Queue Head
Base Work Queue Tail
0 Qpkt Action routine
0 DQpkt Action routine
8 Queue Priority
0 Device identifier

* Links to entry points

DC.L
DC.L
DC.L
DC.L
DC.L

Open
Close
Startio
AbortIO
RecallIo

4-55

Installation

Installation

Tripos Technical Reference

* Interrupts used

DC.L

DS.W
DC.W
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L

1

Base-*

Int
$68
0
0
0

Number of ITB

(Used by kernel)
Offset to DCB

Pointer to next ITB
Interrupt routine
Interrupt offset
Recall Q

User data area

Packet to be returned

The device driver code itself is reasonably simple. An extra header must
be included, and the constant section describes the hardware used here.

INCLUDE "tripos.i"

INCLUDE

"mchdr.i

* Standard linkage

XDEF
XDEF
XDEF
XDEF
XDEF
XDEF

Open
Close
StartIO
AbortIO
RecalllIO
Int

* Packet offsets

P_TICKS EQU

P_ARGL

* Standard constants

E_

uT

EQU

12

Unkown type error

4-56

Tripos Technical Reference Installation

* Device registers

PTM EQU SFEOODL

CLKA EQU PTM+S$0

CLKB EQU PTM+S2

CLKC EQU PTM+50 (same as CLKA)
CLKMSB EQU PTM+S$4

CLKLSB EQU PTM+S$6

C3LATCH EQU PTM+SE

C3COUNTER EQU PTM+SC

CLKSTATUS EQU PTM+S2 (same as CLKB)
MTICKS EQU 50*60

The Open routine must initialize the clock, which is merely a tedious
bit-twiddling exercise with this hardware.

Open MOVE.L 4(SP),Al
MOVE.L D Id(Al),Devid
MOVE.B #$13,CLKMSB 5000 @ 2MHz/8
MOVE.B #$88,C3LATCH ($1388 = 5000)

MOVE.B #0,CLKB Point to Clock 3
MOVE.B #SC1,CLKC Enable, external
MOVE.B #S01,CLKB Disable clock2
MOVE.B #$00,CLKA Disable clockl
RTS

The Close routine has almost nothing to do.

Close MOVE.B #0,CLKB
MOVE.B #0,CLKC Disable clock3
RTS

The StartIO routine will be called for each packet, as the routine always
takes the packet off the DCB work queue and stores the packet on its own
private work queue. This private work queue is ordered by the expiry
time of the packets. Each packet has stored in the RES1 field the extra
time left after the predecessor in the queue expires.

4-57

Installation Tripos Technical Reference

StartIO MOVE.L A2/D4,-(SP) Save A2
MOVE.L 16(SP),AQ Fetch packet
MOVE.L 12(SP),Al Fetch DCB

MOVE.L (A0),D Head(Al)
CMP.L D _Tail(Al),A0

BNE. S 5%
MOVE.L Al,D_Tail(Al)
58 MOVE.L P TICKS(AO0),D4 D4 = tick count
BLE.S QPCLK4 Delay <=0 return pkt
LEA.L TimerQ,Al Al = addr of first
* WKQ link word
*
QPCLK1 MOVE.L Al,A2 A2 = addr of last
* link word
MOVEA.L (Al),Al Chain down one
MOVE.L Al,DO
BEQ.S QPCLK3 J if at end of list

SUB.L P _RES1(Al),D4 Subtract packet's
* ticks
BGE.S QPCLK1 J if ticks to go is
still >=0

ADD.L P RES1(Al),D4 Add ticks back in

*
* Prepare to insert the clock packet at this point
* in the list by correcting the ticks count of the
* packet that is here.
*
SUB.L D4,P RES1(Al) Correct ticks
* count of next
* packet
*
QPCLK3 MOVE.L D4,P RES1(A0) Plant tick count
MOVE.L (A2),(A0) Link packet in
MOVE.L AOQ, (A2)
*
Ret MOVEA.L (SP)+,A2/D4 Restore A2
MOVE.L #-1,D0
RTS

4-58

Tripos Technical Reference Installation

*

* Return packet with negative count value

*

QPCLK4 BSR SendIt
MOVE.L #4-1,D0 Res of QPKT
BRA.S Ret

SendIt MOVE.L D4,P RES1(A0) Plant calculated
* ticks count

MOVE.L #-1,(A0)

MOVE.L AQ,D1l

MOVE.L Devid,D2

MOVEQ #K_QPkt,DO

TRAP #0

RTS

The AbortIO call must search the private work queue for the packet and
unhook it, and then adjust the time interval held in the next packet in the
queue.

AbortIO MOVE.L A2,-(SP)
MOVE.L 12(SP),Al
LEA.L TimerQ,A0

28 TST.L (AD)
BEQ.S 38
CMPA.L (AOQ0),Al
BEQ.S 1s
MOVEA.L (AO0),A0
BRA.S 23

4-59

Installation Tripos Technical Reference

1$ MOVE.L (Al),A2 Unlink it

MOVE.L A2, (A0) A2 = ptr to next
* clock packet

BEQ.S 3s J if no clock pkt to
* correct

MOVE.L P_RESL(Al),D0 Correct the
ADD.L D0,P RES1(A2) ticks to go field in
the next packet
3s MOVE.L (SP)+,A2
RTS

The RecalllO routine is scheduled when a packet must be moved back.
The packet to be returned is the packet at the head of the private queue,
and possibly others at the head of the queue.

RecallI0O MOVE.L TimerQ,AQ Load packet
1s MOVE.L (A0Q),TimerQ Unlink
MOVE.L P _TICKS{A0),P RES1(A0) Set result
BSR SendIt Return packet
MOVE.L TimerQ,D0 Load next packet
BEQ.S 2s
MOVEA.L DO,AQ
TST.L P_RES1(AQ) Return this too ?
BEQ.S 1s If EQ, yes
RTS Otherwise exit
25

The interrupt routine must update the time of day fields held in the
rootnode. It must also adjust the ticks value held in the first packet on
the queue. If any packet is about to expire, then the RecalllO routine is
requested.

Int TST.B CLKSTATUS
TST.B C3COUNTER
TST.B CLKLSB Clear Interrupt

4-60

Tripos Technical Reference

Installation

CLOCK1

NoRec

Rec

LEA.L
ADDQ.L #1, (A0)
CMPI.L #MTICKS, (AD)
BLT.S CLOCK1

CLR.L (AQ)

ADDQ.L $1,-(A0)
CMPI.L #60*24, (AQ)
BLT.S CLOCK1

CLR.L (A0)

ADDQ.L #1,-(A0)
MOVE.L TimerQ, A0
MOVE.L A0,DO

BEQ.S NoRec

SUB.L #1,P_RES1(AO0)
BEQ.S Rec

MOVEQ.L #0,DO

RTS

MOVEQ.L #1,DO

RTS

ROOTNODE+TICKS,A0 R = MC addr of

timer words

Inc TICKS

End of minute?
No

Yes, reset TICKS
Inc MINS

End of day?

No

Clear the mins
Inc days

Fetch head of g
Is there one
If EQ, no

No recall

Recall

Finally the data area, which merely holds the device id and the head of
the private packet queue.

TimerQ

Devid

DATA
DC.L 0
DC.L 0

4-61

Installation Tripos Technical Reference

4.5.4 Device Dependent Library

Part of the implementation-specific details of any Tripos port is the
device-dependent library routines. These library routines constitute a
set of functions that must be implemented for a particular piece of
hardware (for example, the getting and setting of a real time-of-day
clock, which may be a null operation if the hardware does not exist) The
library also has the ability to write a panic message, which is used if the
system has some sort of catastrophic error while it is trying to initialize
itself.

The example here shows what is required. The definitions required are
as follows.

a) Linkage to kernel via rootnode
b) Initialization required

¢) Level 7 interrupt handling

d) Reboot service

e) Panic message service

f) Stand alone /O

g) Real Time Clock service

The items a to e are called via known locations in absolute store, while
items f and g are assembler subroutines which may only corrupt D0-D7
and A3-A4. The example starts with includes and equates.

INCLUDE "tripos.i"
INCLUDE "mchdr.i"

*

* Equates

*

* Chip addresses and device specific values
*

EPCI EQU SFEOOAO
E_RWD EQU 1

E_SR EQU 3

E MR EQU 5

E CR EQU 7

MCR EQU SFEOOF1
PROM EQU $SF00000

4-62

Tripos Technical Reference Installation

*

* Vector offsets
*

IV_BERR EQU $8 Bus error interrupt vector
INTSLOT1 EQU S64 Level 1 autovector
INTSLOT2 EQU $68

INTSLOT3 EQU $6C

INTSLOT4 EQU $70

INTSLOTS EQU $74

INTSLOT6 EQU $78

INTSLOT7 EQU s$7C Level 7 autovector
USERSLOT EQU $100 User interrupt vector start
* Globals called

*

G_STIME EQU 6

G_RTIME EQU 7

G_SARDCH EQU 21

G_SAWRCH EQU 22

MTICKS EQU 50*%60

The next section describes the absolute store required. The value of
ROOTNODE is defined in the header mchdr.i and is the location of the
rootnode. The initialization, reboot request and panic message writing is
done here.

ORG.L ROOTNODE+CLKINIT
DC.L TriposINIT

DC.L BOOTREQ

DC.L PANICREQ

The next section is the start of the relocatable store. The code starts with
some magic that makes this module look like a BCPL assembler module.
If you change it, leave the same number of characters in the string. The
actual code is not displayed here.

The first job to be done is the system initialization. This handles any
initialization required which is not done by device drivers. Examples
may include setting up default interrupt vectors, initializing interrupt
priority encoders and so on. If you wish to print a message here then this

4-63

Installation Tripos Technical Reference

is the place to do it. The unused interrupt entries have the value stored at
DEVUNSET placed into them. Entries which are going to be used are
cleared to zero. The level seven autovector, which is connected to an
abort button on this hardware, is also set up here. The final job is to set
an LED display to B so that the disk device can flag the disks as busy.

TriposINIT
MOVE.L DEVUNSET,D0 Set up default handlers
LEA.L INTSLOT1,L .. for unset devices
MOVEQ.L #5,D1
L1 MOVE.L DO, (L)+
DBRA D1,Ll1
* Set up level 7 autovector (ABORT button)
LEA.L INT7,AL
MOVE.L Al,(L)
* Clear interrupt slots used by standard devices
CLR.L INTSLOT2
CLR.L INTSLOT4
CLR.L INTSLOTS
CLR.L USERSLOT
* Set the display to B for busy
MOVE.B #S$SDB,MCR
RTS

The next job is to provide support for the level seven interrupt used as an
abort button. Simply jump back into the kernel if you want the system to
handle it, but don't corrupt any registers.

INT7 MOVE.L ROOTNODE+ABORTHAND,-(SP)
RTS

The next entry point required is the reboot request, which can be called
in either user mode or super mode. You would normally call the resident
bootstrap ROM again. Note that a bootstrap call routine should be called
in super mode with interrupts off.

4-64

Tripos Technical Reference Installation

BOOTREQ LEA.L 1s,A0

MOVE.L AQ,S$84

TRAP #1 Ensure supervisor mode
1s MOVE #$2700,SR

MOVE.L PROM,SP

MOVE.L PROM+4,A0

JMP (AQ) And go there

The next section is more complicated, but need not normally be changed.
The entry point is called if something has gone wrong and there is no
debug task available yet. This is commonly the case when attempting to
port Tripos. Once the boot process gets far enough for the resident
debugger to work then you can use that to debug. Until then this entry
point gets called. Register D1 is set pointing (as a BCPL pointer) to a
debug packet, which is a memory area containing the reasons for failure
and a register dump.

DBPTASK EQU 4
DBPCODE EQU 8
DBPSP EQU 16
DBPREGS EQU 36

*

PANICREQ MOVE.L D1,D7

LEA.L MESS1,L Point to message
BSR WRITES
MOVE.L ROOTNODE+KSTART,D0 Print KSTART addr
BSR WRHEX
LEA.L MESS2,L
BSR WRITES
ASL.L #2,D7 Debug pkt as m/c addr
MOVEA.L D7,L Point to space
MOVE.L DBPTASK(L),DO Get taskid
BMI.S PANIC3 If <0, registers in
* DBPREGS
MOVEA.L DBPSP(L),B If >0, saved on
* saved SP
MOVE.L B,D6 Save ptr
ADD.L #60,D6 SR & PC are 60
* bytes beyond

BRA.S PANIC4

4-65

Installation

Tripos Technical Reference

PANIC3
*

LEA.L

DBPREGS(L),B Point to saved
register dump

* Note that SR and PC are saved on SP

PANIC4

*
PANICS

PANICE

*

MESS1

MESS2
MESS3
MESS4

MOVE.L
BSR
MOVE.L
BSR
MOVE.L
BSR
LEA.L
BSR
MOVEQ

MOVE.L
BSR
DBRA
LEA.L
BSR.S
MOVEA.L
MOVE.W
BSR
BSR.S
MOVE.L
BSR.S
BRA.S

DC.B
DC.B
DC.B
DC.B
DC.B
CNOP

DBPSP(L),D6

WRHEXSP Write out task ID

DBPCODE(L),D0 Extract code

WRHEXSP .. and write

DBPSP(L),DO Write out SP

WRHEX

MESS3,L

WRITES

#14,D7 Counter for
15 registers

(B)+,DO0

WRHEXSP

D7,PANICS

MESS4,L

WRITES

D6,B Extract SR/PC ptr

(B)+,DO0 Extract SR

WRHEX4

WRSP

(B)+,DO0 Extract PC

WRHEX

PANICE

$0A,S0D, 'Catastrophic error'

SO0A,S0D, 'Kernel start = ',0
$0A,$0D, 'Task, Code and SSP = ',0
$0A,$0D, 'Register dump',$0A,$0D,0
$0A,S0D, 'SR and PC = ',0

0,2

This small subroutine is used by the panic routine to print a string,
pointed at by register L (A3).

4-66

Tripos Technical Reference Installation

WRITES MOVE.B (L)+,Dl
BEQ.S WRS1

BSR WRCHAR
BRA.S WRITES
WRS1 RTS

The next subroutine is used to print a hex number followed by a space.
WRHEXSP BSR.S WRHEX
WRSP MOVE.B #$20,D1

BRA.S WRCHAR

This routine writes the value held in DO out in hexadecimal.

WRHEX SWAP DO
BSR.S WRHEX4
SWAP DO

WRHEX4 ROR.W #8,D0
BSR.S WRHEX2
ROL.W #8,D0
WRHEX?2 ROR.B #4,D0
BSR.S WRHEX1
ROL.B #4,D0
WRHEX1 MOVE.B DO,D1
ANDI.B #SOF,Dl
CMPI.B #9,D1
BLE.S WRHEXO
ADD.B $#('A'-10-'0"),D1
WRHEXO ADD.B $'0',D1 Drop through to WRCHAR

This is an assembler callable routine which must be provided. it prints
the character in D1 to the primary terminal. This call is used by the
panic printer, and is also used by the Tripos debugger via the standalone
I/O call. The call should perform I/O without interrupts, polling until the
device is ready. It should expect the device to be initialized already,
possibly in the previous initialization section, and it should leave the
device in such a state that the normal serial device driver is not confused.
Only registers D0-D7 and A3-A4 may be corrupted.

4-67

Installation Tripos Technical Reference

WRCHAR BSET #0,EPCI+E_CR Enable transmitter
BTST #0,EPCI+E_ SR
BEQ.S WRCHAR Wait for ready
ANDI.B #$7F,Dl Strip top bit
MOVE.B D1,EPCI+E RWD Send character

WRL BTST #0,EPCI+E_SR Wait for ready
BEQ.S WR1
BCLR #0,EPCI+E CR
RTS

In the same way this routine must be provided to poll for a character and
to return it in D1. Any parity bit should be stripped.

RDCHAR BSET #2,EPCI+E CR Enable receive
RDC1 BTST #1,EPCI+E_SR
BEQ.S RDC1 Wait for char

MOVE.B EPCI+E RWD,Dl
ANDI.L #S7F,D1l
RTS

This next section is merely a BCPL interface to the standalone /O
routines implemented above. You should not alter them.

DC.L LIBWORD
DC.B 7,'sawrch '
SAWRCH MOVE.W SR,D3 Save o0ld status
ORI.W #S0700,SR Turn interrupts off
SAWRCHO BSR.S WRCHAR Write character
CMPI.B #$S0A,D1 Was it a *N?
BNE.S SAWRCH1 No
MOVE.B #$0D,D1 Yes - send CR as well
BSR.S WRCHAR
SAWRCH1 MOVE.W D3,SR Restore interrupts
JMP (R) And return

4-68

Tripos Technical Reference Installation

DC.L LIBWORD
DC.B 7,'sardch '

SARDCH MOVE.W SR,D3 Save old status
ORI.W #50700,SR Turn interrupts off
BSR.S RDCHAR Get char in D1
BSR WRCHAR Reflect it
CMPI.B #S$S0D,D1 Return?

BNE.S SAWRCH1 No, exit

MOVE.B #S0A,D1l Yes, convert to *N
BSR WRCHAR Reflect that as well
BRA.S SAWRCH1 Exit

The final section of code within the device dependent library is to restore
the time from a real time clock, and to set the time into a real time clock.
The code here must conform to BCPL specifications, so that only
registers DO-D7 and A3-A4 may be corrupted. The return is achieved by
a jump through register R.

The first routine restores the time from some hardware into the rootnode
fields containing the days, minutes and ticks (1/50 second) starting from
the start of 1978. If this is possible the routine returns TRUE, otherwise
it returns FALSE. In the example here there is no real time clock so the
routine returns FALSE.

DC.L LIBWORD

DC.B 7, 'RTIME '
RTIME

MOVEQ.L #0,D1l

JMP (R)

CNOP 0,4

The second routine is called to set the clock. The rootnode value is also
updated at the same time. The call is made with D1 containing the
number of days since 1978, D2 containing the number of minutes since
the start of the day and D3 containing the number of ticks since the start
of the minute. A tick occurs every 20ms. Again, in this example there is
no real time clock, so the only job to be done is to update the rootnode
fields.

4-69

Installation Tripos Technical Reference

DC.L LIBWORD
DC.B 7,'STIME '

* Copy into rootnode

STIME MOVEM.L D1/D2/D3,ROOTNODE+DAYS
JMP (R)

4.6 Device Handlers

A device handler, in Tripos, acts as an intermediary between a device
driver and an application program. The device driver, as we have
already noticed, accepts a standard set of commands including the
important ones, read and write, which cause a read and write of a
number of bytes. A device handler accepts the operating system calls
and maps them to the device driver requests. We will begin the
description of device handlers by looking at the simplest case, a serial
line device handler.

The serial line device driver (tty-driver), you will recall, handles the read
n bytes, write n bytes functions. We need to be able to support, within
the operating system, a device called SER: which will handle the
standard Tripos calls - open, close, read and write. The handler,
therefore, is very simple. Firstly, the Devinfo structure will contain an
occurrence of an entry for SER: (refer to the Chapter 3 of this manual for
details of the DevInfo structure). Among the entries in the SER:
assignment will be the name of the handler that is to support the device.
Most of the other entries in this structure will be zero because initially
there is no available task to handle the device, e.g. no loaded segment, no
task identifier etc. When a program wishes to find the identifier of a
handler for the device SER: (by a call to DeviceProc), Tripos attempts to
load the code specified as the device handler and start up that code as a
new task. The new task's identifier is then returned as the result of
DeviceProc.

If, for example, the file name of the handler code for SER: is
l:serial-handler then that file will be loaded into memory. The structure
of the code in this segment will now be examined.

4-70

Tripos Technical Reference Installation

Firstly, the section of code to support the serial device will require
initialization. Initialization occurs when the new task handler is sent its
first packet by DeviceProc. This packet has the following arguments

argl ~ BSTR The string that DeviceProc was called with

arg2 - INT The value of the startup slot in the
DevInfo node

arg3 - BPTR The DevInfo node itself

The address of this packet is passed in A0 to the task’s startup code. In
the startup code for BCPL, this value is passed as the argument to start.
Thus we have

LET start(parm.pkt) BE

$(
LET openstring = parm.pkt!pkt.argl
LET startup parm.pkt!pkt.arg2
LET node parm.pkt!pkt.arg3

(If you have not used BCPL before, you can find out more about this near
relation of C in BCPL for the BBC Microcomputer by Chris Jobson
and John Richards, published by Acornsoft, or in BCPL - the
language and its compiler by Martin Richards and Colin
Whitby-Strevens, published by the Cambridge University Press, which
gives a full description of the language. As BCPL is one of the standard
languages available from Metacomco, you can also find out more about
using it from the BCPL under Tripos manual.)

It is useful to have the string from DeviceProc so that you could, for
example, implement "SER:baudrate =9600". The initialization could, if
required, parse the extra characters in the string and issue the correct
set parameters call to the serial device. It is the responsibility of this
handler to insert its own id into the taskid slot in the DevInfo structure.
If it does not do so then a subsequent call to SER: will result in a new
invocation of the SER: handler. If it does insert its own task id, then any
subsequent calls will refer to this handler. In the case of this example we
want it to refer to the same handler so we will insert the task id. The
value in the startup slot we will arrange to refer to a structure of the
following form

4-7

Installation Tripos Technical Reference

Value Function Description
LONG Unit Unit number
BSTR DevName BSTR to device name

which is similar to that used by the filing system but without the envec
slot.

It is possible to set up this structure as part the DevInfo structure in the
input file to SYSLINK (see Section 4.4.5 for an example).

The initialization code then finds the driver with which it is to interface.
LET devunit = startup!0

LET devname = startup!l
LET dev findnode(info.devs, devname)

1}

The packets that are sent to the device drivers from the device handler
are packets for which it must declare space. This handler must declare
space for two packets; one a read packet and one a write packet. It will
also need two flags to tell us whether the read packet is currently away
at the device driver or present, unused, at the device handler. The flags
are provided by setting the inpkt/outpkt pointers to 0 when the packet
has been sent.

LET inpkt = VEC pkt.arg3 // Driver input packet

LET outpkt = VEC pkt.arg3 // Driver output packet

LET open.for.input = FALSE

LET open.for.output = FALSE

LET read.pkt = 0 // BApplication read packet
LET write.pkt = 0 // Application write packet
LET error = FALSE

outpkt!pkt.link := notinuse
outpkt!pkt.type := devcommand.write
outpkt!pkt.id := dev
outpkt!pkt.argl := devunit

4-712

Tripos Technical Reference Installation

inpkt!pkt.link := notinuse
inpkt!pkt.type devcommand. read
inpkttpkt.id := dev
inpkti!pkt.argl := devunit

The initialization packet is then returned to indicate good or bad
initialization depending on whether the device driver was found.

IF dev = 0 THEN // I1f device was not found

$(returnpkt(parm.pkt,FALSE,error.objectinuse)
return

$)

// Patch into the system structure

node!dev.task := taskid

// Finished with parameter packet...send back...
returnpkt(parm.pkt, TRUE)

The main job of the handler is to accept incoming client requests. These
requests will be for an open, a close, a read or a write. The actions
required will be to pass on read/write requests to the device driver. In
the case we are concerned with the job is, in fact, very simple because we
do not permit any extra buffering. Thus if the application requests a read
then we simply pass the read request on to the device driver to read the
requested number of bytes into the buffer provided. There are cases
where you may want to buffer characters, in which case you would
always have outstanding reads at the device. The device handler would
then buffer characters, waiting for a client to read them.

The handler must now enter a loop waiting for any of a number of
different requests. These will be packets sent to the device handler by an
application. However, there can also be packets returning back from the
device driver.

At the beginning of the main loop is a call to TaskWait(). This is a
request for the next packet to arrive at this task.

4-73

Installation Tripos Technical Reference

// This is the main repeat loop waiting for an event
$(LET p = taskwait()

The handler now has to decide what action to take on each of the different
packets which may arrive. This is normally done within a switch block,
taking the packet type as argument

SWITCHON p!pkt.type INTO
S (

Firstly, there will be the cases 'open for read' or 'open for write'. These
have the packet type act.findinput and act.findoutput respectively. For
these two different open cases, we will find that we are passed a suitable
file handle as the argument of the packet (see Section 1.3.3, "Device
Handler Packet Types", of the Tripos Programmer's Reference
Manual). For the purposes of this handler this file handle is known as
'scb’ - Stream Control Block. This file handle is already mostly filled in.
The one job which we may wish to do is to set the type field of the file
handle to FALSE to indicate that it is not an interactive console stream.
There are a number of fields within the file handle which can be used for
the storage of particular information. If we wanted a piece of information
to come back, for example a pointer to some structure telling us which
file handle this was, we could put that into the argument field of the file
handle. If all is well, we return the packet with a TRUE completion code
which indicates that we have indeed accepted the open request. This
handler will only support a single serial line, so only one application task
may be permitted to use that line at any one time. A flag is therefore set
to indicate that the serial line is now open. If any other request to open in
the same direction is received, before the previous one is closed, then it
will be rejected with a FALSE result with a ‘object in use' error as the
secondary error code.

4-74

Tripos Technical Reference Installation

CASE act.findinput: // Open
$(LET scb = p!pkt.argl

IF open.for.input THEN

$(returnpkt(p,FALSE,error.objectinuse)
LOOP

$)

open.for.input := TRUE

scb!scb.id := TRUE // Interactive

scb!scb.argl := act.findinput

returnpkt(p,TRUE)

Loop

$)

CASE act.findoutput:
S(LET scb = ptpkt.argl

IF open.for.output THEN
$(returnpkt(p,FALSE,error.objectinuse)
LOOP
$)
open.for.output := TRUE
scb!scb.id := TRUE // Interactive
scb!scb.argl := act.findoutput
returnpkt (p,TRUE)
LOOP
$)

We now consider the close case. In close we unset the flag which says
that the device was in use, and if we had perhaps allocated any memory
for the open we would deallocate it here. We do not have to deallocate the
file handle because that is done for us by the rest of the operating system.
We also do not need to flush any buffers here because that is done prior to
the call to close, again by the rest of the operating system.

4-75

Installation Tripos Technical Reference

CASE act.end: // Close
TEST p!pkt.argl = act.findinput THEN
open.for.input := FALSE
ELSE open.for.output := FALSE
UNLESS open.for.input | open.for.output DO
nodet!dev.task := 0

returnpkt(p,TRUE)
LOOP

If we look at the calls to read and write, a packet will be sent of the
format described for read and write requests as detailed in Section 1.3.3,
"Device Handler Packet Types", of the Tripos Programmer's
Reference Manual. A read request will contain the buffer pointer,
the length and the argument from the file handle, which could have been
an internal data structure placed there earlier in the call to open. In this
case we simply hold on to the read request packet and issue a device read
that is almost identical. The device request will contain the buffer
pointer and length that were provided by the application. We store the
application's packet to show that we are, in fact, waiting for a device
request to come back. We then send the request to the device driver.
Notice we do not send back the packet to the client because obviously the
read has not yet completed. In a similar way we do almost identical work
for the write case, sending out a write packet to the device driver and
marking the fact that we are waiting for it to come back by storing the
application's request packet as before.

CASE 'R': // A read request

read.pkt := p
handle.request(devcommand.read, p, inpkt)
inpkt := 0

LOOP

CASE 'W': // A write request
write.pkt := p
handle.request(devcommand.write,p,outpkt)
outpkt := 0
LOOP

4-76

Tripos Technical Reference Installation

The next two cases cover the return of the packet from the device driver.
When a device driver sends back the read packet it will contain the
amount of data read which will be held in the result fields of the packet.
We simply transfer the result information into the result fields of the
client's packet; we do not, of course, need to copy the data because we
have just passed the buffer to the device driver. We can then return the
client's packet and mark the fact that the device driver packet is back
with us again. Againitisa very similar case for the device write return.

CASE devcommand.read: // Read request returning
inpkt := p
handle.return(p,read.pkt)
LOOP

CASE devcommand.write: // Write request returning

outpkt := p
handle.return(p,write.pkt)
LOOP

The final case in our set of statements is, therefore, merely the default
case. This means that an unimplemented request has been received from
the application task. The default action is to return the packet with an
error indicating that the action is not known.
DEFAULT:

UNLESS open.for.input | open.for.output DO

node!dev.task := 0
returnpkt (p,FALSE,error.actionnotknown)

This marks the end of the switch statements options.

$)

4-77

Installation Tripos Technical Reference

This handler is designed to exit when there are no streams open and no
packets outstanding at the driver. When this condition occurs the
following statement will terminate.

$) REPEATWHILE open.for.input | open.for.output |
outpkt = 0 | inpkt = 0

At this point any closedown action, for example deallocation of buffers,
would take place. However, in this case no action is required and the task
simply exits.

S)

The last two routines in this task handle the sending of packets to the
driver/application with the appropriate arguments/results.

AND handle.request(command, rp, tp) BE

$(
LET buff = rptpkt.arg2
LET len = rp!pkt.arg3
tptpkt.arg2 := buff
tp!pkt.arg3 := len
gpkt(tp)
$)
AND handle.return(rp, p) BE
S(
returnpkt(p, rp!pkt.resl, rpl!pkt.res2)
$)

4-78

Tripos Technical Reference Installation

4.7 Porting Tripos

The porting process involves several distinct stages, starting with the
terminal driver and finishing with a complete bootstrappable system.

The stages are as follows:

. Terminal driver for a non-disk based CLI

. Clock driver

. Disk driver

. Format and initialise the system disk

. Download system commands and information files

. Downloading and installing the Tripos system image

DOV LN

WARNING: These six stages may take several weeks to complete!

1. Terminal Driver for a Non-Disk Based CLI

You need to write the terminal driver first so that you can test user
communication. As the filing system and restart segments are not
needed at this stage, your syslink input file should look something like
this:

absmin $#X0000;
absmax #X032F;
storemin #X4000;
storemax #X8FFF;
memorysize 36;
rootnode 512;
tcbsize 29;
mcaddrinc 4;

4-79

Installation

Tripos Technical Reference

seg sysli

seqg debug

b klib.obj, jacket.obj,mlib.obj,dlib.obj,
blib.obj,extras.obj,io.obj;
taskint.obj,debug.obj,debug-disasm.obj;

seg cohand taskint.obj,cohand.obj;

seg cli

tasktab 2

taskint.obj,cli.obj,cli-init.obj;

0;

*task 1 pri 1000 stack 400 segs syslib,cli;
task 2 pri 2000 stack 300 segs syslib,debug;

devtab 20

dev -2 dr

info (
ll68
((0
((0
(0,
0

)

-
r

iver tty-driver.bin;

ooo*,
r
6, 0, 0, 0, 300, 2999,
(1, "serial"), cohand, 0, "AUX"),
o, o0, 0, 0, 300, 3000,
(0, "serial"), cohand, 0, "CON"),
r
*cli", 1, cliy,
"syslib", 1, syslib),

"serial", 1, -2),

This definition shows a system with a terminal driver as driver -2. This
driver is capable of handling two units known logically as CON: and
AUX:. The driver is known by the name of "serial” and it is by this name
that the console handler is able to find it. When the initial CLI starts up
it attempts to assign the logical name SYS: to the root directory of the

first handler on

the handler chain. In this case it, for instance, would

attempt to assign SYS: to CON: (the chain is CON: AUX:). This would
fail, however, as CON: is not a directory-structured device. The CLI then
starts up in a non-disk-based mode whereby it attempts to find programs
to run from the resident segment list.

4-80

Tripos Technical Reference Installation

You may add any command to the resident segment as follows:
In the segment declarations:

seg status status.obj;
seg echo echo.obj;

In the resident segment list:

(0,
*cli", 1, cliy,
"syslib", 1, syslib),
"status", 1, status),
"echo", 1, echo),

The commands STATUS and ECHO are added to the resident segment
list. (This means that you can now give these two commands, if you
wish.) Note that according to this structure a non-disk-based CLI could
find and attempt to run the commands ‘SYSLIB' and 'CLI'. However, this
should not be attempted, since those segments are not commands but are
set up only so that the system can find them when starting up a new
task/CLL

Note: You should not use driver -1 at this stage as many parts of the
system assume this to be the clock driver.

2. Clock Driver

Now you can proceed to make the clock driver work. You do this because
the filing system, which is the next stage, uses the clock driver to time its
periodic disk checking. The device declarations part of the syslink input
will now look like this:

In the device table initialisation:

dev -1 driver clock-driver.bin;

In the device list:

4-81

Installation Tripos Technical Reference

((0,
"clock™", 1, -1y,
"serial", 1, -2),

3) Disk Driver

The disk driver is the next object in the process. This driver should be
able to read, write, format and acquire status information from a disk. It
should also be able to handle the 'motor off' command but this may
possibly be a null action. To test the disk driver the filing system needs to
be loaded by syslink.

This is done as follows:
In the segment declarations:

seg fihand taskint.obj,access.obj,bitmap.obj,
bufalloc.obj,disc.obj,exinfo.obj,
main.obj,support.obj,work.obj,
moveb.obj,init.obj,state.obj;

seg restart taskint.obj,restart.obj;

In the device table initialisation:
dev -3 driver disc-driver.bin;
In the info structure initialisation:

(
"68000",
(o,
6, 0, 0, 0, 300, 2999,
(1, "serial"), cohand, 0, "AUX"),
o, o, 0, 0, 300, 3000,
(0, "serial"), cohand, 0, "CON"),
6, 0, 0, 0, 210, 2500,
(6, "disc", (11,256,0,2,1,4,4,0,0,0,79,5)),
fihand, 0, "DFO"),
(cco,
"restart", 1, restart),

4-82

Tripos Technical Reference Installation

"cli", 1, cli),
"syslib”, 1, syslib}),
(cco,
"timer", 1, -1),
"serial", 1, -2),
"disc", 2, -3),
0

)

This defines the disk-driver as device -3 and names it "disc". The
assignments list is initialised such that there is a disk known as "DF0:"
which has 80 tracks (0-79), double sided, 8 * 512 bytes per sector. There
is also one reserved block which is used by the bootstrap. This is the
standard configuration of a 5 1/4" floppy disk.

4. Format and Initialise the System Disk

To format an unformatted disk, you need to have the FORMAT command
resident. You can make this resident as described above by declaring a
segment and putting it into the resident segment list. (See 1. Terminal
Driver for further details.) The command line

> FORMAT DRIVE df0: NAME "System disk"

then formats the disk in drive "df0" and initialises it with name "System
disk".

5. Download System Commands and Information Files

Now download commands from the development system using a
downloading tool. For example, you can use the program "Kermit"
which is provided and which will perform this job well. Make Kermit
resident as shown above, and then type

> KERMIT aux:

to run Kermit in local mode.

4-83

Installation Tripos Technical Reference

Since the CLI is non-disk based it does not initially have a current
directory to the Kermit command:

Kermit-68K (Local)> setdir d4fo0:
is needed to set to that disk.
Set Kermit to image mode transfers with the command:

Kermit—-68K (Local)> set image on
Then connect to the development system with the 'c' command.
You may now run the development system's Kermit to download all the
command directory files. Use the Tripos Kermit command 'r' to receive
files sent from the development system.
Once you have downloaded a command directory file, place it in a
directory named ‘¢’ on the system disk (sys:¢). When the CLI starts up it
will assign the command directory C: to the directory sys:c.
Place the vdu information file in a directory devs/vdu.

6. Downloading and Installing the Tripos System Image

The Tripos system image file should now be downloaded into the
directory sys:1.

The installation process is often system dependent but it always consists
of some method of informing a bootstrap program of exactly where on
disk to start loading a system image file.

The system image file is in the form described under "Object File
Format" and will only contain "hunk__abs" sections terminated by a
"hunk__end".

One method of installation that is often used is to plant the key number

of the image to be loaded into a table of keys and then to save this table in
the first block on the disk. This table of keys is then indexed by a version

4-84

Tripos Technical Reference Installation

letter so that multiple Tripos images may be installed at the same time
on the same disk.

Now you should write the bootstrap program. This is a small program
typically residing in ROM which requests a drive name and image
version letter from the user, loads a system image into RAM, and jumps
to the system at the address stored in location ROOTNODE + KSTART.

4-85

Tripos Technical Reference Manual

Index

#4.13

number prefix 1.13
#B0001 3.7

#B1000 3.7

#X4.13

#X number prefix 1.13
*4.12,4.14,4.15

/(DISKED) L.11,1.12

8 bit relocation 2.9

16 bit relocation 2.9

32 bit relocatable references 2.5
32 bit relocation 2.7,2.8,2.16

A04.30,4.33,4.36
Al14.30
A3-A44.62,4.66,4.67,4.69
Abortl0 4.25, 4.34, 4.49, 4.59
- entry point 4.23, 4.24
ABSMAX 4.13
ABSMIN 4.13
Absolute external references,
useof 2.1
Absolute store 4.63
-layout 4.12
- limits 4.13
Absolute values 2.1
AccessType 3.17
Active locks 3.14
AddDevice 4.15
Addresses 4.14
Allocated block 3.10
Allocating memory 3.10
AllocMem 3.15
APTR 3.1,3.11,3.13,3.16, 3.17
Argl3.16
Arg23.18
Assembler 4.11,4.12,4.28
- object file structure 2.1
- output - see object file
Assembler-produced binary image
- see object file
ASSIGN 3.11,3.12,4.8
Automatic resizing 4.18
AUX:4.21

B({(NDEX)1.13
BCPL1.13,3.1,4.11,4.13,4.14,4.15
- address 4.13
- compiler 4.11
- library 4.15
- pointer 3.1
- string 3.1
- string escapes 1.13
- words 4.14
Binary image 2.2
Binary load file format 2.1

Binary object file structure 2.1
BLKLIST 3.2
- field 3.10
Block date and time 1.5
Block
-format 2.4
-layout 1.9
-list 1.8
-number 1.5
- number of directory or file
header 3.17
-size 1.1
-type (DISKED) 1.11
Blocks 1.1,2.3
Blocks of code (hunks) 2.2
Blocks of data (hunks) 2.2
BlockSize 3.15
Bootstrap 4.13
BPRT 3.1, 3.11, 3.13, 3.15, 3.186,
3.17
Bracketed lists 4.16
Break blocks 2.16,2.17, 2.21
bss 2.19
bss block 2.7
bss hunks 2.2
BSTR 3.1, 3.11, 3.13
BufEnd 3.16
Buffer 3.16
Building system image file 4.11
Building tree structure 4.12

C(DISKED)1.13
C programming language 4.28
Calculate name hash value 1.13
Chains 3.8, 3.9
Character deletion 4.5
Character insertion 4.5
Character position 3.16
CharPos 3.16
Check block checksum 1.13
Checking declarations 4.12
Checking system errors 4.12
Checksum correction 1.12
Checksums 1.1,1.10
Clearscreen 4.5
CLI4.2,4.15,4.19
CLIsegment 4.19,4.21
Clock 3.9, 4.15, 4.57,4.62

-device 4.20, 4.22

- device driver 4.55

- initialisation 4.57

- interrupt routine 3.2
Close entry point 4.23, 4.24
Close request 4.73, 4.75
Close routine 4.30, 4.43, 4.57
CloseFunc 3.16

Index

Tripos Technical Reference Manual

Code blocks 2.2,2.5,2.6

Code segments 4.15

Cohand segment 4.21

Command file 4.12, 4.13

Command file syntax 4.12

Command sequence termination 3.7

Command termination 3.7

Commands in DISKED 1.12, 1.13

Common symbols, use of 2.1

Compiler object file structure 2.1

Compiler-produced binary image
- see object file

CON:4.16,4.17,4.21

CON: device - see CON:

CONSOLE 4.7

Console handler 3.7, 4.19

Control blocks 4.11

Control codes 4.5, 4.6

Coroutines 4.15

Correct checksum 1.12

Corrupt floppy recovery 1.11

Creating devices 4.15

CTRL-C 3.7

CTRL-D 3.7

CTRL-E3.7

CTRL-F3.7

Cursor movement 4.3, 4.4, 4.5

Cursordown 4.5

Cursorleft 4.5

Cursorright 4.5

Cursorup 4.5

D0 4.29
D0-D7 4.56, 4.61, 4.62, 4.67, 4.69
D1 4.29,4.65,4.68,4.69
D1 value to primary terminal
(panic) 4.67
D24.29,4.69
D3 4.29,4.69
Datablock 1.7,1.9,1.10,1.11, 2.2
Data list 1.8
Data size 1.11
Data hunks 2.2
Data structures 3.1, 4.13, 4.16
Date 3.2
DAYS 3.2
DCB3.9,4.22,4.27,4.28,4.29,
4.30,4.31,4.36, 4.38,4.55
- entry points 4.23
- fields 4.23
Dead state 3.6
Dead task 3.6
Deallocation of file handle 4.75
DEBUG4.13
Debug block 2.4, 2.15
Debug segment 4.19, 4.21

Debugger 2.13, 4.67
Debugging 3.6
Debugging information 2.2
Default case 4.77
Delete
- character 4.5
-toend of line 4.5
Deletechar 4.5
Deleteline 4.5
Deol 4.5
DEV.STARTUP 3.12
DEVICE 4.15
Device assignments 3.2
Device Control Block - see DCB
Device creation 4.15
Device declaration section 4.19
Device declarations 4.15
Device dependent library 4.62
Devicedriver 4.1, 4.17, 4.22, 4.70
- code 4.23, 4.56
-design 4.1
- header 4.56
-example 4.26
Device handler 4.1,4.70
- tasks 4.1
Device identifier 3.14
Device list 3.11
Device list cross reference 4.16
Device name 3.14
Device names, identify 3.11
Device numbers 4.15
Device priority 4.27
Device register 4.57
- offsets 4.42
Device table 3.9
- size 4.15
Devices 3.11, 4.1
Devinfo 3.11, 3.12, 3.17, 4.16, 4.20,
4.21,4.22
Devlinfo structure 3.11
DEVS:MOUNTFILE 4.8
DEVS:VDU 4.2
DEVTAB 3.9,4.15
DFO0: 4.21
DHO: 4.21
Directories 1.1
Directory block 1.7
Directory page 1.11
Disable write protect 1.12
Disk block location 3.17
Disk device 4.1, 4.15, 4.16, 4.20,
4.22
-driver 4.17, 4.22, 4.26, 4.28,
4.41
Disk
- editor 1.11

Tripos Technical Reference Manual

Index

- format 1.1

- layout 1.11

-name 1.1

- page layout 1.1

- parameter table 4.17

- validation process 1.12
DiskBlock 3.17
DISKED 1.1,1.11,1.12
DiskType 3.13,3.14
Display

- block info 1.13

- block number of Root

Block 1.13

- nchars from current

offset 1.13
Dormant task 3.6
DQPkt 4.24
dt__device 3.12
dt__dir3.12
dt__volume 3.13
Dynamic creation of devices 4.15

ED42,4.3,44,45. 46

EDIT 4.2

End block 2.4

Enter Tripos image 4.15

Entry type 3.11

ENVEC3.12,3.13

Examine 3.15

Example of making image 4.17

Example program 2.21, 2.22, 2.23,
2.24,2.25

Exception handlers 4.1

Exclusive write lock 3.17

Exec3.15

ExNext 3.15

Extension field 1.8

External consistency 2.1

External definitions 2.1, 2.2

External name cross reference 4.27

External reference handling 2.16

External references 2.1,2.2, 2,3,
2.5,2.11,

External symbol handling 2.21

External symbol information 2.9, 2.16

External symbol information block 2.4

External symbols 2.11, 2.16

ext__abs 2.11

Ext__common 2.11,2.13

Ext__def2.11

Ext__ref82.11,2.12

Ext__refi62.11,2.12

Ext__ref322.11,2.12

Ext__res2.11

Failure by hardware error 1.11

Fihand segment 4.21
Find file or directory 1.2
File extension blocks 1.9
File handler 1.1
File handles 3.16
File header 1.9
-block1.2,1.3,1.6,1.7,1.10
File info structure 3.15
File list block 1.8,1.9
File structure 1.1
File system 4.11, 4.19
-lock 3.11,3.13,3.17
- startup information 4.17
- task 4.21
File type info 1.10
FileInfoBlock 3.15
Filename of handler 3.11
FirstCode 3.15
FirstData 3.15
Flags 3.7
Format 4.30
Free block 3.10
Free list 4.13
Free memory allocation 3.10
Free store 4.13, 4.14
- layout 3.2
Freeing memory 3.10
FreeMem 3.10, 3.15, 4.12
Function keys, programming 4.4

G(DISKED)1.11,1.13
Get block n from disk 1.13
GetMem 3.2, 3.10, 4.12

H(DISKED) 1.11, 1.13
Handler 3.11
-field 3.12
-process 3.11,3.12,3.13, 3.16
- requests 3.1
Handling problems without debug 4.65
Handling store layout 4.12
Hash chain (DISKED) 1.12
Hash links (DISKED) 1.11
Hash table size 1.5
Header block 1.12,2.16, 2.19, 2.24
Header page key 1.11
Heap 4.18
Held bit 3.6
Hexadecimal 1.13, 4.13
Hierarchy of directories 1.1
High addresses 4.14
High store 4.13
Highlightoff 4.4
Highlighton 4.4

iii

Index

Tripos Technical Reference Manual

Hunk
-coagulation 2.9,2.11,2.13,
2.16
- format 2.3
- information 2.17
-name 2.2,2.5,2.9,2.16
- name block 2.4
- number 2.2,2.7
-table 2.19, 2.24
Hunks 2.2,2.3
Hunk__break 2.21
Hunk_ bss 2.7
Hunk__code 2.5,2.6
Hunk__data 2.6
Hunk__debug 2.15
Hunk__end 2.15
Hunk_ ext2.9
Hunk__header 2.17,2.18
Hunk__name 2.5
Hunk_ overlay 2.19,2.20
hunk__reloc82.9
Hunk_ reloc16 2.9
Hunk__reloc322.7,2.16
Hunk__symbol 2.13, 2.14
Hunk__unit2.4

I(DISKED) 1.11,1.13
Incoming client requests 4.73

INFO3.2,3.11,4.16,4.17, 4.20,

4.21
Info substructure 3.11
Information about devices 3.2
Information about machine 3.2
Init4.4
Initial image 4.15
Initial system disk - see SYS:
Initial task 4.15
Initialization 4.13

- data block 2.6

- packet 4.73

-segment 4.14

- values 4.42
Initialized data 2.2
Inpkt pointer 4.72
Insert character 4.5
Insertchar 4.5
Insertion of id into taskid 4.71
Insertline 4.5
Inspecting disk blocks 1.11
INSTALL 4.10
Installing

- system image file 4.11

- Tripos 4.1

-VDU 4.1
Int - see Interrupt routine
Interact 3.16

Interrupt 4.22, 4.25, 4.34, 4.35,
4.36,4.56
- entry point 4.23, 4.25
- handler 4.24, 4.25, 4.26
-locations 4.11
-routine 4.27, 4.31, 4.36,
4.60
- service routine 3.6
Interrupt Transfer Block - see [TB
Interrupted bit 3.6
Interrupted task 3.6, 4.25
IntR 4.39, 4.52
IntW 4.39, 4.52
Inverse video 4.4
Invert write protect state 1.13
ITB 4.23, 4.28, 4.34,4.38,4.39
ITS 4.36

K(DISKED)1.12,1.13

Kernel calls 4.25

Kernel entry point 3.2

Kernel initialization section 4.13
Kernel primatives 3.7

KSTART 3.2

L(DISKED)1.13
Layout
- characters 4.13
- of disk pages 1.1
- of memory 4.13
Length 4.4
LIBHDR 4.13
Library, device dependent 4.62
Limits of absolute store 4.13
Line
- deletion 4.5
- insertion 4.5
LINK 3.6, 3.16
- entry points 4.55
Linker 2.1,2.2,2.3,2.11, 2.186,
2.21,2.23
- load file format 2.1
-operation 4.12
Linker-produced binary image
- see Load file
Linking object files 2.1
List active locks 3.13
List entry type 3.13
Load file 2.1,2.2,2.16,2.17, 2.19,
2.23
- structure 2.16
Load format file 2.5
Loader 2.5, 2.21
- file format 2.1
Loading system image file 4.12
Loading system into memory 3.2

iv

Tripos Technical Reference Manual

Index

LoadSeg 3.12, 3.15, 4.11

Locate words that don't match Value
under Mask 1.13

Locate words that match Value
under Mask 1.13

Lock 3.11,3.12,3.13,3.16

Lock field 3.12

Lock zero 3.17

LockList 3.13

LockList field 3.14

Locks, chaining 3.17

Logical device name 3.11

LONG3.1,3.11, 3.13, 3.15, 3.16,
3.17

Longword-aligned memory block 3.1

Low addresses 4,14

Low store 4.13

M (DISKED) 1.13
Machine
- address, obtain 4.13
- code 3.8
- code library segment 4.15
-name 4.16
- registers 3.6
- size 4.11
-type 3.2
Map 4.6
Mapof system 4.11
Mapping control codes 4.6
Max number of devices 4.15
Maximum number of tasks 4.14
McName 3.11
Memory
- allocation 3.10, 3.15
-block size 3.15
-layout4.11,4.13
- limits 4.13
-size 4.12,4.13
- specification 4.13
- put back 3.15
MEMORYSIZE 4.13
MEMSIZE 4.13
MINS 3.2
Motor off 4.30
Motor timeout 4.31
Motorola S-Record format 4.11
Motorola VME Disk Controller
(MVME315) 4.29
MOUNT3.12,4.7,4.8,4.16
Move cursor 4.5

N (DISKED) 1.13

Name (DISKED) 1.11

Name 3.11,3.13
-field 3.11,3.13

Netlland 3.11

Network device handler 4.22

Network handler processid 3.11

Network name for machine
-see McName

New device drivers 4.1

NEWCLI4.21

Next 3.11,3.13
-field 3.11

NextLock 3.17
-field 3.17

NextSeg 3.15

Node 2.3,2.16

Non-standard devices, make
available 4.8

Number of Interrupt Transfer Blocks
(NITB) 4.22

Object file 2.1,2.2,2.3,2.16,2.21
-structure of an 2.3
Octal 1.13,4.13
Open entry point 4.23, 4.24, 4.29
Open 3.16, 4.43, 4.57
- file for reading 3.17
-file for writing 3.17
-for read 4.74
-for write 4.74
-request 4.73, 4.74
- routine 4.43, 4.57
Operating system image 4.11
Outpkt pointer 4.72
Output code 2.22
Overlaid load file 2.3
Overlay information 2.16
Overlay node 2.3, 2.6, 2.16, 2.21
Overlay table block 2.16,2.17,2.19
Overlay table size 2.20
Overlays 2.2,2.19

P(DISKED) 1.12,1.13
Packet
-bit 3.6
- offset 4.41, 4.56
- type, act.findinput 4.74
- type, act.findoutput 4.74
- work queue 3.6
Page mode 4.4
Panic message 4.62
Patching
- after error 1.1
-disk blocks 1.11
PC-relative address mode 2.1
PC-relative external references
(8or 16 bit) 2.5
PC-relative references
-(Bbit) 2.9

Index Tripos Technical Reference Manual
-(16bit) 2.9 Relocatable store 4.63
-(8and 16 bit) 2.11 Relocatable values 2.1

Pointer to Relocation2.1,2.2,2.7

- handler process 3.17

-nextentry 3.11

- next listentry 3.13, 3.14
Pointers 3.1, 3.7, 4.16
Porting Tripos 4.79
Pri3.12
Primary node 2.16,2.19
Print info (DISKED) 1.11
PRIORITY 3.6,3.8,3.9,3.11, 4.14
Private data area structure 4.42
Process (see also Task)

- format 3.1

-id 3.12

-id of handler process 3.16
ProcessiD 3.16, 3.17
Processor status 3.6
Program

-counter 3.6

- format 2.3

- header block 2.3

- information 2.16

-start2.4

-unit2.1,2.2,2.3
Programming function keys 4.4
Put block in memory to block n on

disk 1.13

Q(DISKED) 1.13
Quit 1.13

R(DISKED) 111, 1.13
RAM:3.12,4.8
Read 3.16, 4.32, 4.33
- block into memory (DISKED) 1.11
- entry point 4.39
Read interrupt 4.39
- handling 4.52
Read request 4.73, 4.76
- handling 4.52
ReadFunc 3.16
Real time clock 4.69
Reboot request 4.63, 4.64
Recall routine 4.26, 4.34, 4.51
RecalllO 4.25, 4.26, 4.51, 4.60
- entry point 4.23 4.25, 4.26,
4.33
Reception interrupt 4.38
Reclaiming space 4.11
Recovering from corrupt floppy 1.11
Reference name restrictions 2.1
Registers 4.30
Relocatable block 2.4
Relocatable references (32 bit) 2.5

-(8bit) 2.9
-{16bit) 2.9
-(32hit) 2.7,2.11,2.16
-field 2.1
- information 2.7
- information block 2.4
Resl field 4.57
Reset 4.33
Resident debugger 4.65, 4.67
(see also DEBUG, Debugger)
Resident device list 3.11,4.17, 4.22
Resident segment list 3.11, 4.17,
4.21
Resident segments 4.14
RESTART 1.12
Restart segment 4.21
Roll mode 4.4
Root (initial filing system) 3.17
Rootblock 1.1,1.2,1.3,1.11,1.12
Root node 2.3, 3.2
Root of tree structure 1.1
Root stack 4.14
ROOTNODE 3.1,3.2,4.1,4.11, 4.13,
4.16, 4.18, 4.60, 4.64

S(DISKED) 1.13
Scanned libraries 2.2, 2.3
Scatter loading 2.5
SCB4.74
Scheduler 3.8
Scheduling tasks 3.9
Scrolldown 4.5
Scrolling 4.4, 4.5
Scrollup 4.5
SegList 3.11, 3.12, 3.15
SeglList field 3.12
SEGMENT 4.14
Segment
- declaration 4.14
-list 3.14, 3.15, 4.15,4.18
-name 3.14,4.14
SEGMENTS 3.11, 4.15
Segments of code 4.13
SegVec 3.6,3.7,3.8
SendC 4.32,4.33,4.37
Sequence number of data block 1.10
SER: 4.70
SER: assignment 4.70
Serial device 4.1, 4.22
Serial driver 4.38, 4.41
Serial line 4.7
- device 4.20 (see also SER:)
- device driver 4.70

vi

Tripos Technical Reference Manual

Index

Set cylinder baseton 1.13
Set logical block number base 1.13
Set Maskton 1.13
Set print style 1.13
Set up terminal 4.2, 4.4
Set Value for L and N commands 1.13
SET-SERIAL 4.7
Setcursor 4.5
SetFlags 3.7
Set parameters command 4.47
Setting the type field 4.74
Setting up initial data
structures 4.24
Shared read lock 3.16, 3.17
Signals between tasks 3.7
Size of device table 4.15
Size of hash table 1.5
Size of memory 4.13
Size of memory block 3.15
Size of TCB 4.13
Space allocation 2.19
Specify terminal 4.2
Split pages 4.5
STACK 3.6,4.14
Stack size 4.14
StackSize 3.6,3.11,3.12
Standard constants 4.41, 4.56
Standard devices 4.8
Standard linkage 4.41, 4.56
StartlO 4.30, 4.43, 4.57
- entry point 4.23, 4.24, 4.26
Startup 3.11, 3.12
- code 4.16
-information 4.21
-sequence 4.2, 4.7
Status 4.30
Store layout 4.12
STOREMAX 4.13
STOREMIN 4.13
Stream Control Block 4.74
String length 3.1
Substructures 4.16
Symbol data unit format 2.12, 2.14
Symbel table 2.2, 2.13
-block 2.4
- coagulation 2.13
Syntax of command file 4.12
SYS:4.21
Syslib4.18
Syslib segment 4.21
SYSLINK 4.1,4.11,4.12, 4.13, 4.14,
4.16,4.17
-arguments 4.11
- directives 4.17
- defined names 4.17
System data structures 4.13

System error checking 4.12
System generation 4.1, 4.11
System image 4.11, 4.16

System image file 4.11,4.12, 4.14
System initialization 4.63
System libraries 4.1

System library - see Syslib
System library segment 4.19, 4.21
System linker 4.11

System map 4.11

System restart task failure 1.11
System structures 3.1, 4.11

T (DISKED) 1.13
Table allocation 2.19
TASK 3.11,3.12,3.13, 4.14
Task code 3.7
Task control block (TCB) 3.4, 3.5,
3.6,4.14
Task dead 3.6, 3.9
Task declaration 4.14, 4.15
Task declaration section 4.19
Task field 3.13
Task held 3.6, 3.9
Task in dead state 3.6
Task information 3.6
Task interrupted 3.6
Task numbers 4.15
Task priority 4.14
Task section 4.21
Task selector 3.7,3.9
Task specification 4.14
Task state 3.6, 3.7
Task table 3.8
Task table size 4.14
Task wait 3.6, 3.9
Tasks 4.1
TASKTAB 3.4, 4.14
TaskWait 3.6
TCB3.4,3.5,3.6,3.7,3.8,3.9,4.14
TCBList 3.8
TCBSIZE 4.14
Terminal
- device 4.15
-driver 4.41
-file 1.7
-length 4.4
- width 4.4
-setup4.2,4.4
Terminate command 3.7
TestFlags 3.7
Text highlighting 4.4
Tick 4.55, 4.69
TICKS 3.2
TICKSPERSECOND 3.2
Time 3.2

Index

T'ripos Technical Reference Manual

Time of day field 4.60

Time stamping volumes 3.13,3.14
Time update 3.2

Timer 4.17,4.55

Translator output - see Object file
Transmission interrupt 4.38
TRAP vectors 4.12

Tree structure of directories 1.1
Tripos binary format 4.11

Tripos file structure 1.1

Tripos.i 4.41

TTY -specific commands 4.41
TYPE 3.11,3.13,4.2

Type field 3.11, 3.13

Type range of offset in block 1.13

Unallocated store 4.12
Underlining 4.4

Undo init 4.4
Unimplemented request 4.77
Uninit 4.4

Uninitialized workspace block 2.7
Unit data structure 4.39
Unit0 4.39

Unitl 4.39

Uninitialized data (bss) 2.2
Units of memory 4.13
UNLOADSEG 4.11, 4.14

Use count 3.14

User directory blocks 1.4, 1.5

V (DISKED) 1.13

Variable data structures 4.16
VDU 4.1,4.2

VolDays 3.13

VolMins 3.13

VolNode 3.17

VolTicks 3.13

Volume creation date 3.13
Volume entry for lock 3.17
Volume name 3.13
Volume identify 3.11

W (DISKED) 1.12,1.13
Wait bit 3.6
Waiting state 3.6
Width 4.4
Windup 1.13
Work queue 3.9
Workspace 4.11
Write 3.16, 4.32,4.33
Write back updates (DISKED) 1.12
Write interrupt 4.39
- handling 4.52, 4.53
Write request 4.45, 4.76
- handling 4.47

WriteFunc 3.16

Writerequest 4.73

Writing out system image file 4.12 .
X(DISKE 1.12,1.13

Y (DISKED}1.13

Z (DISKED)1.13
Zero all words of buffer 1.13

viii

http://UNLOADSEG4.il

	Introduction to Tripos

	Chapter 1: Simple Use of Tripos
	1.1 Chapter Overview
	1.2 Terminal Handling
	1.3. Using the Filing System
	1.3.1 Naming Files
	1.3.2 Using Directories
	1.3.3 Setting the Current Directory
	1.3.4 Setting the Current Device
	1.3.5 Attaching a Filenote
	1.3.6 Understanding Device Names
	1.3.7 Using Directory Conventions and Logical Devices

	1.4 Using Tripos Commands
	1.4.1 Common Tripos Commands
	1.4.2 Running Commands in the Background
	1.4.3 Executing Command Files
	1.4.4 Directing Command Input and Output
	1.4.5 Interrupting Tripos
	1.4.6 Understanding Command Formats

	1.5 An Example Session

	Chapter 2: Editing Files
	2.1 Screen Editor - ED
	2.1.1 Immediate Commands
	2.1.2 Extended Commands

	2.2 The Line Editor - EDIT
	2.2.1 Entering EDIT
	2.2.2 Basic use of EDIT

	Chapter 3: Further Use of Tripos
	3.1 Tasks
	3.2 Commands to Tasks
	3.2.1 Stopping a Task
	3.2.2 Starting and Restarting a Task
	3.2.3 Examining Tasks

	3.3 Patterns
	3.4 Command Files
	3.4.1 Example 1
	3.4.2 Example 2
	3.4.3 Example 3
	3.4.4 Example 4

	3.5 Command Paths
	3.6 Startup Sequence
	3.7 Errors

	Glossary

	Index

	Tripos User's Reference Manual
	Chapter 1: Tripos Commands
	1.1 Tripos Commands
	> <
	ALINK
	ASSEM
	ASSIGN
	BREAK
	C
	CD
	CONSOLE
	COPY
	DATE
	DELETE
	DIR
	DISKCOPY
	DISKDOCTOR
	ECHO
	ED
	EDIT
	ENDCLI
	FAILAT
	FAULT
	FILENOTE
	FORMAT
	IF
	INFO
	INSTALL
	JOIN
	LAB
	LIST
	MAKEDIR
	MOUNT
	NEWCLI
	PATH
	PROMPT
	PROTECT
	QUIT
	RELABEL
	RENAME
	RUN
	SEARCH
	SET-SERIAL
	SKIP
	SORT
	STACK
	STATUS
	TYPE
	VDU
	WAIT
	WHY

	Quick Reference Card

	Chapter 2: ED - The Screen Editor
	2.1 Introducing ED
	2.2 Immediate Commands
	2.2.1 Cursor Control
	2.2.2 Inserting Text
	2.2.3 Deleting Text
	2.2.4 Scrolling
	2.2.5 Repeating Commands

	2.3 Extended Commands
	2.3
.1 Program Control
	2.3.2 Block Control
	2.3.3 Moving the Current Cursor Position
	2.3.4 Searching and Exchanging
	2.3.5 Altering Text
	2.3.6 Repeating Commands
	2.3.7 Executing Tripos Commands in ED

	Quick Reference Card

	Chapter 3: EDIT - The Line Editor
	3.1 Introducing EDIT
	3.1.1 Calling EDIT
	3.1.2 Using EDIT Commands
	3.1.2.1 The Current Line
	3.1.2.2 Line Numbers
	3.1.2.3 Selecting a Current Line
	3.1.2.4 Qualifiers
	3.1.2.5 Making Changes to the Current Line
	3.1.2.6 Deleting Whole Lines
	3.1.2.7 Inserting New Lines
	3.1.2.8 Command Repetition

	3.1.3 Leaving EDIT
	3.1.4 A Combined Example: Pulling It All Together

	3.2 A Complete Specification of EDIT
	3.2.1 Command Syntax
	3.2.1.1 Command Names
	3.2.1.2 Arguments
	3.2.1.3 Strings
	3.2.1.4 Multiple Strings
	3.2.1.5 Qualified Strings
	3.2.1.6 Search Expressions
	3.2.1.7 Numbers
	3.2.1.8 Switch Values
	3.2.1.9 Command Groups
	3.2.1.10 Command Repetition

	3.2.2 Processing EDIT
	3.2.2.1 Prompts
	3.2.2.2 The Current Line
	3.2.2.3 Line Numbers
	3.2.2.4 Qualified Strings
	3.2.2.5 Output Processing
	3.2.2.6 End-of-File Handling

	3.2.3 Functional Groupings of EDIT Commands
	3.2.3.1 Selection of a Current Line
	3.2.3.2 Line Insertion and Deletion

	3.2.4 Line Windows
	3.2.4.1 The Operational Window
	3.2.4.2 Single Character Operations on the Current Line

	3.2.5 String Operations on the Current Line
	3.2.5.1 Basic String Operations
	3.2.5.2 The Null String
	3.2.5.3 Pointing Variant
	3.2.5.4 Deleting Parts of the Current Line

	3.2.6 Miscellaneous Current Line Commands
	3.2.6.1 Repeating the Last String Alteration
	3.2.6.2 Splitting and Joining Lines

	3.2.7 Inspecting Parts of the Source: the Type
Commands
	3.2.8 Control of Command, Input and Output Files
	3.2.8.1 Command Files
	3.2.8.2 Input Files
	3.2.8.3 Output Files

	3.2.9 Loops
	3.2.10 Global Operations
	3.2.10.1 Setting Global Changes
	3.2.10.2 Cancelling Global Changes
	3.2.10.3 Suspending Global Changes

	3.2.11 Displaying the Program State
	3.2.12 Terminating an EDIT Run
	3.2.13 Current Line Verification
	3.2.14 Miscellaneous Commands
	3.2.15 Abandoning Interactive Editing

	Quick Reference Card

	Appendix A: Error Codes and Messages
	User Errors
	Programmer Errors

	Index

	Tripos Programmer's Reference Manual
	Chapter 1: Introduction to Programming
	1.1 Programming under Tripos
	1.1.1 Creating an Executable Program
	1.1.2 Calling Tripos Functions
	1.1.3 Running Programs under the CLI
	1.1.4 Running Programs as a New Task
	1.1.5 Program Termination
	1.1.6 Example

	1.2 Tasks
	1.2.1 Device Handler Tasks
	1.2.2 CLI
	1.2.3 Debug
	1.2.4 User Tasks

	1.3 Packets
	1.3.1 QPkt and TaskWait
	1.3.2 Device Handlers
	1.3.3 Device Handler Packet Types
	1.3.4 Device Drivers
	1.3.5 Device Driver Packet Types

	Chapter 2: Calling the Kernel
	2.1 Syntax
	2.2 Kernel Functions
	Memory Management
	FreeMem
	GetMem

	Task Management
	AddTask
	ChangePri
	Forbid
	Hold
	Permit
	Release
	RemTask
	SetFlags
	SuperMode
	TestFlags
	UserMode

	Device Management
	AddDevice
	RemDevice

	Message Passing
	DQPkt
	FindTask
	QPkt
	TaskWait
	TestWkQ

	Miscellaneous
	FindDOS
	RootStruct

	Quick Reference Card

	Chapter 3: Calling the DOS
	3.1 Syntax
	3.2 Tripos Functions
	File Handling
	Close
	CreateDir
	CurrentDir
	DeleteFile
	DupLock
	Examine
	ExNext
	Info
	Input
	IoErr
	Islnteractive
	Lock
	Open
	Output
	ParentDir
	Read
	Rename
	Seek
	SetComment
	SetProtection
	UnLock
	WaitForChar
	Write

	Task Handling
	CreateProc
	DateStamp
	Delay
	DeviceProc
	Exit

	Loading Code
	Execute
	LoadSeg
	UnLoadSeg

	Miscellaneous
	VDU

	Quick Reference Card

	Chapter 4: The Macro Assembler
	4.1 Introduction to the 68000 Microchip
	4.2 Calling the Assembler
	4.3 Program Encoding
	4.3.1 Comments
	4.3.2 Executable Instructions
	4.3.2.1 Label Field
	4.3.2.2 Local Labels
	4.3.2.3 Opcode Field
	4.3.2.4 Operand Field
	4.3.2.5 Comment Field

	4.4 Expressions
	4.4.1 Operators
	4.4.2 Operand Types for Operators
	4.4.3 Symbols
	4.4.4 Numbers

	4.5 Addressing Modes
	4.6 Variants on Instruction Types
	4.7 Directives
	Assembly Control Directives
	SECTION
	RORG
	OFFSET
	END

	Symbol Definition Directives
	EQU
	EQUR
	REG
	SET

	Data Definition Directives
	DC
	DCB
	DS

	Listing Control Directives
	PAGE
	LIST
	NOLIST
	SPC
	NOPAGE
	LLEN
	PLEN
	TTL
	NOOBJ
	FAIL
	FORMAT
	NOFORMAT

	Conditional Assembly Directives
	CNOP
	IFxx

	IFC
	IFD
	ENDC

	Macro Directives
	MACRO
	NARG
	ENDM
	MEXIT
	XDEF
	XREF

	General Directives
	INCLUDE
	MASK2
	IDNT

	Chapter 5: The Linker
	5.1 Introduction
	5.2 Using the Linker
	5.2.1 Command Line Syntax
	5.2.2 WITH Files
	5.2.3 Errors and Other Exceptions
	5.2.4 MAP and XREF Output

	5.3 Overlaying
	5.3.1 OVERLAY Directive
	5.3.2 References To Symbols
	5.3.3 Cautionary Points

	5.4 Error Codes and Messages

	Chapter 6: The System Debugger - DEBUG
	6.1 Debugging
	6.2 Examining Store
	6.3 Updating Store
	6.4 Printing Styles
	6.5 Expressions
	6.6 Continuing from Aborts
	6.7 Breakpoints and Tracing
	6.8 Disassembly
	6.9 Backtrace
	6.10 Miscellaneous Commands
	Quick Reference Card

	Chapter 7: Full Screen Support
	7.1 Introduction
	7.2 VDU

	Chapter 8: Floating Point
	8.1 Floating Point Format
	8.1.1 Single Precision
	8.1.2 Double Precision

	8.2 Floating Point Calling Sequence
	8.2.1 Single Precision
	8.2.2 Double Precision

	8.3 Condition Codes
	8.4 Functions

	Index

	Tripos Technical Reference Manual
	Chapter 1: The Filing System
	1.1 Tripos File Structure
	1.1.1 Root Block
	1.1.2 User Directory Blocks
	1.1.3 File Header Block
	1.1.4 File List Block
	1.1.5 Data Block

	1.2 DISKED - The Disk Editor

	Chapter 2: Binary File Structure
	2.1 Introduction
	2.1.1 Terminology

	2.2 Object File Structure
	2.2.1 hunk_unit (999/3E7)
	2.2.2 hunk_name (1000/3E8)
	2.2.3 hunk_code (1001/3E9)
	2.2.4 hunk_data (1002/3EA)
	2.2.5 hunk__bss (1003/3EB)
	2.2.6 hunk_reloc32 (1004/3EC)
	2.2.7 hunk_relocl6 (1005/3ED)
	2.2.8 hunk__reloc8 (1006/3EE)
	2.2.9 hunk_ext (1007/3EF)
	2.2.10 hunk_symbol (1008/3F0)
	2.2.11 hunk_debug (1009/3F1)
	2.2.12 hunk_end (1010/3F2)

	2.3 Load Files
	2.3.1 hunk_header (1011/3F3)
	2.3.2 hunk_over!ay (1013/3F5)
	2.3.3 hunk_break (1014/3F6)

	2.4 Examples

	Chapter 3: Tripos Data Structures
	3.1 Introduction
	3.2 Global Data Structure
	3.2.1 BLKLIST
	3.2.2 DAYS, MINS and TICKS
	3.2.3 INFO
	3.2.4 KSTART
	3.2.5 TASKTAB
	3.2.6 Task Control Block (TCB)
	3.2.7 The Task State
	3.2.8 TCB
List
	3.2.9 Device Table
	3.2.10 Free Memory Allocation
	3.2.11 Info Substructure

	3.3 File Info Structure
	3.4 Segment Lists
	3.5 File Handles
	3.6 Locks

	Chapter 4: Installation
	4.1 Introduction
	4.2 VDU Installation
	4.3
MOUNT
	4.4 System Generation
	4.4.1 Memory Specification
	4.4.2 Task and Segment Declarations
	4.4.3 Device Declarations
	4.4.4 The INFO Substructure
	4.4.5 Example

	4.5 Device Drivers
	4.5.1 Device Control Block (DCB)
	4.5.2 Device Driver Code
	4.5.3 Examples of Device Drivers
	Disk Device Driver
	Serial Device Driver
	Clock Device Driver

	4.5.4 Device Dependent Library

	4.6 Device Handlers
	4.7 Porting Tripos

	Index

