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While the slogan ‘‘no measurement without disturbance’’ has established itself under the name of the

Heisenberg effect in the consciousness of the scientifically interested public, a precise statement of this

fundamental feature of the quantum world has remained elusive, and serious attempts at rigorous

formulations of it as a consequence of quantum theory have led to seemingly conflicting preliminary

results. Here we show that despite recent claims to the contrary [L. Rozema et al, Phys. Rev. Lett. 109,

100404 (2012)], Heisenberg-type inequalities can be proven that describe a tradeoff between the precision

of a position measurement and the necessary resulting disturbance of momentum (and vice versa). More

generally, these inequalities are instances of an uncertainty relation for the imprecisions of any joint

measurement of position and momentum. Measures of error and disturbance are here defined as figures of

merit characteristic of measuring devices. As such they are state independent, each giving worst-case

estimates across all states, in contrast to previous work that is concerned with the relationship between

error and disturbance in an individual state.
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In spite of their important role since the very beginning
of quantum mechanics, uncertainty relations have recently
become the subject of active scientific debates. On one
hand, entropic versions of the information-disturbance
tradeoff [1] have become an important tool in security
proofs [2] for continuous variable cryptography. On the
other hand, there were widely publicized [3] claims of a
refutation [4–6] of the error-disturbance uncertainty rela-
tions heuristically claimed by Heisenberg [7]. A review of
the literature on uncertainty relations is given in [8].

Heisenberg’s 1927 paper [7] introducing the uncertainty
relations is one of the key contributions to early quantum
mechanics. It is part of virtually every quantum mechanics
course, almost always in the version forwarded by Kennard
[9], Weyl [10], and Robertson [11]. What is often over-
looked, however, is that this popular version is only one
way of making the idea of uncertainty precise. The original
paper begins with a famous discussion of the resolution of
microscopes, in which the accuracy (resolution) of an
approximate position measurement is related to the distur-
bance of the particle’s momentum.

This situation is in no way covered by the standard
relations, since in an experiment concerning the
Kennard-Weyl-Robertson inequality no particle meets
with both a position and a momentum measurement.
Heisenberg’s semiclassical discussion has no immediate
translation into the modern quantum formalism, particu-
larly since the momentum disturbance prima facie involves
the comparison of two (generally) noncommuting quanti-
ties, the momentum before and after the measurement.
Such a translation does require some careful conceptual
work, and one can arrive at different results. This is shown

by the example of Ozawa [4], who defines a relation he
claims to be a rigorous version of Heisenberg’s ideas, and
shows that it fails to hold in general. A suggested modifi-
cation of the false relation has recently been verified ex-
perimentally [5,6]. This has been widely publicized as a
refutation of Heisenberg’s ideas, in apparent contradiction
to our main result. However, there is no contradiction, and
the disagreement only shows that there is a grain of rigor-
ously explicable truth in Heisenberg, provided one looks in
the right place for it. While Ozawa aims to describe the
interplay between error and disturbance for an individual
state, our approach gives a state-independent characteriza-
tion of the overall performance of measuring devices. In
[12] we show that Ozawa’s notions, though mathematically
well defined, have only limited validity as measures of
error and disturbance [13].
We will describe and prove an inequality of the classic

form

ð�QÞð�PÞ � @

2
; (1)

in which the quantities �Q and �P are not given by the
variances of the position and momentum distributions in
the same state, as in the textbook inequality. Instead,
following closely the suggestion of Heisenberg, they are
explicitly defined figures of merit for a microscopelike
measurement scenario: the accuracy �Q of a position
measurement and the momentum disturbance �P incurred
by it. Moreover, the inequality is sharp, and we will
describe explicitly the cases of equality. We believe that
the definitions and results are simple enough to use in a
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basic quantum mechanics course, although the full proof
uses some tools beyond such a course.

The main progress over earlier work [14] is a simpler
definition of the � quantities, using the idea of calibration
[16]. This definition does not require the Monge transpor-
tation metric, which led in [14] to quantities akin to abso-
lute deviations rather than root mean square deviations,
and hence to a constant different from @=2 in (1). A
changed constant (even if optimal for the particular defi-
nitions of �) puts an undue burden on the memory of
undergraduates. Using variances also for calibration solves
this problem. The basic ideas of the proof in [14] can be
taken over.

To keep matters simple, we stick to the classic situation
of two canonically conjugate variables of a single quantum
degree of freedom. For the sake of comparison, let us recall
the scenario of the Kennard-Weyl-Robertson inequality,
which we call preparation uncertainty (see Fig. 1). The

spreads ��ðAÞ ¼ ½tr�A2 � ðtr�AÞ2�1=2 of position Q and

momentum P are determined in separate experiments on
the same source, given by a density operator �. The un-
certainty relation ��ðQÞ��ðPÞ � @=2 is a quantitative

version of the observation that there are no dispersion-
free quantum states [17], as applied to a canonical pair of
observables. It is not to be found in Heisenberg’s paper [7],
except in a rough discussion of postmeasurement states,
which he assumes to be Gaussian with a spread related to
the accuracy of a position measurement.

In contrast, Fig. 2 shows the scenario discussed by
Heisenberg. The middle row shows an approximate posi-
tion measurement Q0 followed by a momentum measure-
ment. How should we define the momentum disturbance
and position error in this setup? The error of the approxi-
mate position measurement Q0 clearly refers to the com-
parison with an ideal measurement Q as shown in the first
row. For the momentum disturbance we can say the same:
We have remarked that the momenta before and after the
microscope interaction do not commute, so the difference
makes no sense in the individual case. However, we can
compare the distributions of the momenta measured after
the position measurement (we call this effective measure-
ment P0) with the distribution an ideal momentum

measurement P would have given on the same input state.
Come to think of it, this is precisely how we detect distur-
bance in other typical quantum settings. Consider, for
example, the double slit experiment. It is well known that
illuminating the slits enough to detect the passage of a
particle through one or the other hole makes the interfer-
ence fringes go away. Clearly, the light used for observa-
tion disturbs the particles, and the evidence for this is once
again the change of the distribution on the screen. Note that
this way of looking at error and disturbance restores the
symmetry between the position and momentum aspects of
this scenario. The uncertainty relations we will prove
therefore apply just as well to the position disturbance
caused by an approximate momentum measurement and,
more generally, to any measurement scheme M, which
produces in every run a value p and a value q (see the
dashed outline in Fig. 2). This generalization also covers
any successive measurement scenario, in which one tries to
correct for some of the momentum disturbance, perhaps
using the detailed knowledge of how the position measur-
ing device works. In principle, this could allow a reduction
of uncertainties. However, the inequality holds without
change, which gives a precise meaning and a proof to
Heisenberg’s phrase ‘‘uncontrollable momentum distur-
bance,’’ which he himself uses without further justification.
Let us now discuss the definition of �ðQ;Q0Þ in more

detail (the momentum case will be completely analogous).
We think of this ‘‘microscope resolution’’ as a figure of
merit for the device, a promise which might be advertised
by the manufacturer, and which could be verified by a
testing lab. �ðQ;Q0Þ ¼ 0 will mean that the ‘‘approxi-
mate’’ device Q0 is completely equivalent to the ideal Q;
i.e., for every input state � the output distributions will be

ρ Q

ρ P

∆ρ(Q)

∆ρ(P)

FIG. 1. Scenario of preparation uncertainty. �� is the root of
the variance of the distribution obtained for the indicated ob-
servable in the state �. In this pair of experiments no particle is
subject to both a position and a momentum measurement.

ρ P'Q'

ρ P

ρ Q

M

 ∆(P, P' )

 ∆(Q, Q' )

FIG. 2. Scenario of measurement uncertainty for successive
measurements, as discussed by Heisenberg (middle row). An
approximate position measurement Q0 is followed by an ideal
momentum measurement, effectively given a measurement P0 on
the initial state. The accuracy �ðQ;Q0Þ quantifies the difference
between the output distributions of Q0 and an ideal position
measurement Q (first row). Similarly, the momentum distur-
bance �ðP;P0Þ quantifies the difference between the distribu-
tions obtained by P0 and by an ideal momentum measurement P
(last row). The definitions for these � quantities (see text) can be
applied, more generally, to an arbitrary joint measurement M
(dashed box). This can be any device producing, in every shot, a
q value and a p value. Q0 and P0 are then defined as the
marginals of M, obtained by ignoring the other output.
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the same. Similarly, a small value might indicate that the
difference in the distributions will be small for every input
state. This requires a definition for the distance of two
general probability distributions, which we will give below
(see the section labeled ‘‘Uncertainty metrics’’). However,
we can also take a simpler approach, which avoids verify-
ing a statement for all input states. Instead, the testing lab
might concentrate on those states, which at least classically
would seem to be the most demanding ones, namely, states
for which Q has a known and sharp value. We call this
process ‘‘calibration.’’ Still, this requires testing of many
states but no longer on very mixed states, or states which
contain coherent superpositions of widely separated wave
functions.

An advantage of the calibrated error is that we no longer
need a quantitative evaluation of the distance between
arbitrary probability distributions, but just between an
arbitrary distribution and a known sharp value �. For this
we naturally take the root mean square deviation from �,

Dð�;Q0;�Þ ¼ hðq0 � �Þ2i1=2
�;Q0 ; (2)

where the angle brackets denote the expectation of the
indicated function of the output q0, in the distribution
obtained on the preparation � with the device Q0.
This statement allows for Q0 to be a general positive
operator valued measurement. For projection valued
observables likeQwe could simplify this toDð�;Q;�Þ2 ¼
tr½�ðQ� �1Þ2�. The latter quantity is to be small, say� ",
for the input states � used for calibration. Hence, we set
�cðQ;Q0Þ to be

lim
"!0

supfDð�;Q0;�Þj�; �;Dð�;Q;�Þ � "g: (3)

Here, the set is nonempty, since for any � and � > 0 there is
a � such that trð�QÞ ¼ � and Dð�;Q;�Þ< �; moreover,
the limit exists, because with decreasing " the supremum is
over fewer and fewer states, so the function is nonincreas-
ing. In the case of a bad approximation, the supremum can
be infinite, in which case we put �cðQ;Q0Þ ¼ 1.

With this definition, and the corresponding one for P, we
can state our main result. We just assume that theQ0 and P0
are the marginal observables of some joint measurement
device M whose calibration errors are both finite. As dis-
cussed above, this also covers the case of a sequential
measurement (Fig. 2). Then

�cðQ;Q0Þ�cðP;P0Þ � @

2
: (4)

This inequality is sharp, and equality holds for an M for
which the joint distribution of (q, p) outputs is the so-called
Husimi distribution [18] of the input state, which can be
obtained by a Gaussian smearing of theWigner function. In
the extreme case of one of themarginals being error free, the
error for the other marginal is necessarily infinite.

Proof.—The proof has two parts: The first is elementary
and concerns the special case that M is a covariant phase

space observable. These observables [18–21] can be
described explicitly, including a very simple form of their
marginals Q0 and P0, by which (4) can be reduced to the
preparation uncertainty. The second, more technical part of
the proof reduces the general case to the covariant case by
an averaging method, and is taken from [14]. We only
sketch it [22].
By a covariant measurement we mean one which has a

natural symmetry property for both position and momen-
tum translations. That is, if we apply it to an input state
shifted in position by �q and in momentum by �p, the
output distribution will be the same as before, transformed
by ðq; pÞ � ðqþ �q; pþ �pÞ. These symmetries are
implemented by the Weyl operators (also known as
Glauber translations) Wðq; pÞ ¼ exp½ðiqP� ipQÞ=@�.
Then the whole observable can be reconstructed from its
density at the origin, which must be [20,21] a positive
operator � of trace 1, i.e., a density operator as for a
quantum state. The probability for outcomes in a set S �
R2 is then given by the positive operator

MðSÞ ¼
Z
S

dqdp

2�@
Wðq; pÞ��Wðq; pÞ: (5)

A remarkable property of these joint measurements of
position and momentum is that their marginals take a
particularly simple form: The probability density of the
outputs q0 obtained on a state � is a convolution of
the position distributions of � and�. That is, we can model
the output distribution by taking q distributed like the
outputs of an ideal measurement Q on �, and adding a
noise term q00, which is independent of q and distributed
according to the position distribution of �. The same
description applies to the marginal P0.
Therefore, for a covariant measurement we can imme-

diately identify �cðQ;Q0Þ without further computation:
The density � is a fixed characteristic property of the
measurement. Therefore, as the position distribution of �
becomes sharply concentrated around some �, the outputs
converge in distribution to q0 ¼ �þ q00, so

�cðQ;Q0Þ ¼ Dð�;Q; 0Þ; (6)

which is the ‘‘size’’ (the root mean square deviation) of
the ‘‘noise.’’ For example, if � has sharp position distribu-
tion at some value a, this is equal to jaj, since the outputs
will be off by a shift a (i.e., q0 � qþ a). Hence, one will
choose � with zero mean. The uncertainty product then
becomes �cðQ;Q0Þ�cðP;P0Þ ¼ ��ðQÞ��ðPÞ, which is
� @=2 by the preparation uncertainty relation applied to
�. This proves Eq. (4) for the case of covariant measure-
ments, and at the same time provides examples of mini-
mum uncertainty measurements: all we have to do is to
choose � as a centered minimum uncertainty state, i.e., as
� ¼ j�ih�j with� a real valued centered Gaussian wave
function. The phase space distribution associated with an
input state � by this measurement M is then the Husimi
distribution [18].
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The more technical part of the proof of Eq. (4) is to show
that for anymeasurementM there is a covariant one, say �M,
with at most the same�’s. Basically, �M is obtained fromM
by averaging, the technical problem being that the parame-
ter range of (q, p) over which one has to ‘‘average’’ is
infinite (see [14]). Let us introduce M"ð�Q;�PÞ as the
set of measurements M such that, for A ¼ Q, P,
Dð�; A0;�Þ � �A whenever Dð�; A;�Þ � " for given �A
and ". This is a convex set, and compact in a suitable weak
topology. We can write the covariance condition as a fixed
point equation for some transformations on the set of all
observables, namely, a unitary transformation by a Weyl
operator combined with a shift in the argument. These
transformations commute, and leave M"ð�Q;�PÞ invari-
ant. Therefore, by the Markov-Kakutani fixed point theo-
rem this set, if nonempty, must also contain a covariant
element, which by construction has at most the same uncer-
tainties. This concludes our sketch of the proof of Eq. (4).

Uncertainty metrics.—The calibration criterion only
involves highly concentrated states so that, in principle,
on general input states the optimal joint measurement
might produce output distributions quite different from
the ideal ones. One can easily give examples of a projec-
tion valued observable A and an ‘‘approximation’’ A0 for
which the calibrated distance is a rather optimistic esti-
mate. That is, if we denote by �ðQ;Q0Þ a figure of merit
based on comparison of all states, we might have
�ðQ;Q0Þ � �cðQ;Q0Þ. Note first that in the covariant
case this cannot happen: The statement that Q0 can be
simulated by adding fixed independent noise to Q is valid
for arbitrary input states, and any reasonable definition of
�ðQ;Q0Þ should give the size of the noise. However, in the
general case we would need a definition which is indepen-
dent of that special form. Here we will introduce such a
quantity and show that an uncertainty relation holds for it.

The idea is to define a metric D on probability distribu-
tions which extends (2) in the sense that Dð�;Q0;�Þ
becomes the metric distance between the output distribu-
tion of Q0 and a point measure at �. Then we set

�ðQ;Q0Þ ¼ sup
�
Dð�;Q;�;Q0Þ; (7)

where the expression on the right-hand side is the metric
distance of the two output distributions. Since �c takes the
supremum over the smaller set of highly concentrated
states, we have �ðQ;Q0Þ � �cðQ;Q0Þ. The metric D on
probability distributions is basically fixed by our require-
ments as what is technically known as the Wasserstein-2
distance, which is a variant of the Monge-Kantorovich
transport or ‘‘earth mover’s’’ distance (see [24] for a study
of such metrics). The problem addressed byMongewas the
cost of transforming a hill (earth distribution �) into some
fortifications (earth distribution �), when the workers had
to be paid by the bucket and the distance covered. A
transport plan, also known as a coupling between the
measures � and �, would be a measure 	 on R	 R

describing how much earth was to be moved from x to y.
This entails that the marginals of 	 must be � and �. The
cost in the Monge problem is

R
	ðdxdyÞjx� yj, which is

then minimized by choosing an optimal 	. In the
Wasserstein-2 distance the cost function is chosen to be
quadratic in the distance and an overall root is taken to
bring the units back to a length

Dð�;�Þ ¼ inf
	

�Z
	ðdxdyÞjx� yj2

�
1=2

; (8)

where the infimum is over all couplings 	. Consider now
the case that � arises from � by adding independent noise
with distribution 
, which amounts to the convolution � ¼
� � 
. This immediately suggests a transport plan, namely,
shifting each individual element of the � distribution by
the amount suggested by the noise [formally, 	ðdxdyÞ ¼
�ðdxÞ
½dðy� xÞ�]. This may not be optimal, but gives the
estimate Dð�;� � 
Þ � Dð
; 0Þ, the size of the noise,
where once again the second argument stands for the point
measure at zero. This says that the largest distance is
attained for a point measure �, and therefore

�ðQ;Q0Þ ¼ �cðQ;Q0Þ (9)

whenever Q0 is the marginal of a covariant measurement.
To summarize this section. if we define the deviation
between Q and Q0 by a worst-case figure of merit over
all states, the uncertainty relation once again holds.
Moreover, the two notions coincide on all covariant mea-
surements, and in particular for the cases of equality.
Conclusion and outlook.—With the inequality (4) we

have provided a general, quantitative quantum version of
Heisenberg’s original semiclassical uncertainty discussion.
This is a remarkable vindication of Heisenberg’s intuitions,
far beyond the usual view, which takes the quantitative
content of the paper to be summarized entirely by the prepa-
ration inequality, and sees the discussion of the microscope
as no more than a heuristic order of magnitude argument.
Our conceptual framework applies to any pair of observ-

ables which are not jointly measurable. However, evaluat-
ing the respective uncertainty bounds, which will typically
not be expressed in terms of the product of uncertainties, is
another matter requiring further studies.
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