Asynchronous Processing in Force.com

Asynchronous Processing in Force.com

© Copyright 2000-2014 salesforce.com, inc. All rights reserved. Salesforce.comis a registered trademark
of salesforce.com, inc., as are other names and marks. Other marks appearing herein may be
trademarks of their respective owners.

Table of Contents

Table of Contents

Asynchronous Processing in Force.comu......iiiiiniiiiiiiiiiiincnnnnccnecneccsnsecesnnees 1
LT LTt T N 1
Underlying Concepts.....ccuuiiiiuiiiiiiiiiiiiiiniiiiniiieiieenisiieeesssscssssessssssssssssssssssssssssssssssssssns 1
Best Practices.....ccuiiiiiinnmniiiiiiiiiiiiiitiiiiieecciiniiniireecccnsssissanee e e saasas s s e s e s s s s sssasaaaaeees 7
SUMMATY .cctiiiiiiiiitiiiiiee ettt sae e e ssesbae e s s s sabb e e sessbbe e e ssssbseesssssssseesssssseesssons 8

Table of Contents

ii

ASYNCHRONOUS PROCESSING IN
FORCE.COM

Introduction

Who Should Read This

This paper is for experienced technical architects who work with Salesforce deployments who want to have a better understanding
of Force.com asynchronous processing. This will help an architect build effective design patterns around asynchronous
processing.

Asynchronous Overview

An asynchronous process is a process or function which does not require interaction with a user. It can be used to execute a
task "in the background" without the user having to wait for the task to finish. Force.com features such as Asynchronous Apex
(efuture), Batch Apex, Bulk API, Reports and other features use asynchronous processing to efficiently process requests.

Asynchronous processing provides a number of benefits including:

« User Efficiency — Making a user wait for a long running process is not an efficient use of the user’s time. It can be done in
the background and the user can see the results at their convenience.

* Resource Efficiency — Each Salesforce instance has finite set of resources. Under normal load patterns, these resources can
be managed for asynchronous processes which results typically results in faster request processing.

« Scalability — By allowing some features of the Force.com to execute asynchronously, resources can be managed and scaled

quickly. This allows the Salesforce instance to handle more customer jobs using parallel processing.

There are over 200 different types of asynchronous requests on Force.com, some are user initiated and some are internal
housekeeping functions. Force.com asynchronous processing makes a best effort to complete requests as quickly as possible,
however there is no guarantee on wait or processing time

What'’s in This Paper

The section Best Practices on page 7 lays out techniques to design better asynchronous processes on the platform. The section
Underlying Concepts on page 1 provides details of Salesforce mechanisms and implementation that affect asynchronous
processing in non-obvious ways.

Underlying Concepts

Underlying Concepts

The material in this section provides a background for understanding the best practices in this paper. It will help you adapt
these practices to your own situation.

Asynchronous Processing Overview

Asynchronous processing, in a multi-tenant environment, presents some challenges that need to be handled:

Asynchronous Processing in Force.com Underlying Concepts

« Ensure fairness of processing — Make sure every customer gets a fair chance at processing resources.

+ Ensure transactional capabilities — Ensure equipment or software failures allow continued processing at reduced capacity
and requests are persisted until completion.

The following diagram provides a high level overview of Force.com’s asynchronous processing technology:

Application Servers

Salesforce.com uses a queue-based asynchronous processing framework. This framework is used to manage asynchronous
requests within each instance. The request lifecycle is made up of three parts:

1. Enqueue — This is the act of putting asynchronous requests in the queue. This could be an Apex batch request, @ future
request or one of many others. The Salesforce application or a custom application will enqueue requests along with the
appropriate data to process that request.

2. Persistence — The requests are stored in persistent storage for failure recovery and to provide transactional capabilities.

3. Dequeue — This is the act of taking requests off the queue and processing them. Transaction management occurs in this
step to assure messages are not lost if there is a processing failure.

Each request is processed by a handler. The handler is the code that performs functions for a specific request type.

The handlers are executed by worker threads on each of the application servers that make up an instance. Each application
server supports a finite amount of threads. Each thread can execute most any type of handler and the handler determines how
many threads are available to process requests for its given request type. The threads request work from the queuing framework
and when received starts a specific handler to do the work. The following diagram shows the asynchronous processing in
action:

Asynchronous Processing in Force.com

Batch Apex

Bullk AP|
@future

5% [EIE @'ﬂ
- BT o,

Asynchronous Queue

Typically requests from different organizations for different functions will be in the queue. As one request is completed, another
request is removed from the queue and processed. Error handling and failure recovery is built in so the requests are not lost if
a queue failure or handler failure occurs.

In the scenario where one organization adds a large number of requests to the queue, it could prevent other customers from
getting access to the worker threads. The queuing framework implements fflow control which prevents a single customer from
using all of the available threads.

When a worker thread is available to process a request, the queuing framework will determine if the maximum number of
worker threads (as determined by the handler) is being used by a single organization. If so, the framework will “peek” into the
queue to see if other organizations have requests waiting. The set of requests is called the pee sez and is limited to a fixed
number of requests at the front of the queue (currently set at 2000 requests). The framework will look for the requests for a
different organization and process those (as long as that organization isn’t currently consuming all of its allocated threads for
a given handler).

For example, assume organization 1 creates 13 @ future requests that are at the head and adjacent in the queue as shown in
the diagram below:

Underlying Concepts

Underlying Concepts

Asynchronous Processing in Force.com

>
a

a a 2

< = 2

— o =

S w 5

m m &

Organization 2 adds two @ future requests to the queue:

. @future

. Batch Apex

o
<
=

=
o

And two more organization 1 @ future requests are en-queued. At this point, the queue looks like this:

o
<
=
=
&3

Assuming the @future handler specifies 12 maximum worker threads per organization. This indicates that a maximum of

12 threads can process requests from a single organization.

Asynchronous Processing in Force.com Underlying Concepts

Batch Apex

Bulk API
@future

org3 [A3|[B3][F3

Peek Set
|

0
Processed by Skipped due 12 processed
next available to flow control by available
thread threads

Assuming 13 threads are available, a maximum of 12 threads per organization and no other requests are being processes for
organization 1 or organization 2 and a peek set size of 15, the processing will be as follows (see diagram above):

1. 12 threads will take the first 12 requests from organization 1.
2. The 13th thread will not process a request from organization 1 although it is the next one in the queue. This is because
organization 1 has taken its allotted amount of threads. This request will remain in the queue at its current position until

one of the 12 threads becomes available. This request is delayed.

3. The framework will scan for requests from other organizations within the peek set. It will find an organization 2 request
and begin processing the first request for organization 2, skipping the 13 request for organization 1.

What happens when a particular organization requests occupy the entire peek set when the queue is scanned in step 3 above?

Asynchronous Processing in Force.com Underlying Concepts

Bulk AP
2 | Batch Apex
| @future

Orgl |A1

orgz [A3][B3|[F3

Peek Set

FayFajiF1jFafFajFafFafFafFafrajfFaifFa jfFa jfF1jFa

| J

[

Moved to the
back of the
queue with
delay

Assume 12 threads are processing requests from organization 1. Also, assume organization 1 has 15 requests remaining in the
queue and organization 2 has two requests in the queue as shown in the diagram above.

Since all of the requests in the peek set are from a single organization (organization 1 in this case), those 15 requests will be
moved to the back of the queue with a specific delay. This is called an extended delay.

The delay is different for each message. For example, for @future requests, the delay is 5 minutes. That means a minimum
of 5 minutes must elapse before those requests are eligible for processing.

When the requests become eligible for processing, it’s possible for these requests to be acted upon by flow control and again
get moved to the back of the queue and delayed. Therefore requests can be delayed several times before they are completed.

Additionally, when those requests are moved, they will be put back into the queue in the same logical order and they may have
other requests intermingled with them.

Resource Conservation

Asynchronous processing in Force.com is very important but has lower priority over real-time interaction via the browser and
API. Message handlers run on the same application servers that process interactive requests, so it’s possible that asynchronous
processing or increased interactive usage can cause a sudden increase in usage of computing resources. To ensure there are
sufficient resources to handle a sudden increase, the queuing framework will monitor system resources such as server memory
and CPU usage and reduce asynchronous processing when thresholds are exceeded. This will give resource priority to interactive
requests. Once the resources fall below thresholds, normal asynchronous processing will continue.

Asynchronous Processing in Force.com Best Practices

Best Practices

Best Practices for Using Asynchronous Processing

The Force.com platform provides user controlled features that use asynchronous processing. Each feature has its own values
for the number of worker threads per organization and the delay time for requests that are moved to the back of the queue.

Apex @future

Every @future invocation adds one request to the asynchronous queue. Design patterns that would add large numbers
of @future requests over a short period of time should be avoided unless absolutely needed. If your design has the potential
to add 2000 or more requests at a time, requests could get delayed due to flow control. Best practices include:

+ Ensure that the @future requests execute as fast as possible. The longer the request executes the more likely flow
control will occur when there are a large number of @future requests. This includes minimizing web service call out
times if utilized.

+ Conduct thorough testing at scale of the @future design. This will help determine if delays may occur given the
design at current and future volumes.

« Consider using Batch Apex instead @future to process large number of records asynchronously. This will be more
efficient then creating a @future request for each record.

« Consider submitting smaller batches of @future requests as not to exceed the peek set limit of 2000.

Extended delay time is 5 minutes.

Case studies:

« Consumer web page is created using Force.com Sites. Each person registering at the site requires three non related
web service call outs to validate the consumer. These validations need to occur asynchronously after the consumer
submits their information. Designed solution was to use one @ future call for each web service call thereby creating
large volumes of @future calls. A better design is to create a single @future request for each consumer that will handle
the three call outs. This solution creates a much lower volume of requests.

+ For each new lead created, outside data validation was required via web services call out. The designed solution was
to create one @future call for every record which would do the web service call out. This created large volume of
@future requests with a single call out. a better design pattern is to use batching features to make more efficient call
outs. Create a call out that could accept multiple records and then use @future to process multiple records in one call
out. This solution creates a much lower volume of requests

Batch Apex

Ensure that the Batch Apex process executes efficiently as possible and minimize the batches submitted at one time.
Like @future requests, batch Apex needs to execute as fast as possible. Best practices include:

+ Tune any SOQL query to gather the records to execute as quickly as possible.

« Minimize web service call out times if utilized.

Extended delay is not applicable to batch Apex.

Bulk API

The Bulk APT allows a company to submit large volumes of data for processing asynchronously into Salesforce. Batches
of records are submitted via the Bulk API and those batches are then enqueue and processed. If too many batches are
enqueue at once, they may be subject to flow control therefore minimize the number of batches if possible.

Asynchronous Processing in Force.com Summary

Summary

Summary
When using the asynchronous features of Force.com, remember these keys points:

« Make @future and Batch Apex code is efficient as possible. Long execution times increase the chance of delays and
extended delays.
« Minimize the number of the asynchronous requests created to minimize the chance of delay and extended delays.

« Asynchronous requests are processed as quickly as possible governed by available resources and flow controls. There is no
guaranteed processing time.

	2
	Binder1
	Updated Asynchronous Processing in Force.com - Final
	salesforce_async_processing
	Asynchronous Processing in Force.com
	Introduction
	Underlying Concepts
	Best Practices
	Summary

