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INTRODUCTION

ML techniques offer great potentials to support decision-making processes in companies by allowing 
the prediction of unknown information. The ability to extract and approximate system relationships 
from training data without explicit a priori knowledge makes them highly suitable for modeling highly 
complex and dynamic real-world systems. Due to the learning capability of ML-based systems, prob-
lems can be solved more flexibly, with less effort and with higher accuracy, and there is the potential to 
automate decisions (Wahlster, 2017). Against this background, ML-based applications are of particular 
importance, especially in the field of logistics. However, while the majority of logistics companies al-
ready use technologies for real-time visibility like Track & Trace, ML-based decision support systems 
have so far rarely been applied in logistics (Straube, 2019). The goal of the chapter is to demonstrate 
the application of ML methods on a significant use case in logistics practice: the prediction of ETA in 
intermodal transport networks as a basis for the detection of process disruptions.

The maritime transport chain serves as the practical use case considered in the chapter. International 
container transports by ship are handled via complex transport networks involving a large number of 
logistics actors. The implementation requires the interaction of numerous, closely timed and interdepen-
dent sub-processes. At the same time, the execution of the processes is influenced by a variety of impact 
factors such as resource availability, weather and the human factor. In addition, there is often no complete 
transparency between the actors, as information on process planning, status and disruptions has so far 
only been exchanged insufficiently and often manually between the involved logistics companies. Many 
of the decisions are therefore made under high uncertainty and rather reactively. As a result, according 
to Poschmann et al. (2019) decisions are often not optimal in regard to the entire chain and lead to high 
economic and ecological disadvantages in the form of unpunctual deliveries, resources not optimally 
utilized, cost-intensive special processes and unnecessary risk buffers.

Against this background, early prediction of arrival times and possible delays is highly important. 
Thus, ETA information enables logistics actors to identify and deal with possible process disruptions at 
an early stage by initiating appropriate measures. Furthermore, information on arrival times is an impor-
tant basis to ensure a demand-oriented capacity planning with regard to material stocks, personnel and 
infrastructure (Walter, 2015). ML-based ETA predictions can thus make an important contribution to 
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improving today’s logistics networks, which are affected by increasing customer requirements in terms 
of reliability, transparency and sustainability and cost efficiency (Handfield et al., 2013).

The chapter aims to demonstrate the application of ML for ETA prediction in logistics. A detailed 
insight is given into the results of a research project whose objective was to develop an ETA prediction 
for combined road-rail traffic in the port hinterland. The chapter is organized as follows: In the first 
step, a general methodology is presented, which contains all essential subphases of the development, 
starting from the requirements analysis and data collection up to the IT integration. Subsequently, the 
conception of an approach for the above-mentioned use case is presented and ML approaches for three 
selected sub-processes are prototypically implemented and evaluated.

BACKGROUND

The following is a brief description of the fundamentals relevant to this chapter. First, a definition of ML 
is given, followed by an overview of the state of the art in ETA prediction research.

Machine Learning

ML is a sub-domain of Artificial Intelligence (AI) and comprises various methods that enable computer 
systems to independently extract patterns from extensive data (Murphy, 2012). ML thus enables com-
puter systems to learn inductively. (Nilsson, 2010) This means that inference takes place on the basis 
of hypothetical correlations that a learning algorithm has acquired in the course of a training process 
by adapting to observations and generalizing patterns contained therein. (Awad & Khanna, 2015) This 
automatic extraction of patterns from data enables the recognition of complex relationships that are not 
recognizable to humans, or only with great effort, and an industrial use, for example, for segmenting and 
predicting information, deriving rules and solving optimization problems. (Alpaydın, 2010; Döbel, et 
al., 2018). Approaches to ML can be roughly divided into the three main types supervised, unsupervised 
and reinforcement learning. (Russell & Norvig, 2010). For ETA prediction, supervised and unsupervised 
learning are of particular importance, as learning is mainly based on historical transport data.

Prediction of Estimated Times of Arrival

With regard to the existing approaches to ETA prediction in the literature, a basic distinction can be made 
between model-based approaches, which are based on simulations or analytical models, and data-based 
approaches, according to Wen et al. (2017). The application of ML for ETA prediction can be regarded 
as a sub-group of the data-based approaches. Model-based approaches have been widely used in the 
literature for delay prediction in rail networks. They can be found in Berger et al. (2011) as well as Büker 
and Seybold (2012), for example. However, their disadvantage lies in the complex modeling and the low 
adaptability to changing operational conditions. Despite the great potential of ML for ETA prediction, its 
application has been explored only selectively and with a strong focus on passenger transport. Existing 
approaches to logistics are usually only related to isolated sub-processes and specific modes of transport.

Initial approaches already exist for maritime transport, which represents the main leg in international 
maritime transport chains. Parolas et al. (2016) predict the arrival time of ocean vessels at the port of 
Rotterdam started about 120 hours before arrival using Artificial Neural Networks (ANN) and Support 
Vector Machines (SVM). Bodunov et al. (2018) and Lechtenberg et al. (2019) developed models for the 
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prediction of ship arrival times at a specific port or in a specific destination region, as well as for the 
prediction of the destination port and port turnaround time. ANN, SVM as well as ensemble methods 
such as Extreme Gradient Boosting (XGB) were tested.

Existing approaches to rail transport are almost related to passenger transport. Appropriate concepts 
are developed, for example, in Oneto et al. (2018), Huang et al. (2020) and Marković et al. (2015), pre-
dominantly using ANNs. However, those approaches are only applicable to rail freight transport to a 
limited extent as passenger transport differs from freight transport by rail in respect of the operational 
processes and influencing factors. An approach for freight trains, but solely with statistical methods 
(linear regression), can only be found in Gorman (2009).

For road transport, existing approaches also focus primarily on passenger transport. For example, 
Fan and Gurmu (2015) use ANN to predict travel times in public bus transport. Due to the different 
conditions (e.g. stronger timetable dependency, shorter transport distances), these are not suitable for 
road freight transport. Only Li and Bai (2016) deal with the development of an approach for road freight 
transport using XGB, where only temporal characteristics are considered.

Except for the port turnaround time prediction by Lechtenberg et al. (2019), no ML-based approaches 
for the prediction of processes in logistical nodes such as inland terminals and marshalling yards could 
be found. Similarly rare are approaches for the prediction of more complex transport chains, which are, 
however, of fundamental importance for the implementation of ETA predictions for logistics. The only 
application of ML for the prediction of intermodal transport chains was found in Servos et al. (2020), 
who developed an ETA prediction for container transports within the maritime transport chain. This was 
done using ensemble methods such as Adaptive Boosting and SVM. The approach only incorporates 
GPS data, but no other data, so operational factors that influence arrival time are not taken into account.

In summary, there are currently only a few approaches to ETA prediction for both individual logistics 
processes and complex transport chains. Furthermore, there is especially a lack of a well-proven meth-
odology on how to proceed methodically in the development of corresponding approaches. To close 
this research gap, in the following section, a general methodology is presented on how to develop ETA 
predictions for such application cases by using the example of combined road-rail transport based on a 
practical use case.

METHODOLOGY

The methodology for the development of the ETA prediction was based on the industry-wide standard 
CRISP-DM for conducting data-based projects (Wirth & Hipp, 2000). CRISP-DM is known to be a generic 
process model without reference to a specific use case. However, the development of a cross-actor ETA 
prediction requires certain sub-phases which do not emerge sufficiently concretely from this model. For 
example, different stakeholders need to be involved in the development process and multiple sub-models 
need to be developed to predict complex transportation chains. To take these aspects into account, the 
CRISP-DM was extended and refined for the problem of ETA prediction. The derived methodology is 
briefly presented below (see Figure 1). Subsequently, the results of these methodical steps are presented 
in particular sections. In the case of model development, some steps are summarized for the individual 
sub-problems. The activities of the integration will not be discussed according to the focus of the paper. 
The presented procedure can serve as a reference for similar problems in this application area.
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Requirements analysis: To create a practice-oriented solution, the first step was to collect and assess 
crucial requirements on the solution, similar to the ‘Business Understanding’ in CRISP-DM. The phase 
included a process analysis, disruption analysis, and the identification of use cases and requirements for 
the ETA prediction in practice. As part of the process analysis, the logistics actors to be involved and 
the relevant logistics processes of the transport chain were first investigated. The goal of the subsequent 
disruption analysis was to identify all disruption reasons and other influencing factors that affect the 
process duration and must be considered as features in the models. Due to the high complexity of today’s 
transport networks, it is probably not possible to incorporate all process configurations. Another step 
was therefore to prioritize use cases for the ETA and to define required prediction horizons, prediction 
qualities reference objects and events to which an ETA must relate. The requirements analysis was car-
ried out in the form of expert interviews, comprising also a Failure Mode and Effect Analysis (FMEA).

Conception: Due to the complexity of transportation chains, a single model is usually not sufficient 
for ETA prediction. Rather, the problem must be decomposed into several problems according to the sub-
processes and the requirements. Each sub-process is then represented by one or more specific regression 
or classification models with individual features. Rule-based systems (or simulation methods) can be 
used later to link the sub-models according to predefined rules and to incorporate prior knowledge. The 
definition of these sub-problems and the overall logic of the system were done in the conception phase.

Figure 1. Methodology for development of ETA prediction



P

Section: Predictive Analytics

2687

Data collection & analysis: An essential precondition for the desired ML approach was the availability 
of historical data. To ensure a sufficient data basis, various measures were taken to obtain suitable data 
sources (similar to the phase ‘Data Understanding’ in CRISP-DM). The data obtained was processed 
and analyzed. This included both the analysis of process characteristics and the identification of pos-
sible factors influencing process times. Data visualization and methods from the field of unsupervised 
learning like cluster analysis and sequence mining were used for this purpose.

Data preparation: Similar to CRISP-DM, the next step was to properly prepare the data for each 
sub-problem. Feature engineering is a central task in this process. Here, suitable input variables (fea-
tures) were designed that represent the identified influencing factors and disruptions as well as possible. 
This involves using existing variables as well as creating new variables, for example by combining and 
transforming the existing variables. This phase also included standard ML tasks such as outlier handling, 
missing value handling and feature encoding.

Modeling: For each sub-problem, a suitable forecasting approach is designed. Supervised learning 
methods for regression or classification were used, depending on the sub-problem. Aspects such as the 
type of labels and features, data quantity and data quality were taken into account to choose a proper 
approach.

Model training & validation: The selected ML methods were finally trained with historical training 
data for each sub-problem, using Grid Search and Cross-Validation (CV) for hyperparameter tuning. 
The statistical programming language R and further open source packages were used for implementa-
tion and evaluation.

Model evaluation: To determine the achievable prediction quality of the respective trained models, 
they were applied to independent test data. Various quality measures such as Mean Absolute Error (MAE) 
were used for regression problems and accuracy, Cohens kappa and no-information rate for classification 
problems. In addition, other problem-specific metrics were calculated for better external understanding.

Integration: Once sufficient prediction quality had been achieved for each sub-problem, the model 
was integrated into an overall system (similar to the ‘Deployment’ phase in CRISP-DM). This enables 
the models to be linked in the sense of a “door-to-port” prediction. In addition, a rule-based decision 
support system was developed based on the ETA to detect disruptions in the chain and recommend ap-
propriate measures. The developed prototype is available online at the link www.smecs-eta.de.

REQUIREMENTS ANALYSIS & CONCEPTION

Transport of sea freight containers in combined road-rail transport in the port hinterland (export) was 
chosen as the use case under investigation. The transport chain consists of five major sub-processes, 
which are shown in Figure 2. The first sub-process consists of road transport of the container between 
a shipper and the hinterland terminal. At the hinterland terminal, the container is transferred to rail and 
then carried by a hinterland train to a marshalling yard. There, the train is broken up and the wagons are 
distributed to newly formed feeder trains, which finally are moving to the seaport.

Several potential users and use cases could be identified for an ETA prognosis for the described pro-
cess chain. This resulted in different reference points of the ETA (e.g. arrival of container at hinterland 
terminal, arrival of train at marshalling yard), reference objects (e.g. container, train, truck) and predic-
tion times. In the disruption analysis, a large number of influencing factors were identified for each of 
the aforementioned sub-processes, which form the basis for feature engineering. The detailed results of 
the requirements analysis can be found in Poschmann et al. (2019).
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On the basis of the process analysis and real-world requirements, six sub-problems were finally de-
fined, which, together, enable a door-to-port prognosis (see Figure 2). The overall prediction is achieved 
by a logical connection of all individual sub-models in the sense of a process chain prediction. The out-
put of a model serves as one input information for the subsequent prediction models. The development 
of the highlighted sub-problems will be discussed in detail in this chapter. In addition, representative 
transport relations (so-called pilot relations) were defined for the development of prototypes. The pilot 
relations represent container shipments from a variety of shippers (origin) via three hinterland terminals 
(transshipment road to rail) and a marshalling yard (transfer from hinterland to feeder train) to a seaport 
(destination).

DATA COLLECTION & ANALYSIS

To carry out the development, four years of historical data were obtained from various logistics and 
transport companies such as a rail transport company, a rail infrastructure operator and a CT operator 
from the project consortium. The data was obtained from a total of 16 IT systems, in particular booking, 
scheduling and enterprise resource planning (ERP) systems. In addition, further external data sources 
were obtained, comprising information about external influencing factors like weather conditions and 
vacations. Not all data sources were available for the entire time period. Figure 3 provides an overview 
of the available data for each of the three sub-problems. The data can be roughly divided into two types 
of information: Information on the physical processes (time stamps and geopositions) and information 
on the conditions and influencing factors, serving as the basis for feature engineering.

For road transport, a total of about 47,000 truck trips (after data cleansing) were available. The 
process data includes information about the actual time of departure and arrival as well as information 
about the locations (manually entered address information). For the construction of possible features, 
additional data on the load (dangerous goods status, container weight and length), weather conditions 
(air temperature, precipitation, wind speed and direction, snow) as well as vacation periods and public 
holidays were available. No information was available on planned times, sub-processes and the route.

Figure 2. Process chain and defined sub-problems for Door-to-port ETA prediction
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The highest data coverage was provided for rail transports. For this sub-process, data on about 2,100 
hinterland train journeys (after data cleansing) were available. Unlike for road transport, the process data 
included detailed route information in the form of waypoints as well as additional planned times from 
the timetable. In addition, information on planned sub-processes (e.g. locomotive crew changes) was 
available for each train journey. As a basis for feature construction, data sources on train and locomo-
tive characteristics (e. g. train weight and type of traction unit), construction works (location and period 
of road works on route and consequences), weather conditions as well as vacation periods and public 
holidays were available.

For the marshalling yard, wagon-based transport plans for about 16,000 wagon movements (after 
data cleansing) were available. The dataset used contained information about the planned and actual 
inbound and outbound trains of each wagon as well as the corresponding arrival and departure times. 
In addition, information about the timetables of all outbound feeder trains, construction works, weather 
conditions and vacation periods and public holidays could be considered. Data about the sub-processes 
within the marshalling yard was not available, so this had to be treated as a black box.

IMPLEMENTATION OF THE SUB-PROBLEMS

In the following section, the stages from data preparation to model evaluation are described in detail for 
each of the three selected sub-problems Road Transportation, Rail Transportation and Marshalling Yard.

ROAD TRANSPORT

The first sub-problem relates to the road transport of containers between shippers and the three hinter-
land terminals on the pilot relations. The considered journeys mainly take place in the near region of 
the hinterland terminals and therefore have short travel times of only a few hours. The aim of the ML 
models to be developed is to predict the expected arrival time of a container at the hinterland terminal. In 
addition to the driving time, the process duration can also include times for rest periods and intermediate 

Figure 3. Overview of the used information in the raw data set
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parking of the container, which are not known beforehand. Among other things, the process duration is 
strongly influenced by the traffic situation (congestion) and weather conditions.

During the data cleansing process, journeys were removed that had no plausible or missing time and 
location information (e.g. journeys with journey times of less than 15 minutes or more than 10 hours). 
Some of the journeys related to the collection of the empty container were also removed. After data 
cleaning, 47,278 valid trips remained for the model development.

In the next step, the actual journey times were determined for all journeys from the departure and 
arrival times. In addition, source-destination relations were defined from the trips and each trip was as-
signed to a relation. The formation of the relations was based on the postal code area and the respective 
inland terminal, i.e. all trips from the same postal code area to the same inland terminal belong to the 
same relation. This resulted in a total of 1,020 possible source-destination relations.

In order to determine the most influencing factors, correlations between travel times and various 
variables were investigated. Figure 4 shows the correlations between the hour of departure and the 
dangerous goods status and the travel time. Significant correlations can be seen for time of day, which 
can be caused by traffic congestion or breaks in the journey. There is also a slight correlation between 
travel time and the dangerous goods status of the container.

In the next step, an approach for predicting the arrival times of trucks and containers at the hinterland 
terminals was developed using supervised learning methods. The task is treated as a regression problem 
with the travel time as target variable. The arrival time (ETA) is determined from the planned or actual 
departure time and the predicted travel time. Since many trips occur on the same source-destination 
relations, two types of features can be distinguished. Journey-specific features represent conditions that 
only refer to a specific journey (e.g. the container weight). Relation-specific features, on the other hand, 
contain information that is valid equally for all trips of a relation (e.g., the aerial distance). In order to 
enable the best possible learning of both journey- and relation-specific features, a hybrid approach with 
several sub-models was chosen (Figure 5). For frequently travelled relations with more than or equal 
100 available historical journeys, a relation-specific model was trained in each case. For relations with 
less than 100 past journeys, a non-relation-specific model was trained on the whole training set, as the 
amount of training data for relation-specific models is too small. Only relation-specific characteristics 

Figure 4. Correlations between travel time and hour of day / dangerous goods status
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are included in the relation-specific sub-models, whereas relation-related characteristics are also taken 
into account in the non-relation-specific model.

From the available data, eleven journey- and relation-specific features were selected. Trip-specific 
features include time-related features (hour of departure, weekday, month, holiday density), shipment-
related features (weight and length of the container, dangerous goods status) and weather-related features 
(temperature, precipitation). As relation-specific features, based on the training data, the median travel 
time on each relation as well as the linear air distance between the starting point (center of the postal 
code area) and the destination (geo-coordinates of the inland terminal) were calculated. Categorical 
characteristics (e.g. weekday) were transformed into binary variables by one-hot encoding.

Different ML methods were tested. For the implementation of the relation-specific models, the high-
est prediction quality was achieved with XGB, whereas a Linear Regression Tree described in Zeileis et 
al. (2008) was identified as the optimal method for the non-relation-specific model, as it allows for an 
optimal consideration of the continuous, relation-specific features.

For the purpose of evaluation, the data was split in a ratio of 80% / 20% into a training / validation 
dataset and a test dataset. For the model selection, hyperparameter tuning was performed using grid 
search. Finally, a final evaluation of the trained models was carried out using the test set. The MAE is 
20.2 minutes. 32.6% of the predicted journeys are within a maximum deviation interval of +/- 10% of 
the travel time observed. The evaluation results are presented in Figure 6.

It can be seen that the majority of journeys can be predicted with a relatively high accuracy. Neverthe-
less, there are also cases with larger prediction errors, which can be caused, for example, by additional 
travel interruptions (e.g. rest periods), waiting times at hinterland terminals and various previously 
unforeseeable disruptions (e.g. construction sites, traffic jams, technical failures). Also, documentation 
errors due to the manual data entry of departure and arrival times by the driver can be the cause of ex-
isting variations. By improving the data quality and considering further data sources, a further increase 
in the quality of the prognosis can be expected. Possible additional data sources include, in particular, 

Figure 5. Technical approach for prediction of road travel times
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more detailed information on the planned routes, processes (rest periods, intermediate stops), the traffic 
situation on the route, planned construction sites and waiting times at the inland terminal.

RAIL TRANSPORT

As a further sub-problem, the prediction of container transport by rail should be discussed. The focus 
is on hinterland trains between hinterland terminals and marshalling yards. Train runs on three source-
destination relations are considered (starting from three different hinterland terminals to a marshalling 
yard). For each relation, however, there are a variety of possible routes through the rail network that 
connect the respective hinterland terminal with the marshalling yard. Compared to road transport, 
rail transport is subject to a timetable that clearly defines the spatial and temporal course of a journey 
via discrete waypoints in the rail network. In addition to traction, rail transport includes intermediate 
stops, where, among other things, locomotive crew changes and locomotive changes are carried out. 
Rail transport is characterized by numerous different disruptive and influencing factors that can lead to 
timetable deviations and must therefore be integrated into the model as input variables. These include, 
for example, train path conflicts, delays in personnel changes, weather influences, construction sites and 

Figure 6. Evaluation results for prediction of road travel times
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technical disruptions. By developing suitable features, it has been attempted to take these influencing 
factors into account as far as possible.

In the initial processing, non-representative journeys (outliers) were removed. This also included 
journeys that predominantly ran on rarely used route sections. Due to the relatively small number of 
train journeys, missing values were replaced as far as possible instead of removing the cases. A total of 
2,107 journeys remained in the data set (Relation A: 870 journeys, Relation B: 470 journeys, Relation 
C: 767 journeys). For relation C, some data sources were not available so that certain features could not 
be generated.

Subsequently, a comprehensive data analysis was carried out to identify factors influencing the jour-
ney time. Figure 7 shows an example of the correlations between influencing factors of different cause 
groups and the journey times of the trains on the basis of scatterplots and boxplots. The visualization 
shows that the train weight has a positive influence on the travel time. Furthermore, correlations between 
the traction unit type and travel time can be observed. The factors shown are therefore to be included in 
the model as features along with others.

As described at the beginning, each train journey is made up of a sequence of partial sections and 
intermediate stops, each with fixed planned times. In order to consider the different route configurations 
in the prediction, an approach was chosen in which several sub-models are trained (see Figure 8). Each 
sub-model represents a specific route section or a station. In each sub-model, local influencing factors 
were considered (e.g. local construction works and weather conditions). The target variable (labels) of 
each sub-model is the travel time on the specific route section or the dwell time at a station. The predic-
tion of the ETA at the destination results from the actual or predicted departure time and the sum of 
the sub-process times over all planned route sections or stations. A model was estimated for a section 
or station if at least 30 historical journeys were available for training, otherwise the planned times from 
the timetable were used for this section, as the amount of data was not sufficient for training a model.

To implement the approach, the data set was transformed and aggregated accordingly, so that each 
train journey is mapped as a sequence of the planned sub-sections. Subsequently, a total of 21 features 
were generated and selected. These include information from the timetable, train and locomotive 
characteristics, staff availability, construction sites, weather conditions and temporal factors. Due to 

Figure 7. Correlations between travel time and train weight / traction unit type
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the large number of sub-models, the final features considered in each sub-model were selected as part 
of the automatic feature selection of the training procedure. Different ML methods were tested for the 
sub-models described. The highest prediction quality was achieved with the Random Forest method for 
travel time prediction and XGB for dwell time prediction.

For evaluation the data was divided into a training / validation data set and a test data set in a ratio 
of 75% / 25%. Grid Search and CV were used to tune the hyperparameters. The evaluation was done 
separately for each of the three relations. The results of the evaluation are shown in Figure 9.

Figure 8. Technical approach for prediction of rail process times

Figure 9. Evaluation results for prediction of rail travel times
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The highest prediction quality was achieved for Relation A. The MAE on this route was 50.8 minutes 
with a mean total travel time of approx. 900 minutes. 86% of the predictions were within a deviation 
interval of max. +/-10% compared to the actual travel time. The lowest prediction quality (+/-10%) was 
achieved on route C with 68%, which can be explained in particular by the poorer data basis. On route 
B, a high prediction quality was also achieved with a quality of 80%. Overall, it can be concluded that 
the selected approach allows to predict rail process time with a high precision. However, some influenc-
ing factors, in particular technical disruptions, traffic-related influences could not yet be sufficiently 
considered and require the integration of further data sources.

MARSHALLING YARD

To illustrate the prediction of logistical nodes, the marshalling yard is considered as a third sub-problem. 
The hinterland trains are broken up in this and the wagons are allocated to multiple feeder trains which 
serve the seaport terminals. The trains between the marshalling yard and the seaport move several 
times a day according to a timetable. The process consists of several sub-processes such as train split-
ting, marshalling and train formation. The allocation of wagons to trains is carried out according to the 
“first-in-first-out” principle. The transit time depends on various influencing factors to be considered 
as features in the model, e.g. the timetable of outgoing trains, the degree of utilization of infrastructure 
and trains, road works, but also planned buffer times.

In the data preparation phase, all complete cases were first determined on the pilot relations. Each 
case represents the passage of a wagon through the marshalling yard, starting with the arrival of the 
hinterland train and ending with the departure of the feeder train. The original data set contained many 
identical cases in which wagons have the same inbound and outbound train. As these duplicates do not 
provide any gain of information, the data set was first cleansed so that only one case with an identical 
inbound and outbound train is available. The cleaned data included 15,765 cases. In the following data 
analysis, factors influencing the turnaround time were investigated. Figure 10 shows an example of the 
correlations between the weekday and month and the transit time of a wagon. The weekday has a high 
influence on the throughput time, whereas only minor differences can be observed for the month.

Figure 10. Correlations between transit time and weekday / month in marshalling yard
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Since the objective is to predict the connecting train of a wagon, the process was treated as a clas-
sification problem. The approach used is illustrated in Figure 11. The basis was the connecting train 
planned for a particular wagon according to the transport plan. With the help of timetable data, further 
alternative connecting trains to the planned destination were subsequently determined before and after 
the planned train. These were then mapped to a discrete variable with a total of nine possible states 
(<-3, -3, -2, -1, 0, 1, 2, 3, >3). Category “0” corresponds to the planned initial train, while “-1”, for 
example, corresponds to the next earlier train moving to the same destination. Categories “> 3” and 
“< 3” correspond to a connecting train departing at least four trains before or after the scheduled train. 
The restriction was introduced because a classification implies a restriction on the number of classes. 
In order to be able to apply supervised learning, the actual connecting trains were also determined for 
all cases and assigned to the categories.

As part of the feature engineering 18 features were designed. These include the available lead times 
to all possible connecting trains of a wagon as well as temporal features and features on train charac-
teristics, capacity utilization and construction work. Due to the ordinal character of the target variable 
(labels), the Ordinal Forest model based on Hornung (2020) was used as ML method.

Finally, the developed model was evaluated with a ratio of 90% / 10% for training / validation set 
and test set. For the test set an accuracy of 0.70 and a kappa coefficient of 0.59 could be achieved. The 
no-information rate was 0.43. Therefore, the developed model has a clear added value compared to a 
naive estimator whose output is always the main class of training data (in this case the planned con-
necting train). In order to better assess the dispersion of the prediction, Figure 12 shows the observable 
prediction error as the distance between the predicted and actual connecting train. It can be seen that in 
84.3% of the cases the model forecasts the connecting train exactly or only has an error of +/- one train. 
Only in 16% of the cases higher deviations from the actual train were present.

Various factors can be the cause of the existing prediction error. On the one hand, connection sched-
uling in the marshalling yard is a complex decision-making situation that is carried out manually and 
often at short-term depending on current operating conditions. An improvement of the prediction can 
therefore be achieved by integrating further information into the model, e.g. on planned sub-processes 
within the yard as well as on the infrastructure and train utilization. Furthermore, it seems useful to take 
into account the closing times of a container’s ocean-going vessel, which may also influence transit time 

Figure 11. Technical approach for prediction of connecting trains in marshalling yard
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in the marshalling yard. Another option for improvement may be the choice of alternative class definitions, 
which, for example, are based on the time of arrival of the wagon and not on the planned outbound train.

FUTURE RESEARCH DIRECTIONS

In the previous sections, approaches were presented on how ML can be used to predict complex transport 
chains in logistics. The development and evaluation of these approaches were only carried out under 
laboratory conditions with historical data and for selected sub-processes, so that no final statements can 
be made about the feasibility in practice. In addition, only a very limited number of ML methods, data 
sources, and modeling opportunities could be tested. This results in various directions for future research.

On the first hand, it is important to develop approaches for other logistics processes. These include, 
for example, other modes of transport such as inland waterways and air transport, but also further ap-
proaches for logistical nodes such as the seaport. In addition, testing with more comprehensive training 
data sets and further characteristics is useful. For example, numerous influencing factors have not yet 
been sufficiently considered within the tested models. These include, in particular, serious and rare 
events (e.g., heavy weather, accidents), whose prediction poses a particular challenge due to the limited 
availability of data. To take into account as many effects on arrival time as possible, a large number of 
characteristics are often needed. Against this background, the testing of novel feature encoding techniques 
can also be of great importance, e.g. to reduce the number of features.

In addition to alternative forms of modeling, it appears promising to test other ML methods. For 
example, deep learning approaches and recurrent neural networks offer high potential for ETA predic-
tion and should be tested. A high potential also arises in the combination with other ML and AI fields. 
Especially unsupervised learning clustering methods could be used for data aggregation and feature 
extraction. Symbolic AI approaches (e.g. rule-based systems and fuzzy logic) can be useful to incor-
porate expert knowledge into the forecast or to implement recommendations for actions based on the 
ETA in the sense of prescriptive analytics. Another direction for future research concerns approaches 
for linking the individual sub models in order to be able to predict even complex transport chains with 

Figure 12. Evaluation results for prediction of connecting trains in marshalling yard
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varying process configurations. In the presented use case, this was only done in a simplified way with 
logical operators. Here, the combination of ML and simulation methods could offer a high potential. For 
a high user acceptance in real-time operation, the comprehensibility of the predictions will be of great 
importance. Against this backdrop, approaches of Explainable AI can be highly valuable. Finally, the 
testing of ETA predictions under real conditions represents another important step in future research. In 
this phase, further technical and organizational challenges arise, such as the handling of missing data, 
the re-training of the models and also the user acceptance of ML-based information.

CONCLUSION

In this chapter, a methodology and ML-based approach for implementing ETA predictions for complex 
transport chains in logistics was presented. The evaluation results based on a real use case show that 
supervised ML techniques offer a high potential to accurately predict the duration of logistic processes 
and possible disruptions. However, this quality is fundamentally influenced by the availability and scope 
of training data fundamentally. Particularly in transport, where numerous companies are often involved, 
the cross-actor data integration poses a great challenge for ML projects. The optimal ML method and 
the suitable features are not known in advance and have to be determined in numerous development and 
evaluation runs. This leads to a highly iterative process, whereas the involvement of domain experts 
was recognized as an important criterion for success. The provided results and the shown challenges of 
using ML in the operational environment could be used for further activated in this application field. In 
general, it can be concluded that the use of ML for logistics represents a high potential for improving 
process flows through intelligent decision support systems. This applies not only to the presented use 
case of ETA prediction, which makes an important contribution to increasing the efficiency, reliability 
and flexibility of logistics networks by higher transparency about process times of transport orders. It 
also concerns other areas of application of high uncertainty and complexity, most of which have not yet 
been researched. Interdisciplinary research between ML and logistics will therefore play an important 
role in the future.
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KEY TERMS AND DEFINITIONS

Accuracy: Error measure for assessing the quality of a prediction (classification) which corresponds 
to the proportion of correctly predicted test cases to all test cases.

Estimated Time of Arrival: Expected arrival time of a vehicle, container or shipment at a defined 
location considering the current conditions.

Feature: Input variable of an ML model, containing formalized and known information about the 
problem to be learned.

Intermodal Transport: Transport chain which comprises multiple modes of transport (e.g. rail, road).
Label: Target variable of a supervised ML model that is usually known in the training process and 

is to be predicted when the model is applied.
Machine Learning: Sub-field of Artificial Intelligence which comprises various methods that enable 

computer systems to extract patterns from data.
Marshalling Yard: Railroad yard used for separating and sorting railroad cars and forming freight 

trains.
Mean Squared Error: Error measure for assessing the quality of a prediction (regression) which is 

determined as the mean value of the squared deviations between the predicted and actual values.
Transport Chain: Sequence of several transport and transshipment processes for the shipment of 

goods from an origin to a destination.


