

NOAA

NOAA's Current and Future Space Weather Architecture

NOAA Satellite and Information Service www.nesdis.noaa.gov

April 4, 2019

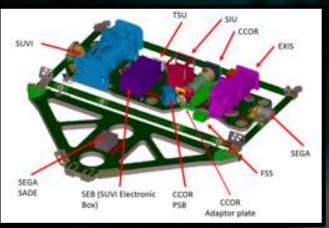
Dr. Elsayed Talaat Director, Office of Projects, Planning, and Analysis 2019 Space Weather Workshop

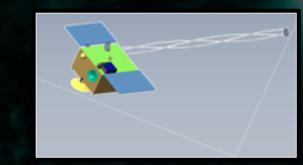
Space Weather Current and Planned Capacity

		Operatio	onal or Pla	inned		Capab	ility at Risł	c -			Plans in opment			In Develop	oment
		Calendar Year													
Capability	Orbit	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Solar Disc Imaging	Ц														
	1AU				STEREO (SECHHI)					ESA SSA Program L5 Mission					
	GEO	GOE S-NO	P (SXI)					GOE \$-F	R STU (SUV	I. EXIS)					
	LEO														
Coronal Mass Ejection Imaging	и				sc	OHO (LA SC	:0)				SWFO L1 N	lission (CC	OR)		
	1AU				STEREO	(SECHHI)					E\$4	A \$\$A Prog	ram L5 Mile	sion	
	GEO										GOES-U (C	CORI			
Magnetic Field	И				DSCOVR	ACE	(MAG) G)			SWFO L	1 Mission (SWIS - MA	SNETOME	er)	
	GEO	GOE\$-NO	P (MAG)					GOE	S-RSTU (N	IAG)					
	LEO														
Solar Wind	Ц	DSCOVI				ACE (SWEPAM) (R (PLASMAG)				SWFO L1 Mission (SWIS-BULK & MAG)					
	GEO														
	LEO														
Energetic Particles	И					ACE (EPAM)				SWFO L1	Mission (S	W15)		
	GEO							GOE	S-R STU (SI	EISS)					
	LEO			Meto POES (P-A/B/C (SE (SEM)	EM)			DoD We	ather Syst	em Follow-	on - Micro	wave [WSF	-M] (ECP)	
lonospheric Conditions	LEO	COSMIC	SMIC-1 (GOX) COSMIC-2 (TGRS, IVM) Metop-A/B/C (GRAS)												
Conditions											Meto	p-SG-A/B (RO)		

Space Weather Follow-On (SWFO) Program

- Sustain a foundational set of space-based observations and measurements (i.e., Coronal Mass Ejection (CME) imaging and solar wind measurements)
- > Ensure continuity of critical data:
 - Complete the Compact Coronagraph (CCOR) with the U.S. Naval Research Laboratory (NRL) as a NOAA reimbursed project
 - Transfer ability to manufacture CCOR to private industry for long term data continuity
 Technology transfer to industry plan in development
 - Develop an L1 satellite mission (SWFO-L1) for launch in late 2024:


 Include a Solar Wind Instrument Suite (SWIS) to measure essential solar wind, a CCOR for continuous coronal imagery, a possible Instrument of Opportunity (IOO)
 Work with NASA to launch the SWFO-L1 mission as a rideshare with NASA's Interstellar Mapping and Acceleration Probe (IMAP)
 - Integrate a Coronagraph on the GOES-U spacecraft planned for launch in early 2024
 - Establish a robust ground architecture and service together with interagency and international partners to acquire and process data in support of the space weather mission
 - Archive space weather observations and measurements at the National Centers for Environmental Information (NCEI) to facilitate user access, statistical model development and benchmarking


SWFO Program Key Technical Components

GOES-U Solar Pointing Platform (SPP)

CCOR + SUVI + EXIS

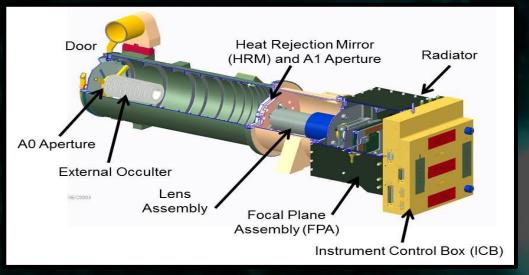
3-Axis Stabilized ESPA Class Spacecraft

Compact Coronagraph (CCOR)

SWFO-L1 Mission Overview

- Space Weather Operational Observation at Earth-Sun Lagrange Point 1
- IAA with NASA to procure an ESPA Grande compatible spacecraft and a SWIS (Solar Wind Instrument Suite)
- NOAA ground services
- Rideshare with NASA IMAP
- Nominal orbit: L1
- Nominal launch: 2024
- SWFO-L1 Instruments: CCOR, SWIS and a potential instrument of opportunity (IOO)
- Potential ESA contributed instrument (X-Ray flux monitor

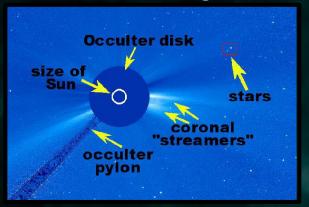
Coronagraph Project


- Compact Coronagraphs under development by NRL via an IAA
- CCOR for SWFO-L1 Satellite, deliver 2022
- CCOR for GOES-U, deliver 2021
- Potential CCOR for ESA-L5 Satellite, deliver 2023

Coronagraph Accommodation on GOES-U

CME imaging from geostationary orbit CCOR Integrated onto GOES-U SPP Commanding and data flow through GOES-R ground services Nominal launch: 2024

A Space Telescope for the Corona: CCOR


Compact COR onagraph

CCOR Description

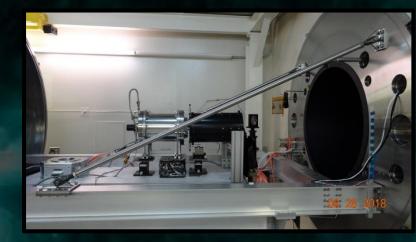
- A Research To Operations (R2O) project in close collaboration with the Naval Research Laboratory (NRL)
- Telescope features:
 - Innovative optical and electronic components Planned to replaces SOHO/LASCO
 - High heritage from STEREO/SECCHI, PSP/SoloHi instruments
 - 50% reduction in mass; 2/3 length from earlier designs.
- To operate at a 15-min cadence; shorter if necessary

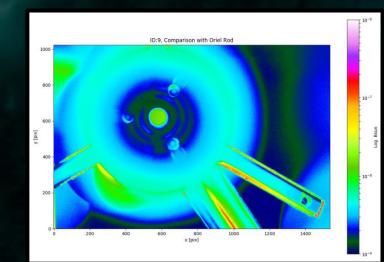
Coronal Image

Mission Overview

- First CCOR to be placed on board GOES-U
- Second CCOR to be placed on NOAA's SWFO solar wind monitor at L1
- NRL to deliver the units in 2021, 2023

Instrument Requirements

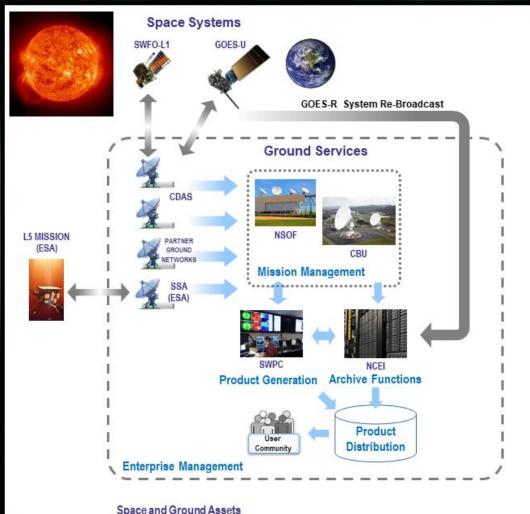

Parameter	Threshold	Goal
Field of View (FOV)	3-17 R _{SUN}	3-22 R _{SUN}
Pointing Knowledge	25 arcsec	12.5 arcsec
Knowledge of Solar North	1 deg	0.5 deg
Spatial Resolution	50 arcsec	
Photometric Accuracy	10%	
Image Cadence	15 min	5 min
Data Latency	15 min	5 min


CCOR Instrument Status

- CCOR is developed for NOAA by the Naval Research Laboratory
- The PDR took place in September, 2018. Currently in Phase C (final design and fabrication)
- Subsystem reviews taking place in April 2019
- The CDR is planned for June 25-26, 2019
- Unit 1 is on track for delivery in March 2021 for integration onto GOES-U

CCOR Optical Testbed

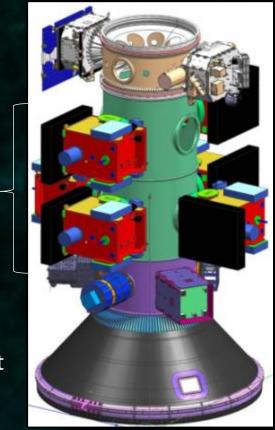
Occulter pylon optimization test



SWFO Ground Services

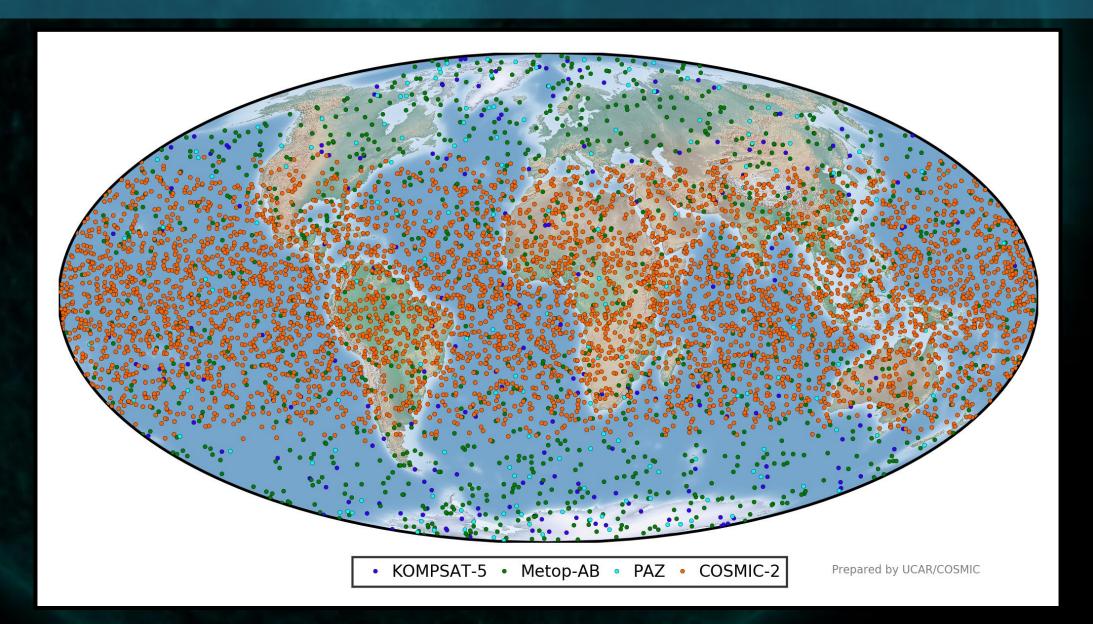
- NOAA will develop and operate the Ground Service in accordance with the existing Ground Enterprise Requirements Structure
- The SWFO Ground Services will support all the sensors and the SWFO-L1 spacecraft
- Addition of 13-16m dishes near Madrid and Dongara are being evaluated
- Accommodations to meet IT security requirements are being defined
- S vs. X-band trade to be completed by October 2019
- Commanding by WCDAS, seasonal backup by FCDAS
- NWS/SWPC will continue to produce all level 1, level 2 and higher level space weather data products for the SWFO instruments
- NESDIS/NCEI will archive all space weather data products
- Real-time 24/7 operations so as to accommodate the needs of NWS/SWPC

SWFO System Architecture

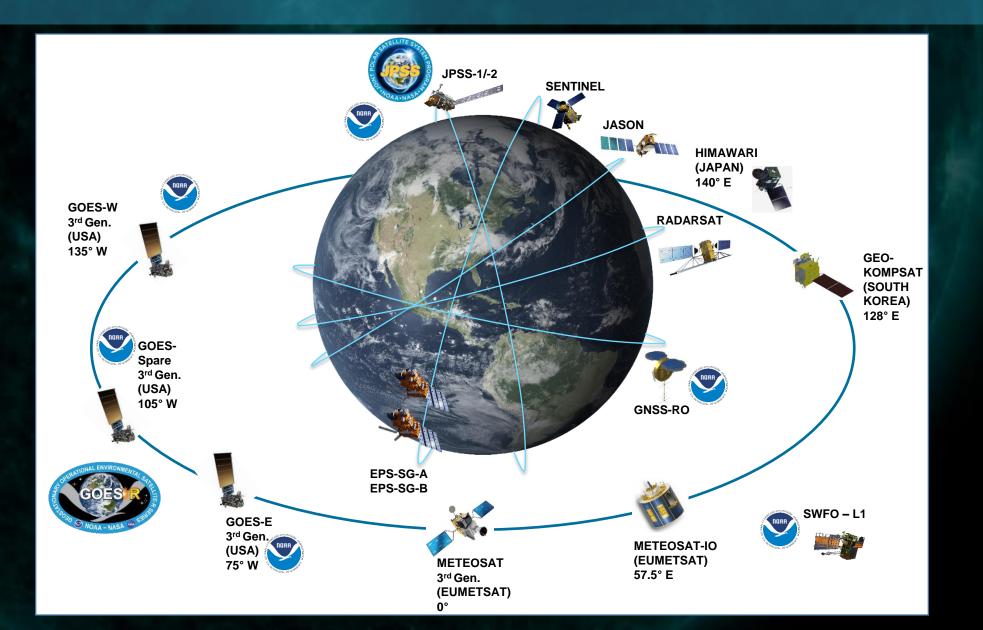

Operational Functions

COSMIC-2/FORMOSAT-7 Mission

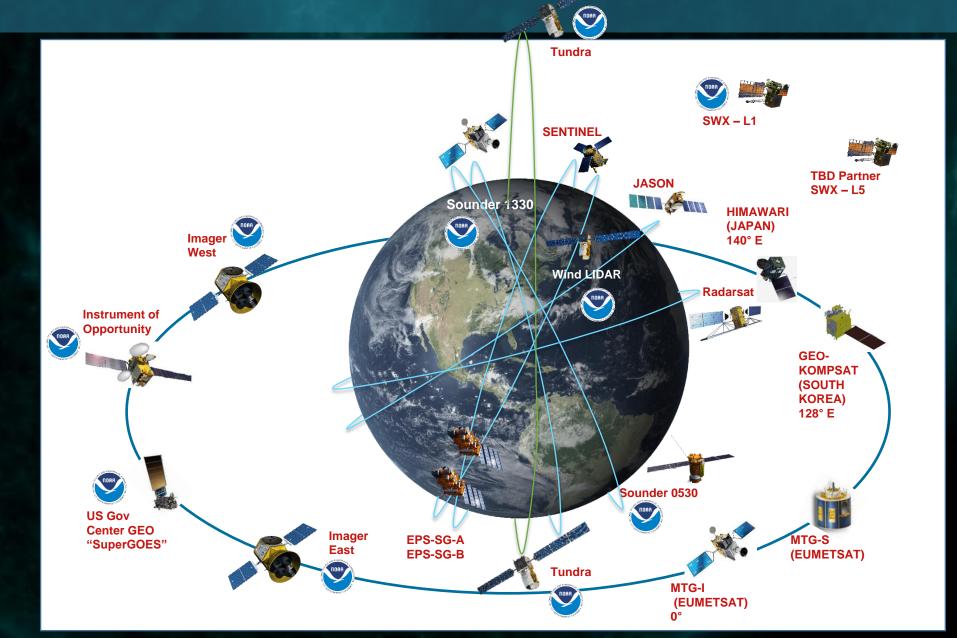
6 Satellite constellation around the equator (24 degree inclination orbit) Each satellite has 3 instruments: TriG GNSS-RO receiver (TGRS) – Primary Instrument Ion Velocity Meter (IVM) – Secondary Instrument RF Beacon – Secondary Instrument Mission Design Life: 5 years Launch Date: Not Earlier Than June 14, 2019 Launch Vehicle: Falcon Heavy (STP-2 mission stack shown in right figure) All weather coverage (4,000+ occ/day) with 30 min avg data latency



COSMIC-2 Spacecraft in STP-2 Launch Stack

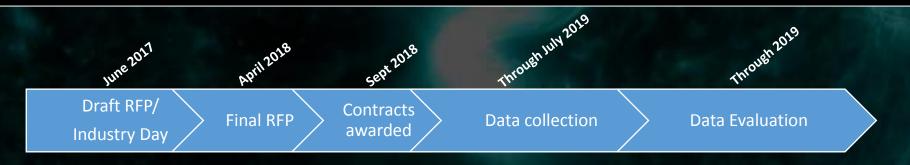


COSMIC-2 and Partner Data


пояя

Near-Term Observational Capability

NORR


Evolution of NOAA's Space Architecture

NOAA Commercial Weather Data Pilots

> CWDP Round 1 – NOAA identified radio occultation (RO) as initial data set for evaluation, concluded in Sep 2017

- Round 1 activities addressed processes for contract writing and initial evaluation
- Did not address: IT security, data rights and distribution, real time data ingest
- **CWDP Round 2 Released in Apr 2018, awards in Sep 2018**
 - > Perform a more comprehensive assessment of the value of commercial RO data
 - > Develop NOAA systems readiness for future purchases of operational weather data from commercial sources

NESDIS continues to canvass the commercial sector for available data sets that can meet NOAA mission needs

- Broad RFI released May 21, 2018 to inform CWDP in 2019 and beyond
- > NOAA Satellite Observing System Architecture Study is informing the NOAA observing architecture 2030-2050
 - Systematically considering commercial capabilities as a potential part of future architectures, along with NOAA programs of record and international partner missions
 - Future pilots will be guided by the results of this study and ongoing market research

THANK YOU!

For more information visit: www.nesdis.noaa.gov

CONNECT WITH US!

@NOAASATELLITES

NOAASATELLITES

