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firewalls which do not allow outgoing sockets on port 5222, via HTTP requests.
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2 BACKGROUND

1 Introduction
Note Well: This protocol specified in this document has been superseded by the protocol specified in
BOSH (XEP-0124) 1.
This specification documents a method to allow Jabber clients to access Jabber servers
from behind existing firewalls. Although several similar methods have been proposed, this
approach should work through all known firewall configurations which allow outbound HTTP
access.

2 Background
In general, a firewall is a box that protects a network from outsiders, by controlling the IP
connections that are allowed to pass through the box. Often, a firewall will also allow access
outside only by proxy, either explicit proxy support or implicit through Network Address
Translation (NAT).
In the interest of security, many firewall administrators do not allow outbound connections
to unknown and unused ports. Until Jabber becomes more widely deployed, port 5222/tcp
(for Jabber client connections) will often be blocked.
The best solution for sites that are concerned about security is to run their own Jabber server,
either inside the firewall, or in a DMZ 2 network. However, there are network configuration
where an external Jabber server must still be used and port 5222/tcp outbound cannot be
allowed. In these situations, different methods for connecting to a Jabber server are required.
Several methods exist today for doing this traversal. Most rely on the fact that amost firewalls
are configured to allow access through port 80/tcp. Although some less-complicated firewalls
will allow any protocol to traverse this port, many will proxy, filter, and verify requests on
this port as HTTP. Because of this, a normal Jabber connection on port 80/tcp will not suffice.
In addition, many firewalls/proxy servers will also not allow or not honor HTTP Keep-alives
(as defined in section 19.7.1.1 of RFC 2068 3) and will consider long-lived socket connections
as security issues. Because of this the traditional Jabber connection model, where one socket
is one stream is one session, will not work reliably.
In light of all of the ways that default firewall rules can interfere with Jabber connectivity, a
lowest-common denominator approach was selected. HTTP is used to send XML as POST re-
quests and receieve pending XML within the responses. Additional information is prepended
in the request body to ensure an equivalent level of security to TCP/IP sockets.

1XEP-0124: Bidirectional-streams Over Synchronous HTTP <https://xmpp.org/extensions/xep-0124.html>.
2 DMZ definition at searchwebmanagement.com
3RFC 2068: Hypertext Transport Protocol -- HTTP/1.1 <http://tools.ietf.org/html/rfc2068>.
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3 NORMAL DATA TRANSFER

3 Normal data transfer
The clientmakes HTTP requests periodically to the server. Whenever the client has something
to send, that XML is included in the body of the request. When the server has something to
send to the client, it must be contained in the body of the response.
In some browser/platform combinations, sending cookies from the client is not possible due
to design choices and limitations in the browser. Therefore, a work-around was needed to
support clients based on these application platforms.
All requests to the server are HTTP POST requests, with Content-Type: application/x-www-
form-urlencoded. Responses from the server have Content-Type: text/xml. Both the request
and response bodies are UTF-8 encoded text, even if an HTTP header to the contrary exists.
All responses contain a Set-Cookie header with an identifier, which is sent along with future
requests as described below. This identifier cookie must have a name of ’ID’. The first request
to a server always uses 0 as the identifier. The server must always return a 200 response code,
sending any session errors as specially-formatted identifiers.
The client sends requests with bodies in the following format:

identifier ; key [ ; new_key] , [xml_body]

If the identifier is zero, key indicates an initial key. In this case, new_key should not be
specified, and must be ignored.

Identifier Purpose
identifier To uniquely identify the session server-side. This field is only used to identify

the session, and provides no security.
key To verify this request is from the originator of the session. The client generates

a new key in the manner described below for each request, which the server
then verifies before processing the request.

new_key The key algorithm can exhaust valid keys in a sequence, which requires a new
key sequence to be used in order to continue the session. The new key is sent
along with the last used key in the old sequence.

xml_body The body of text to send. Since a POST must be sent in order for the server to
respond with recent messages, a client may send a request without an xml_-
body in order to just retrieve new incoming packets. This is not required to
be a full XML document or XML fragment, it does not need to start or end on
element boundaries.

The identifier is everything before the first semicolon, and must consist of the characters
[A-Za-z0-9:-]. The identifier returned from the first request is the identifier for the session.
Any new identifier that ends in ’:0’ indicates an error, with the entire identifier indicating the
specific error condition. Any new identifier that does not end in ’:0’ is a server programming
error, the client should discontinue the session. For new sessions, the client identifier is
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3 NORMAL DATA TRANSFER

considered to be 0.

3.1 Error conditions
Any identifier that ends in ’:0’ indicates an error. Any previous identifier associated with this
session is no longer valid.

3.1.1 Unknown Error

Server returns ID=0:0. The response body can contain a textual error message.

3.1.2 Server Error

Server returns ID=-1:0

3.1.3 Bad Request

Server returns ID=-2:0

3.1.4 Key Sequence Error

Server returns ID=-3:0
The key is a client security feature to allow TCP/IP socket equivalent security. It does not
protect against intermediary attacks, but does prevent a person who is capable of listening to
the HTTP traffic from sendingmessages and receiving incoming traffic from anothermachine.
The key algorithm should be familiar with those with knowledge of Jabber zero-knowledge
authentication.

K(n, seed) = Base64Encode(SHA1(K(n - 1, seed))), for n > 0
K(0, seed) = seed , which is client -determined

Note: Base64 encoding is defined in RFC 3548 4. SHA1 is defined in RFC 3174 5.
No framing is implied by a single request or reply. A single request can have no content sent,
in which case the body contains only the identifier followed by a comma. A reply may have
no content to send, in which case the body is empty. Zero or more XMPP packets may be sent
in a single request or reply, including partial XMPP packets.
The absense of a long-lived connection requires the server to consider client traffic as a
heartbeat to keep the session alive. If a server-configurable period of time passes without a

4RFC 3548: The Base16, Base32, and Base64 Data Encodings <http://tools.ietf.org/html/rfc3548>.
5RFC 3174: US Secure Hash Algorithm 1 (SHA1) <http://tools.ietf.org/html/rfc3174>.
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successful POST request sent by the client, the server must end the client session. Any client
requests using the identifier associated with that now dead session must return an error of
’0:0’.
Themaximumperiod of time to keep a client session active without an incoming POST request
is not defined, but five minutes is the recommended minimum. The maximum period of time
recommended for clients between requests is two minutes; if the client has not sent any XML
out for twominutes, a request without an XML body should be sent. If a client is disconnecting
from the server, a closing <stream:stream> must be sent to end the session. Failure to do this
may have the client continue to be represented to other users as available.
If the server disconnects the user do to a session timeout, the server MUST bounce pending
IQ requests and either bounce or store offline incoming messages.

4 Usage
The following is the sequence used for client communication:

1. The client generates some initial K(0, seed) and runs the algorithm above ’n’ times to
determine the initial key sent to the server, K(n, seed)

2. The client sends the request to the server to start the stream, including an identifier
with a value of zero and K(n, seed)

3. The server responds with the session identifier in the headers (within the Set-Cookie
field).

4. For each further request done by the client, the identifier from the server and K(n - 1,
seed) are sent along.

5. The server verifies the incoming value by generating K(1, incoming_value), and verify-
ing that value against the value sent along with the last client request. If the values do
not match, the request should be ignored or logged, with an error code being returned
of -3:0. The request must not be processed, and must not extend the session keepalive.

6. The client may send a new key K(m, seed’) at any point, but should do this for n > 0 and
must do this for n = 0. If K(0, seed) is sent without a new key, the client will not be able
to continue the session.

Listing 1: Initial request (without keys)
POST /wc12/webclient HTTP /1.1
Content -Type: application/x-www -form -urlencoded
Host: webim.jabber.com

0,<stream:stream to=”jabber.com”
xmlns=”jabber:client”
xmlns:stream=”http: // etherx.jabber.org/streams”>
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Listing 2: Initial response
Date: Fri , 15 Mar 2002 20 :30:30 GMT
Server: Apache /1.3.20
Set -Cookie: ID =7776 :2054; path=/ webclient /; expires=-1
Content -Type: text/xml

<?xml version=’1.0’?>
<stream:stream xmlns:stream=’http: // etherx.jabber.org/streams ’

id=’3C9258BB ’
xmlns=’jabber:client ’ from=’jabber.com’>

Listing 3: Next request (without keys)
POST /wc12/webclient HTTP /1.1
Content -Type: application/x-www -form -urlencoded
Host: webim.jabber.com

7776 :2054 ,<iq type=”get” id=”WEBCLIENT3”>
<query xmlns=”jabber:iq:auth”>

<username >hildjj </username >
</query >

</iq>

Listing 4: key sequence
K(0, ”foo”) = ”foo”

K(1, ”foo”) = ”C+7Hteo/D9vJXQ3UfzxbwnXaijM=”
K(2, ”foo”) = ”6UU8CDmH3O4aHFmCqSORCn721+M=”
K(3, ”foo”) = ”vFFYSOhGyaGUgLrldtMBX7x91Wc=”
K(4, ”foo”) = ”ZaDxCilBVTHS9dJfbBo1NsC2b +8=”
K(5, ”foo”) = ”moPFsvHytDGiJQOjp186AMXAeP0=”
K(6, ”foo”) = ”VvxEk07IFy6hUmG/PPBlTLE2fiA=”

Listing 5: Initial request (with keys)
POST /wc12/webclient HTTP /1.1
Content -Type: application/x-www -form -urlencoded
Host: webim.jabber.com

0; VvxEk07IFy6hUmG/PPBlTLE2fiA=,<stream:stream to=”jabber.com”
xmlns=”jabber:client”
xmlns:stream=”http: // etherx.jabber.org/streams”>

Listing 6: Next request (with keys)
POST /wc12/webclient HTTP /1.1
Content -Type: application/x-www -form -urlencoded
Host: webim.jabber.com
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7776 :2054;moPFsvHytDGiJQOjp186AMXAeP0=,<iq type=”get” id=”WEBCLIENT3”>
<query xmlns=”jabber:iq:auth”>

<username >hildjj </username >
</query >

</iq>

Listing 7: Changing key
POST /wc12/webclient HTTP /1.1
Content -Type: application/x-www -form -urlencoded
Host: webim.jabber.com

7776 :2054;C+7Hteo/D9vJXQ3UfzxbwnXaijM =; Tr697Eff02 +32 FZp38Xaq2 +3Bv4=,<
presence/>

5 Known issues
• This method works over HTTPS, which is good from the standpoint of functionality, but
bad in the sense that amassive amount of hardware would be needed to support reason-
able polling intervals for non-trivial numbers of clients.
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