
XEP-0323: Internet of Things - Sensor Data

Peter Waher
mailto:peterwaher@hotmail.com
xmpp:peter.waher@jabber.org

http://www.linkedin.com/in/peterwaher

2017-05-20
Version 0.6

Status Type Short Name
Retracted Standards Track sensor-data

Note: This specification has been retracted by the author; new implementations are not recommended.
This specification provides the common framework for sensor data interchange over XMPP networks.

mailto:peterwaher@hotmail.com
xmpp:peter.waher@jabber.org
http://www.linkedin.com/in/peterwaher

Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2024 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction 1

2 Glossary 2

3 Use Cases 4
3.1 Request Read-out of momentary values . 6
3.2 Read-out failure . 7
3.3 Read-out rejected . 8
3.4 Read-out all . 9
3.5 Read-out of multiple devices . 10
3.6 Read-out of specific fields . 11
3.7 Cancelling a scheduled read-out request . 12

4 Determining Support 13

5 Implementation Notes 14
5.1 String lengths . 14
5.2 Enumerations vs. Strings . 14
5.3 Asynchronous feedback . 15
5.4 Field Value Data Types . 15
5.5 Harmonization with XEP-0325 (Control) . 16
5.6 Field Types . 17
5.7 Field Quality of Service Values . 18

5.7.1 Estimates vs. Readouts . 19
5.8 Subnodes and supernodes . 20
5.9 Reading devices from large subsystems . 20
5.10 Reading controllable parameter values . 21

6 Internationalization Considerations 21
6.1 Time Zones . 21
6.2 Localized strings . 21

7 Security Considerations 24

8 IANA Considerations 24

9 XMPP Registrar Considerations 24

10 XML Schema 24

11 For more information 31

12 Acknowledgements 31

1 INTRODUCTION

1 Introduction
This XEP provides the underlying architecture, basic operations and data structures for
sensor data communication over XMPP networks. It includes a hardware abstraction model,
removing any technical detail implemented in underlying technologies.
Note has to be taken, that these XEP’s are designed for implementation in sensors, many of
which have very limited amount of memory (both RAM and ROM) or resources (processing
power). Therefore, simplicity is of utmost importance. Furthermore, sensor networks can
become huge, easily with millions of devices in peer-to-peer networks.
Sensor networks contains many different architectures and use cases. For this reason, the
sensor network standards have been divided into multiple XEPs according to the following
table:

XEP Description
xep-0000-IoT-BatteryPoweredSensors Defines how to handle the peculiars related to bat-

tery powered devices, and other devices intermit-
tently available on the network.

xep-0000-IoT-Events Defines how sensors send events, how event sub-
scription, hysteresis levels, etc., are configured.

xep-0000-IoT-Interoperability Defines guidelines for how to achieve interoper-
ability in sensor networks, publishing interoper-
ability interfaces for different types of devices.

xep-0000-IoT-Multicast Defines how sensor data can be multicast in effi-
cient ways.

xep-0000-IoT-PubSub Defines how efficient publication of sensor data
can be made in sensor networks.

xep-0000-IoT-Chat Defines how human-to-machine interfaces should
be constructed using chat messages to be user
friendly, automatable and consistent with other
IoT extensions and possible underlying architec-
ture.

XEP-0322 Defines how to EXI can be used in XMPP to achieve
efficient compression of data. Albeit not a sensor
network specific XEP, this XEP should be consid-
ered in all sensor network implementations where
memory and packet size is an issue.

XEP-0323 This specification. Provides the underlying archi-
tecture, basic operations and data structures for
sensor data communication over XMPP networks.
It includes a hardware abstraction model, remov-
ing any technical detail implemented in underly-
ing technologies. This XEP is used by all other sen-
sor network XEPs.

1

2 GLOSSARY

XEP Description
XEP-0324 Defines how provisioning, the management of ac-

cess privileges, etc., can be efficiently and easily
implemented.

XEP-0325 Defines how to control actuators and other devices
in Internet of Things.

XEP-0326 Defines how to handle architectures containing
concentrators or servers handling multiple sen-
sors.

XEP-0331 Defines extensions for how color pa-
rameters can be handled, based on Data
Forms (XEP-0004) XEP-0004: Data Forms
<https://xmpp.org/extensions/xep-0004.html>.

XEP-0336 Defines extensions for how dynamic
forms can be created, based on Data
Forms (XEP-0004) XEP-0004: Data Forms
<https://xmpp.org/extensions/xep-
0004.html>., Data Forms Validation (XEP-
0122) XEP-0122: Data Forms Validation
<https://xmpp.org/extensions/xep-0122.html>.,
Publishing Stream Initiation Requests (XEP-
0137) XEP-0137: Publishing Stream Initiation
Requests <https://xmpp.org/extensions/xep-
0137.html>. and Data Forms Layout
(XEP-0141) XEP-0141: Data Forms Layout
<https://xmpp.org/extensions/xep-0141.html>..

XEP-0347 Defines the peculiars of sensor discovery in sensor
networks. Apart from discovering sensors by JID,
it also defines how to discover sensors based on lo-
cation, etc.

2 Glossary
The following table lists common terms and corresponding descriptions.

Actuator Device containing at least one configurable property or output that can and should
be controlled by some other entity or device.

Computed Value A value that is computed instead of measured.

Concentrator Device managing a set of devices which it publishes on the XMPP network.

2

2 GLOSSARY

Field One item of sensor data. Contains information about: Node, Field Name, Value, Preci-
sion, Unit, Value Type, Status, Timestamp, Localization information, etc. Fields should
be unique within the triple (Node ID, Field Name, Timestamp).

Field Name Name of a field of sensor data. Examples: Energy, Volume, Flow, Power, etc.

Field Type What type of value the field represents. Examples: Momentary Value, Status
Value, Identification Value, Calculated Value, Peak Value, Historical Value, etc.

Historical Value A value stored in memory from a previous timestamp.

Identification Value A value that can be used for identification. (Serial numbers, meter IDs,
locations, names, etc.)

Localization information Optional information for a field, allowing the sensor to control
how the information should be presented to human viewers.

Meter A device possible containing multiple sensors, used in metering applications. Exam-
ples: Electricity meter, Water Meter, Heat Meter, Cooling Meter, etc.

Momentary Value A momentary value represents a value measured at the time of the read-
out.

Node Graphs contain nodes and edges between nodes. In Internet of Things, sensors, actua-
tors, meters, devices, gateways, etc., are often depicted as nodes whereas links between
sensors (friendships) are depicted as edges. In abstract terms, it’s easier to talk about a
Node, rather than list different possible node types (sensors, actuators, meters, devices,
gateways, etc.). Each Node has a Node ID.

Node ID An ID uniquely identifying a node within its corresponding context. If a globally
unique ID is desired, an architecture should be used using a universally accepted ID
scheme.

Parameter Readable and/or writable property on a node/device. The XEP-0326 Internet
of Things - Concentrators (XEP-0326) XEP-0326: Internet of Things - Concentrators
<https://xmpp.org/extensions/xep-0326.html>. deals with reading and writing param-
eters on nodes/devices. Fields are not parameters, and parameters are not fields.

Peak Value A maximum or minimum value during a given period.

Precision In physics, precision determines the number of digits of precision. In sensor net-
works however, this definition is not easily applicable. Instead, precisiondetermines, for
example, the number of decimals of precision, or power of precision. Example: 123.200
MWh contains 3 decimals of precision. All entities parsing and delivering field informa-
tion in sensor networks should always retain the number of decimals in a message.

Sensor Device measuring at least one digital value (0 or 1) or analog value (value with pre-
cision and physical unit). Examples: Temperature sensor, pressure sensor, etc. Sensor
values are reported as fields during read-out. Each sensor has a unique Node ID.

3

3 USE CASES

SN SensorNetwork. A network consisting, but not limited to sensors, where transport and use
of sensor data is of primary concern. A sensor network may contain actuators, network
applications, monitors, services, etc.

Status Value A value displaying status information about something.

Timestamp Timestamp of value, when the value was sampled or recorded.

Token A client, device or user can get a token from a provisioning server. These tokens can
be included in requests to other entities in the network, so these entities can validate
access rights with the provisioning server.

Unit Physical unit of value. Example: MWh, l/s, etc.

Value A field value.

Value Status Status of field value. Contains important status information for Quality of Ser-
vice purposes. Examples: Ok, Error, Warning, Time Shifted, Missing, Signed, etc.

Value Type Can be numeric, string, boolean, Date & Time, Time Span or Enumeration.

WSN Wireless Sensor Network, a sensor network including wireless devices.

XMPP Client Application connected to an XMPP network, having a JID. Note that sensors, as
well as applications requesting sensor data can be XMPP clients.

3 Use Cases
The most common use case for a sensor network application is meter read-out. It’s performed
using a request and response mechanism, as is shown in the following diagram.

The read-out request is started by the client sending a req request to the device. Here, the
client selects a sequence number seqnr. It should be unique among requests made by the
client. The device will use this sequence numbers in all messages sent back to the client.
The request also contains a set of field types that very roughly determine what the client
wants to read. What the client actually will return will be determined by a lot of other factors,
such as make and model of device, any provisioning rules provided, etc. This parameter
just gives a hint on what kind of data is desired. It is implicit in the request by the context
what kind of data is requested. Examples of field types are: Momentary values, peak values,
historical values, computed values, status values, identification values, etc.
If reading historical values, the client can also specify an optional time range using the from
and to parameter values, giving the device a hint on how much data to return.
If the client wants the read-out to be performed at a given point in time, the client can define
this using the optional parameter when.

4

3 USE CASES

There’s an optional parameter ids that the client can provide, listing a set of Node IDs. If
omitted, the request includes all sensors or devices managed by the current JID. But, if the JID
is controlled by a system, device or concentrator managing various devices, the ids parameter
restricts the read-out to specific individuals.
Note: The device is not required to follow the hints given by the client. These are suggestions
the client can use to minimize its effort to perform the read-out. The client MUST make sure
the response is filtered according to original requirements by the client after the read-out
response has been received.
If the device accepts the client request, it sends an accepted response back to the client. The
device also has to determine if the read-out is commenced directly, or if it is to be queued for
later processing. Note that the request can be queued for several reasons. The device can be
busy, and queues it until it is ready to process the request. It can also queue the request if
the client has requested it to be executed at a given time. If the request is queued, the device
informs the client of this using the queued attribute. Note however, that the device will
process the request when it can. There’s no guarantee that the device will be able to process
the request exactly when the client requests it.
Note: The accepted message can be omitted if the device already has the response and
is ready to send it. If the client receives field data or a done message before receiving an
acceptedmessage, the client can assume the device accepted the request and omitted sending
an accepted element.
If the request was queued, the device will send a message informing the client when the
read-out is begun. This is done using a started message, using the same seqnr used in the
original request.
Note: Sending a started element should be omitted by the device if the request is not queued
on the device. If the queued attribute is omitted in the response, or has the value false, the
client must not assume the device will send a started element.
During the read-out, the device sends partial results back to the client using the same seqnr
as used in the request, using a fields message. These messages will contain a sequence of
fields read out of the device. The client is required to filter this list according to original
specifications, as the device is not required to do this filtering for the client.
When read-out is complete, the device will send a done message to the client with the same
seqnr as in the original request. Since the sender of messages in the device at the time of
sending might not be aware of if there are more messages to send or not, the device can send
this message separately as is shown in the diagram. If the device however, knows the last
message containing fields is the last, it can set a done attribute in the message, to skip this
last message.
Note: There is no guarantee that the device will send a corresponding started and fields
element, even though the request was accepted. The device might lose power during the
process and forget the request. The client should always be aware of that devices may not
respond in time, and take appropriate action accordingly (for instance, implementing a retry
mechanism).
If a failure occurs while performing the read-out, a failure message is sent, instead of a
corresponding fieldsmessage, as is shown in the following diagram. Apart from notifying the
client that a failure to perform the read-out, or part thereof, has occurred, it also provides a

5

3 USE CASES

list of errors that the device encountered while trying. Note that multiple fields and failure
messages can be sent back to the client during the read-out.

The device can also reject a read-out request. Reasons for rejecting a request may be
missing privileges defined by provisioning rules, etc. It’s not part of this XEP to define such
rules. A separate XEP (Internet of Things - Provisioning (XEP-0324) 1) defines an architecture
for how such provisioning can be easily implemented.
A rejection response is shown in the following diagram.

If a read-out has been queued, the client can cancel the queued read-out request sending a
cancel command to the device. If a reading has begin and the client sends a cancel command
to the device, the device can choose if the read-out should be cancelled or completed.
Note: Remember that the seqnr value used in this command is unique only to the client
making the request. The device can receive requests from multiple clients, and must make
sure it differs between seqnr values from different clients. Different clients are assumed to
have different values in the corresponding from attributes.

3.1 Request Read-out of momentary values
The client that wishes to receive momentary values from the sensor initiates the request
using the req element sent to the device.

Listing 1: Read-out request of momentary values from a device
<iq type=’get’

from=’client@example.org/amr’
to=’device@example.org’
id=’S0001 ’>
<req xmlns=’urn:xmpp:iot:sensordata ’ seqnr=’1’ momentary=’true’/>

</iq>

When the device has received and accepted the request, it responds as follows:

Listing 2: Read-out request accepted by device

1XEP-0324: Internet of Things - Provisioning <https://xmpp.org/extensions/xep-0324.html>.

6

https://xmpp.org/extensions/xep-0324.html
https://xmpp.org/extensions/xep-0324.html

3 USE CASES

<iq type=’result ’
from=’device@example.org’
to=’client@example.org/amr’
id=’S0001 ’>
<accepted xmlns=’urn:xmpp:iot:sensordata ’ seqnr=’1’/>

</iq>

When read-out is complete, the response is sent as follows:

Listing 3: Momentary read-out response
<message from=’device@example.org’

to=’client@example.org/amr’>
<fields xmlns=’urn:xmpp:iot:sensordata ’ seqnr=’1’ done=’true’>

<node nodeId=’Device01 ’>
<timestamp value=’2013 -03 -07 T16:24:30 ’>

<numeric name=’Temperature ’ momentary=’true’ automaticReadout=
’true’ value=’23.4’ unit=’°C’/>

</timestamp >
</node>

</fields >
</message >

3.2 Read-out failure
If instead a read-out could not be performed, the communication sequence might look as
follows:

Listing 4: Momentary read-out failure
<iq type=’get’

from=’client@example.org/amr’
to=’device@example.org’
id=’S0002 ’>
<req xmlns=’urn:xmpp:iot:sensordata ’ seqnr=’2’ momentary=’true’/>

</iq>

<iq type=’result ’
from=’device@example.org’
to=’client@example.org/amr’
id=’S0002 ’>
<accepted xmlns=’urn:xmpp:iot:sensordata ’ seqnr=’2’/>

</iq>

<message from=’device@example.org’
to=’client@example.org/amr’>
<failure xmlns=’urn:xmpp:iot:sensordata ’ seqnr=’2’ done=’true’>

7

3 USE CASES

<error nodeId=’Device01 ’ timestamp=’2013 -03 -07 T17:13:30 ’>Timeout.<
/error >

</failure >
</message >

3.3 Read-out rejected
If for some reason, the device rejects the read-out request, the communication sequence
might look as follows:

Listing 5: Momentary read-out rejected
<iq type=’get’

from=’client@example.org/amr’
to=’device@example.org’
id=’S0003 ’>
<req xmlns=’urn:xmpp:iot:sensordata ’ seqnr=’3’ momentary=’true’/>

</iq>

<iq type=’error ’
from=’device@example.org’
to=’client@example.org/amr’
id=’S0003 ’>
<error type=’cancel ’>

<forbidden xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
<text xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’ xml:lang=’en’>

Access denied.</text>
</error >

</iq>

Depending on the reason for rejecting the request, different XMPP errors can be returned,
according to the description in the following table. The table also lists recommended error
type for each error. Any custom errormessage is returned in a text element, as in the example
above.

Error Type Error Element Namespace Description
cancel forbidden urn:ietf:params:xml:ns:xmpp-

stanzas
If the caller lacks privi-
leges to perform the ac-
tion.

cancel item-not-found urn:ietf:params:xml:ns:xmpp-
stanzas

If an item or data source
could not be found.

modify bad-request urn:ietf:params:xml:ns:xmpp-
stanzas

If the request was mal-
formed. Examples can
include trying to read a
device behind a concen-
trator, without includ-
ing node information.

8

3 USE CASES

3.4 Read-out all
The following example shows a communication sequence when a client reads out all available
information from a sensor at a given point in time:

Listing 6: Scheduled read-out of device with multiple responses
<iq type=’get’

from=’client@example.org/amr’
to=’device@example.org’
id=’S0004 ’>
<req xmlns=’urn:xmpp:iot:sensordata ’ seqnr=’4’ all=’true’ when=’

2013 -03 -07 T19:00:00 ’/>
</iq>

<iq type=’result ’
from=’device@example.org’
to=’client@example.org/amr’
id=’S0004 ’>
<accepted xmlns=’urn:xmpp:iot:sensordata ’ seqnr=’4’ queued=’true’/>

</iq>

<message from=’device@example.org’
to=’client@example.org/amr’>
<started xmlns=’urn:xmpp:iot:sensordata ’ seqnr=’4’/>

</message >

<message from=’device@example.org’
to=’client@example.org/amr’>
<fields xmlns=’urn:xmpp:iot:sensordata ’ seqnr=’4’>

<node nodeId=’Device01 ’>
<timestamp value=’2013 -03 -07 T19:00:00 ’>

<numeric name=’Temperature ’ momentary=’true’ automaticReadout=
’true’ value=’23.4’ unit=’°C’/>

<numeric name=’Runtime ’ status=’true’ automaticReadout=’true’
value=’12345 ’ unit=’h’/>

<string name=’Device␣ID’ identification=’true’
automaticReadout=’true’ value=’Device01 ’/>

</timestamp >
</node>

</fields >
</message >

<message from=’device@example.org’
to=’client@example.org/amr’>
<fields xmlns=’urn:xmpp:iot:sensordata ’ seqnr=’4’>

<node nodeId=’Device01 ’>

9

3 USE CASES

<timestamp value=’2013 -03 -07 T19:00:00 ’>
<numeric name=’Temperature ,␣Max’ peak=’true’ automaticReadout=

’true’ value=’25.9’ unit=’°C’/>
<numeric name=’Temperature ,␣Min’ peak=’true’ automaticReadout=

’true’ value=’18.7’ unit=’°C’/>
<numeric name=’Temperature ,␣Mean’ computed=’true’

automaticReadout=’true’ value=’22.5’ unit=’°C’/>
</timestamp >

</node>
</fields >

</message >

<message from=’device@example.org’
to=’client@example.org/amr’>
<fields xmlns=’urn:xmpp:iot:sensordata ’ seqnr=’4’>

<node nodeId=’Device01 ’>
<timestamp value=’2013 -03 -07 T18:00:00 ’>

<numeric name=’Temperature ’ historicalHour=’true’
automaticReadout=’true’ value=’24.5’ unit=’°C’/>

</timestamp >
<timestamp value=’2013 -03 -07 T17:00:00 ’>

<numeric name=’Temperature ’ historicalHour=’true’
automaticReadout=’true’ value=’25.1’ unit=’°C’/>

</timestamp >
<timestamp value=’2013 -03 -07 T16:00:00 ’>

<numeric name=’Temperature ’ historicalHour=’true’
automaticReadout=’true’ value=’25.2’ unit=’°C’/>

</timestamp >
...
<timestamp value=’2013 -03 -07 T00:00:00 ’>

<numeric name=’Temperature ’ historicalHour=’true’
historicalDay=’true’ automaticReadout=’true’ value=’25.2’
unit=’°C’/>

</timestamp >
</node>

</fields >
</message >

<message from=’device@example.org’
to=’client@example.org/amr’>
<done xmlns=’urn:xmpp:iot:sensordata ’ seqnr=’4’/>

</message >

3.5 Read-out of multiple devices
The following example shows how a client reads a subset of multiple sensors behind a device
with a single JID.

10

3 USE CASES

Listing 7: Read-out of multiple devices
<iq type=’get’

from=’client@example.org/amr’
to=’device@example.org’
id=’S0005 ’>
<req xmlns=’urn:xmpp:iot:sensordata ’ seqnr=’5’ momentary=’true’>

<node nodeId=’Device02 ’/>
<node nodeId=’Device03 ’/>

</req>
</iq>

<iq type=’result ’
from=’device@example.org’
to=’client@example.org/amr’
id=’S0005 ’>
<accepted xmlns=’urn:xmpp:iot:sensordata ’ seqnr=’5’/>

</iq>

<message from=’device@example.org’
to=’client@example.org/amr’>
<fields xmlns=’urn:xmpp:iot:sensordata ’ seqnr=’5’>

<node nodeId=’Device02 ’>
<timestamp value=’2013 -03 -07 T19:31:15 ’>

<numeric name=’Temperature ’ momentary=’true’ automaticReadout=
’true’ value=’23.4’ unit=’°C’/>

</timestamp >
</node>

</fields >
</message >

<message from=’device@example.org’
to=’client@example.org/amr’>
<fields xmlns=’urn:xmpp:iot:sensordata ’ seqnr=’5’ done=’true’>

<node nodeId=’Device03 ’>
<timestamp value=’2013 -03 -07 T19:31:16 ’>

<numeric name=’Temperature ’ momentary=’true’ automaticReadout=
’true’ value=’22.8’ unit=’°C’/>

</timestamp >
</node>

</fields >
</message >

3.6 Read-out of specific fields
The req element can take field sub elements, with which the client can specify which fields it
is interested in. If not provided, the client is assumed to return all matching fields, regardless
of field name. However, the field elements in the request object can be used as a hint which
fields should be returned.

11

3 USE CASES

Note: the device is not required to adhere to the field limits expressed by these field elements.
They are considered a hint the device can use to limit bandwidth.
The following example shows how a client can read specific fields in a device.

Listing 8: Read-out of multiple devices
<iq type=’get’

from=’client@example.org/amr’
to=’device@example.org’
id=’S0006 ’>
<req xmlns=’urn:xmpp:iot:sensordata ’ seqnr=’6’ momentary=’true’>

<node nodeId=’Device04 ’/>
<field name=’Energy ’/>
<field name=’Power ’/>

</req>
</iq>

<iq type=’result ’
from=’device@example.org’
to=’client@example.org/amr’
id=’S0006 ’>
<accepted xmlns=’urn:xmpp:iot:sensordata ’ seqnr=’6’/>

</iq>

<message from=’device@example.org’
to=’client@example.org/amr’>
<fields xmlns=’urn:xmpp:iot:sensordata ’ seqnr=’6’ done=’true’>

<node nodeId=’Device04 ’>
<timestamp value=’2013 -03 -07 T22:03:15 ’>

<numeric name=’Energy ’ momentary=’true’ automaticReadout=’true
’ value=’12345.67 ’ unit=’MWh’/>

<numeric name=’Power ’ momentary=’true’ automaticReadout=’true’
value=’239.4 ’ unit=’W’/>

</timestamp >
</node>

</fields >
</message >

3.7 Cancelling a scheduled read-out request
The following example shows how the client cancels a scheduled read-out:

Listing 9: Scheduled read-out of device with multiple responses
<iq type=’get’

from=’client@example.org/amr’
to=’device@example.org’
id=’S0007 ’>

12

4 DETERMINING SUPPORT

<req xmlns=’urn:xmpp:iot:sensordata ’ seqnr=’8’ all=’true’ when=’
2013 -03 -09 T23:30:00 ’/>

</iq>

<iq type=’result ’
from=’device@example.org’
to=’client@example.org/amr’
id=’S0007 ’>
<accepted xmlns=’urn:xmpp:iot:sensordata ’ seqnr=’8’ queued=’true’/>

</iq>

<iq type=’get’
from=’client@example.org/amr’
to=’device@example.org’
id=’S0008 ’>
<cancel xmlns=’urn:xmpp:iot:sensordata ’ seqnr=’8’/>

</iq>

<iq type=’result ’
from=’device@example.org’
to=’client@example.org/amr’
id=’S0008 ’>
<cancelled xmlns=’urn:xmpp:iot:sensordata ’ seqnr=’8’/>

</iq>

4 Determining Support
If an entity supports the protocol specified herein, it MUST advertise that fact by returning a
feature of ”urn:xmpp:iot:sensordata” in response to Service Discovery (XEP-0030) 2 informa-
tion requests.

Listing 10: Service discovery information request
<iq type=’get’

from=’client@example.org/amr’
to=’device@example.org’
id=’disco1 ’>
<query xmlns=’http: // jabber.org/protocol/disco#info’/>

</iq>

Listing 11: Service discovery information response
<iq type=’result ’

from=’device@example.org’
to=’client@example.org/amr’

2XEP-0030: Service Discovery <https://xmpp.org/extensions/xep-0030.html>.

13

https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0030.html

5 IMPLEMENTATION NOTES

id=’disco1 ’>
<query xmlns=’http: // jabber.org/protocol/disco#info’>

...
<feature var=’urn:xmpp:iot:sensordata ’/>
...

</query >
</iq>

In order for an application to determine whether an entity supports this protocol, where
possible it SHOULD use the dynamic, presence-based profile of service discovery defined in
Entity Capabilities (XEP-0115) 3. However, if an application has not received entity capabilities
information from an entity, it SHOULD use explicit service discovery instead.

5 Implementation Notes
5.1 String lengths
As noticed, a conscious effort has been made not to shorten element and attribute names.
This is to make sure, XML is maintained readable. Packet size is not deemed to be affected
negatively by this for two reasons:

• For sensors with limited memory, or where package size is important, Efficient XML
Interchange (EXI) Format (XEP-0322) 4 is supposed to be used. EXI compresses strings as
normalized index values, making the string appear only once in the packet. Therefore,
shortening string length doesn’t affect packet size much. Element and attribute names
in known namespaces are furthermore only encoded by index in schema, not by name.

• If limited memory or package size is not a consideration, readability and ease of imple-
mentation is preferred to short messages.

5.2 Enumerations vs. Strings
This protocol has avoided the use of enumerations for data types such as units, field names,
etc., and instead use strings. The reasons for this are:

• Enumerations would unnecessarily restrict the use of the protocol to field names and
units listed in the protocol.

• It would be very difficult to try to create a complete set of field names and units that
would suit all applications.

3XEP-0115: Entity Capabilities <https://xmpp.org/extensions/xep-0115.html>.
4XEP-0322: Efficient XML Interchange (EXI) Format <https://xmpp.org/extensions/xep-0322.html>.

14

https://xmpp.org/extensions/xep-0115.html
https://xmpp.org/extensions/xep-0322.html
https://xmpp.org/extensions/xep-0322.html
https://xmpp.org/extensions/xep-0115.html
https://xmpp.org/extensions/xep-0322.html

5 IMPLEMENTATION NOTES

• Leaving these values as strings would let developers the liberty to use units as they de-
sire.

• If EXI is used for compression, the use of strings will only increase payload slightly, with
only one copy of each distinct value used.

• If EXI is not used, this does not affect packet size.

However, some things need to be taken into account:

• Since free strings are used, XML validation cannot be used to secure correct names are
used.

• xep-0000-IoT-Interoperability lists recommendations on how field names and units
should be used in order to achieve maximum interoperability in SN.

• Consumers of sensor data need to include unit conversion algorithms.

5.3 Asynchronous feedback
Since some applications require real-time feedback (or as real-time as possible), and read-out
might in certain cases take a long time, the device has the option to send multiple fields
messages during read-out. The client is responsible for collecting all such messages until
either a done message is sent, or a corresponding done attribute is available in one of the
messages received. Only the device knows how many (if any) messages are sent in response
to a read-out request.

5.4 Field Value Data Types
There are different types of values that can be reported from a device. The following table
lists the various types:

Element Description
boolean Represents a boolean value that can be either true or false.
date Represents a date value. The valuemust be encoded using the xs:date data type.
dateTime Represents a date and optional time value. The valuemust be encoded using the

xs:dateTime data type. This includes date, an optional time and optional time
zone information. If time zone is not available, it is supposed to be undefined.

duration Represents a duration value. The value must be encoded using the xs:duration
data type.

enum Represents an enumeration value. What differs this value from a string value, is
that it apart from the enumeration value (which is a string value), also contains
a data type, which consumers can use to interpret its value. This specification
does not assume knowledge of any particular enumeration data types.

15

5 IMPLEMENTATION NOTES

Element Description
int Represents a 32-bit integer value. It contains an arbitrary 32-bit integer value.

This field value data type can be seen as a subtype of the more generic numeric
field value data type. It has its own element, to make it harmonous to 32-bit
integer control parameters, as defined in XEP-0325. It is also simpler to report
and compress, since it does not use floating point precision and a unit.

long Represents a 64-bit integer value. It contains an arbitrary 64-bit integer value.
This field value data type can be seen as a subtype of the more generic numeric
field value data type. It has its own element, to make it harmonous to 64-bit
integer control parameters, as defined in XEP-0325. It is also simpler to report
and compress, since it does not use floating point precision and a unit.

numeric Represents a numerical value. Numerical values contain, apart from a numer-
ical number, also an implicit precision (number of decimals) and an optional
unit. All parties in the communication chain should retain the number of dec-
imals used, since this contains information that is important in the interpreta-
tion of a value. For example, 10 °C is different from 10.0 °C, and very different
from 10.00 °C. If a sensor delivers the value 10 °C you can assume it probably
lies between 9.5 °C and 10.5 °C. But if a sensor delivers 10.00 °C, it is probably
very exact (if calibrated correctly).

string Represents a string value. It contains an arbitrary string value.
time Represents a time value. The valuemust be encodedusing the xs:timedata type.

5.5 Harmonization with XEP-0325 (Control)
When representing control parameters as momentary field values, it is important to note the
similarities and differences between XEP-0323 (this document) and XEP-0325 (Control):
The enum field value data type is not available in XEP-0325 (Control). Instead enumeration
valued parameters are represented as string control parameters, while the control form
explicitly lists available options for the parameter. Options are not available in XEP-0323,
since it would not be practical to list all options every time the corresponding parameter
was read out. Instead, the enum element contains a data type attribute, that can be used to
identify the type of the enumeration.
The numeric field value data type is not available in XEP-0325 (Control). The reason is that a
controller is not assumed to understand unit conversion. Any floating-point valued control
parameters are represented by double control parameters, which lack a unit attribute. They
are assumed to have the same unit as the corresponding numeric field value. On the other
hand, floating point valued control parameters without units, are reported using the numeric
field element, but leaving the unit blank.
Control pameters of type color have no corresponding field value data type. The color value
must be represented in another way, and is implementation specific. Possibilities include
representing the color as a string, using a specific pattern (for instance RRGGBBAA), or report
it using multiple fields, one for each component for instance.

16

5 IMPLEMENTATION NOTES

The boolean, date, dateTime, duration, int, long, string and time field value data types
correspond to control parameters having the same types and same element names.

5.6 Field Types
There are different types of fields, apart from types of values a field can have. These types are
conceptual types, similar to categories. They are not exclusive, and can be combined.
If requesting multiple field types in a request, the device must interpret this as a union of the
corresponding field types and return at least all field values that contain at least one of the
requested field types. Example: If requesting momentary values and historical values, devices
must return both its momentary values and its historical values.
But, when a device reports a field having multiple field types, the client should interpret
this as the intersection of the corresponding field types, i.e. the corresponding field has all
corresponding field types. Example: A field marked as both a status value and as a historical
value is in fact a historical status value.
The following table lists the different field types specified in this document:

Field Type Description
computed A value that is computed instead of measured.
historical* A value stored inmemory from a previous timestamp. The suffix is used

to determine period, as shown below.
historicalSecond A value stored at a second shift (milliseconds = 0).
historicalMinute A value stored at a minute shift (seconds=milliseconds=0). Are also sec-

ond values.
historicalHour A value stored at a hour shift (minutes=seconds=milliseconds=0). Are

also minute and second values.
historicalDay A value stored at a day shift (hours=minutes=seconds=milliseconds=0).

Are also hour, minute and second values.
historicalWeek A value stored at a week shift (Monday,

hours=minutes=seconds=milliseconds=0). Are also day, hour, minute
and second values.

historicalMonth A value stored at a month shift (day=1,
hours=minutes=seconds=milliseconds=0). Are also day, hour, minute
and second values.

historicalQuarter A value stored at a quarter year shift (Month=Jan, Apr, Jul, Oct, day=1,
hours=minutes=seconds=milliseconds=0). Are also month, day, hour,
minute and second values.

historicalYear A value stored at a year shift (Month=Jan, day=1,
hours=minutes=seconds=milliseconds=0). Are also quarter, month,
day, hour, minute and second values.

historicalOther If period if historical value is not important in the request or by the
device.

identity A value that can be used for identification. (Serial numbers, meter IDs,
locations, names, addresses, etc.)

17

5 IMPLEMENTATION NOTES

Field Type Description
momentary Amomentary value represents a valuemeasured at the time of the read-

out. Examples: Energy, Volume, Power, Flow, Temperature, Pressure,
etc.

peak A maximum or minimum value during a given period. Examples ”Tem-
perature, Max”, ”Temperature, Min”, etc.

status A value displaying status information about something. Examples:
Health, Battery life time, Runtime, Expected life time, Signal strength,
Signal quality, etc.

There are two field type attributes that can be used in requests to simplify read-out:

Field Type Description
all Reads all types of fields. It is the same as explicitly setting all field type at-

tributes to true.
historical If period of historical values is not important, this attribute can be set to in-

clude all types of historical values.

Note: The reason for including different predefined time periods for historical values is that
these periods are common in certain applications. However, the client is not restricted to
these in any way. The client can always just ask for historical values, and do filtering as
necessary to read out the interval desired.
Also, devices are not required to include logic to parse and figure out what historical values
are actually desired by the client. If too complicated for the device to handle, it is free to
report all historical values. However, the device should limit the historical values to any
interval requested, and should try to limit itself to the field types requested. Information in
the request element are seen as hints that the device can use to optimize any communication
required by the operation.

5.7 Field Quality of Service Values
In applications where quality of service is important, a field must always be accompanied with
a corresponding quality of service flag. Devices should set these accordingly. If no quality of
service flag is set on a field, the client can assume automaticReadout is true.
Note that quality of service flags are not exclusive. Many of them can be logically be combined.
Some also imply an order of importance. This should be kept inmindwhen trying to overwrite
existing values with read values: An estimate should not overwrite an automatic read-out, an
automatic read-out not a signed value, and a signed value not an invoiced value, etc.
Available quality of service flags, in order of importance:

18

5 IMPLEMENTATION NOTES

QoS Flag Description
missing Value is missing
inProgress Value is in progress to be measured or calculated. The value is to be

considered as unsure and not final. Read again later to retrieve the
correct value. It is more reliable than amissing value, but less reliable
than an estimate.

automaticEstimate An estimate of the value has been done automatically. Considered
more reliable than a value in progress.

manualEstimate The value has manually been estimated. Considered more reliable
than an automatic estimate.

manualReadout Value has been manually read. Considered more reliable than a man-
ual estimate.

automaticReadout Value has been automatically read. Considered more reliable than a
manually read value.

timeOffset The time was offset more than allowed and corrected during themea-
surement period.

warning A warning was logged during the measurement period.
error An error was logged during the measurement period.
signed The value has been signed by an operator. Considered more reliable

than an automatically read value. Note that the signed quality of ser-
vice flag can be used to overwrite existing values of higher impor-
tance. Example signed + invoiced can be considered more reliable
than only invoiced, etc.

invoiced The value has been invoiced by an operator. Consideredmore reliable
than a signed value.

endOfSeries The value has been marked as an end point in a series. This can be
used for instance to mark the change of tenant in an apartment.

powerFailure The device recorded a power failure during the measurement period.
invoiceConfirmed The value has been invoiced by an operator and confirmed by the re-

cipient. Considered more reliable than an invoiced value.

5.7.1 Estimates vs. Readouts

A note on the difference between estimates and readouts. There are many cases where a
proper value in a sensor or meter cannot be sensed correctly, and only estimated. As an
example: Consider a water meter calculating the flow of water passing vane generating pulses
as the wheel turns. The frequency of pulses correspond to the flow of water, or inversely, the
time between pulses correspond inversely to the flow of water. But what happens when the
flow slows down and pulses are not received? How can the meter differ between zero flow,
and a little flow until a pulse is received?
What a meter can do is estimate a flow value that would correspond to the inverse of the time

19

5 IMPLEMENTATION NOTES

passed since last received pulse. This estimate would slowly decrease to zero if no flow is
available, but would be correct if a pulse finally would be received, thus causing a smoother
measurement of the flow. However, the value reported would not be an actual measurement
or readout, but an estimate of the value.
It’s important that such estimates are flagged as such, so that readers know the value is not a
measurement but an estimate. Consider an application that monitors water meters to detect
leakage. If a water meter always measures flow, and never decreases to zero flow, it might be
logically assumed there’s a leakage or bad valves somewhere. However, if meters as described
above are used, flow might perhaps never reach zero, simply because it reports a value that’s
inversely proportional to the time passed since last pulse. It might be close to zero over long
periods of time, but never reach zero. To avoid the application generating leakage alarms
in case such meters were used, the application can be made to ignore estimates and only
monitor values that have been correctly measured.

5.8 Subnodes and supernodes
This document does not go into detail on how devices are ordered behind a JID. Some of the
examples have assumed a single device lies behind a JID, others that multiple devices exist
behind a JID. Also, no order or structure of devices has been assumed.
But it can be mentioned that it is assumed that if a client requests a read-out of a supernode,
it implies the read-out of all its subnodes. Therefore, the client cannot expect read-out to be
limited to the devices listed explicitly in a request, as nodes implicitly implied, as descendant
nodes of the selected nodes, can also be included.
More information about howmultiple devices behind a JID can be handled, is described in the
XEP-0326 Internet of Things - Concentrators.

5.9 Reading devices from large subsystems
All examples in this document have been simplified examples where a few devices containing
a few fields have been read. However, in many cases large subsystems with very many
sensors containing many fields have to be read, as is documented in Internet of Things -
Concentrators. In such cases, a nodemay have to be specified using two or perhaps even three
ID’s: a sourceId identifying the data source controlling the device, a possible cacheType
narrowing down the search to a specific kind of node, and the common nodeId. For more
information about this, see Internet of Things - Concentrators.
Note: For cases where the nodeId is sufficient to uniquely identify the node, it is sufficient
to provide this attribute in the request. If there is ambiguity in the request, the receptor
must treat the request as a request with a set of nodes, all with the corresponding nodeId as
requested.

20

http://xmpp.org/extensions/xep-0326.html
http://xmpp.org/extensions/xep-0326.html
http://xmpp.org/extensions/xep-0326.html
http://xmpp.org/extensions/xep-0326.html

6 INTERNATIONALIZATION CONSIDERATIONS

5.10 Reading controllable parameter values
If reading field values from a device that also supports control through Internet of Things -
Control (XEP-0325) 5, the device can report current control parameter values asmomentary or
status field values, using field names corresponding to its control parameter names. However,
such values would probably only correspond to a subset of all data read out. To help the
reader to know what fields correspond to controllable parameters, the optional writable
attribute can be used in responsens. If this attribute is available, it tells the client if the field
corresponds to a control parameter with the same name on the device. If the attribute is not
available, no deduction can be made if a control parameter with the same name exists or not
on the device.

6 Internationalization Considerations
6.1 Time Zones
All timestamps and dateTime values use the XML data type xs:dateTime to specify values.
These values include a date, an optional time and an optional time zone.
Note: If time zone is not available, it is supposed to be undefined. The client reading the
sensor that reports fields without time zone information should assume the sensor has the
same time zone as the client, if not explicitly configured otherwise on the client side.
If devices report time zone, this information should be propagated throughout the system.
Otherwise, comparing timestamps from different time zones will be impossible.

6.2 Localized strings
This specification allows for localization of field names in meter data read-out. This is per-
formed by assigning each localizable string a String IDwhich should be unique within a given
Language Module. A Language Module can be any string, including URI’s or namespace
names. The XEP xep-0000-IoT-Interoperability details how such localizations can be made in
an interoperable way.
Note: Localization of strings are for human consumption only. Machines should use the
unlocalized strings in program logic.
The following example shows how a device can report localized field information that can
be presented to end users without systems being preprogrammed to recognize the device.
Languagemodules can be aggregated by operators after installation, or installed as a pluggable
module after the main installation, if localization is desired.

Listing 12: Localized field names
<iq type=’get’

5XEP-0325: Internet of Things - Control <https://xmpp.org/extensions/xep-0325.html>.

21

https://xmpp.org/extensions/xep-0325.html
https://xmpp.org/extensions/xep-0325.html
xep-0000-IoT-Interoperability.html
https://xmpp.org/extensions/xep-0325.html

6 INTERNATIONALIZATION CONSIDERATIONS

from=’client@example.org/amr’
to=’device@example.org’
id=’S0009 ’>
<req xmlns=’urn:xmpp:iot:sensordata ’ seqnr=’7’ all=’true’/>

</iq>

<iq type=’result ’
from=’device@example.org’
to=’client@example.org/amr’
id=’S0009 ’>
<accepted xmlns=’urn:xmpp:iot:sensordata ’ seqnr=’7’/>

</iq>

<message from=’device@example.org’
to=’client@example.org/amr’>
<fields xmlns=’urn:xmpp:iot:sensordata ’ seqnr=’7’ done=’true’>

<node nodeId=’Device05 ’>
<timestamp value=’2013 -03 -07 T22:20:45 ’>

<numeric name=’Temperature ’ momentary=’true’ automaticReadout=
’true’

value=’23.4’ unit=’°C’ module=’Whatchamacallit ’ stringIds=’1
’/>

<numeric name=’Temperature ,␣Min’ momentary=’true’
automaticReadout=’true’

value=’23.4’ unit=’°C’ module=’Whatchamacallit ’ stringIds=’
1,2’/>

<numeric name=’Temperature ,␣Max’ momentary=’true’
automaticReadout=’true’

value=’23.4’ unit=’°C’ module=’Whatchamacallit ’ stringIds=’
1,3’/>

<numeric name=’Temperature ,␣Mean’ momentary=’true’
automaticReadout=’true’

value=’23.4’ unit=’°C’ module=’Whatchamacallit ’ stringIds=’
1,4’/>

</timestamp >
</node>

</fields >
</message >

The above example defines a language module called Watchamacallit. In this language
module it defines four strings, with IDs 1-4. A system might store these as follows, where the
system replaces all %N% with a conceptual n:th parameter. (It’s up to the system to define
these strings, any syntax and how to handle input and output.). In this example, we will
assume %0%means any previous output, and %1% any seed value provided. (See below).

ID String
1 Temperature

22

6 INTERNATIONALIZATION CONSIDERATIONS

ID String
2 %0%, Min
3 %0%, Max
4 %0%, Mean

So, when the client reads the field name Temperature, Min, it knows that the field name is
the composition of the string Temperature, and the string %0%, Min, where it will replace
%0% with the output of the previous step, in this case Temperature. These strings can later
be localized to different languages by operators of the system, and values presented when
reading the device, can be done in a language different from the one used by the sensor.
Note: The XEP xep-0000-IoT-Interoperability details how such localizations can be made in
an interoperable way.
The stringIds attribute merits some further explanation. The value of this attribute must
match the following regular expression:

^\d+([|]\w+([.]\w+) *([|][^ ,]*) ?)?(,\d+([|]\w+([.]\w+) *([|][^ ,]*) ?)?)*$

This basically means, it’s of the format: ID_1[|[Module_1][|Seed_1]][...[,ID_n[|[Module_-
n][|Seed_n]]]]
Where brackets [] mean the contents inside is optional, ID_i is an integer representing the
string ID in a language module. Module_i is optional and allows for specifying a module for
ID_i, if different from the module defined in themodule attribute. Seed_i allows for seeding
the generation of the localized string with a value. Thismight come in handywhen generating
strings like Input 5, where you don’t want to create localized strings for every input there is.
Why such a complicated syntax? The reason is the following: Most localized strings are simple
numbers, without the need of specifying modules and seeds. This makes it very efficient to
store it as an attribute instead of having to create subelements for every localized field. It’s
an exception to the rule, to need multiple steps or seeds in the generation of localized strings.
Therefore, attributes is an efficient means to specify localization. However, in the general
case, a single string ID is not sufficient and multiple steps are required, some seeded.

stringIds New Parts Result
1 1=”Temperature” Temperature
1,2 2=”%0%, Max” Temperature, Max
1,1|MathModule 1 in module ”MathMod-

ule”=”sum(%0%)”
sum(Temperature)

3||A1 3=”Input %1%” Input A1
4||A1,2 4=”Entrance %1%” Entrance A1, Max
4||A1,5||3 5=”%0%, Floor %1%” Entrance A1, Floor 3

23

xep-0000-IoT-Interoperability.html

10 XML SCHEMA

7 Security Considerations
This document has not touched upon security in sensor networks. There are mainly three
concerns that implementers of sensor networks need to consider:

• Communication should be restricted to friends as long as possible. Approved friendships
provide a mechanism of limiting sensor information to authorized and authenticated
users. However, there are cases where multicast messages may want to go outside of
recognized friendships. More information about such use cases, see the XEP xep-0000-
IoT-Multicast.

• Sensors may have very limited user interfaces. Even though installation of sensor net-
works is beyond the scope of this document, a simple installation scheme may include
a single LED on the sensor that lights up for a time after receiving a friendship request.
If a user presses a button on the device while the LED is lit, the friendship request is
acknowledged, and communication is authorized.

• More advanced access rights, privileges, automatic friendship recognition, etc., may be
managed by a third party. How to implement more advanced provisioning and detailed
access rights to sensor information is detailed in the XEP-0324 Internet of Things - Pro-
visioning. In short, a device, service or user can get a deviceToken, serviceToken and
userToken respectivelly from a provisioning server. The service or device then uses
these tokens in all readout requests and the device being read out can in turn use these
tokens to validate access rights with the provisioning server.

8 IANA Considerations
This document requires no interaction with the Internet Assigned Numbers Authority (IANA)
6.

9 XMPP Registrar Considerations
The protocol schema needs to be added to the list of XMPP protocol schemas.

10 XML Schema

6The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

24

xep-0000-IoT-Multicast.html
xep-0000-IoT-Multicast.html
http://xmpp.org/extensions/xep-0324.html
http://xmpp.org/extensions/xep-0324.html
http://www.iana.org/
http://xmpp.org/resources/schemas/
http://www.iana.org/

10 XML SCHEMA

<?xml version=’1.0’ encoding=’UTF -8’?>
<xs:schema

xmlns:xs=’http: //www.w3.org /2001/ XMLSchema ’
targetNamespace=’urn:xmpp:iot:sensordata ’
xmlns=’urn:xmpp:iot:sensordata ’
elementFormDefault=’qualified ’>

<xs:element name=’req’>
<xs:complexType >

<xs:choice minOccurs=’0’ maxOccurs=’unbounded ’>
<xs:element name=’node’>

<xs:complexType >
<xs:attribute name=’nodeId ’ type=’xs:string ’ use=’required

’/>
<xs:attribute name=’sourceId ’ type=’xs:string ’ use=’

optional ’/>
<xs:attribute name=’cacheType ’ type=’xs:string ’ use=’

optional ’/>
</xs:complexType >

</xs:element >
<xs:element name=’field ’>

<xs:complexType >
<xs:attribute name=’name’ type=’xs:string ’ use=’required ’/

>
</xs:complexType >

</xs:element >
</xs:choice >
<xs:attribute name=’seqnr ’ type=’xs:int ’ use=’required ’/>
<xs:attributeGroup ref=’fieldTypes ’/>
<xs:attribute name=’all’ type=’xs:boolean ’ use=’optional ’

default=’false ’/>
<xs:attribute name=’historical ’ type=’xs:boolean ’ use=’optional ’

default=’false ’/>
<xs:attribute name=’from’ type=’xs:dateTime ’ use=’optional ’/>
<xs:attribute name=’to’ type=’xs:dateTime ’ use=’optional ’/>
<xs:attribute name=’when’ type=’xs:dateTime ’ use=’optional ’/>
<xs:attribute name=’serviceToken ’ type=’xs:string ’ use=’optional

’/>
<xs:attribute name=’deviceToken ’ type=’xs:string ’ use=’optional ’

/>
<xs:attribute name=’userToken ’ type=’xs:string ’ use=’optional ’/>

</xs:complexType >
</xs:element >

<xs:attributeGroup name=’fieldTypes ’>
<xs:attribute name=’momentary ’ type=’xs:boolean ’ use=’optional ’

default=’false ’/>
<xs:attribute name=’peak’ type=’xs:boolean ’ use=’optional ’ default

=’false ’/>

25

10 XML SCHEMA

<xs:attribute name=’status ’ type=’xs:boolean ’ use=’optional ’
default=’false ’/>

<xs:attribute name=’computed ’ type=’xs:boolean ’ use=’optional ’
default=’false ’/>

<xs:attribute name=’identity ’ type=’xs:boolean ’ use=’optional ’
default=’false ’/>

<xs:attribute name=’historicalSecond ’ type=’xs:boolean ’ use=’
optional ’ default=’false ’/>

<xs:attribute name=’historicalMinute ’ type=’xs:boolean ’ use=’
optional ’ default=’false ’/>

<xs:attribute name=’historicalHour ’ type=’xs:boolean ’ use=’
optional ’ default=’false ’/>

<xs:attribute name=’historicalDay ’ type=’xs:boolean ’ use=’optional
’ default=’false ’/>

<xs:attribute name=’historicalWeek ’ type=’xs:boolean ’ use=’
optional ’ default=’false ’/>

<xs:attribute name=’historicalMonth ’ type=’xs:boolean ’ use=’
optional ’ default=’false ’/>

<xs:attribute name=’historicalQuarter ’ type=’xs:boolean ’ use=’
optional ’ default=’false ’/>

<xs:attribute name=’historicalYear ’ type=’xs:boolean ’ use=’
optional ’ default=’false ’/>

<xs:attribute name=’historicalOther ’ type=’xs:boolean ’ use=’
optional ’ default=’false ’/>

</xs:attributeGroup >

<xs:element name=’accepted ’>
<xs:complexType >

<xs:attribute name=’seqnr ’ type=’xs:int ’ use=’required ’/>
<xs:attribute name=’queued ’ type=’xs:boolean ’ use=’optional ’

default=’false ’/>
</xs:complexType >

</xs:element >

<xs:element name=’started ’>
<xs:complexType >

<xs:attribute name=’seqnr ’ type=’xs:int ’ use=’required ’/>
</xs:complexType >

</xs:element >

<xs:element name=’cancel ’>
<xs:complexType >

<xs:attribute name=’seqnr ’ type=’xs:int ’ use=’required ’/>
</xs:complexType >

</xs:element >

<xs:element name=’cancelled ’>
<xs:complexType >

<xs:attribute name=’seqnr ’ type=’xs:int ’ use=’required ’/>

26

10 XML SCHEMA

</xs:complexType >
</xs:element >

<xs:element name=’fields ’>
<xs:complexType >

<xs:sequence minOccurs=’0’ maxOccurs=’unbounded ’>
<xs:element name=’node’>

<xs:complexType >
<xs:sequence minOccurs=’0’ maxOccurs=’unbounded ’>

<xs:element name=’timestamp ’>
<xs:complexType >

<xs:choice minOccurs=’0’ maxOccurs=’unbounded ’>
<xs:element name=’boolean ’ type=’boolean ’/>
<xs:element name=’date’ type=’date’/>
<xs:element name=’dateTime ’ type=’dateTime ’/>
<xs:element name=’duration ’ type=’duration ’/>
<xs:element name=’enum’ type=’enum’/>
<xs:element name=’int’ type=’int’/>
<xs:element name=’long’ type=’long’/>
<xs:element name=’numeric ’ type=’numeric ’/>
<xs:element name=’string ’ type=’string ’/>
<xs:element name=’time’ type=’time’/>

</xs:choice >
<xs:attribute name=’value ’ type=’xs:dateTime ’ use=’

required ’/>
</xs:complexType >

</xs:element >
</xs:sequence >
<xs:attribute name=’nodeId ’ type=’xs:string ’ use=’required

’/>
<xs:attribute name=’sourceId ’ type=’xs:string ’ use=’

optional ’/>
<xs:attribute name=’cacheType ’ type=’xs:string ’ use=’

optional ’/>
</xs:complexType >

</xs:element >
</xs:sequence >
<xs:attribute name=’seqnr ’ type=’xs:int ’ use=’required ’/>
<xs:attribute name=’done’ type=’xs:boolean ’ use=’optional ’

default=’false ’/>
</xs:complexType >

</xs:element >

<xs:element name=’failure ’>
<xs:complexType >

<xs:sequence minOccurs=’0’ maxOccurs=’unbounded ’>
<xs:element name=’error ’>

<xs:complexType >
<xs:simpleContent >

27

10 XML SCHEMA

<xs:extension base=’xs:string ’>
<xs:attribute name=’nodeId ’ type=’xs:string ’ use=’

required ’/>
<xs:attribute name=’sourceId ’ type=’xs:string ’ use=’

optional ’/>
<xs:attribute name=’cacheType ’ type=’xs:string ’ use=’

optional ’/>
<xs:attribute name=’timestamp ’ type=’xs:string ’ use=’

required ’/>
</xs:extension >

</xs:simpleContent >
</xs:complexType >

</xs:element >
</xs:sequence >
<xs:attribute name=’seqnr ’ type=’xs:int ’ use=’required ’/>
<xs:attribute name=’done’ type=’xs:boolean ’ use=’optional ’

default=’false ’/>
</xs:complexType >

</xs:element >

<xs:element name=’done’>
<xs:complexType >

<xs:attribute name=’seqnr ’ type=’xs:int ’ use=’required ’/>
</xs:complexType >

</xs:element >

<xs:complexType name=’field ’ abstract=’true’>
<xs:attribute name=”name” type=”xs:string” use=”required”/>
<xs:attributeGroup ref=’fieldTypes ’/>
<xs:attributeGroup ref=’fieldQoS ’/>
<xs:attribute name=”module” type=”xs:string” use=”optional”/>
<xs:attribute name=”stringIds” type=”StringIds” use=”optional”/>
<xs:attribute name=”writable” type=”xs:boolean” use=”optional”/>

</xs:complexType >

<xs:simpleType name=”StringIds”>
<xs:restriction base=”xs:string”>

<xs:pattern value=”^\d+([|]\w+([.]\w+) *([|][^ ,]*) ?)?(,\d+([|]\w
+([.]\w+) *([|][^ ,]*) ?)?)*$”/>

</xs:restriction >
</xs:simpleType >

<xs:attributeGroup name=’fieldQoS ’>
<xs:attribute name=’missing ’ type=’xs:boolean ’ use=’optional ’

default=’false ’/>
<xs:attribute name=’inProgress ’ type=’xs:boolean ’ use=’optional ’

default=’false ’/>
<xs:attribute name=’automaticEstimate ’ type=’xs:boolean ’ use=’

optional ’ default=’false ’/>

28

10 XML SCHEMA

<xs:attribute name=’manualEstimate ’ type=’xs:boolean ’ use=’
optional ’ default=’false ’/>

<xs:attribute name=’manualReadout ’ type=’xs:boolean ’ use=’optional
’ default=’false ’/>

<xs:attribute name=’automaticReadout ’ type=’xs:boolean ’ use=’
optional ’ default=’false ’/>

<xs:attribute name=’timeOffset ’ type=’xs:boolean ’ use=’optional ’
default=’false ’/>

<xs:attribute name=’warning ’ type=’xs:boolean ’ use=’optional ’
default=’false ’/>

<xs:attribute name=’error ’ type=’xs:boolean ’ use=’optional ’
default=’false ’/>

<xs:attribute name=’signed ’ type=’xs:boolean ’ use=’optional ’
default=’false ’/>

<xs:attribute name=’invoiced ’ type=’xs:boolean ’ use=’optional ’
default=’false ’/>

<xs:attribute name=’endOfSeries ’ type=’xs:boolean ’ use=’optional ’
default=’false ’/>

<xs:attribute name=’powerFailure ’ type=’xs:boolean ’ use=’optional ’
default=’false ’/>

<xs:attribute name=’invoiceConfirmed ’ type=’xs:boolean ’ use=’
optional ’ default=’false ’/>

</xs:attributeGroup >

<xs:complexType name=’numeric ’>
<xs:complexContent >

<xs:extension base=’field ’>
<xs:attribute name=”value” type=”xs:double” use=”required”/>
<xs:attribute name=”unit” type=”xs:string” use=”required”/>

</xs:extension >
</xs:complexContent >

</xs:complexType >

<xs:complexType name=’string ’>
<xs:complexContent >

<xs:extension base=’field ’>
<xs:attribute name=”value” type=”xs:string” use=”required”/>

</xs:extension >
</xs:complexContent >

</xs:complexType >

<xs:complexType name=’boolean ’>
<xs:complexContent >

<xs:extension base=’field ’>
<xs:attribute name=”value” type=”xs:boolean” use=”required”/>

</xs:extension >
</xs:complexContent >

</xs:complexType >

29

10 XML SCHEMA

<xs:complexType name=’date’>
<xs:complexContent >

<xs:extension base=’field ’>
<xs:attribute name=”value” type=”xs:date” use=”required”/>

</xs:extension >
</xs:complexContent >

</xs:complexType >

<xs:complexType name=’dateTime ’>
<xs:complexContent >

<xs:extension base=’field ’>
<xs:attribute name=”value” type=”xs:dateTime” use=”required”/>

</xs:extension >
</xs:complexContent >

</xs:complexType >

<xs:complexType name=’duration ’>
<xs:complexContent >

<xs:extension base=’field ’>
<xs:attribute name=”value” type=”xs:duration” use=”required”/>

</xs:extension >
</xs:complexContent >

</xs:complexType >

<xs:complexType name=’enum’>
<xs:complexContent >

<xs:extension base=’field ’>
<xs:attribute name=”value” type=”xs:string” use=”required”/>
<xs:attribute name=”dataType” type=”xs:string” use=”required”/

>
</xs:extension >

</xs:complexContent >
</xs:complexType >

<xs:complexType name=’int’>
<xs:complexContent >

<xs:extension base=’field ’>
<xs:attribute name=”value” type=”xs:int” use=”required”/>

</xs:extension >
</xs:complexContent >

</xs:complexType >

<xs:complexType name=’long’>
<xs:complexContent >

<xs:extension base=’field ’>
<xs:attribute name=”value” type=”xs:long” use=”required”/>

</xs:extension >
</xs:complexContent >

</xs:complexType >

30

12 ACKNOWLEDGEMENTS

<xs:complexType name=’time’>
<xs:complexContent >

<xs:extension base=’field ’>
<xs:attribute name=”value” type=”xs:time” use=”required”/>

</xs:extension >
</xs:complexContent >

</xs:complexType >

</xs:schema >

11 For more information
For more information, please see the following resources:

• The Sensor Network section of the XMPP Wiki contains further information about the
use of the sensor network XEPs, links to implementations, discussions, etc.

• The XEP’s and related projects are also available on github, thanks to Joachim Lindborg.

• A presentation giving an overview of all extensions related to Internet of Things can be
found here: http://prezi.com/esosntqhewhs/iot-xmpp/.

12 Acknowledgements
Thanks to Flemon Ghobrial, Joachim Lindborg, Karin Forsell, Tina Beckman, Kevin Smith and
Tobias Markmann for all valuable feedback.

31

http://wiki.xmpp.org/web/Tech_pages/SensorNetworks
https://github.com/joachimlindborg/
http://prezi.com/esosntqhewhs/iot-xmpp/

	Introduction
	Glossary
	Use Cases
	Request Read-out of momentary values
	Read-out failure
	Read-out rejected
	Read-out all
	Read-out of multiple devices
	Read-out of specific fields
	Cancelling a scheduled read-out request

	Determining Support
	Implementation Notes
	String lengths
	Enumerations vs. Strings
	Asynchronous feedback
	Field Value Data Types
	Harmonization with XEP-0325 (Control)
	Field Types
	Field Quality of Service Values
	Estimates vs. Readouts

	Subnodes and supernodes
	Reading devices from large subsystems
	Reading controllable parameter values

	Internationalization Considerations
	Time Zones
	Localized strings

	Security Considerations
	IANA Considerations
	XMPP Registrar Considerations
	XML Schema
	For more information
	Acknowledgements

