
SANDIA REPORT
SAND2020-5614
Printed June 2020

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

Application Note:
Mixed Signal Simulation with Xyce™ 7.1
Peter E. Sholander, Richard L. Schiek

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: https://classic.ntis.gov/help/order-methods

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

ABSTRACT

This application note describes how Release 7.1 of the Xyce circuit simulator can be coupled with
external simulators via either a Python-based interface that leverages the Python ctypes foreign
function library or via the Verilog Procedural Interface (VPI). It also documents the usage of
these interfaces on RHEL7 with Python 2.6 or 2.7. These interfaces are still under development
and may change in the future. So, a key purpose of this application note is to solicit feedback on
these interfaces from both internal Sandia Xyce users and other performers on the DARPA Posh
Open Source Hardware (POSH) program.

3

CONTENTS

1. Introduction 9
1.1. Target Audience and Prerequisites . 9

2. XyceCInterface 11
2.1. API Description . 11

2.1.1. xyce_open . 11
2.1.2. xyce_initialize . 11
2.1.3. xyce_runSimulation . 12
2.1.4. xyce_simulateUntil . 13
2.1.5. xyce_close . 13
2.1.6. xyce_getNumDevices . 14
2.1.7. xyce_getDeviceNames . 14
2.1.8. xyce_getDACDeviceNames . 15
2.1.9. xyce_getTotalNumDevices() . 15
2.1.10. xyce_getAllDeviceNames . 15
2.1.11. xyce_checkDeviceParamName . 16
2.1.12. xyce_getDeviceParamVal . 16
2.1.13. xyce_updateTimeVoltagePairs . 17
2.1.14. xyce_checkResponseVar . 17
2.1.15. xyce_obtainResponse . 18
2.1.16. xyce_setADCWidths . 18
2.1.17. xyce_getADCWidths . 19
2.1.18. xyce_getTimeVoltagePairsADC. 19
2.1.19. xyce_getTimeStatePairsADC . 20
2.1.20. xyce_getADCMap . 20

2.2. Xyce Shared Objects Building and Testing Guide for RHEL7 21
2.2.1. Post-Release Code Fixes . 23

3. Python Wrappers to XyceCInterface 24
3.1. API Description . 24

3.1.1. xyce_interface . 24
3.1.2. initialize . 24
3.1.3. runSimulation . 25
3.1.4. simulateUntil . 25
3.1.5. close . 25
3.1.6. getNumDevices . 26
3.1.7. getDeviceNames . 26
3.1.8. getDACDeviceNames . 26

5

3.1.9. getTotalNumDevices . 26
3.1.10. getAllDeviceNames . 27
3.1.11. checkDeviceParamName . 27
3.1.12. getDeviceParamVal . 27
3.1.13. updateTimeVoltagePairs . 27
3.1.14. checkResponseVar . 28
3.1.15. obtainResponse . 28
3.1.16. setADCWidths . 28
3.1.17. getADCWidths . 29
3.1.18. getTimeVoltagePairsADC . 29
3.1.19. getTimeStatePairsADC . 29
3.1.20. getADCMap . 30

3.2. Examples . 30
3.3. Known Limitations and Bugs . 32

4. Xyce VPI Interface to Icarus 34
4.1. Icarus Overview . 34
4.2. Xyce VPI Implementation and Examples . 34
4.3. VPI Building Guide for RHEL7 . 37

5. Device Models for Mixed Signal Simulation 38
5.1. Analog-to-Digital Converter . 38
5.2. Digital-to-Analog Converter . 42

6. Summary of Changes Since Xyce 6.11 43

7. Conclusions and Future Work 44
7.1. Known Issues with Coordinated Time Stepping . 44

References 48

6

LIST OF FIGURES

Figure 2-1. Compiling Xyce as Shared Objects on RHEL7 with gcc . 22

Figure 3-1. Python Program for runACircuit example . 32
Figure 3-2. Xyce Netlist for runACircuit Python example . 32

Figure 4-1. Verilog Program for runXyce VPI example . 35
Figure 4-2. Xyce Netlist for runXyce VPI example . 35
Figure 4-3. VPI File for runXyce VPI example . 36
Figure 4-4. Compiling vvp Program with an Installed Xyce Build . 37

Figure 5-1. Calculation of the YADC Output State . 41

Figure 7-1. Xyce Netlist for Time Stepping Example . 45
Figure 7-2. Python Program for Time Stepping Example . 46
Figure 7-3. Abbreviated stdout for Time Stepping Example . 47

7

LIST OF TABLES

Table 5-1. ADC Device Instance Parameters . 40
Table 5-2. ADC Device Model Parameters . 40
Table 5-3. DAC Device Model Parameters . 42

8

1. INTRODUCTION

Xyce is Sandia National Laboratories’ SPICE-compatible high-performance analog circuit
simulator, written to support the simulation needs of the laboratories’ electrical designers. It has
the capability to solve extremely large circuit problems on large-scale parallel computing
platforms, and contains device models specifically tailored to meet Sandia’s needs.

This application note documents recent work on interfacing Release 7.1 of Xyce to both Verilog
and VHDL (VHSIC Hardware Description Language) simulation codes. These interfaces are still
under development and may change in the future. So, a key purpose of this application note is to
solicit feedback on these interfaces from both internal Sandia Xyce users and other performers on
the DARPA Posh Open Source Hardware (POSH) program.

Chapter 2 gives a description of the XyceCInterface class and its methods. It also describes
how to build Xyce as “shared” objects that can be invoked by, or linked with, other programs.
That XyceCInterface class provides the basis of the Python-based and VPI-based interfaces
that are the described in Chapters 3 and 4. Working examples are given for both of these
interfaces. Finally, this application note only documents the usage of these interfaces on RHEL7
with Python 2.6 or 2.7. Their support on OSX and Windows, as well as compatibility with Python
3, is “future work”.

Reference [1] describes the Xyce General External Interface, which is another mechanism for
external simulation codes to use Xyce as their circuit simulator. That approach can be used on a
wide variety of circuit/mesh coupling problems. An example is coupling frequency-domain
electromagnetic simulators to Xyce, and performing the frequency-domain analyses that Xyce
provides such as harmonic balance.

1.1. Target Audience and Prerequisites

This application note is intended for users and developers of existing simulation codes who wish
to use Xyce in order to add circuit simulation capability to their existing capabilities. It assumes
that you have already downloaded and compiled Xyce™ according to its documentation, that you
have installed it in a manner that allows you to run it directly by typing “Xyce” in the command
line, and that you are able to run a basic netlist using that installed copy of Xyce. Section 2.2 then
gives more instructions of how to compile and install Xyce as “shared objects” that can be linked
with the open-source Verilog simulator Icarus [2] via the Verilog Procedural Interface (VPI) [3],
or invoked via the Sandia-supplied Python interface.

For external open-source users, source code for Xyce can be obtained from our website at
xyce.sandia.gov or via GitHub at github.com/Xyce. Internal Sandia users should contact the Xyce

9

development team for either source code access or access to a build of the shared-objects version
of Xyce. That capability is not included, by default, in the Xyce 7.1 binaries that are distributed
within Sandia.

The Xyce Reference Guide [4] and Users’ Guide [5] provide more detail on Xyce syntax and
usage for circuit simulation. Readers who are not familiar with SPICE or Xyce are encouraged to
work through the tutorial examples in Chapters 2 and 3 of the Users’ Guide before trying to run
the examples given in this application note. Those two chapters explain how to run transient
(.TRAN) simulations in Xyce, using a simple Diode Clipper circuit as an example. Reference [6]
contains a brief explanation of the mathematical foundations of parallel circuit simulation in
Xyce. All of these documents are available on our website at xyce.sandia.gov.

This application note assumes minimal familiarity with Verilog. So, section 4.1 gives a brief
overview of Icarus, which is an open-source Verilog simulation and synthesis tool.

One purpose of this application note is to solicit feedback on these Mixed Signal Interfaces. The
Xyce development team can be contacted via email at xyce@sandia.gov.

10

mailto:xyce@sandia.gov

2. XYCECINTERFACE

The XyceCInterface class provides methods to invoke various methods on a pointer to an
N_CIR_Xyce object (whose class name is Xyce::Circuit::Simulator), which is the
topmost object in a Xyce simulation. Section 2.1 provides a detailed description of the methods
provided the XyceCInterface class. The parameters, return values, known limitations and
bugs for each method are described. Examples of how to use these methods are given in
subsequent chapters of this application note. Section 2.2 then gives a description of how to build
the Xyce 7.1 source code so that it includes the XyceCInterface class and can be linked to, or
invoked as, “shared objects” by other programs.

Chapters 3 and 4 describe Python-based and VPI-based interfaces that leverage the
XyceCInterface class. However, that class can also be leveraged directly by C++ codes that
do not need the full generality of the Xyce General External Interface [1].

2.1. API Description

For the Xyce 7.1 release, the XyceCInterface.C and XyceCInterface.h files are located in the
utils/XyceCInterface subdirectory of the Xyce source tree. The names, signatures and return types
of these methods may change in future Xyce releases. In addition, slightly different versions and
additional methods may be developed for the Python-based and VPI-based interfaces described in
subsequent chapters.

2.1.1. xyce_open

void xyce_open(void ** ptr)

This method allows the calling program to obtain a void** pointer to an N_CIR_Xyce object. It
must be called before any of the other methods described below. The type of this pointer may
change in future Xyce releases.

2.1.2. xyce_initialize

int xyce_initialize(void ** ptr, int argc, char ** argv)

11

This method assumes that the pointer ptr was previously obtained with the xyce_open
method. The other two arguments for the xyce_initialize method mimic the function of
the same arguments in a normal C or C++ main function: they are interpreted as representing the
command line that invoked Xyce. The argument argc is the number of strings present in the
array of strings, argv.

The string argv[0] is taken to be the name of the program, and no use is made of it. Subsequent
elements of the argv array are command line options as documented in Chapter 3 of the Xyce
Reference Guide [4]. The final argument string in this array should be the name of the Xyce
netlist to be processed.

The xyce_initalize method actually invokes the initializeEarly and
initializeLate methods of the underlying N_CIR_Xyce object. The
initializeEarly method instantiates the devices present in the netlist and allocates all of the
solvers and packages needed. The initializeLate method then completes the analysis of the
circuit topology, sets up the internal vector and matrix storage, initializes the output manager, and
makes the N_CIR_Xyce object ready for the simulation to take place. If the external programs
using the Python-based and VPI-based interfaces described in this application note needed to set
Xyce-internal device properties directly, rather than via the simulation’s Xyce netlist, then the
existing xyce_initalize method of the XyceCInterface class could likely be split into
separate xyce_initializeEarly and xyce_initialiazeLate methods. That split
approach was taken for the Xyce General External Interface [1].

This method returns a integer value that maps to the
Xyce::Circuit::Simulator::RunStatus enum values. So this function returns 0 for
the run status of “ERROR”, 1 for the run status of “SUCCESS” and 2 for the run status of
“DONE”. More details on these run-status codes are:

“ERROR” signifies failure of the initialization, and the actual error condition will have been
printed to Xyce’s standard error stream. Further calls to that XyceCInterface object’s methods
should not be made, as Xyce has effectively terminated with a fatal error when this value is
returned.

“DONE” signifies that all processing is complete. This return value is used when the command
line arguments include an argument that prevents Xyce from proceeding to a full simulation, such
as “-syntax”, “-count”, “-v”, “-norun” and so forth. If xyce_initialize returns this value,
Xyce has effectively exited successfully and further calls such as xyce_runSimulation
should not be performed.

“SUCCESS” signifies that the initialization was successful, and the XyceCInterface object is
ready for futher calls such as xyce_runSimulation.

2.1.3. xyce_runSimulation

int xyce_runSimulation(void ** ptr)

12

This method assumes that the pointer ptr was previously obtained with the xyce_open
method and successfully initialized with the xyce_initialize method. So, it must be called
after the calls to xyce_open and xyce_initialize.

This method causes Xyce to run the entire simulation specified in the netlist to completion. It
returns the status codes described in the xyce_initialize subsection above.

2.1.4. xyce_simulateUntil

int xyce_simulateUntil(void **ptr,
double requestedUntilTime,
double * completedUntilTime)

This method assumes that the pointer ptr was previously obtained with the xyce_open
method and successfully initialized with the xyce_initialize method. So, it must be called
after the calls to xyce_open and xyce_initialize.

This method causes Xyce to perform a limited simulation not to exceed the simulation time
specified in requestedUntilTime. Upon return, completedUntilTime will contain the
actual time that Xyce reached, which will be less than or equal to requestedUntilTime
either because the netlist specified a final time earlier than requestedUntilTime, or because
there was a fatal convergence error. Each call to xyce_simulateUntil after the first one
resumes the current simulation from where the last call left off. If xyce_simulateUntil()
is called with requestedUntilTime less than or equal to the current simulation time then the
simulation will abort.

This method returns 1 if the simulation completed successfully, either by reaching the value of
requestedUntilTime or the final time specified in the netlist, whichever is earlier. It returns
0 if the run was unsuccessful. If xyce_simulateUntil returns 1 and
completedUntilTime is less than requestedUntilTime then Xyce has completed its
work and further calls to xyce_simulateUntil will do nothing.

2.1.5. xyce_close

void xyce_close(void ** ptr)

This method causes Xyce to close all output files after a simulation run is complete and emit
timing information. It also deletes the pointer to the N_CIR_Xyce object. It should be called
after the Xyce simulation is complete.

13

2.1.6. xyce_getNumDevices

int xyce_getNumDevices(void **ptr,
char * modelGroupName,
int * numDevNames,
int * maxDevNameLength)

This method assumes that the pointer ptr was previously obtained with the xyce_open
method and successfully initialized with the xyce_initialize method. So, it must be called
after the calls to xyce_open and xyce_initialize.

xyce_getNumDevices takes a character array containing a “model group” name, and returns
the number of devices from the model group in the netlist. It also return the size of longest device
name from that model group. It is a general purpose method that can be given any valid model
group name (“M” for MOSFETs, “Q” for BJTs, etc. [4]).

This method was added to improve memory management for the xyce_getDeviceNames,
xyce_getDACDeviceNames and xyce_getADCMap methods. For C interfaces, it allows
the calling program to pre-allocate the correct-sized arrays for those methods’ returned
parameter(s) such as deviceNames. It is also used internally for array-size management by the
corresponding Python methods such as getDeviceNames.

This method returns 1 if at least one device of the requested type exists in the netlist. Otherwise, it
returns 0 with both numDevNames and maxDevNameLength equal to 0. A request for an
invalid model group will also return 0.

2.1.7. xyce_getDeviceNames

int xyce_getDeviceNames(void ** ptr,
char * modelGroupName,
int * numDevNames,
char ** deviceNames)

This method assumes that the pointer ptr was previously obtained with the xyce_open
method and successfully initialized with the xyce_initialize method. So, it must be called
after the calls to xyce_open and xyce_initialize.

xyce_getDeviceNames takes a character array containing a “model group” name, and
returns a char** array of the names for all devices in the netlist of that type. It is a general purpose
method that can be given any valid model group name (“M” for MOSFETs, “Q” for BJTs, etc.
[4]). This method also returns the number of devices from the specified model group in the
netlist.

This method returns 1 if at least one device of the requested type exists in the netlist. Otherwise, it
returns 0 with numDevNames equal 0 and deviceNames being of zero length. A request for
an invalid model group will also return 0.

14

2.1.8. xyce_getDACDeviceNames

int xyce_getDACDeviceNames(void ** ptr,
int * numDevNames,
char ** deviceNames)

This method assumes that the pointer ptr was previously obtained with the xyce_open
method and successfully initialized with the xyce_initialize method.

xyce_getDACDeviceNames returns a char** array of the names for all the Digital-to-Analog
(DAC) devices in the netlist. So, it is basically a specialized version of the more general
xyce_getDeviceNames method described above. This method also returns the number of
DAC devices in the netlist.

This method returns 1 if at least one DAC device exists in the netlist. Otherwise, it returns 0 with
numDevNames equal 0 and deviceNames being of zero length.

2.1.9. xyce_getTotalNumDevices()

int xyce_totalNumDevices(void **ptr,
int * numDevNames,
int * maxDevNameLength)

This method assumes that the pointer ptr was previously obtained with the xyce_open
method and successfully initialized with the xyce_initialize method. So, it must be called
after the calls to xyce_open and xyce_initialize.

xyce_getNumDevices returns the total number of devices in the netlist, and the size of
longest device name. It is typically used to get the total number for devices in the netlist before a
subsequent call to xyce_getAllDeviceNames().

This method returns 1 if at least one device exists in the netlist. Otherwise, it returns 0 with both
numDevNames and maxDeviceNameLength equal to 0.

2.1.10. xyce_getAllDeviceNames

int xyce_getAllDeviceNames(void ** ptr,
int * numDevNames,
char ** deviceNames)

15

This method assumes that the pointer ptr was previously obtained with the xyce_open
method and successfully initialized with the xyce_initialize method. So, it must be called
after the calls to xyce_open and xyce_initialize.

xyce_getAllDeviceNames returns a char** array of the names for all devices in the netlist.
This method also returns the total number of devices in the netlist.

This method returns 1 if at least one device exists in the netlist. Otherwise, it returns 0 with
numDevNames equal 0 and deviceNames being of zero length.

2.1.11. xyce_checkDeviceParamName

xyce_checkDeviceParamName(void **ptr,
char* full_param_name)

This method assumes that the pointer ptr was previously obtained with the xyce_open
method and successfully initialized with the xyce_initialize method. So, it must be called
after the calls to xyce_open and xyce_initialize.

xyce_checkDeviceParamName takes a character array containing a “fully qualifed” device
parameter name. It returns 1 if that device parameter exists in the netlist. It returns 0, otherwise.
The full_param_name should be identical to that used on a .PRINT line; so X1:R1:R for the
resistance (R) of device R1 that is in subcircuit X1.

2.1.12. xyce_getDeviceParamVal

xyce_getDeviceParamVal(void **ptr,
char* full_param_name,
double* value)

This method assumes that the pointer ptr was previously obtained with the xyce_open
method and successfully initialized with the xyce_initialize method. So, it must be called
after the calls to xyce_open and xyce_initialize.

xyce_checkDeviceParamName takes a character array containing a “fully qualifed” device
parameter name. It returns 1 if that device parameter exists in the netlist. It returns 0, otherwise.
The value parameter will be set to the actual device parameter value, or to 0, for those two
cases.

16

2.1.13. xyce_updateTimeVoltagePairs

int xyce_updateTimeVoltagePairs(void ** ptr,
char * DACname,
int numPoints,
double * timeArray,
double * voltageArray)

This method assumes that the pointer ptr was previously obtained with the xyce_open
method and successfully initialized with the xyce_initialize method. So, it must be called
after the calls to xyce_open and xyce_initialize. If DACname is not the name of a valid
DAC device in the Xyce netlist then the function will execute with a Xyce warning message and
return 0 as noted below.

This method will return 1 if the time-voltage pairs for the specified DACname were successfully
updated. Otherwise, it will return 0.

The “error condition” of timeArray and voltageArray being of unequal lengths is checked
when this method is invoked via the Python ctypes-based interface. It is not checked when
xyce_updateTimeVoltagePairs is invoked directly. For direct invocation, it is the
responsbility of the calling function to verify that the parameters numPoints, timeArray and
voltageArray have consistent values and lengths.

Examples of how to use this method, with both Python and VPI, are provided in the release src
subdirectories utils/XyceCInterface/Python_examples/runCircuitWithDACs
and utils/XyceCInterface/VPI_examples/runXyceWithDAC.

2.1.14. xyce_checkResponseVar

int xyce_checkResponseVar(void ** ptr, char * variable_name)

This method assumes that the pointer ptr was previously obtained with the xyce_open
method and successfully initialized with the xyce_initialize method. So, it must be called
after the calls to xyce_open and xyce_initialize.

xyce_checkResponseVar takes a character array containing a “measure name”. It returns 1
if variable_name is a valid measure name in the the Xyce simulation. Otherwise, it returns
0.

An example Xyce measure statement is as follows [4]. This example is a MAX measure for a
transient (TRAN) simulation. Its name is MAXV1, where that name is not case-sensitive. It returns
the maximum value of the quantity V(1) found during the simulation.

.MEASURE TRAN MAXV1 MAX V(1)

17

2.1.15. xyce_obtainResponse

xyce_obtainResponse(void ** ptr, char * variable_name, double * value)

This method assumes that the pointer ptr was previously obtained with the xyce_open
method and successfully initialized with the xyce_initialize method. So, it must be called
after the calls to xyce_open and xyce_initialize.

xyce_obtainResponse takes a character array containing a “measure” name. It returns the
value of that .MEASURE statement at the current simulation time in the value parameter. If the
Xyce simulation has completed then it will return the value at the final simulation time.

This method returns 1 if the requested variable_name is a valid measure name in the the
Xyce simulation. Otherwise, it returns 0. For a return value of 0, the value parameter will also
be set to 0.

2.1.16. xyce_setADCWidths

int xyce_setADCWidths(void ** ptr,
int numADCnames,
char ** ADCnames,
int * widths)

This method assumes that the pointer ptr was previously obtained with the xyce_open
method and successfully initialized with the xyce_initialize method. So, it must be called
after the calls to xyce_open and xyce_initialize.

xyce_setADCWidths takes a char** array of the ADC names for which the “output bit-vector
widths” are being setting. The parameter widths is then an int* array of those widths. Each
ADC will then have 2**width quantization levels, where different ADCs may have different
widths.

This method will return 1 if the “output bit-vector width” is succesfully updated at every ADC
specified in ADCnames. It will return 0 if the update process fails at any ADC specified in
ADCnames.

The “error condition” of ADCnames and widths being of unequal lengths is checked when this
method is invoked via the Python ctypes-based interface. It is not checked when
xyce_setADCWidths is invoked directly. For direct invocation, it is the responsbility of the
calling function to verify that the parameters numADCnames, ADCnames and widths have
consistent values and lengths.

The ADC widths can be set via this function, the WIDTH instance parameter for each individual
YADC device, and the associated YADC model parameters (see Section 5.1). The order of
precedence is in that order. This function should have the highest precedence, since it occurs after
the xyce_initialize method is called.

18

2.1.17. xyce_getADCWidths

int xyce_getADCWidths(void ** ptr,
int numADCnames,
char ** ADCnames,
int * widths)

This method assumes that the pointer ptr was previously obtained with the xyce_open
method and successfully initialized with the xyce_initialize method. So, it must be called
after the calls to xyce_open and xyce_initialize.

xyce_getADCWidths takes a char** array of the ADC names for which the values of the
“output bit-vector widths” are being requested. The parameter widths is then an int* array of
those widths. Each ADC then has 2**width quantization levels, where different ADCs may
have different widths.

This method will return 1 if the “output bit-vector width” is succesfully found at every ADC
specified in ADCnames. It will return 0 if the get process fails for any ADC specified in
ADCnames. The width value for any ADC not found in the netlist will be returned as 0.

The “error condition” of numADCnames and ADCnames not being consistent is not checked
when xyce_getADCWidths is invoked directly. For direct invocation, it is the responsbility of
the calling function to verify that the parameters numADCnames and ADCnames have a
consistent value and length.

2.1.18. xyce_getTimeVoltagePairsADC

int xyce_getTimeVoltagePairsADC(void** ptr,
int * numADCnames,
char ** ADCnames,
int * numPoints,
double ** timeArray,
double ** voltageArray)

This method assumes that the pointer ptr was previously obtained with the xyce_open
method and successfully initialized with the xyce_initialize method. So, it must be called
after the calls to xyce_open and xyce_initialize.

xyce_getTimeVoltagePairsADC returns a char** array of the names for all the ADC
devices in the netlist. The returned double** voltageArray then contains the “deltaV” values
(the differences between the voltages at the positive and negative terminals) for the ADC devices
listed in the ADCnames array at the time points specified in the double** timeArray.

The formats of the returned numPoints, timeArray and voltageArray parameters will
be illustrated further in Section 7.1. This function is the “least mature” of the
XyceCInterface methods and Section 7.1 describes its limitations via a Python-based

19

example. Many of these limitations stem from known limitations in the YADC device (see
Section 5.1) implemented in Xyce 7.1.

This method will return 1 if there are ADC devices in the netlist. It will return 0 otherwise.

The use of both xyce_getTimeVoltagePairsADC and and
xyce_getTimeStatePairsADC in the same program is not recommended, because of an
open bug.

2.1.19. xyce_getTimeStatePairsADC

int xyce_getTimeStatePairsADC(void** ptr,
int * numADCnames,
char ** ADCnames,
int * numPoints,
double ** timeArray,
double ** stateArray)

This method assumes that the pointer ptr was previously obtained with the xyce_open
method and successfully initialized with the xyce_initialize method. So, it must be called
after the calls to xyce_open and xyce_initialize.

xyce_getTimeStatePairsADC returns a char** array of the names for all the ADC devices
in the netlist. The returned double** stateArray then contains the integer-valued states
(ranging from 0 to 2∗width[i]−1, where width[i] is the bit width of the ith ADC) at the time
points specified in the double** timeArray. So, this function partially removes the need for an
external simulation program to convert the “deltaV” values, stored internally within Xyce, into
state values. However, that external simulator may still need to convert the returned integer
state-values into a suitable binary/octal/hexadecimal format for its use.

This method will return 1 if there are ADC devices in the netlist. It will return 0 otherwise.

The use of both xyce_getTimeVoltagePairsADC and and
xyce_getTimeStatePairsADC in the same program is not recommended, because of an
open bug.

2.1.20. xyce_getADCMap

int xyce_getADCMap(void ** ptr,
int * numADCnames,
char ** ADCnames,
int * widths,
double * resistances,
double * upperVLimits,
double * lowerVLimits,
double * settlingTimes)

20

This method assumes that the pointer ptr was previously obtained with the xyce_open
method and successfully initialized with the xyce_initialize method. So, it must be called
after the calls to xyce_open and xyce_initialize.

xyce_getADCMap returns a char** array of the names of all the ADC devices in the netlist.
The widths, resistances, upperVLimits, lowerVLimits and settlingTimes
arrays are then int* or double* arrays of the corresponding instance parameters for the ADC
devices listed listed in the ADCnames array. The ordering in those five instance-parameter arrays
is the same as in the ADCnames array.

This method will return 1 if there are ADC devices in the netlist. It will return 0 otherwise, and
the various arrays will be empty in that case.

2.2. Xyce Shared Objects Building and Testing Guide for RHEL7

This section describes how to build the source code for the Xyce 7.1 release as “shared objects”
that can be linked with, or invoked by, other simulators. It covers the build process for the gcc
compilier on RHEL7 for a serial build. For information on how to build with the Intel compilers,
or on other Linux variants, please contact the Xyce development team.

At this point, a build process for the XyceCInterface code in support of Mixed Signal
interfaces is not supported on either OSX or Windows. Support for those operating systems is
expected in future releases though. Finally, the mixed signal interfaces have only been
demonstrated with a serial build of Xyce.

The reconfigure scripts shown in Figure 2-1 have been shown to work on RHEL7. They will
produce .so libraries that can invoked by Python via the Sandia-supplied ctypes interface
described in Chapter 3 and also linked with Icarus to create Verilog vvp programs as described in
Chapter 4. The directory where this build of Xyce will be installed is denoted as $installDir
in these reconfigure scripts. These scripts also refer to the top-level installation directory of
Trilinos as $archdir, and assume that Trilinos has been built according to the guidance in the
Xyce Building Guide [7]. The top-level Xyce src directory is referred to as $xyceSrcDir.

21

$xyceSrcDir/configure \
ARCHDIR=$archdir \
--disable-verbose_linear \
--disable-verbose_nonlinear \
--disable-verbose_time \
--enable-shared \
--enable-xyce-shareable \
--prefix=$installDir \
CC=gcc \
CXX=g++ \
F77=gfortran \
CXXFLAGS="-O1 -fno-inline -std=c++11"

Figure 2-1. Compiling Xyce as Shared Objects on RHEL7 with gcc

As other notes, the use of -enable-shared and -enable-xyce-shareable is needed in
order to create the .so files. Also, the CXXFLAGS shown above are set for a debug build. That is
convenient for co-development with Icarus and Xyce, since the combined vvp programs (see
Chapter 4) can then be debugged in gcc (or your other favorite debugger). A more typical Xyce
build would use -O3 instead, for better performance. After running reconfigure and make, it
is recommended that a make install also be done.

To test the installed build the following tags list (-taglist option for the
run_xyce_regression script) should be used. It includes the MIXED_SIGNAL tests that
are specific to this application note. Per the “Some tests only work when tested from a build
directory” section of the “Running the Xyce Regression Suite” web-page [8] the tag -library
should be used if make install was used. The addition of +mixedsignal to this tagslist
will just run the MIXED_SIGNAL tests.

"+serial+nightly-library?noverbose?klu-verbose?rad?fft?qaspr?nonfree?mixedsignal"

The MIXED_SIGNAL regression tests have not been fully integrated with the release testing
process for Xyce yet. So, they may still be “fragile”, especially with respect to how they
determine the path to $xyceSrcDir. In addition, the Python interface, described in Chapter 3,
was tested with Python 2.6.6, 2.7.4 and 2.7.5 for the Xyce 7.1 release. Some features (and
regression tests) are known to fail when the tests are run with Python 3.4.2 or 3.5.2. (Note: the
regression tests may be hard-coded to use Python 2.x on Sandia systems.) So, the reader should
contact the Xyce development team if they have problems with either the build or test processes
described in this section.

Finally, this application note only discusses the build process for RHEL7. The authors do
welcome feedback though on the reader’s experience with other Linux variants, especially
Ubuntu.

22

2.2.1. Post-Release Code Fixes

If Xyce was built from source then please contact the Xyce Development Team about any relevant
updates related to the Mixed Signal Interface. Those updates, if any, should be publically
available from our GitHub site (https://github.com/Xyce/).

23

3. PYTHON WRAPPERS TO XYCECINTERFACE

A Sandia-supplied implementation of ctype-based Python wrappers for the XyceCInterface
class is available in the release subdirectory utils/XyceCInterface. The file name is
xyce_interface.py. As background, ctypes is a “foreign function library for Python. It
provides C compatible data types, and allows calling functions in DLLs or shared libraries. It can
be used to wrap these libraries in pure Python.” More information on ctypes can be found at
[9].

This application note will not discuss the internals of the xyce_interface.py file. The key
point is that it provides a wrapper for the methods documented in Section 2.1.

3.1. API Description

This section provides a mapping of the Python interfaces methods to the underlying
XyceCInterface methods described in Section 2.1.

3.1.1. xyce_interface

xyceObj = xyce_interface()

This method allows the calling Python program to invoke the underlying xyce_open method of
the XyceCInterface. It creates a pointer to an N_CIR_Xyce object (which is also called a
“xyce” object in some of the example files discussed in Section 3.2). It must be called before any
of the other Python-based methods described below.

3.1.2. initialize

result = xyceObj.initialize(argv)

This method assumes that xyceObj was previously obtained with the xyce_interface
method. The argument (argv) represents the command line that invoked Xyce, but it should not
include the program name Xyce. This method allows the calling Python program to invoke the
underlying xyce_initialize method of the XyceCInterface. The return value (in
result) is the same as for the underlying xyce_initialize method of
XyceCInterface.

24

If initialize() returns 2 (which is the Xyce::Circuit::Simulator::RunStatus of “DONE”)
then the calling .py file will likely segfault. This can happen for Xyce command line options such
as -norun that prevent Xyce from proceeding to a full simulation. (This is not an expected use
case for the Python interface.) This should be fixed in a future release.

3.1.3. runSimulation

result = xyceObj.runSimulation()

This method assumes that xyceObj was previously obtained with the xyce_interface
method and successfully initialized with the initialize method. This method allows the
calling Python program to invoke the underlying xyce_runSimulation method of the
XyceCInterface. The return value (in result) for this Python method is the same as for the
xyce_runSimulation method of XyceCInterface.

3.1.4. simulateUntil

(result, actual_time) = xyceObj.simulateUntil(requested_time)

This method assumes that xyceObj was previously obtained with the xyce_interface
method and successfully initialized with the initialize method. This method allows the
calling Python program to invoke the underlying xyce_simulateUntil method of the
XyceCInterface. The return value (in result) is the same as for the
xyce_simulateUntil method of XyceCInterface. See Section 2.1.4 for a discussion of
the requested_time parameter. For the Python method, actual_time is a returned value
rather than a parameter in the function call. It is also described in Section 2.1.4.

3.1.5. close

xyceObj.close()

This method causes Xyce to close all output files after a simulation run is complete and emit
timing information. It also deletes the pointer to the N_CIR_Xyce object. It should be called
after the Xyce simulation is complete.

25

3.1.6. getNumDevices

(result, numDevices, maxDeviceNameLength) = xyceObj.getNumDevices(modelGroupName)

This method assumes that xyceObj was previously obtained with the xyce_interface
method and successfully initialized with the initialize method. This method allows the
calling Python program to invoke the underlying xyce_getNumDevices method. The return
value (in result) is the same as for the xyce_getNumDevices method of
XyceCInterface. Valid values for the modelGroupName parameter are discussed in
Section 2.1.7. This method is used internally by the getDeviceNames,
getDACDeviceNames and getADCMap methods to pre-allocate the correct-sized arrays for
those methods’ returned parameter(s) such as deviceNames.

3.1.7. getDeviceNames

(result, deviceNames) = xyceObj.getDeviceNames(modelGroupName)

This method assumes that xyceObj was previously obtained with the xyce_interface
method and successfully initialized with the initialize method. This method allows the
calling Python program to invoke the underlying xyce_getDeviceNames method of the
XyceCInterface. The return value (in result) is the same as for the
xyce_getDeviceNames method of XyceCInterface. For the Python method,
deviceNames is a returned array rather than a parameter in the function call. Valid values for
the modelGroupName parameter are discussed in Section 2.1.7.

3.1.8. getDACDeviceNames

(result, DACnames) = xyceObj.getDACDeviceNames()

This method is basically a specialized version of the Python method getDeviceNames that
only returns the names of YDAC devices in the simulation. See Section 2.1.4. for more details on
the underlying xyce_getDACDeviceNames method of XyceCInterface.

3.1.9. getTotalNumDevices

(result, numDevices, maxDeviceNameLength) = xyceObj.getTotalNumDevices()

This method assumes that xyceObj was previously obtained with the xyce_interface
method and successfully initialized with the initialize method. This method allows the
calling Python program to invoke the underlying xyce_getTotalNumDevices method. The
return value (in result) is the same as for the xyce_getTotalNumDevices method of
XyceCInterface.

26

3.1.10. getAllDeviceNames

(result, deviceNames) = xyceObj.getAllDeviceNames()

This method assumes that xyceObj was previously obtained with the xyce_interface
method and successfully initialized with the initialize method. This method allows the
calling Python program to invoke the underlying xyce_getAllDeviceNames method of the
XyceCInterface. The return value (in result) is the same as for the
xyce_getAllDeviceNames method of XyceCInterface. For the Python method,
deviceNames is a returned array rather than a parameter in the function call.

3.1.11. checkDeviceParamName

(result) = xyceObj.checkDeviceParamName(deviceParamName)

This method assumes that xyceObj was previously obtained with the xyce_interface
method and successfully initialized with the initialize method. This method allows the
calling Python program to invoke the underlying xyce_checkDeviceParamName method.
The return value (in result) is the same as for the xyce_checkDeviceParamName
method of XyceCInterface.

3.1.12. getDeviceParamVal

(result, value) = xyceObj.getDeviceParamVal(deviceParamName)

This method assumes that xyceObj was previously obtained with the xyce_interface
method and successfully initialized with the initialize method. This method allows the
calling Python program to invoke the underlying xyce_getDeviceParamVal method of the
XyceCInterface. The return value (in result) is the same as for the XyceCInterface
method xyce_getDeviceParamVal. See Section 2.1.12 for a description of value.

3.1.13. updateTimeVoltagePairs

result = xyceObj.updateTimeVoltagePairs(DACname, timeArray, voltageArray)

This method assumes that xyceObj was previously obtained with the xyce_interface
method and successfully initialized with the initialize method. This method allows the
calling Python program to invoke the underlying xyce_updateTimeVoltagePairs method
of the XyceCInterface. The return value (in result) is the same as for the
XyceCInterface method xyce_updateTimeVoltagePairs.

27

The “error condition” of timeArray and voltageArray being of unequal lengths is checked
when this method is invoked via the Python interface. If that check fails then this method returns
-1. This error condition is not checked when xyce_updateTimeVoltagePairs is invoked
directly.

An example of how to use this Python method is provided in the release src subdirectory
utils/XyceCInterface/Python_examples/runCircuitWithDACs.

3.1.14. checkResponseVar

result = xyceObj.checkResponseVarName(variable_name)

This method assumes that xyceObj was previously obtained with the xyce_interface
method and successfully initialized with the initialize method. This method allows the
calling Python program to invoke the underlying xyce_checkResponseVar method of the
XyceCInterface. The return value (in result) is the same as for the XyceCInterface
method xyce_checkResponseVar.

3.1.15. obtainResponse

(result, value) = xyceObj.obtainResponse(variableName)

This method assumes that xyceObj was previously obtained with the xyce_interface
method and successfully initialized with the initialize method. This method allows the
calling Python program to invoke the underlying xyce_obtainResponse method of the
XyceCInterface. The return value (in result) is the same as for the XyceCInterface
method xyce_obtainResponse. See Section 2.1.15 for a description of value.

3.1.16. setADCWidths

result = xyceObj.setADCWidths(ADCnames, width)

This method assumes that xyceObj was previously obtained with the xyce_interface
method and successfully initialized with the initialize method. This method allows the
calling Python program to invoke the underlying xyce_setADCWidths method of the
XyceCInterface. The return value (in result) is the same as for the XyceCInterface
method xyce_setADCWidths.

See Section 2.1.16 for a description of the ADCnames and widths parameters. The ADC
widths can be set via this function, the WIDTH instance parameter for each individual YADC
device and the associated YADC model parameters (see Section 5.1). The order of precedence is
in that order. This function should have the highest precedence, since it occurs after the
xyce_initialize method is called.

28

The “error condition” of ADCnames and widths being of unequal lengths is checked when this
method is invoked via the Python interface. If that check fails then this method returns -1. This
error condition is not checked when xyce_setADCWidths is invoked directly.

3.1.17. getADCWidths

(result, width) = xyceObj.getADCWidths(ADCnames)

This method assumes that xyceObj was previously obtained with the xyce_interface
method and successfully initialized with the initialize method. This method allows the
calling Python program to invoke the underlying xyce_getADCWidths method of the
XyceCInterface. See Section 2.1.17 for a description of the ADCnames and widths
parameters.

For the Python method, width is a returned array rather than a parameter in the function call.
The return value (in result) is the same as for the xyce_getADCWidths method of
XyceCInterface. If a given ADC is not found in the netlist then its width value will be returned as
0.

3.1.18. getTimeVoltagePairsADC

(result, ADCnames, numADCnames, numPoints, timeArray, voltageArray) =
xyceObj.getTimeVoltagePairsADC()

This method assumes that xyceObj was previously obtained with the xyce_interface
method and successfully initialized with the initialize method. This method allows the
calling Python program to invoke the underlying xyce_getTimeVoltagePairsADC method
of the XyceCInterface. The return value (in result) is the same as for the
XyceCInterface method xyce_getTimeVoltagePairsADC.

This function is the “least mature” of the Python methods and Section 7.1 describes its limitations
via a Python-based example. Many of these limitations stem from known limitations in the YADC
device (see Section 5.1) implemented in Xyce 7.1. In addition, because of an open bug, the use of
both getTimeVoltagePairsADC and getTimeStatePairsADC in the same Python
program is not recommended.

3.1.19. getTimeStatePairsADC

(result, ADCnames, numADCnames, numPoints, timeArray, stateArray) =
xyceObj.getTimeStatePairsADC()

29

This method assumes that xyceObj was previously obtained with the xyce_interface
method and successfully initialized with the initialize method. This method allows the
calling Python program to invoke the underlying xyce_getTimeStatePairsADC method of
the XyceCInterface. The return value (in result) is the same as for the
XyceCInterface method xyce_getTimeStatePairsADC.

The returned stateArray contains the integer-valued states (ranging from 0 to 2∗width[i]−1,
where width[i] is the bit width of the ith ADC) at the time points specified in the returned
timeArray. So, this function partially removes the need for an external simulation program to
convert the “deltaV” values, stored internally within Xyce, into state values. However, that
external simulator may still need to convert the returned integer state-values into a suitable
binary/octal/hexadecimal format for its use.

Because of an open bug, the use of both getTimeVoltagePairsADC and
getTimeStatePairsADC in the same Python program is not recommended.

3.1.20. getADCMap

(status, ADCnames, widths, resistances, upperVLimits, lowerVLimits, settlingTimes) =
xyceObj.getADCMap()

This method assumes that xyceObj was previously obtained with the xyce_interface
method and successfully initialized with the initialize method. This method allows the
calling Python program to invoke the underlying xyce_getADCMap method of the
XyceCInterface. See Section 2.1.20 for a description of the ADCnames,widths,
resistances, upperVLimits, lowerVLimits and settlingTimes returned arrays.

The return value (in result) is the same as for the XyceCInterface method
xyce_getADCMap. If the netlist has no ADC devices then returned arrays will be empty.

3.2. Examples

This section gives a brief example of how to run a Xyce simulation from a Python (2.6 or 2.7)
program using the Sandia-supplied ctypes-based interface. Since Python is an interpreted
langauge there is no need for further compilation or linking of Xyce. It is sufficient to have built
Xyce as “shared objects” per the instructions in Section 2.2.

An example Python program, called runACircuit.py, is shown in Figure 3-1. The associated
Xyce netlist, which is called runACircuit.cir, is shown in Figure 3-2. (Note: These files are also
found in the release src subdirectory utils/XyceCInterface/Python_examples just in
case cut-n-paste from the .pdf document does not work for the reader.) That Python program can
then be invoked with:

python runACircuit.py </path/to/where/libxycecinterface/is/installed>

30

The one caveat is that the location of xyce_interface.py should be added to your
PYTHONPATH environment variable. The file UpdatePythonPath.sh in the release
subdirectory utils/XyceCInterface provides a “non-working” example of how to modify
that environment variable. The path
(/path/to/XyceSrcDirectory/utils/XyceCInterface) in that file should be
replaced with the actual path to your Xyce source directory.

For the Xyce 6.10 release, we recommended the use of the LD_LIBRARY_PATH environment
variable as a means of communicating the location of the .so files to the Python interface code.
That approach meant that the Python interface would not work on newer versions of OSX because
of Apple’s System Integrity Protection (SIP) feature. To work around that issue, the invocation
line must now include the location where the shared object files are installed. If Xyce was built
and installed per the instructions in Section 2.2 then that location will be $installDir/lib

Additional examples of using xyce_interface.py can be found in the release src
subdirectory utils/XyceCInterface/Python_examples. Those examples also use the
simulateUntil(), getDACDeviceNames(), updateTimeVoltagePairs() and
obtainResponse() methods. See Reference [10] for an example of how to use
xyce_interface.py to interface Xyce to GHDL [11] and Cocotb [12].

Additional examples can also be found in the Xyce regression test suite in the subdirectory
Netlists/MIXED_SIGNAL/Python. However, some of those examples are “error
condition” tests, which purposefully fail or otherwise have purposefully invalid or non-useful
syntaxes. The comments in the files for each test should indicate which ones are functional
examples and which lines in a given test are not valid or useful.

For internal High Performance Computing (HPC) users, the .so files needed to run these examples
can be found in /projects/xyce/XyceRad_7.1/Serial/toss3/lib. The Python
interface file is then in /projects/xyce/XyceRad_7.1/Serial/toss3/python. The
examples are in
/projects/xyce/XyceRad_7.1/Serial/toss3/examples/Python_examples.

For internal Common Engineering Environment (CEE) users, the .so files needed to run these
examples can be found in /projects/xyce/Xyce_7.1/RHEL7/Serial/lib. The
Python interface file is then in /projects/xyce/Xyce_7.1/RHEL7/Serial/python,
and the UpdatePythonPath script has the correct path for each RHEL version. The examples
are in
/projects/xyce/Xyce_7.1/RHEL7/Serial/examples/Python_examples. The
“path to where libxycecinterface is installed” is
/projects/xyce/Xyce_7.1/RHEL7/Serial/lib.

31

import sys
from xyce_interface import xyce_interface

this calls the xyce_interface.open() method to
make a xyce object
libDirectory = sys.argv[1]
xyceObj = xyce_interface(libdir=libDirectory)
print(xyceObj)

argv= [’runACircuit.cir’]
print("calling initialize with netlist %s" % argv[0])

result = xyceObj.initialize(argv)
print("return value from initialize is %d" % result)

print("Calling runSimulation...")
result = xyceObj.runSimulation()
print("return value from runSimulation is %d" % result)

print("calling close")
xyceObj.close()

Figure 3-1. Python Program for runACircuit example

* test circuit
V1 1 0 SIN(0 1 1)
R1 1 0 1

.TRAN 0 1

.PRINT TRAN V(1)

.MEASURE TRAN MAXV1 MAX V(1)

.MEASURE TRAN MINV1 MIN V(1)

.END

Figure 3-2. Xyce Netlist for runACircuit Python example

3.3. Known Limitations and Bugs

This section has a list of the known limitations and bugs of the Python-based version of the Mixed
Signal interface.

32

• This interface has been tested with Python 2.6.6, 2.7.4 and 2.7.5 for the Xyce 7.1 release.
Some features are known to fail when this interface is used with Python 3.4.2 or 3.5.2.
Support for Python 3 will likely be added in a future release.

• The getTimeVoltagePairsADC() and getTimeStatePairsADC() methods are
currently limited to returning only up to 1000 devices each. The individual device names
must each also be less than 1000 characters long. There is also a limit of 1000 time/state
points that can be returned by those methods. The memory management for these two
methods will likely be improved in the next release, in conjunction with fixes for the
“Coordinated Time Stepping Issues” mentioned in Section 7.1. In the meantime, the
work-around is to manually edit the source for those methods in xyce_interface.py.

• The use of both getTimeVoltagePairsADC and getTimeStatePairsADC in the
same Python program is not recommended, because of an open bug.

• If the initialize() method returns 2 (which is the
Xyce::Circuit::Simulator::RunStatus of “DONE”) then the calling .py file will likely
segfault. This can happen for Xyce command line options such as -norun that prevent
Xyce from proceeding to a full simulation. This is not an expected use case for the Python
interface though.

• The getDeviceNames() method, and the underlying xyce_getDeviceNames()
method, will segfault if invoked for some model groups (e.g, D, L and M) if there were no
devices from that model group in the Xyce netlist.

33

4. XYCE VPI INTERFACE TO ICARUS

This chapter describes how the XyceCInteface class can be used to interface Xyce to Icarus,
which is an open-source Verilog simulation and synthesis tool. It begins with a brief overview of
Icarus. It then gives a working “runXyce” example where a Xyce simulation is called from a
simple Verilog program via the vvp executable produced by Icarus. It concludes with guidance
on building the example runXyce.vvp and runXyce.vpi files.

4.1. Icarus Overview

Since this application note assumes minimal familiarity with Verilog and Icarus, some helpful
references for Icarus are:

• Icarus Verilog Home Page [2]

• Download and Build Instructions [13]

• Getting Started [14]

• VPI Example [15]

The next two subsections assume that the reader has downloaded and installed Icarus according to
those Download and Build Instructions. It also assumes that the reader can execute the simple
“Hello World” examples given at those Getting Started and VPI Example webpages.

For more information on VPI, consult the IEEE Standard [3]. This book [16] also has a good set
of VPI examples, with example code.

4.2. Xyce VPI Implementation and Examples

As mentioned previously, this is the initial implementation of a Verilog Procedural Interface
(VPI) capability for Xyce. It is subject to change in future Xyce releases. In particular, this initial
version accesses the XyceCInteface class directly within the VPI code. Subsequent versions
will likely use a “C++ wrappers” approach so that the VPI code only uses ANSI-C and the native
PLI data-types in its function calls.

This section describes how to use the XyceCInterface class to run a Xyce simulation from a
Verilog program via the VPI capability supported by Icarus. This is a very simple demonstration
of that interface that is basically a “runXyce” example that uses a Verilog program
(runXyce.v), a Xyce netlist (runXyce.cir) and some VPI code (runXyce.c), as shown in
Figures 4-1, 4-2 and 4-3. It is basically the same as the runACircuit example given in Section 3.2.

34

(Note: all three of these files can be also found in the release src subdirectory
utils/XyceCInterface/VPI_examples/runXyce.)

Additional examples of using the VPI interface with Icarus can be found in the release src
subdirectory utils/XyceCInterface/VPI_examples. Those examples also use the
xyce_simulateUntil(), xyce_getDACDeviceNames(),
xyce_updateTimeVoltagePairs() and xyce_obtainResponse() methods of the
XyceCInterface.

module main;
initial $runXyce;
endmodule

Figure 4-1. Verilog Program for runXyce VPI example

* test circuit
V1 1 0 SIN(0 1 1)
R1 1 0 1

.TRAN 0 1

.PRINT TRAN V(1)

.MEASURE TRAN MAXV1 MAX V(1)

.MEASURE TRAN MINV1 MIN V(1)

.END

Figure 4-2. Xyce Netlist for runXyce VPI example

35

#include <vpi_user.h>
#include <stdio.h>
#include <stdlib.h>
#include <N_CIR_XyceCInterface.h>
static int runXyce_compiletf(char*user_data) {

return 0;
}
static int runXyce_calltf(char*user_data) {
// Used as a pointer to a pointer to an N_CIR_Xyce object.
// This somewhat convoluted syntax is needed to stop p from
// pointing at the same address as the VPI system task.
void** p = (void **) malloc(sizeof(void* [1]));

// Make Xyce command line for xyce_initialize() call.
char *argList[] = {(char*)("Xyce"),(char*)("runXyce.cir") };
int argc = sizeof(argList)/sizeof(argList[0]);
char** argv = argList;

// Demo methods in utils/XyceCInterface/N_CIR_XyceCInterface.C
xyce_open(p);
xyce_initialize(p,argc,argv);
xyce_runSimulation(p);
xyce_close(p);

// pointer clean-up and return
free(p);
return 0;

}
void runXyce_register() {

s_vpi_systf_data tf_data;
tf_data.type = vpiSysTask;
tf_data.tfname = "$runXyce";
tf_data.calltf = runXyce_calltf;
tf_data.compiletf = runXyce_compiletf;
tf_data.sizetf = 0;
tf_data.user_data = 0;
vpi_register_systf(&tf_data);

}
void (*vlog_startup_routines[])() = {

runXyce_register,
0 /* final entry must be zero */

};

Figure 4-3. VPI File for runXyce VPI example

36

4.3. VPI Building Guide for RHEL7

The sequence of commands shown in Figure 4-4 should compile Icarus and the Xyce shared
objects into an executable vvp program. (Note: This process was tested with Icarus Verilog
version 11.0.) It is analogous to the compilation steps given on the Icarus VPI Example web page
[15]. In this command sequence the top-level Xyce build directory build is denoted as
$xyceBuildDir and the top-level Xyce src directory is referred to as $xyceSrcDir.
$verilogBase can be generated by running which iverilog and using the returned
directory path starting above the bin subdirectory. $baseName is then the common prefix (e.g.,
runXyce) of the .c and .v. files.

The sequence of commands shown in Figure 4-4 assumes that Xyce built according to the
instructions in Section 2.2. After the runXyce.vvp program is made then it can be executed
with:

vvp -M. -mrunXyce runXyce.vvp

gcc -c -fpic -I$verilogBase/include/iverilog \
-I$xyceSrcDir/utils/XyceCInterface \
-I$xyceBuildDir/include \
$baseName.c

gcc -I$verilogBase/include/iverilog/libvpi.a \
-shared -L$xyceBuildDir/lib \
-L$xyceBuildDir/utils/XyceCInterface/.libs -lxycecinterface \
-Wl,-rpath=$xyceBuildDir/lib \
-Wl,-rpath=$xyceBuildDir/utils/XyceCInterface/.libs \
-o $baseName.vpi $baseName.o

iverilog -o$baseName.vvp $baseName.v

Figure 4-4. Compiling vvp Program with an Installed Xyce Build

Finally, additional examples of using Xyce with Icarus and VPI can be found in the release
subdirectory utils/XyceCInterface/VPI_examples. Those examples also use the
xyce_simulateUntil(), xyce_getDACDeviceNames(),
xyce_updateTimeVoltagePairs() and xyce_obtainResponse() methods of the
XyceCInterface class.

37

5. DEVICE MODELS FOR MIXED SIGNAL SIMULATION

Xyce has simple models for a Digital-to-Analog Converter (DAC) and an Analog-to-Digital
Converter (ADC) that help demonstrate the Python and VPI interfaces discussed in the previous
chapters. These models will likely be enhanced in future releases, so feedback on missing features
is encouraged.

This chapter contains manual pages for the YADC and YDAC devices. This information may be
moved to the Xyce Reference Guide in a future release.

5.1. Analog-to-Digital Converter

Instance Form YADC<name> <(+) node> <(-) node> [model name] [device parameters]

Model Form .MODEL <model name> ADC [model parameters]

Examples YADC1 ADC1 1 2 simpleADC R=1T WIDTH=2
.MODEL simpleADC ADC (settlingtime=50ns uppervoltagelimit=5
+ lowervoltagelimit=0)

Parameters and
Options (+) node

(-) node
Polarity definition for a positive voltage across the ADC. The first
node is defined as positive. Therefore, the voltage across the
component is the first node voltage minus the second node voltage.

model name
This parameter is optional for the YADC device. If it is omitted then
the default values for the model parameters will be used.

device parameters
Parameters listed in Table 5-1 may be provided as space separated
<parameter>=<value> specifications as needed. Any number of
parameters may be specified.

38

Comments The “upper voltage limit”and “lower voltage limit” model parameters might
not be the best approach for this device. They might be replaced, in a future
release, with a Vref+ node against which a Vin is compared, with a common
negative reference (e.g. ground). For now, a reasonable approach is to connect
the negative terminal to ground and use 0.0 as the value for the
LOWERVOLTAGELIMIT parameter.

The YADC device is calculating “breakpoints” for when its output digital
states change. However, there are at least two known issues with that process
in this Xyce release. First the breakpoint times (and the voltage difference
between the positive and negative terminals at those times) are based on the
times of “accepted steps” in the simulation, rather than (possibly) interpolated
estimates of when the state changes actually occurred. So, those times and
voltages may be inaccurate, and be reported as occuring later than the actual
state-change times. The second, and larger issue, is that breakpoints calculated
by the YADC device are not actually used by the rest of the Xyce simulation.
Instead, those times and voltages are simply made available to the external
simulator via the xyce_getTimeVoltagePairsADC method described
in Section 2.1.18.

The YADC device stores “deltaV” (the difference between the voltages at the
positive and negative terminals) in the TVVEC time-voltage vector returned
by the XyceCInterface method xyce_getTimeVoltagePairsADC.
So, the external digital simulator has two options. It can duplicate the
calculation of the output state of the YADC device, via the equations given
below. Or it can request the integer-value state directly via the
xyce_getTimeStatePairsADC method. However, because of an open
bug, only one of those methods should be used in a given program.

The capability to output the YADC device-state directly via the N() operator
on a .PRINT line has been added for Xyce 7.1. A syntax example is as
follows where YADC!ADC1 is the fully-qualified name in this example:

YADC ADC1 1 0 simpleADC R=1T
.model simpleADC ADC(settlingtime=50ns uppervoltagelimit=2
+ lowervoltagelimit=0 width=3)
.PRINT TRAN N(YADC!ADC1_STATE)

A final issue may be that the output state is defined as an integer, between 0
and 2**WIDTH-1. An option to have it reported, to the external simulators, as
a binary bit-vector might be added in a future release.

39

Table 5-1. ADC Device Instance Parameters

Parameter Description Units Default
R Internal resistance Ω 1e+12

WIDTH Output bit vector width s 1

Table 5-2. ADC Device Model Parameters

Parameter Description Units Default
LOWERVOLTAGELIMIT Lower limit of ADC voltage range V 0

SETTLINGTIME Settling time s 1e-08

UPPERVOLTAGELIMIT Upper limit of ADC voltage range V 5

WIDTH Output bit vector width s 1

40

ADC Equations C++ style code for how the output state of the YADC device is calculated is
shown in Figure 5-1. (Note: this code comes from
Instance::getInstanceBreakPoints() in the source file
src/DeviceModelPKG/OpenModels/N_DEV_ADC.C.)

// vPos is the voltage on the positive terminal.
// vNeg is the voltage on the negative terminal.
// width_ is the Output bit vector width (from WIDTH).
// nQuantLevels_ is 2**(width_).
deltaV = vPos-vNeg;
vFrac = deltaV/(model_.upperVoltageLimit_

- model_.lowerVoltageLimit_);

if (vFrac < (1.0)/(nQuantLevels_))
{
newState = 0;

}
else if (vFrac >= (nQuantLevels_ - 1.0)/(nQuantLevels_))
{

newState = nQuantLevels_ -1;
}
else
{

newState = int(vFrac*nQuantLevels_);
}
if (newState != lastOutputLevel_)
{
// update TVVEC with deltaV value and breakpoint time

}

Figure 5-1. Calculation of the YADC Output State

41

5.2. Digital-to-Analog Converter

Instance Form YDAC<name> <(+) node> <(-) node> [model name]

Model Form .MODEL <model name> DAC [model parameters]

Examples YDAC dac1 2 0 simpleDAC
.model simpleDAC DAC (tr=5e-9 tf=5e-9)

Parameters and
Options (+) node

(-) node
Polarity definition for a positive voltage across the DAC. The first
node is defined as positive. Therefore, the voltage across the
component is the first node voltage minus the second node voltage.

model name
This parameter is optional for the DAC device. If it is omitted then
the default values for the model parameters will be used.

Comments The DAC device acts like a voltage source as far as the rest of the circuit is
concerned. There is no output R-L-C smoothing network, as might be found in
a more realistic DAC.

Table 5-3. DAC Device Model Parameters

Parameter Description Units Default
TF Fall Time s 1e-09

TR Rise Time s 1e-09

42

6. SUMMARY OF CHANGES SINCE XYCE 6.11

This chapter provides a brief summary of the changes in the Mixed Signal Interface since Release
6.11 of Xyce.

• The new getTotalNumDevices and getAllDeviceNames methods allow the user
to efficiently query for the names of all the devices in the netlist.

• The new checkDeviceParamName and getDeviceParamVal methods allow the
user to query for the value of a specific device parameter.

• There was a bug fix (SON Bug 1275) related to the handling of SIMPLE and PAUSE
breakpoints that occur at the same time. The Xyce 7.1 Release Notes provide additional
details.

43

7. CONCLUSIONS AND FUTURE WORK

This application note provided an overview of the XyceCInterface class and how it can used
to interface to external programs via a Sandia-supplied Python ctypes interface and the Verilog
Procedural Interface (VPI). These interfaces are not an “officially announced” capability in Xyce
yet. So, one purpose of this application note was to solicit feedback on these interfaces from both
internal Sandia Xyce users and other performers on the DARPA Posh Open Source Hardware
(POSH) program. The remainder of this chapter will summarize the known limitations of these
interfaces.

The Common Operating Environment (COE) at Sandia encourages internally developed software
to support RHEL7, OSX and Windows 10. In addition, support for Ubuntu may be part of that
COE in the near future. At present, the interfaces described in this application note have only
been tested and documented for RHEL7.

A list of miscellaneous bugs for the Python interface was listed in Section 3.3. The main issue
with that Python interface, which is “coordinated time stepping”, will be discussed in the next
subsection.

The primary issue with the VPI capability is the lack of standards compliance. The example given
in Section 4.2 uses the C++ features of the XyceCInterface directly. Wrapper functions, that
only use ANSI C and the native PLI data-types in their function calls, still need to be
implemented.

7.1. Known Issues with Coordinated Time Stepping

The xyce_getTimeVoltagePairsADCmethod of the XyceCInterface is the least
mature of that interface’s methods. Many of its limitations stem from known limitations in the
YADC device (see Section 5.1) implemented in Xyce 7.1. This section gives a Python-based
example that illustrates those limitations. The goal is to solicit feedback on the best resolution of
these issues.

The netlist for this “TimeStepping” example is shown in Figure 7-1. The calling Python program
is shown in Figure 7-2. An abbreviated version of the resultant stdout, with a subset of the
descriptive output from the Python program is then shown in Figure 7-3.

The returned arrays (timeArray and voltageArray) are 2x2 in this example. In general,
they would be MxN where is the value of numADCnames and N is the value of numPoints.
For the simulation interval ending at 1e-5, the returned values of (0,0) are “not useful”. They are
basically the simulation start time. The returned values of (1e-5,2e-1) are also not useful in this
case. They are the breakpoints set by the call to simulateUntil. So, the underlying

44

xyce_getTimeVoltagePairsADC() method of the XyceCInterface, and the device
model in the YADC device, may need to be modified to only report breakpoints that were set by
the ADC devices.

Another problem is accuracy. There is useful breakpoint information returned for ADC2 after the
second call to simulateUntil. However, the time (1.267e-05) and value (2.524e-01) were
determined based on the last accepted Xyce time step (see the .prn file) at time = 1.262e-05,
instead of when the state change might have actually occured. A related issue is that the returned
value is the voltage difference between the positive and negative terminals of the YADC device.
So, the external simulator has to duplicate the YADC equations (see Section 5.1) to determine the
binary-state value for each YADC in the simulation.

The final, and most important problem, is that the breakpoints generated by each YADC device
are not actually used by the rest of the Xyce simulation. The Xyce simulation in this example
continued on until the next value of requested_time and did not pause at any of the
breakpoints generated by the YADC devices. (Note: that capability was broken in a previous
release and was not fixed/changed in time for the Xyce 7.1 release.) So, based on various Sandia
and DARPA POSH use cases, techniques for coordinated time-stepping of Xyce and the external
simulator(s) need to be defined and implemented for simulations that contain both YADC and
YDAC devices.

* Netlist name is TimeStepping.cir

* These WIDTH values will be overwritten by the Python program
YADC adc1 1 0 simpleADC R=1T WIDTH=1
YADC adc2 1 0 simpleADC R=1T WIDTH=1
.model simpleADC ADC(settlingtime=50ns uppervoltagelimit=2
+ lowervoltagelimit=0)

v1 1 0 PWL 0 0 1e-4 2
.TRAN 0 1e-4

* illustate syntax for printing out YADC device parameters
.PRINT TRAN V(1) YADC!ADC1:WIDTH YADC!ADC2:WIDTH
.END

Figure 7-1. Xyce Netlist for Time Stepping Example

45

import sys
from xyce_interface import xyce_interface
libDirectory = sys.argv[1]
xyceObj = xyce_interface(libdir=libDirectory)
print(xyceObj)
argv= [’TimeStepping.cir’]
print("calling initialize with netlist %s" % argv[0])
result = xyceObj.initialize(argv)
print("return value from initialize is %d" % result)
get ADC names
(result, names) = xyceObj.getDeviceNames("YADC")
print("return value from getDeviceNames is %d" % result)
print(names)
#set ADC widths. This is hard-coded for two ADCs, and must
match the WIDTH variables on the ADC instance lines. This may
seem backwards but names is [’YADC!ADC2’, ’YADC!ADC1’] here.
width=[3,2]
result = xyceObj.setADCWidths(names,width)

stepSize = 1e-5
steps = range(0,3)
for i in steps:

requested_time = 0.0 + (i+1) * stepSize
print("Calling simulateUntil for requested_time = %.3e" \
% requested_time)
actual_time = 0.0
(result, actual_time)=xyceObj.simulateUntil(requested_time)
print("simulateUntil status = %d and actual_time = %.3e" \
% (result, actual_time))
(result, ADCnames, numADCnames, numPoints, timeArray, \
voltageArray) = xyceObj.getTimeVoltagePairsADC()
print("number of pts returned by getTimeVoltagePairsADC() \
is %d" % numPoints)
Note: ADCnames is [’YADC!ADC1’, ’YADC!ADC2’] here.
print("ADC 1: Time and voltage array 0 values are %.3e %.3e" \
%(timeArray[0][0] , voltageArray[0][0]))
print("ADC 1: Time and voltage array 1 values are %.3e %.3e" \
%(timeArray[0][1] , voltageArray[0][1]))
print("ADC 2: Time and voltage array 0 values are %.3e %.3e" \
%(timeArray[1][0] , voltageArray[1][0]))
print("ADC 2: Time and voltage array 1 values are %.3e %.3e" \
%(timeArray[1][1] , voltageArray[1][1]))

print("calling close")
xyceObj.close()

Figure 7-2. Python Program for Time Stepping Example46

Calling simulateUntil for requested_time = 1.000e-05
simulateUntil status = 1 and actual_time = 1.000e-05
number of pts returned by getTimeVoltagePairsADC() is 2
names are YADC!ADC1 YADC!ADC2
ADC 1: Time and voltage array 0 values are 0.000e+00 0.000e+00
ADC 1: Time and voltage array 1 values are 1.000e-05 2.000e-01
ADC 2: Time and voltage array 0 values are 0.000e+00 0.000e+00
ADC 2: Time and voltage array 1 values are 1.000e-05 2.000e-01
Calling simulateUntil for requested_time = 2.000e-05
simulateUntil status = 1 and actual_time = 2.000e-05
number of pts returned by getTimeVoltagePairsADC() is 2
names are YADC!ADC1 YADC!ADC2
ADC 1: Time and voltage array 0 values are 2.000e-05 4.000e-01
ADC 1: Time and voltage array 1 values are 0.000e+00 0.000e+00
ADC 2: Time and voltage array 0 values are 1.267e-05 2.524e-01
ADC 2: Time and voltage array 1 values are 2.000e-05 4.000e-01
Calling simulateUntil for requested_time = 3.000e-05
simulateUntil status = 1 and actual_time = 3.000e-05
number of pts returned by getTimeVoltagePairsADC() is 2
names are YADC!ADC1 YADC!ADC2
ADC 1: Time and voltage array 0 values are 2.625e-05 5.241e-01
ADC 1: Time and voltage array 1 values are 3.000e-05 6.000e-01
ADC 2: Time and voltage array 0 values are 2.625e-05 5.241e-01
ADC 2: Time and voltage array 1 values are 3.000e-05 6.000e-01
calling close

Figure 7-3. Abbreviated stdout for Time Stepping Example

47

REFERENCES

[1] Thomas V. Russo and Russell Hooper. Application Note: Coupled Simulation with the Xyce
General External Interface. Technical Report SAND2018-12275, Sandia National
Laboratories, 2018.

[2] Icarus Home Page, . URL http://iverilog.icarus.com/.

[3] IEEE Standard 1364-2005: IEEE Standard for Verilog Hardware Description Language,
2005.

[4] Eric R. Keiter, Thomas V. Russo, Richard L. Schiek, Heidi K. Thornquist, Ting Mei,
Jason C. Verley, Peter E. Sholander, and Karthik V. Aadithya. Xyce Parallel Electronic
Simulator: Reference Guide, Version 7.1. Technical Report SAND2020-5493, Sandia
National Laboratories, Albuquerque, NM, 2020.

[5] Eric R. Keiter, Thomas V. Russo, Richard L. Schiek, Heidi K. Thornquist, Ting Mei,
Jason C. Verley, Peter E. Sholander, and Karthik V. Aadithya. Xyce Parallel Electronic
Simulator: Users’ Guide, Version 7.1. Technical Report SAND2020-5492, Sandia National
Laboratories, Albuquerque, NM, 2020.

[6] Eric R. Keiter, Scott A. Hutchinson, Robert J. Hoekstra, Lon J. Waters, and Thomas V.
Russo. Xyce parallel electronic simulator design: Mathematical formulation, version 2.0.
Technical Report SAND2004-2283, Sandia National Laboratories, Albuquerque, NM, June
2004.

[7] Xyce Building Guide, . URL
https://xyce.sandia.gov/documentation/BuildingGuide.html.

[8] Running the Xyce Regression Suite, . URL
https://xyce.sandia.gov/documentation/RunningTheTests.html.

[9] ctypes - A foreign function library for Python. URL
https://docs.python.org/3/library/ctypes.html.

[10] Andrew M. Smith, Jackson Mayo, Rob Armstrong, Richard Schiek, Peter Sholander, and
Ting Mei. Digital/Analog Cosimulation Using CocoTB and Xyce. Technical Report
SAND2018-TBD, Sandia National Laboratories, 2018.

[11] GHDL. URL http://ghdl.free.fr/.

[12] Welcome to Cocotb’s documentation. URL
https://docs.cocotb.org/en/latest/.

[13] Icarus Verilog - Installation Guide, . URL
http://iverilog.wikia.com/wiki/Installation_Guide.

48

http://iverilog.icarus.com/
https://xyce.sandia.gov/documentation/BuildingGuide.html
https://xyce.sandia.gov/documentation/RunningTheTests.html
https://docs.python.org/3/library/ctypes.html
http://ghdl.free.fr/
https://docs.cocotb.org/en/latest/
http://iverilog.wikia.com/wiki/Installation_Guide

[14] Icarus Verilog - Getting Started, . URL
http://iverilog.wikia.com/wiki/Getting_Started.

[15] Icarus Verilog - Using VPI, . URL
http://iverilog.wikia.com/wiki/Using_VPI.

[16] Stuart Sutherland. The Verliog PLI Handbook: Second Edition. Springer Science+Business
Media, New York, NY, 2002.

49

http://iverilog.wikia.com/wiki/Getting_Started
http://iverilog.wikia.com/wiki/Using_VPI

DISTRIBUTION

Email—Internal (encrypt for OUO)

Name Org. Sandia Email Address

Technical Library 01177 libref@sandia.gov

50

51

Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract
DE-NA0003525.

	Introduction
	Target Audience and Prerequisites

	XyceCInterface
	API Description
	xyce_open
	xyce_initialize
	xyce_runSimulation
	xyce_simulateUntil
	xyce_close
	xyce_getNumDevices
	xyce_getDeviceNames
	xyce_getDACDeviceNames
	xyce_getTotalNumDevices()
	xyce_getAllDeviceNames
	xyce_checkDeviceParamName
	xyce_getDeviceParamVal
	xyce_updateTimeVoltagePairs
	xyce_checkResponseVar
	xyce_obtainResponse
	xyce_setADCWidths
	xyce_getADCWidths
	xyce_getTimeVoltagePairsADC
	xyce_getTimeStatePairsADC
	xyce_getADCMap

	Xyce Shared Objects Building and Testing Guide for RHEL7
	Post-Release Code Fixes

	Python Wrappers to XyceCInterface
	API Description
	xyce_interface
	initialize
	runSimulation
	simulateUntil
	close
	getNumDevices
	getDeviceNames
	getDACDeviceNames
	getTotalNumDevices
	getAllDeviceNames
	checkDeviceParamName
	getDeviceParamVal
	updateTimeVoltagePairs
	checkResponseVar
	obtainResponse
	setADCWidths
	getADCWidths
	getTimeVoltagePairsADC
	getTimeStatePairsADC
	getADCMap

	Examples
	Known Limitations and Bugs

	Xyce VPI Interface to Icarus
	Icarus Overview
	Xyce VPI Implementation and Examples
	VPI Building Guide for RHEL7

	Device Models for Mixed Signal Simulation
	Analog-to-Digital Converter
	Digital-to-Analog Converter

	Summary of Changes Since Xyce 6.11
	Conclusions and Future Work
	Known Issues with Coordinated Time Stepping

	References

