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1 Diameter of incircle
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Lemma 1. Let the incircle of triangle ABC touch side BC at D, and let DT be a diameter of the circle.
If line AT meets BC at X, then BD = CX.
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Proof. Assume wlog that AB ≥ AC. Consider the dilation with center A that carries the incircle to an
excircle. The line segment DT is the diameter of the incircle that is perpendicular to BC, and therefore
its image under the dilation must be the diameter of the excircle that is perpendicular to BC. It follows
that T must get mapped to the point of tangency between the excircle and BC. In addition, the image
of T must lie on the line AT , and hence T gets mapped to X. Thus, the excircle is tangent to BC at X.

It remains to prove that BD = CX. Let the incircle of ABC touch sides AB and AC at F and E,
respectively. Let the excircle of ABC opposite to A touch rays AB and AC at Z and Y , respectively,
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then using equal tangents, we have

2BD = BF +BX +XD = BF +BZ +XD = FZ +XD

= EY +XD = EC + CY +XD = DC +XC +XD = 2CX.

Thus BD = CX.

Problems

1. (IMO 1992) In the plane let C be a circle, ` a line tangent to the circle C, and M a point on `. Find
the locus of all points P with the following property: there exists two points Q,R on ` such that
M is the midpoint of QR and C is the inscribed circle of triangle PQR.

2. (USAMO 1999) Let ABCD be an isosceles trapezoid with AB ‖ CD. The inscribed circle ω of
triangle BCD meets CD at E. Let F be a point on the (internal) angle bisector of ∠DAC such
that EF ⊥ CD. Let the circumscribed circle of triangle ACF meet line CD at C and G. Prove
that the triangle AFG is isosceles.

3. (IMO Shortlist 2005) In a triangle ABC satisfying AB +BC = 3AC the incircle has centre I and
touches the sides AB and BC at D and E, respectively. Let K and L be the symmetric points of
D and E with respect to I. Prove that the quadrilateral ACKL is cyclic.

4. (Nagel line) Let ABC be a triangle. Let the excircle of ABC opposite to A touch side BC at D.
Similarly define E on AC and F on AB. Then AD, BE, CF concur (why?) at a point N known
as the Nagel point.

Let G be the centroid of ABC and I the incenter of ABC. Show that I,G,N lie in that order on
a line (known as the Nagel line, and GN = 2IG.

5. (USAMO 2001) Let ABC be a triangle and let ω be its incircle. Denote by D1 and E1 the points
where ω is tangent to sides BC and AC, respectively. Denote by D2 and E2 the points on sides
BC and AC, respectively, such that CD2 = BD1 and CE2 = AE1, and denote by P the point of
intersection of segments AD2 and BE2. Circle ω intersects segment AD2 at two points, the closer
of which to the vertex A is denoted by Q. Prove that AQ = D2P .

6. (Tournament of Towns 2003 Fall) Triangle ABC has orthocenter H, incenter I and circumcenter
O. Let K be the point where the incircle touches BC. If IO is parallel to BC, then prove that AO
is parallel to HK.

7. (IMO 2008) Let ABCD be a convex quadrilateral with |BA| 6= |BC|. Denote the incircles of
triangles ABC and ADC by ω1 and ω2 respectively. Suppose that there exists a circle ω tangent
to the ray BA beyond A and to the ray BC beyond C, which is also tangent to the lines AD and
CD. Prove that the common external tangents of ω1 and ω2 intersect on ω.

(Hint: show that AB +AD = CB + CD. What does this say about the lengths along AC?)
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2 Center of spiral similarity

A spiral similarity1 about a point O (known as the center of the spiral similarity) is a composition of a
rotation and a dilation, both centered at O. (See diagram)

O

Figure 1: An example of a spiral similarity.

For instance, in the complex plane, if O = 0, then spiral similarities are described by multiplication by
a nonzero complex number. That is, spiral similarities have the form z 7→ αz, where α ∈ C\{0}. Here |α|
is the dilation factor, and argα is the angle of rotation. It is easy to deduce from here that if the center
of the spiral similarity is some other point, say z0, then the transformation is given by z 7→ z0 +α(z− z0)
(why?).

Fact. Let A,B,C,D be four distinct point in the plane such that ABCD is not a parallelogram. Then
there exists a unique spiral similarity that sends A to B, and C to D.

Proof. Let a, b, c, d be the corresponding complex numbers for the points A,B,C,D. We know that a
spiral similarity has the form T(z) = z0 +α(z − z0), where z0 is the center of the spiral similarity, and α
is data on the rotation and dilation. So we would like to find α and z0 such that T(a) = c and T(b) = d.
This amount to solving the system

z0 + α(a− z0) = c, z0 + α(b− z0) = d.

Solving it, we see that the unique solution is

α =
c− d
a− b

, z0 =
ad− bc

a− b− c+ d
.

Since ABCD is not a parallelogram, a− b− c+ d 6= 0, so that this is the unique solution to the system.
Hence there exists a unique spiral similarity that carries A to B and C to D.

Exercise. How can you quickly determine the value of α in the above proof without even needing to set
up the system of equations?

Exercise. Give a geometric argument why the spiral similarity, if it exists, must be unique. (Hint:
suppose that T1 and T2 are two such spiral similarities, then what can you say about T1 ◦T−1

2 ?)

So we know that a spiral similarity exists, but where is its center? The following lemma tells us how
to locate it.

1If you want to impress your friends with your mathematical vocabulary, a spiral similarity is sometimes called a similitude,
and a dilation is sometimes called a homothety. (Actually, they are not quite exactly the same thing, but shhh!)
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Lemma 2. Let A,B,C,D be four distinct point in the plane, such that AC is not parallel to BD. Let
lines AC and BD meet at X. Let the circumcircles of ABX and CDX meet again at O. Then O is the
center of the unique spiral similarity that carries A to C and B to D.
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Proof. We use directed angles mod π (i.e., directed angles between lines, as opposed to rays) in order to
produce a single proof that works in all configurations. Let ∠(`1, `2) denote the angle of rotation that takes
line `1 to `2. A useful fact is that points P,Q,R, S are concyclic if and only if ∠(PQ,QR) = ∠(PS, SR).

We have
∠(OA,AC) = ∠(OA,AX) = ∠(OB,BX) = ∠(OB,BD),

and
∠(OC,CA) = ∠(OC,CX) = ∠(OD,DX) = ∠(OD,DB).

It follows that triangles AOC and BOD are similar and have the same orientation. Therefore, the spiral
similarity centered at O that carries A to C must also carry B to D.

Finally, it is worth mentioning that spiral similarities come in pairs. If we can send AB to CD, then
we can just as easily send AC to BD using the same center.

Fact. If O is the center of the spiral similarity that sends A to C and B to D, then O is also the center
of the spiral similarity that sends A to B and C to D.

Proof. Since spiral similarity preserves angles at O, we have ∠AOB = ∠COD. Also, the dilation ratio
of the first spiral similarity is OC/OA = OD/OB. So the rotation about O with angle ∠AOB = ∠COD
followed by a dilation with ratio OB/OA = OD/OC sends A to B, and C to D, as desired.

Problems

1. (IMO Shortlist 2006) Let ABCDE be a convex pentagon such that

∠BAC = ∠CAD = ∠DAE and ∠CBA = ∠DCA = ∠EDA.

Diagonals BD and CE meet at P . Prove that line AP bisects side CD.

2. (USAMO 2006) Let ABCD be a quadrilateral, and let E and F be points on sides AD and
BC, respectively, such that AE/ED = BF/FC. Ray FE meets rays BA and CD at S and T ,
respectively. Prove that the circumcircles of triangles SAE, SBF , TCF , and TDE pass through a
common point.

3. (China 1992) Convex quadrilateral ABCD is inscribed in circle ω with center O. Diagonals AC
and BD meet at P . The circumcircles of triangles ABP and CDP meet at P and Q. Assume that
points O,P , and Q are distinct. Prove that ∠OQP = 90◦.
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4. Let ABCD be a quadrilateral. Let diagonals AC and BD meet at P . Let O1 and O2 be the
circumcenters of APD and BPC. Let M , N and O be the midpoints of AC, BD and O1O2. Show
that O is the circumcenter of MPN .

5. (Miquel point of a quadrilateral) Let `1, `2, `3, `4 be four lines in the plane, no two parallel. Let Cijk
denote the circumcircle of the triangle formed by the lines `i, `j , `k (these circles are called Miquel
circles). Then C123, C124, C134, C234 pass through a common point (called the Miquel point).

(It’s not too hard to prove this result using angle chasing, but can you see why it’s almost an
immediate consequence of the lemma?)

6. (IMO 2005) Let ABCD be a given convex quadrilateral with sides BC and AD equal in length
and not parallel. Let E and F be interior points of the sides BC and AD respectively such that
BE = DF . The lines AC and BD meet at P , the lines BD and EF meet at Q, the lines EF and
AC meet at R. Consider all the triangles PQR as E and F vary. Show that the circumcircles of
these triangles have a common point other than P .

7. (IMO Shortlist 2006) Points A1, B1 and C1 are chosen on sides BC,CA, and AB of a triangle ABC,
respectively. The circumcircles of triangles AB1C1, BC1A1, and CA1B1 intersect the circumcircle
of triangle ABC again at points A2, B2, and C2, respectively (A2 6= A,B2 6= B, and C2 6= C).
Points A3, B3, and C3 are symmetric to A1, B1, C1 with respect to the midpoints of sides BC,CA,
and AB, respectively. Prove that triangles A2B2C2 and A3B3C3 are similar.

3 Symmedian

Let ABC be a triangle. Let M be the midpoint of BC, so that AM is a median of ABC. Let N be
a point on side BC so that ∠BAM = ∠CAN . Then AN is a symmedian of ABC. In other words,
the symmedian is the reflection of the median across the angle bisector. The following lemma gives an
important property of the symmedian.
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D

Lemma 3. Let ABC be a triangle and Γ its circumcircle. Let the tangent to Γ at B and C meet at D.
Then AD coincides with a symmedian of 4ABC.

We give three proofs. (The three diagram each correspond to a separate proof.) The first proof is a
“sine law chase.”
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First proof. Let the reflection of AD across the angle bisector of ∠BAC meet BC at M ′. Then

BM ′

M ′C
=
AM ′ sin ∠BAM ′

sin ∠ABC

AM ′ sin ∠CAM ′

sin ∠ACB

[Sine law on ABM ′ and ACM ′]

=
sin ∠BAM ′

sin ∠ACD
sin ∠ABD
sin ∠CAM ′

[Using the tangent-chord angles]

=
sin ∠CAD
sin ∠ACD

sin ∠ABD
sin ∠BAD

[From construction of M ′]

=
CD

AD

AD

BD
[Sine law on ACD and ABD]

= 1.

Therefore, AM ′ is the median, and thus AD is the symmedian.

Remark. Some people like to start this proof by setting M to be the midpoint of BC, and then using
sine law to show that sin ∠BAD

sin ∠CAD = sin ∠CAM
sin ∠BAM . I do not recommend this variation, since it’s not immediately

clear that ∠CAM = ∠BAD follows, especially when ∠BAD is obtuse.

Next we give a synthetic proof that highlights some additional features in the configuration.

Second proof. Let O be the circumcenter of ABC and let ω be the circle centered at D with radius DB.
Let lines AB and AC meet ω at P and Q, respectively. Since ∠ABC = ∠AQP , triangles ABC and AQP
are similar. The idea is use the fact that, up to dilation, triangles ABC and AQP are reflections of each
other across the angle bisector of ∠A.

Since
∠PBQ = ∠BQC + ∠BAC =

1
2

(∠BDC + ∠BOC) = 90◦,

we see that PQ is a diameter of ω and hence passes through D. Let M be the midpoint of BC. Since D
is the midpoint of QP , the similarity implies that ∠BAM = ∠QAD, from which the result follows.

The third proof uses facts from projective geometry. Feel free to skip it if you are not comfortable
with projective geometry.

Third proof. Let the tangent of Γ at A meet line BC at E. Then E is the pole of AD (since the polar of
A is AE and the pole of D is BC). Let BC meet AD at F . Then point B,C,E, F are harmonic. This
means that line AB,AC,AE,AF are harmonic. Consider the reflections of the four line across the angle
bisector of ∠BAC. Their images must be harmonic too. It’s easy to check that AE maps onto a line
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parallel to BC. Since BC must meet these four lines at harmonic points, it follows that the reflection of
AF must pass through the midpoint of BC. Therefore, AF is a symmedian.

Problems

1. (Poland 2000) Let ABC be a triangle with AC = BC, and P a point inside the triangle such that
∠PAB = ∠PBC. If M is the midpoint of AB, then show that ∠APM + ∠BPC = 180◦.

2. (IMO Shortlist 2003) Three distinct points A,B,C are fixed on a line in this order. Let Γ be a circle
passing through A and C whose center does not lie on the line AC. Denote by P the intersection of
the tangents to Γ at A and C. Suppose Γ meets the segment PB at Q. Prove that the intersection
of the bisector of ∠AQC and the line AC does not depend on the choice of Γ.

3. (Vietnam TST 2001) In the plane, two circles intersect at A and B, and a common tangent intersects
the circles at P and Q. Let the tangents at P and Q to the circumcircle of triangle APQ intersect
at S, and let H be the reflection of B across the line PQ. Prove that the points A, S, and H are
collinear.

4. (USA TST 2007) Triangle ABC is inscribed in circle ω. The tangent lines to ω at B and C meet
at T . Point S lies on ray BC such that AS ⊥ AT . Points B1 and C1 lies on ray ST (with C1 in
between B1 and S) such that B1T = BT = C1T . Prove that triangles ABC and AB1C1 are similar
to each other.

5. Let ABC be a triangle. Let X be the center of spiral similarity that takes B to A and A to C.
Show that AX coincides with a symmedian of ABC.

6. (USA TST 2008) Let ABC be a triangle with G as its centroid. Let P be a variable point on
segment BC. Points Q and R lie on sides AC and AB respectively, such that PQ ‖ AB and
PR ‖ AC. Prove that, as P varies along segment BC, the circumcircle of triangle AQR passes
through a fixed point X such that ∠BAG = ∠CAX.

7. (USA 2008) Let ABC be an acute, scalene triangle, and let M , N , and P be the midpoints of BC,
CA, and AB, respectively. Let the perpendicular bisectors of AB and AC intersect ray AM in
points D and E respectively, and let lines BD and CE intersect in point F , inside of triangle ABC.
Prove that points A, N , F , and P all lie on one circle.

8. Let A be one of the intersection points of circles ω1, ω2 with centers O1, O2. The line ` is tangent
to ω1, ω2 at B,C respectively. Let O3 be the circumcenter of triangle ABC. Let D be a point such
that A is the midpoint of O3D. Let M be the midpoint of O1O2. Prove that ∠O1DM = ∠O2DA.

(Hint: use Problem 5.)
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