- 4S, S. (1994). Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: The Scandinavian Simvastatin Survival Study (4S). The Lancet, 344(8934), 1383–1389.
Paper not yet in RePEc: Add citation now
- Adams, R. J., Albers, G., Alberts, M. J., Benavente, O., Furie, K., Goldstein, L. B., …, & Schwamm, L. H.(2008). Update to the AHA/ASA recommendations for the prevention of stroke in patients with stroke and transient ischemic attack. Stroke, 39(5), 1647–1652.
Paper not yet in RePEc: Add citation now
Altonji, J. G., Elder, T. E., & Taber, C. R. (2005). Selection on observed and unobserved variables: Assessing the effectiveness of catholic schools. Journal of Political Economy, 113(1), 151–184.
- American Heart Association (2015). Heart disease and stroke statistics 2015 update. (Technical report): Dallas.
Paper not yet in RePEc: Add citation now
Angrist, J. D. (2004). Treatment effect heterogeneity in theory and practice*. The Economic Journal, 114(494), C52–C83.
- Angrist, J. D., & Pischke, J. (2008). Mostly harmless econometrics: An empiricist's companion. Princeton, NJ: Princeton University Press.
Paper not yet in RePEc: Add citation now
- Angrist, J. D., Imbens, G. W., & Rubin, D. B. (1996). Identification of causal effects using instrumental variables (Disc: p456‐472). Journal of the American Statistical Association, 91, 444–455.
Paper not yet in RePEc: Add citation now
Atella, V., Belotti, F., & Depalo, D. (2017). Drug therapy adherence and health outcomes in the presence of physician and patient unobserved heterogeneity. Health Economics, 26, 106–126.
Atella, V., Belotti, F., Bhattcharya, J., & Depalo, D. (2019). When technological advance meets physician learning in drug prescribing. (Working Paper 26202). Cambridge, MA: National Bureau of Economic Research.
- Atella, V., Belotti, F., Kopinska, J., Palma, A., & Mortari, A. P. (2018). Economic crisis, mortality and health status. A new perspective. (CEIS Research Paper 425). Rome, Italy: Tor Vergata University, CEIS.
Paper not yet in RePEc: Add citation now
- Athyros, V. G., Tziomalos, K., Gossios, T. D., Griva, T., Anagnostis, P., Kargiotis, K., …, & Mikhailidis, D. P. (2010). Safety and efficacy of long‐term statin treatment for cardiovascular events in patients with coronary heart disease and abnormal liver tests in the Greek Atorvastatin and Coronary Heart Disease Evaluation (GREACE) Study: A post‐hoc analysis. The Lancet, 376(9756), 1916–1922.
Paper not yet in RePEc: Add citation now
- Barter, P., Gotto, A. M., LaRosa, J. C., Maroni, J., Szarek, M., Grundy, S. M., …, & Fruchart, J.‐C. (2007). HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events. New England Journal of Medicine, 357(13), 1301–1310. PMID: 17898099.
Paper not yet in RePEc: Add citation now
Basu, A. (2014). Estimating person‐centered treatment (PET) effects using instrumental variables: An application to evaluating prostate cancer treatments. Journal of Applied Econometrics, 29(4), 671–691.
- Basu, A., Heckman, J. J., Navarro‐Lozano, S., & Urzua, S. (2007). Use of instrumental variables in the presence of heterogeneity and self‐selection: An application to treatments of breast cancer patients. Health Economics, 16(11), 1133–1157.
Paper not yet in RePEc: Add citation now
- Bianchini, E., Brignoli, O., Cricelli, C., Cricelli, I., Lapi, F., Medea, G., …, & Simonetti, M. (2016). IX report health search. Florence, Italy: SIMG.
Paper not yet in RePEc: Add citation now
Bjorklund, A., & Moffitt, R. (1987). The estimation of wage gains and welfare gains in self‐selection models. The Review of Economics and Statistics, 69(1), 42–49.
- Bound, J., Jaeger, D. A., & Baker, R. (1995). Problems with instrumental variable estimation when the correlation between the instruments and the endogenous explanatory variable is weak. Journal of the American Statistical Association, 90, 443–450.
Paper not yet in RePEc: Add citation now
- British Heart Foundation (2014). Reducing your blood cholesterol, Vol. 146. London, UK.
Paper not yet in RePEc: Add citation now
- British Heart Foundation (2015). Cardiovascular Disease Statistics 2015, Vol. 146. London, UK.
Paper not yet in RePEc: Add citation now
- Buchow, H., Cayotte, E., & Agafitei, L. (2012). Circulatory diseases—Main causes of death for persons aged 65 and more in Europe, 2009. Statistics in Focus, 7, 1–12.
Paper not yet in RePEc: Add citation now
- Carneiro, P., Heckman, J. J., & Vytlacil, E. (2003). Understanding what instrumental variables estimate: Estimating marginal and average returns to education. processed, University of Chicago, The American Bar Foundation and Stanford University, July 19.
Paper not yet in RePEc: Add citation now
Carneiro, P., Heckman, J. J., & Vytlacil, E. (2010). Evaluating marginal policy changes and the average effect of treatment for individuals at the margin. Econometrica, 78(1), 377–394.
Carneiro, P., Lokshin, M., & Umapathi, N. (2017). Average and marginal returns to upper secondary schooling in Indonesia. Journal of Applied Econometrics, 32(1), 16–36.
CBO (2018). The budget and economic outlook: 2018 to 2028. (Reports 53651): Congressional Budget Office. Washington, DC.
- Charlson, M. E., Pompei, P., Ales, K. L., & MacKenzie, C. R. (1987). A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. Journal of Chronic Diseases, 40(5), 373–383.
Paper not yet in RePEc: Add citation now
Cornelissen, T., Dustmann, C., Raute, A., & Schonberg, U. (2016). From LATE to MTE: Alternative methods for the evaluation of policy interventions. Labour Economics, 41, 47–60.
- Cramer, J. A., Roy, A., Burrell, A., Fairchild, C. J., Fuldeore, M. J., Ollendorf, D. A., & Wong, P. K.(2008). Medication compliance and persistence: Terminology and definitions. Value in Health, 11, 44–47.
Paper not yet in RePEc: Add citation now
Deaton, A., & Cartwright, N. (2018). Understanding and misunderstanding randomized controlled trials. Social Science & Medicine, 210, 2–21.
Doyle, J. J. (2007). Child protection and child outcomes: Measuring the effects of foster care. American Economic Review, 97(5), 1583–1610.
- European Commission (2015). The 2015 ageing report. Belgium: European Commission.
Paper not yet in RePEc: Add citation now
- Fabiani, L., Scatigna, M., Panopoulou, K., Sabatini, A., Sessa, E., Donato, F., …, & Ventriglia, G.(2004). Health search: Istituto di Ricerca Della Societá Italiana di Medicina Generale: La realizzazione di un database per la ricerca in medicina generale. Epidemiol and Prev, 28, 156–162.
Paper not yet in RePEc: Add citation now
- Fairman, K. A., & Motheral, B. (2000). Evaluating medication adherence: Which measure is right for your program?Journal of Managed Care Pharmacy, 6(6), 499–506.
Paper not yet in RePEc: Add citation now
Fichera, E., Banks, J., Siciliani, L., & Sutton, M. (2018). Does patient health behaviour respond to doctor effort? Journal of Economic Behavior & Organization, 156(62), 225–251.
French, E., & Song, J. (2014). The effect of disability insurance receipt on labor supply. American Economic Journal: Economic Policy, 6(2), 291–337.
Hausman, J. A. (1978). Specification tests in econometrics. Econometrica, 46(6), 1251–71.
Heckman, J. (2010). Building bridges between structural and program evaluation approaches to evaluating policy. Journal of Economic Literature, 48(2), 356–398.
Heckman, J. J. (1979). Sample selection bias as a specification error. Econometrica, Econometric Society, 47(1), 153–61.
Heckman, J. J., & Vytlacil, E. (2005). Structural equations, treatment effects, and econometric policy evaluation. Econometrica, 73(3), 669–738.
- Heckman, J. J., & Vytlacil, E. J. (1999). Local instrumental variables and latent variable models for identifying and bounding treatment effects. Proceedings of the National Academy of Sciences of the United States of America, 96(8), 4730–4734.
Paper not yet in RePEc: Add citation now
Heckman, J. J., & Vytlacil, E. J. (2000). The relationship between treatment parameters within a latent variable framework. Economics Letters, 66(1), 33–39.
- Heckman, J. J., & Vytlacil, E. J. (2001). Instrumental variables, selection models, and tight bounds on the average treatment effect, Econometric evaluations of active labor market policies in Europe. Heidelberg, Germany. (pp. 1‐15): Physica‐Verlag.
Paper not yet in RePEc: Add citation now
Heckman, J. J., & Vytlacil, E. J. (2007a). Econometric evaluation of social programs, part I: Causal models, structural models and econometric policy evaluation. In Heckman, J. J., & Leamer, E. E. (Eds.), Handbook of econometrics, Vol. 6 (pp. 4779‐4874). North Holland, Amsterdam: Elsevier.
Heckman, J. J., & Vytlacil, E. J. (2007b). Econometric evaluation of social programs, part II: Using the marginal treatment effect to organize alternative econometric estimators to evaluate social programs, and to forecast their effects in new environments. In Heckman, J. J., & Leamer, E. E. (Eds.), Handbook of econometrics, Vol. 6 (pp. 4875‐5143). North Holland, Amsterdam: Elsevier.
Heckman, J. J., Smith, J., & Clements, N. (1997). Making the most out of programme evaluations and social experiments: Accounting for heterogeneity in programme impacts. The Review of Economic Studies, 64(4), 487–535.
Heckman, J. J., Urzua, S., & Vytlacil, E. (2006). Understanding instrumental variables in models with essential heterogeneity. The Review of Economics and Statistics, 88(3), 389–432.
Hughes, D. A., Bagust, A., Haycox, A., & Walley, T. (2001). The impact of non‐compliance on the cost‐effectiveness of pharmaceuticals: A review of the literature. Health Economics, 10, 601–615.
Imbens, G. W., & Angrist, J. D. (1994). Identification and estimation of local average treatment effects. Econometrica, 62(2), 467–75.
Imbens, G. W., & Newey, W. K. (2009). Identification and estimation of triangular simultaneous equations models without additivity. Econometrica, 77(5), 1481–1512.
- Istat (2017). La pratica sportiva in italia. https://www.istat.it/it/files/2015/10/Slide‐CONI_Alleva_2017.pdf. In Italian; Accessed: 2019‐07‐10.
Paper not yet in RePEc: Add citation now
Kling, J. R. (2006). Incarceration length, employment, and earnings. The American Economic Review, 96(3), 863–876.
- Kowalski, A. (2018). Biology meets behavior in a clinical trial: Two relationships between mortality and mammogram receipt. (PSC Research Report No. 18‐892). Cambridge, MA: National Bureau of Economic Research.
Paper not yet in RePEc: Add citation now
Kowalski, A. E. (2016). Doing more when you're running late: Applying marginal treatment effect methods to examine treatment effect heterogeneity in experiments. (Working Paper 22363). Cambridge, MA: National Bureau of Economic Research.
Lamiraud, K., & Geoffard, P. (2007). Therapeutic non adherence: A rational behavior revealing patient preferences?Health Economics, 16(11), 1185–1204.
- Lo Scalzo, A., Donatini, A., Orzella, L., Cicchetti, A., Profili, S., & Maresso, A. (2009). Italy: Health system review. Health Systems in Transition, 11(6), 1–216.
Paper not yet in RePEc: Add citation now
Maestas, N., Mullen, K. J., & Strand, A. (2013). Does disability insurance receipt discourage work? Using examiner assignment to estimate causal effects of SSDI receipt. American Economic Review, 103(5), 1797–1829.
- Maron, D. J., Fazio, S., & Linton, M. F. (2000). Current perspectives on statins. Circulation, 101, 207–213.
Paper not yet in RePEc: Add citation now
- Monaldi, B., Bologna, G., Costa, G. G., D'Agostino, C., Ferrante, F., Filice, M., …, & Degli Esposti, L. (2015). Adherence to statin treatment following a myocardial infarction: An Italian population‐based survey. ClinicoEconomics and Outcomes Research: CEOR, 7, 273–80.
Paper not yet in RePEc: Add citation now
- Mourifié, I., & Wan, Y. (2016). Testing local average treatment effect assumptions. Review of Economics and Statistics, 99, 305–313.
Paper not yet in RePEc: Add citation now
- Murtagh, J. (2007). General practice. North Ryde, N.S.W: McGraw‐Hill Education. General Practice.
Paper not yet in RePEc: Add citation now
- New England Healthcare Institute (2009). Thinking outside the pillbox a system‐wide approach to improving patient medication adherence for chronic disease.
Paper not yet in RePEc: Add citation now
- Pollard, D. (2001). A user's guide to measure theoretic probability. Cambridge: Cambridge University Press.
Paper not yet in RePEc: Add citation now
- Progetto Cuore (2018). Assetto lipidico, Italia: Confronto tra 1998‐02 e 2008‐12. eta' 35‐74 anni. http://www.cuore.iss.it/fattori/colesterolemia.asp. In Italian; Accessed: 2018‐02‐08.
Paper not yet in RePEc: Add citation now
- Raebel, M. A., Schmittdiel, J., Karter, A. J., Konieczny, J. L., & Steiner, J. F. (2013). Standardizing terminology and definitions of medication adherence and persistence in research employing electronic databases. Medical Care, 51(1), S11–S21.
Paper not yet in RePEc: Add citation now
Roy, A. D. (1951). Some thoughts on the distribution of earnings. Oxford Economic Papers, 3(2), 135–146.
Schoenberg, U., Cornelissen, T., Dustmann, C., & Raute, A. (2018). Who benefits from universal child care? Estimating marginal returns to early child care attendance. Journal of Political Economy, 126(6), 699979.
- SPARCL, T. (2006). High‐dose atorvastatin after stroke or transient ischemic attack. New England Journal of Medicine, 355(6), 549–559. PMID: 16899775.
Paper not yet in RePEc: Add citation now
Stock, J., & Yogo, M. (2002). Testing for weak instruments in linear IV regression. In Andrews, D. W. K., & Stock, J. (Eds.), Identification and inference for econometric models: Essays in honor of Thomas J. Rothenberg (pp 80‐108). Cambridge, MA: Cambridge University Press.
Vella, F. (1998). Estimating models with sample selection bias: A survey. Journal of Human Resources, 33(1), 127–169.
Vytlacil, E. (2002). Independence, monotonicity, and latent index models: An equivalence result. Econometrica, 70(1), pp. 331–341.