Modular architecture facilitates noise-driven control of synchrony in neuronal networks

  • Hideaki Yamamoto
    Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan.
  • F. Paul Spitzner
    Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.
  • Taiki Takemuro
    Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan.
  • Victor Buendía
    Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
  • Hakuba Murota
    Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan.
  • Carla Morante
    Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, Spain.
  • Tomohiro Konno
    Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
  • Shigeo Sato
    Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan.
  • Ayumi Hirano-Iwata
    Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan.
  • Anna Levina
    Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
  • Viola Priesemann
    Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.
  • Miguel A. Muñoz
    Departamento de Electromagnetismo y Física de la Materia, Universidad de Granada, Granada, Spain.
  • Johannes Zierenberg
    Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.
  • Jordi Soriano
    Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, Spain.

説明せつめい

<jats:p>High-level information processing in the mammalian cortex requires both segregated processing in specialized circuits and integration across multiple circuits. One possible way to implement these seemingly opposing demands is by flexibly switching between states with different levels of synchrony. However, the mechanisms behind the control of complex synchronization patterns in neuronal networks remain elusive. Here, we use precision neuroengineering to manipulate and stimulate networks of cortical neurons in vitro, in combination with an in silico model of spiking neurons and a mesoscopic model of stochastically coupled modules to show that (i) a modular architecture enhances the sensitivity of the network to noise delivered as external asynchronous stimulation and that (ii) the persistent depletion of synaptic resources in stimulated neurons is the underlying mechanism for this effect. Together, our results demonstrate that the inherent dynamical state in structured networks of excitable units is determined by both its modular architecture and the properties of the external inputs.</jats:p>

収録しゅうろく刊行かんこうぶつ

  • Science Advances

    Science Advances 9 (34), 2023-08-25

    American Association for the Advancement of Science (AAAS)

引用いんよう文献ぶんけん (1)*注記ちゅうき

もっと

詳細しょうさい情報じょうほう 詳細しょうさい情報じょうほうについて

問題もんだい指摘してき

ページトップへ