default search action
Matthias Hein 0001
Person information
- affiliation: Max Planck Institute for Intelligent Systems, Tübingen, Germany
- affiliation: Faculty of Mathematics and Computer Science, Saarland University
- affiliation: Max Planck Institute for Biological Cybernetics, Tübingen, Germany
Other persons with the same name
- Matthias Hein 0002 (aka: Matthias A. Hein) — Technische Universität Ilmenau, Faculty of Computer Science and Automation, Germany
- Matthias Hein 0003 — University of Wuppertal, Department of Physics, Germany
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [c101]Maximilian Augustin, Yannic Neuhaus, Matthias Hein:
DiG-IN: Diffusion Guidance for Investigating Networks - Uncovering Classifier Differences, Neuron Visualisations, and Visual Counterfactual Explanations. CVPR 2024: 11093-11103 - [c100]Francesco Croce, Naman D. Singh, Matthias Hein:
Towards Reliable Evaluation and Fast Training of Robust Semantic Segmentation Models. ECCV (79) 2024: 180-197 - [c99]Amit Peleg, Matthias Hein:
Bias of Stochastic Gradient Descent or the Architecture: Disentangling the Effects of Overparameterization of Neural Networks. ICML 2024 - [c98]Christian Schlarmann, Naman Deep Singh, Francesco Croce, Matthias Hein:
Robust CLIP: Unsupervised Adversarial Fine-Tuning of Vision Embeddings for Robust Large Vision-Language Models. ICML 2024 - [c97]Jan Nikolas Morshuis, Matthias Hein, Christian F. Baumgartner:
Segmentation-Guided MRI Reconstruction for Meaningfully Diverse Reconstructions. DGM4MICCAI@MICCAI 2024: 180-190 - [c96]Francesco Croce, Matthias Hein:
Segment (Almost) Nothing: Prompt-Agnostic Adversarial Attacks on Segmentation Models. SaTML 2024: 425-442 - [i98]Christian Schlarmann, Naman Deep Singh, Francesco Croce, Matthias Hein:
Robust CLIP: Unsupervised Adversarial Fine-Tuning of Vision Embeddings for Robust Large Vision-Language Models. CoRR abs/2402.12336 (2024) - [i97]Valentyn Boreiko, Matthias Hein, Jan Hendrik Metzen:
Identification of Fine-grained Systematic Errors via Controlled Scene Generation. CoRR abs/2404.07045 (2024) - [i96]Niclas Popp, Jan Hendrik Metzen, Matthias Hein:
Zero-Shot Distillation for Image Encoders: How to Make Effective Use of Synthetic Data. CoRR abs/2404.16637 (2024) - [i95]Maximilian Müller, Matthias Hein:
How to train your ViT for OOD Detection. CoRR abs/2405.17447 (2024) - [i94]Amit Peleg, Matthias Hein:
Bias of Stochastic Gradient Descent or the Architecture: Disentangling the Effects of Overparameterization of Neural Networks. CoRR abs/2407.03848 (2024) - [i93]Jan Nikolas Morshuis, Matthias Hein, Christian F. Baumgartner:
Segmentation-guided MRI reconstruction for meaningfully diverse reconstructions. CoRR abs/2407.18026 (2024) - [i92]Maximilian Müller, Matthias Hein:
LoGex: Improved tail detection of extremely rare histopathology classes via guided diffusion. CoRR abs/2409.01317 (2024) - 2023
- [j21]David Stutz, Nandhini Chandramoorthy, Matthias Hein, Bernt Schiele:
Random and Adversarial Bit Error Robustness: Energy-Efficient and Secure DNN Accelerators. IEEE Trans. Pattern Anal. Mach. Intell. 45(3): 3632-3647 (2023) - [j20]Antoine Gautier, Francesco Tudisco, Matthias Hein:
Nonlinear Perron-Frobenius Theorems for Nonnegative Tensors. SIAM Rev. 65(2): 495-536 (2023) - [c95]Yannic Neuhaus, Maximilian Augustin, Valentyn Boreiko, Matthias Hein:
Spurious Features Everywhere - Large-Scale Detection of Harmful Spurious Features in ImageNet. ICCV 2023: 20178-20189 - [c94]Christian Schlarmann, Matthias Hein:
On the Adversarial Robustness of Multi-Modal Foundation Models. ICCV (Workshops) 2023: 3679-3687 - [c93]Valentyn Boreiko, Matthias Hein, Jan Hendrik Metzen:
Identifying Systematic Errors in Object Detectors with the SCROD Pipeline. ICCV (Workshops) 2023: 4092-4101 - [c92]Václav Vorácek, Matthias Hein:
Sound Randomized Smoothing in Floating-Point Arithmetic. ICLR 2023 - [c91]Maksym Yatsura, Kaspar Sakmann, N. Grace Hua, Matthias Hein, Jan Hendrik Metzen:
Certified Defences Against Adversarial Patch Attacks on Semantic Segmentation. ICLR 2023 - [c90]Maksym Andriushchenko, Francesco Croce, Maximilian Müller, Matthias Hein, Nicolas Flammarion:
A Modern Look at the Relationship between Sharpness and Generalization. ICML 2023: 840-902 - [c89]Julian Bitterwolf, Maximilian Müller, Matthias Hein:
In or Out? Fixing ImageNet Out-of-Distribution Detection Evaluation. ICML 2023: 2471-2506 - [c88]Václav Vorácek, Matthias Hein:
Improving l1-Certified Robustness via Randomized Smoothing by Leveraging Box Constraints. ICML 2023: 35198-35222 - [c87]Maximilian Müller, Tiffany Vlaar, David Rolnick, Matthias Hein:
Normalization Layers Are All That Sharpness-Aware Minimization Needs. NeurIPS 2023 - [c86]Naman Deep Singh, Francesco Croce, Matthias Hein:
Revisiting Adversarial Training for ImageNet: Architectures, Training and Generalization across Threat Models. NeurIPS 2023 - [i91]Maksym Andriushchenko, Francesco Croce, Maximilian Müller, Matthias Hein, Nicolas Flammarion:
A modern look at the relationship between sharpness and generalization. CoRR abs/2302.07011 (2023) - [i90]Naman D. Singh, Francesco Croce, Matthias Hein:
Revisiting Adversarial Training for ImageNet: Architectures, Training and Generalization across Threat Models. CoRR abs/2303.01870 (2023) - [i89]Julian Bitterwolf, Maximilian Müller, Matthias Hein:
In or Out? Fixing ImageNet Out-of-Distribution Detection Evaluation. CoRR abs/2306.00826 (2023) - [i88]Maximilian Müller, Tiffany Vlaar, David Rolnick, Matthias Hein:
Normalization Layers Are All That Sharpness-Aware Minimization Needs. CoRR abs/2306.04226 (2023) - [i87]Francesco Croce, Naman D. Singh, Matthias Hein:
Robust Semantic Segmentation: Strong Adversarial Attacks and Fast Training of Robust Models. CoRR abs/2306.12941 (2023) - [i86]Christian Schlarmann, Matthias Hein:
On the Adversarial Robustness of Multi-Modal Foundation Models. CoRR abs/2308.10741 (2023) - [i85]Valentyn Boreiko, Matthias Hein, Jan Hendrik Metzen:
Identifying Systematic Errors in Object Detectors with the SCROD Pipeline. CoRR abs/2309.13489 (2023) - [i84]Indu Ilanchezian, Valentyn Boreiko, Laura Kühlewein, Ziwei Huang, Murat Seçkin Ayhan, Matthias Hein, Lisa M. Koch, Philipp Berens:
Generating Realistic Counterfactuals for Retinal Fundus and OCT Images using Diffusion Models. CoRR abs/2311.11629 (2023) - [i83]Francesco Croce, Matthias Hein:
Segment (Almost) Nothing: Prompt-Agnostic Adversarial Attacks on Segmentation Models. CoRR abs/2311.14450 (2023) - [i82]Maximilian Augustin, Yannic Neuhaus, Matthias Hein:
Analyzing and Explaining Image Classifiers via Diffusion Guidance. CoRR abs/2311.17833 (2023) - 2022
- [c85]Francesco Croce, Maksym Andriushchenko, Naman D. Singh, Nicolas Flammarion, Matthias Hein:
Sparse-RS: A Versatile Framework for Query-Efficient Sparse Black-Box Adversarial Attacks. AAAI 2022: 6437-6445 - [c84]Agustinus Kristiadi, Matthias Hein, Philipp Hennig:
Being a Bit Frequentist Improves Bayesian Neural Networks. AISTATS 2022: 529-545 - [c83]Valentyn Boreiko, Maximilian Augustin, Francesco Croce, Philipp Berens, Matthias Hein:
Sparse Visual Counterfactual Explanations in Image Space. GCPR 2022: 133-148 - [c82]Julian Bitterwolf, Alexander Meinke, Maximilian Augustin, Matthias Hein:
Breaking Down Out-of-Distribution Detection: Many Methods Based on OOD Training Data Estimate a Combination of the Same Core Quantities. ICML 2022: 2041-2074 - [c81]Francesco Croce, Sven Gowal, Thomas Brunner, Evan Shelhamer, Matthias Hein, A. Taylan Cemgil:
Evaluating the Adversarial Robustness of Adaptive Test-time Defenses. ICML 2022: 4421-4435 - [c80]Francesco Croce, Matthias Hein:
Adversarial Robustness against Multiple and Single lp-Threat Models via Quick Fine-Tuning of Robust Classifiers. ICML 2022: 4436-4454 - [c79]Václav Vorácek, Matthias Hein:
Provably Adversarially Robust Nearest Prototype Classifiers. ICML 2022: 22361-22383 - [c78]Jan Nikolas Morshuis, Sergios Gatidis, Matthias Hein, Christian F. Baumgartner:
Adversarial Robustness of MR Image Reconstruction Under Realistic Perturbations. MLMIR@MICCAI 2022: 24-33 - [c77]Valentyn Boreiko, Indu Ilanchezian, Murat Seçkin Ayhan, Sarah Müller, Lisa M. Koch, Hanna Faber, Philipp Berens, Matthias Hein:
Visual Explanations for the Detection of Diabetic Retinopathy from Retinal Fundus Images. MICCAI (2) 2022: 539-549 - [c76]Maximilian Augustin, Valentyn Boreiko, Francesco Croce, Matthias Hein:
Diffusion Visual Counterfactual Explanations. NeurIPS 2022 - [c75]Alexander Meinke, Julian Bitterwolf, Matthias Hein:
Provably Adversarially Robust Detection of Out-of-Distribution Data (Almost) for Free. NeurIPS 2022 - [c74]Daniel Heller, Patrick Ferber, Julian Bitterwolf, Matthias Hein, Jörg Hoffmann:
Neural Network Heuristic Functions: Taking Confidence into Account. SOCS 2022: 223-228 - [i81]Francesco Croce, Sven Gowal, Thomas Brunner, Evan Shelhamer, Matthias Hein, A. Taylan Cemgil:
Evaluating the Adversarial Robustness of Adaptive Test-time Defenses. CoRR abs/2202.13711 (2022) - [i80]Valentyn Boreiko, Maximilian Augustin, Francesco Croce, Philipp Berens, Matthias Hein:
Sparse Visual Counterfactual Explanations in Image Space. CoRR abs/2205.07972 (2022) - [i79]Julian Bitterwolf, Alexander Meinke, Maximilian Augustin, Matthias Hein:
Breaking Down Out-of-Distribution Detection: Many Methods Based on OOD Training Data Estimate a Combination of the Same Core Quantities. CoRR abs/2206.09880 (2022) - [i78]Václav Vorácek, Matthias Hein:
Provably Adversarially Robust Nearest Prototype Classifiers. CoRR abs/2207.07208 (2022) - [i77]Václav Vorácek, Matthias Hein:
Sound Randomized Smoothing in Floating-Point Arithmetics. CoRR abs/2207.07209 (2022) - [i76]Jan Nikolas Morshuis, Sergios Gatidis, Matthias Hein, Christian F. Baumgartner:
Adversarial Robustness of MR Image Reconstruction under Realistic Perturbations. CoRR abs/2208.03161 (2022) - [i75]Maksym Yatsura, Kaspar Sakmann, N. Grace Hua, Matthias Hein, Jan Hendrik Metzen:
Certified Defences Against Adversarial Patch Attacks on Semantic Segmentation. CoRR abs/2209.05980 (2022) - [i74]Francesco Croce, Matthias Hein:
On the interplay of adversarial robustness and architecture components: patches, convolution and attention. CoRR abs/2209.06953 (2022) - [i73]Maximilian Augustin, Valentyn Boreiko, Francesco Croce, Matthias Hein:
Diffusion Visual Counterfactual Explanations. CoRR abs/2210.11841 (2022) - [i72]Yannic Neuhaus, Maximilian Augustin, Valentyn Boreiko, Matthias Hein:
Spurious Features Everywhere - Large-Scale Detection of Harmful Spurious Features in ImageNet. CoRR abs/2212.04871 (2022) - 2021
- [j19]Antoine Gautier, Matthias Hein, Francesco Tudisco:
The Global Convergence of the Nonlinear Power Method for Mixed-Subordinate Matrix Norms. J. Sci. Comput. 88(1): 21 (2021) - [c73]David Stutz, Matthias Hein, Bernt Schiele:
Relating Adversarially Robust Generalization to Flat Minima. ICCV 2021: 7787-7797 - [c72]Francesco Croce, Matthias Hein:
Mind the Box: l1-APGD for Sparse Adversarial Attacks on Image Classifiers. ICML 2021: 2201-2211 - [c71]David Stutz, Nandhini Chandramoorthy, Matthias Hein, Bernt Schiele:
Bit Error Robustness for Energy-Efficient DNN Accelerators. MLSys 2021 - [c70]Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flammarion, Mung Chiang, Prateek Mittal, Matthias Hein:
RobustBench: a standardized adversarial robustness benchmark. NeurIPS Datasets and Benchmarks 2021 - [c69]Agustinus Kristiadi, Matthias Hein, Philipp Hennig:
An Infinite-Feature Extension for Bayesian ReLU Nets That Fixes Their Asymptotic Overconfidence. NeurIPS 2021: 18789-18800 - [c68]Maksym Yatsura, Jan Hendrik Metzen, Matthias Hein:
Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks. NeurIPS 2021: 30181-30195 - [c67]Agustinus Kristiadi, Matthias Hein, Philipp Hennig:
Learnable uncertainty under Laplace approximations. UAI 2021: 344-353 - [i71]Francesco Croce, Matthias Hein:
Mind the box: l1-APGD for sparse adversarial attacks on image classifiers. CoRR abs/2103.01208 (2021) - [i70]David Stutz, Matthias Hein, Bernt Schiele:
Relating Adversarially Robust Generalization to Flat Minima. CoRR abs/2104.04448 (2021) - [i69]David Stutz, Nandhini Chandramoorthy, Matthias Hein, Bernt Schiele:
Random and Adversarial Bit Error Robustness: Energy-Efficient and Secure DNN Accelerators. CoRR abs/2104.08323 (2021) - [i68]Francesco Croce, Matthias Hein:
Adversarial robustness against multiple lp-threat models at the price of one and how to quickly fine-tune robust models to another threat model. CoRR abs/2105.12508 (2021) - [i67]Alexander Meinke, Julian Bitterwolf, Matthias Hein:
Provably Robust Detection of Out-of-distribution Data (almost) for free. CoRR abs/2106.04260 (2021) - [i66]Agustinus Kristiadi, Matthias Hein, Philipp Hennig:
Being a Bit Frequentist Improves Bayesian Neural Networks. CoRR abs/2106.10065 (2021) - [i65]Maksym Yatsura, Jan Hendrik Metzen, Matthias Hein:
Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks. CoRR abs/2111.01714 (2021) - 2020
- [j18]Nicolás García Trillos, Moritz Gerlach, Matthias Hein, Dejan Slepcev:
Error Estimates for Spectral Convergence of the Graph Laplacian on Random Geometric Graphs Toward the Laplace-Beltrami Operator. Found. Comput. Math. 20(4): 827-887 (2020) - [j17]Francesco Croce, Jonas Rauber, Matthias Hein:
Scaling up the Randomized Gradient-Free Adversarial Attack Reveals Overestimation of Robustness Using Established Attacks. Int. J. Comput. Vis. 128(4): 1028-1046 (2020) - [c66]Maximilian Augustin, Alexander Meinke, Matthias Hein:
Adversarial Robustness on In- and Out-Distribution Improves Explainability. ECCV (26) 2020: 228-245 - [c65]Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, Matthias Hein:
Square Attack: A Query-Efficient Black-Box Adversarial Attack via Random Search. ECCV (23) 2020: 484-501 - [c64]Francesco Croce, Matthias Hein:
Provable robustness against all adversarial $l_p$-perturbations for $p\geq 1$. ICLR 2020 - [c63]Alexander Meinke, Matthias Hein:
Towards neural networks that provably know when they don't know. ICLR 2020 - [c62]Francesco Croce, Matthias Hein:
Minimally distorted Adversarial Examples with a Fast Adaptive Boundary Attack. ICML 2020: 2196-2205 - [c61]Francesco Croce, Matthias Hein:
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. ICML 2020: 2206-2216 - [c60]Agustinus Kristiadi, Matthias Hein, Philipp Hennig:
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks. ICML 2020: 5436-5446 - [c59]David Stutz, Matthias Hein, Bernt Schiele:
Confidence-Calibrated Adversarial Training: Generalizing to Unseen Attacks. ICML 2020: 9155-9166 - [c58]Julian Bitterwolf, Alexander Meinke, Matthias Hein:
Certifiably Adversarially Robust Detection of Out-of-Distribution Data. NeurIPS 2020 - [i64]Antoine Gautier, Matthias Hein, Francesco Tudisco:
Computing the norm of nonnegative matrices and the log-Sobolev constant of Markov chains. CoRR abs/2002.02447 (2020) - [i63]Agustinus Kristiadi, Matthias Hein, Philipp Hennig:
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks. CoRR abs/2002.10118 (2020) - [i62]Francesco Croce, Matthias Hein:
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. CoRR abs/2003.01690 (2020) - [i61]Maximilian Augustin, Alexander Meinke, Matthias Hein:
Adversarial Robustness on In- and Out-Distribution Improves Explainability. CoRR abs/2003.09461 (2020) - [i60]Francesco Croce, Maksym Andriushchenko, Naman D. Singh, Nicolas Flammarion, Matthias Hein:
Sparse-RS: a versatile framework for query-efficient sparse black-box adversarial attacks. CoRR abs/2006.12834 (2020) - [i59]David Stutz, Nandhini Chandramoorthy, Matthias Hein, Bernt Schiele:
On Mitigating Random and Adversarial Bit Errors. CoRR abs/2006.13977 (2020) - [i58]Julian Bitterwolf, Alexander Meinke, Matthias Hein:
Provable Worst Case Guarantees for the Detection of Out-of-Distribution Data. CoRR abs/2007.08473 (2020) - [i57]Agustinus Kristiadi, Matthias Hein, Philipp Hennig:
Fixing Asymptotic Uncertainty of Bayesian Neural Networks with Infinite ReLU Features. CoRR abs/2010.02709 (2020) - [i56]Agustinus Kristiadi, Matthias Hein, Philipp Hennig:
Learnable Uncertainty under Laplace Approximations. CoRR abs/2010.02720 (2020) - [i55]Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Nicolas Flammarion, Mung Chiang, Prateek Mittal, Matthias Hein:
RobustBench: a standardized adversarial robustness benchmark. CoRR abs/2010.09670 (2020) - [i54]Maximilian Augustin, Matthias Hein:
Out-distribution aware Self-training in an Open World Setting. CoRR abs/2012.12372 (2020)
2010 – 2019
- 2019
- [j16]Antoine Gautier, Francesco Tudisco, Matthias Hein:
The Perron-Frobenius Theorem for Multihomogeneous Mappings. SIAM J. Matrix Anal. Appl. 40(3): 1179-1205 (2019) - [j15]Antoine Gautier, Francesco Tudisco, Matthias Hein:
A Unifying Perron-Frobenius Theorem for Nonnegative Tensors via Multihomogeneous Maps. SIAM J. Matrix Anal. Appl. 40(3): 1206-1231 (2019) - [c57]Francesco Croce, Maksym Andriushchenko, Matthias Hein:
Provable Robustness of ReLU networks via Maximization of Linear Regions. AISTATS 2019: 2057-2066 - [c56]Matthias Hein, Maksym Andriushchenko, Julian Bitterwolf:
Why ReLU Networks Yield High-Confidence Predictions Far Away From the Training Data and How to Mitigate the Problem. CVPR 2019: 41-50 - [c55]Matthias Hein, Maksym Andriushchenko, Julian Bitterwolf:
Why ReLU networks yield high-confidence predictions far away from the training data and how to mitigate the problem. CVPR Workshops 2019: 58-74 - [c54]David Stutz, Matthias Hein, Bernt Schiele:
Disentangling Adversarial Robustness and Generalization. CVPR 2019: 6976-6987 - [c53]Francesco Croce, Matthias Hein:
Sparse and Imperceivable Adversarial Attacks. ICCV 2019: 4723-4731 - [c52]Quynh Nguyen, Mahesh Chandra Mukkamala, Matthias Hein:
On the loss landscape of a class of deep neural networks with no bad local valleys. ICLR (Poster) 2019 - [c51]Pedro Mercado, Francesco Tudisco, Matthias Hein:
Spectral Clustering of Signed Graphs via Matrix Power Means. ICML 2019: 4526-4536 - [c50]Maksym Andriushchenko, Matthias Hein:
Provably robust boosted decision stumps and trees against adversarial attacks. NeurIPS 2019: 12997-13008 - [c49]Pedro Mercado, Francesco Tudisco, Matthias Hein:
Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs. NeurIPS 2019: 14848-14857 - [i53]Francesco Croce, Jonas Rauber, Matthias Hein:
Scaling up the randomized gradient-free adversarial attack reveals overestimation of robustness using established attacks. CoRR abs/1903.11359 (2019) - [i52]Pedro Mercado, Francesco Tudisco, Matthias Hein:
Spectral Clustering of Signed Graphs via Matrix Power Means. CoRR abs/1905.06230 (2019) - [i51]Francesco Croce, Matthias Hein:
Provable robustness against all adversarial lp-perturbations for p≥1. CoRR abs/1905.11213 (2019) - [i50]Maksym Andriushchenko, Matthias Hein:
Provably Robust Boosted Decision Stumps and Trees against Adversarial Attacks. CoRR abs/1906.03526 (2019) - [i49]Francesco Croce, Matthias Hein:
Minimally distorted Adversarial Examples with a Fast Adaptive Boundary Attack. CoRR abs/1907.02044 (2019) - [i48]Francesco Croce, Matthias Hein:
Sparse and Imperceivable Adversarial Attacks. CoRR abs/1909.05040 (2019) - [i47]Alexander Meinke, Matthias Hein:
Towards neural networks that provably know when they don't know. CoRR abs/1909.12180 (2019) - [i46]David Stutz, Matthias Hein, Bernt Schiele:
Confidence-Calibrated Adversarial Training: Towards Robust Models Generalizing Beyond the Attack Used During Training. CoRR abs/1910.06259 (2019) - [i45]Pedro Mercado, Francesco Tudisco, Matthias Hein:
Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs. CoRR abs/1910.13951 (2019) - [i44]Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, Matthias Hein:
Square Attack: a query-efficient black-box adversarial attack via random search. CoRR abs/1912.00049 (2019) - 2018
- [j14]Maksim Lapin, Matthias Hein, Bernt Schiele:
Analysis and Optimization of Loss Functions for Multiclass, Top-k, and Multilabel Classification. IEEE Trans. Pattern Anal. Mach. Intell. 40(7): 1533-1554 (2018) - [j13]Francesco Tudisco, Pedro Mercado, Matthias Hein:
Community Detection in Networks via Nonlinear Modularity Eigenvectors. SIAM J. Appl. Math. 78(5): 2393-2419 (2018) - [c48]Pedro Mercado, Antoine Gautier, Francesco Tudisco, Matthias Hein:
The Power Mean Laplacian for Multilayer Graph Clustering. AISTATS 2018: 1828-1838 - [c47]Francesco Croce, Matthias Hein:
A Randomized Gradient-Free Attack on ReLU Networks. GCPR 2018: 215-227 - [c46]Quynh Nguyen, Matthias Hein:
The loss surface and expressivity of deep convolutional neural networks. ICLR (Workshop) 2018 - [c45]