default search action
Xinhua Zhang
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [c84]Eric Ababio Anyimadu, Clifton David Fuller, Xinhua Zhang, G. Elisabeta Marai, Guadalupe Canahuate:
Collaborative Filtering for the Imputation of Patient Reported Outcomes. DEXA (1) 2024: 231-248 - [c83]Xinhua Zhang, Chenwang Shen, Jiaxi Xu, Fenghao Yuan, Chaofan Li, Xu Liu:
Chinese Native Dog Breed Classification Method based on Improved ResNet. ICICT 2024: 244-249 - [i21]Shangzhe Li, Xinhua Zhang:
Distilling Conditional Diffusion Models for Offline Reinforcement Learning through Trajectory Stitching. CoRR abs/2402.00807 (2024) - [i20]Kaiqi Jiang, Wenzhe Fan, Mao Li, Xinhua Zhang:
Fairness Risks for Group-conditionally Missing Demographics. CoRR abs/2402.13393 (2024) - [i19]Andrew Wentzel, Serageldin Attia, Xinhua Zhang, Guadalupe Canahuate, Clifton David Fuller, G. Elisabeta Marai:
DITTO: A Visual Digital Twin for Interventions and Temporal Treatment Outcomes in Head and Neck Cancer. CoRR abs/2407.13107 (2024) - 2023
- [c82]Yaohua Wang, Lisanne van Dijk, Abdallah Sherif Radwan Mohamed, Mohamed A. Naser, Clifton David Fuller, Xinhua Zhang, G. Elisabeta Marai, Guadalupe Canahuate:
Improving Prediction of Late Symptoms using LSTM and Patient-reported Outcomes for Head and Neck Cancer Patients. ICHI 2023: 292-300 - [c81]Siteng Kang, Zhan Shi, Xinhua Zhang:
Poisoning Generative Replay in Continual Learning to Promote Forgetting. ICML 2023: 15769-15785 - [c80]Zishun Yu, Xinhua Zhang:
Actor-Critic Alignment for Offline-to-Online Reinforcement Learning. ICML 2023: 40452-40474 - 2022
- [j22]Roxana Bujack, Xinhua Zhang, Tomás Suk, David H. Rogers:
Systematic generation of moment invariant bases for 2D and 3D tensor fields. Pattern Recognit. 123: 108313 (2022) - [j21]Xinhua Zhang, Lin You, Gengran Hu:
An Efficient and Robust Multidimensional Data Aggregation Scheme for Smart Grid Based on Blockchain. IEEE Trans. Netw. Serv. Manag. 19(4): 3949-3959 (2022) - [c79]Yingyi Ma, Xinhua Zhang:
Warping Layer: Representation Learning for Label Structures in Weakly Supervised Learning. AISTATS 2022: 7286-7299 - [c78]Yeshu Li, Zhan Shi, Xinhua Zhang, Brian D. Ziebart:
Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks. AISTATS 2022: 8997-9016 - [c77]Hongwei Jin, Zishun Yu, Xinhua Zhang:
Certifying Robust Graph Classification under Orthogonal Gromov-Wasserstein Threats. NeurIPS 2022 - [c76]Yeshu Li, Danyal Saeed, Xinhua Zhang, Brian D. Ziebart, Kevin Gimpel:
Moment Distributionally Robust Tree Structured Prediction. NeurIPS 2022 - [c75]Hongwei Jin, Zishun Yu, Xinhua Zhang:
Orthogonal Gromov-Wasserstein discrepancy with efficient lower bound. UAI 2022: 917-927 - [i18]Xinhua Zhang, Lance R. Williams:
Similarity Equivariant Linear Transformation of Joint Orientation-Scale Space Representations. CoRR abs/2203.06786 (2022) - [i17]Xinhua Zhang, Lance R. Williams:
Euclidean Invariant Recognition of 2D Shapes Using Histograms of Magnitudes of Local Fourier-Mellin Descriptors. CoRR abs/2203.06787 (2022) - [i16]Hongwei Jin, Zishun Yu, Xinhua Zhang:
Orthogonal Gromov-Wasserstein Discrepancy with Efficient Lower Bound. CoRR abs/2205.05838 (2022) - [i15]Bradley T. Wolfe, Michael J. Falato, Xinhua Zhang, Nga T. T. Nguyen-Fotiadis, J. P. Sauppe, P. M. Kozlowski, P. A. Keiter, R. E. Reinovsky, S. A. Batha, Zhehui Wang:
Machine Learning for Detection of 3D Features using sparse X-ray data. CoRR abs/2206.02564 (2022) - 2021
- [j20]Junzheng Liu, Xinhua Zhang, Zengpei Xu, Jia Wang, Bing Ma, Ruiying Xue, Qian Li:
Evaluation of the impact of urban river bends on the enhancement of aquatic habitats using a two-dimensional habitat suitability model. Ecol. Informatics 65: 101428 (2021) - [j19]Xiaoshuai Duan, Xinhua Zhang, Yongbin Tang, Minghui Hao:
Cogging Torque Reduction in PMSM in Wide Temperature Range by Response Surface Methodology. Symmetry 13(10): 1877 (2021) - [j18]Minnan Piao, Ying Wang, Mingwei Sun, Xinhua Zhang, Zengqiang Chen, Yongyi Yan:
Fixed-Time-Convergent Generalized Extended State Observer Based Motor Control Subject to Multiple Disturbances. IEEE Trans. Ind. Informatics 17(12): 8066-8079 (2021) - [c74]Mikayla Biggs, Carla Floricel, Lisanne van Dijk, Abdallah Sherif Radwan Mohamed, Clifton David Fuller, G. Elisabeta Marai, Xinhua Zhang, Guadalupe Canahuate:
Identifying Symptom Clusters Through Association Rule Mining. AIME 2021: 491-496 - [c73]Zac Cranko, Zhan Shi, Xinhua Zhang, Richard Nock, Simon Kornblith:
Generalised Lipschitz Regularisation Equals Distributional Robustness. ICML 2021: 2178-2188 - [c72]Yaohua Wang, Guadalupe Canahuate, Lisanne van Dijk, Abdallah Sherif Radwan Mohamed, Clifton David Fuller, Xinhua Zhang, Georgeta Elisabeta Marai:
Predicting late symptoms of head and neck cancer treatment using LSTM and patient reported outcomes. IDEAS 2021: 273-279 - [c71]Mohammad Ali Bashiri, Brian D. Ziebart, Xinhua Zhang:
Distributionally Robust Imitation Learning. NeurIPS 2021: 24404-24417 - [c70]Mao Li, Kaiqi Jiang, Xinhua Zhang:
Implicit Task-Driven Probability Discrepancy Measure for Unsupervised Domain Adaptation. NeurIPS 2021: 25824-25838 - 2020
- [j17]Hengjin Ke, Dan Chen, Tejal Shah, Xianzeng Liu, Xinhua Zhang, Lei Zhang, Xiaoli Li:
Cloud-aided online EEG classification system for brain healthcare: A case study of depression evaluation with a lightweight CNN. Softw. Pract. Exp. 50(5): 596-610 (2020) - [j16]Hengjin Ke, Dan Chen, Benyun Shi, Jindong Zhang, Xianzeng Liu, Xinhua Zhang, Xiaoli Li:
Improving Brain E-Health Services via High-Performance EEG Classification With Grouping Bayesian Optimization. IEEE Trans. Serv. Comput. 13(4): 696-708 (2020) - [c69]Yingyi Ma, Vignesh Ganapathiraman, Yaoliang Yu, Xinhua Zhang:
Convex Representation Learning for Generalized Invariance in Semi-Inner-Product Space. ICML 2020: 6532-6542 - [c68]Hongwei Jin, Zhan Shi, Venkata Jaya Shankar Ashish Peruri, Xinhua Zhang:
Certified Robustness of Graph Convolution Networks for Graph Classification under Topological Attacks. NeurIPS 2020 - [c67]Mao Li, Yingyi Ma, Xinhua Zhang:
Proximal Mapping for Deep Regularization. NeurIPS 2020 - [c66]Hongwei Jin, Xinhua Zhang:
Robust Training of Graph Convolutional Networks via Latent Perturbation. ECML/PKDD (3) 2020: 394-411 - [i14]Zac Cranko, Zhan Shi, Xinhua Zhang, Richard Nock, Simon Kornblith:
Generalised Lipschitz Regularisation Equals Distributional Robustness. CoRR abs/2002.04197 (2020) - [i13]Yingyi Ma, Vignesh Ganapathiraman, Yaoliang Yu, Xinhua Zhang:
Convex Representation Learning for Generalized Invariance in Semi-Inner-Product Space. CoRR abs/2004.12209 (2020) - [i12]Mao Li, Yingyi Ma, Xinhua Zhang:
Proximal Mapping for Deep Regularization. CoRR abs/2006.07822 (2020)
2010 – 2019
- 2019
- [j15]Peng Li, Xinhua Zhang, Wenlong Zhang:
Direction of Arrival Estimation Using Two Hydrophones: Frequency Diversity Technique for Passive Sonar. Sensors 19(9): 2001 (2019) - [c65]Yingyi Ma, Vignesh Ganapathiraman, Xinhua Zhang:
Learning Invariant Representations with Kernel Warping. AISTATS 2019: 1003-1012 - [c64]Hengjin Ke, Dan Chen, Lei Zhang, Xinhua Zhang, Xianzeng Liu, Xiaoli Li:
Inter-region Synchronization Analysis Based on Heterogeneous Matrix Similarity Measurement. ICANN (Workshop) 2019: 258-272 - [c63]Parameswaran Raman, Sriram Srinivasan, Shin Matsushima, Xinhua Zhang, Hyokun Yun, S. V. N. Vishwanathan:
Scaling Multinomial Logistic Regression via Hybrid Parallelism. KDD 2019: 1460-1470 - [c62]Xinhua Zhang, Lance R. Williams:
Euclidean Invariant Recognition of 2D Shapes Using Histograms of Magnitudes of Local Fourier-Mellin Descriptors. WACV 2019: 303-311 - 2018
- [j14]Peng Li, Xinhua Zhang, Lanrui Li, Wenlong Zhang:
An Improved Inverse Beamforming Method: Azimuth Resolution Analysis for Weak Target Detection. Sensors 18(12): 4160 (2018) - [c61]Jun Zhu, Xinhua Zhang:
Foreground Object Detection Combining Gaussian Mixture Model and Inter-Frame Difference in the Application of Classroom recording Apparatus. ICCAE 2018: 111-115 - [c60]Rizal Fathony, Sima Behpour, Xinhua Zhang, Brian D. Ziebart:
Efficient and Consistent Adversarial Bipartite Matching. ICML 2018: 1456-1465 - [c59]Vignesh Ganapathiraman, Zhan Shi, Xinhua Zhang, Yaoliang Yu:
Inductive Two-layer Modeling with Parametric Bregman Transfer. ICML 2018: 1622-1631 - [c58]Xinhua Zhang, Yijing Watkins, Garrett T. Kenyon:
Can Deep Learning Learn the Principle of Closed Contour Detection? ISVC 2018: 455-460 - [c57]Rizal Fathony, Ashkan Rezaei, Mohammad Ali Bashiri, Xinhua Zhang, Brian D. Ziebart:
Distributionally Robust Graphical Models. NeurIPS 2018: 8354-8365 - [i11]Parameswaran Kamalaruban, Robert C. Williamson, Xinhua Zhang:
Exp-Concavity of Proper Composite Losses. CoRR abs/1805.07737 (2018) - [i10]Rizal Fathony, Ashkan Rezaei, Mohammad Ali Bashiri, Xinhua Zhang, Brian D. Ziebart:
Distributionally Robust Graphical Models. CoRR abs/1811.02728 (2018) - [i9]Rizal Fathony, Kaiser Asif, Anqi Liu, Mohammad Ali Bashiri, Wei Xing, Sima Behpour, Xinhua Zhang, Brian D. Ziebart:
Consistent Robust Adversarial Prediction for General Multiclass Classification. CoRR abs/1812.07526 (2018) - 2017
- [j13]Yaoliang Yu, Xinhua Zhang, Dale Schuurmans:
Generalized Conditional Gradient for Sparse Estimation. J. Mach. Learn. Res. 18: 144:1-144:46 (2017) - [c56]Xinhua Zhang, Changri Luo, Tingting He, Xiaoli Yang, Zizhou Lu, Baohua Huang:
Online learner emotional analysis based on big dataset of online learning forum. CISP-BMEI 2017: 1-5 - [c55]Mohammad Ali Bashiri, Xinhua Zhang:
Decomposition-Invariant Conditional Gradient for General Polytopes with Line Search. NIPS 2017: 2690-2700 - [c54]Zhan Shi, Xinhua Zhang, Yaoliang Yu:
Bregman Divergence for Stochastic Variance Reduction: Saddle-Point and Adversarial Prediction. NIPS 2017: 6031-6041 - [c53]Shin Matsushima, Hyokun Yun, Xinhua Zhang, S. V. N. Vishwanathan:
Distributed Stochastic Optimization of Regularized Risk via Saddle-Point Problem. ECML/PKDD (1) 2017: 460-476 - [r14]Xinhua Zhang:
Covariance Matrix. Encyclopedia of Machine Learning and Data Mining 2017: 290-293 - [r13]Xinhua Zhang:
Empirical Risk Minimization. Encyclopedia of Machine Learning and Data Mining 2017: 392-393 - [r12]Xinhua Zhang:
Gaussian Distribution. Encyclopedia of Machine Learning and Data Mining 2017: 531-535 - [r11]Xinhua Zhang:
Kernel Methods. Encyclopedia of Machine Learning and Data Mining 2017: 690-695 - [r10]Xinhua Zhang:
Regularization. Encyclopedia of Machine Learning and Data Mining 2017: 1083-1088 - [r9]Xinhua Zhang:
Structural Risk Minimization. Encyclopedia of Machine Learning and Data Mining 2017: 1200-1201 - [r8]Xinhua Zhang:
Support Vector Machines. Encyclopedia of Machine Learning and Data Mining 2017: 1214-1220 - 2016
- [j12]Sheng Chen, Yudong Tian, Ali Behrangi, Junjun Hu, Yang Hong, Zengxin Zhang, Phillip M. Stepanian, Baoqing Hu, Xinhua Zhang:
Precipitation Spectra Analysis Over China With High-Resolution Measurements From Optimally Merged Satellite/Gauge Observations - Part I: Spatial and Seasonal Analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 9(7): 2966-2978 (2016) - [j11]Sheng Chen, Ali Behrangi, Yudong Tian, Junjun Hu, Yang Hong, Qiuhong Tang, Xiao-Ming Hu, Phillip M. Stepanian, Baoqing Hu, Xinhua Zhang:
Precipitation Spectra Analysis Over China With High-Resolution Measurements From Optimally-Merged Satellite/Gauge Observations - Part II: Diurnal Variability Analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 9(7): 2979-2988 (2016) - [c52]Hao Cheng, Yaoliang Yu, Xinhua Zhang, Eric P. Xing, Dale Schuurmans:
Scalable and Sound Low-Rank Tensor Learning. AISTATS 2016: 1114-1123 - [c51]Vignesh Ganapathiraman, Xinhua Zhang, Yaoliang Yu, Junfeng Wen:
Convex Two-Layer Modeling with Latent Structure. NIPS 2016: 1280-1288 - [i8]Parameswaran Raman, Shin Matsushima, Xinhua Zhang, Hyokun Yun, S. V. N. Vishwanathan:
DS-MLR: Exploiting Double Separability for Scaling up Distributed Multinomial Logistic Regression. CoRR abs/1604.04706 (2016) - 2015
- [j10]Changri Luo, Tingting He, Xinhua Zhang, Zibo Zhou:
Learning Forum Posts Topic Discovery and Its Application in Recommendation System. J. Softw. 10(4): 392-402 (2015) - [j9]Hao Guo, Sheng Chen, Anming Bao, Jujun Hu, Abebe S. Gebregiorgis, Xianwu Xue, Xinhua Zhang:
Inter-Comparison of High-Resolution Satellite Precipitation Products over Central Asia. Remote. Sens. 7(6): 7181-7211 (2015) - [j8]Sheng Chen, Junjun Hu, Zengxin Zhang, Ali Behrangi, Yang Hong, Abebe S. Gebregiorgis, Jianrong Cao, Baoqing Hu, Xianwu Xue, Xinhua Zhang:
Hydrologic Evaluation of the TRMM Multisatellite Precipitation Analysis Over Ganjiang Basin in Humid Southeastern China. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 8(9): 4568-4580 (2015) - [j7]Sheng Chen, Jian Zhang, Esther Mullens, Yang Hong, Ali Behrangi, Yudong Tian, Xiao-Ming Hu, Junjun Hu, Zengxin Zhang, Xinhua Zhang:
Mapping the Precipitation Type Distribution Over the Contiguous United States Using NOAA/NSSL National Multi-Sensor Mosaic QPE. IEEE Trans. Geosci. Remote. Sens. 53(8): 4434-4443 (2015) - [j6]Sheng Chen, Yang Hong, Qing Cao, Yudong Tian, Junjun Hu, Xinhua Zhang, Weiyue Li, Nicholas Carr, Xinyi Shen, Lei Qiao:
Intercomparison of Precipitation Estimates From WSR-88D Radar and TRMM Measurement Over Continental United States. IEEE Trans. Geosci. Remote. Sens. 53(8): 4444-4456 (2015) - [c50]Xinhua Zhang, Garrett T. Kenyon:
A Deconvolutional Strategy for Implementing Large Patch Sizes Supports Improved Image Classification. BICT 2015: 529-534 - [c49]Dylan M. Paiton, Sheng Y. Lundquist, William Shainin, Xinhua Zhang, Peter F. Schultz, Garrett T. Kenyon:
A Deconvolutional Competitive Algorithm for Building Sparse Hierarchical Representations. BICT 2015: 535-542 - [c48]Parameswaran Kamalaruban, Robert C. Williamson, Xinhua Zhang:
Exp-Concavity of Proper Composite Losses. COLT 2015: 1035-1065 - 2014
- [j5]Quanxiang Wang, Zhiyue Zhang, Xinhua Zhang, Quanyong Zhu:
Energy-preserving finite volume element method for the improved Boussinesq equation. J. Comput. Phys. 270: 58-69 (2014) - [j4]Xinhua Zhang, Ankan Saha, S. V. N. Vishwanathan:
Accelerated training of max-margin Markov networks with kernels. Theor. Comput. Sci. 519: 88-102 (2014) - [c47]Hengshuai Yao, Csaba Szepesvári, Bernardo Ávila Pires, Xinhua Zhang:
Pseudo-MDPs and factored linear action models. ADPRL 2014: 1-9 - [c46]Changyou Chen, Jun Zhu, Xinhua Zhang:
Robust Bayesian Max-Margin Clustering. NIPS 2014: 532-540 - [c45]Özlem Aslan, Xinhua Zhang, Dale Schuurmans:
Convex Deep Learning via Normalized Kernels. NIPS 2014: 3275-3283 - [c44]Xianghang Liu, Xinhua Zhang, Tibério S. Caetano:
Bayesian Models for Structured Sparse Estimation via Set Cover Prior. ECML/PKDD (2) 2014: 273-289 - [i7]Yaoliang Yu, Xinhua Zhang, Dale Schuurmans:
Generalized Conditional Gradient for Sparse Estimation. CoRR abs/1410.4828 (2014) - 2013
- [c43]Jiazhong Nie, Manfred K. Warmuth, S. V. N. Vishwanathan, Xinhua Zhang:
Open Problem: Lower bounds for Boosting with Hadamard Matrices. COLT 2013: 1076-1079 - [c42]Jinghua Ji, Wenxiang Zhao, Qian Chen, Xinhua Zhang, Jianxun Tang, Guohai Liu:
Multi-phase fault-tolerant switched-flux permanent magnet motors having odd rotor pole number. ISIE 2013: 1-4 - [c41]Xinhua Zhang, Yaoliang Yu, Dale Schuurmans:
Polar Operators for Structured Sparse Estimation. NIPS 2013: 82-90 - [c40]Xinhua Zhang, Wee Sun Lee, Yee Whye Teh:
Learning with Invariance via Linear Functionals on Reproducing Kernel Hilbert Space. NIPS 2013: 2031-2039 - [c39]Özlem Aslan, Hao Cheng, Xinhua Zhang, Dale Schuurmans:
Convex Two-Layer Modeling. NIPS 2013: 2985-2993 - [c38]Yi Shi, Xinhua Zhang, Xiaoping Liao, Guohui Lin, Dale Schuurmans:
Protein-chemical Interaction Prediction via Kernelized Sparse Learning SVM. Pacific Symposium on Biocomputing 2013: 41-52 - [c37]Hao Cheng, Xinhua Zhang, Dale Schuurmans:
Convex Relaxations of Bregman Divergence Clustering. UAI 2013 - [i6]Hao Cheng, Xinhua Zhang, Dale Schuurmans:
Convex Relaxations of Bregman Divergence Clustering. CoRR abs/1309.6823 (2013) - 2012
- [j3]Xinhua Zhang, Ankan Saha, S. V. N. Vishwanathan:
Smoothing multivariate performance measures. J. Mach. Learn. Res. 13: 3623-3680 (2012) - [c36]James Neufeld, Yaoliang Yu, Xinhua Zhang, Ryan Kiros, Dale Schuurmans:
Regularizers versus Losses for Nonlinear Dimensionality Reduction: A Factored View with New Convex Relaxations. ICML 2012 - [c35]Martha White, Yaoliang Yu, Xinhua Zhang, Dale Schuurmans:
Convex Multi-view Subspace Learning. NIPS 2012: 1682-1690 - [c34]Xinhua Zhang, Yaoliang Yu, Dale Schuurmans:
Accelerated Training for Matrix-norm Regularization: A Boosting Approach. NIPS 2012: 2915-2923 - [c33]Yi Shi, Xiaoping Liao, Xinhua Zhang, Guohui Lin, Dale Schuurmans:
Sparse Learning Based Linear Coherent Bi-clustering. WABI 2012: 346-364 - [i5]Xinhua Zhang, Ankan Saha, S. V. N. Vishwanathan:
Smoothing Multivariate Performance Measures. CoRR abs/1202.3776 (2012) - 2011
- [c32]Xinhua Zhang, Yaoliang Yu, Martha White, Ruitong Huang, Dale Schuurmans:
Convex Sparse Coding, Subspace Learning, and Semi-Supervised Extensions. AAAI 2011: 567-573 - [c31]Xinhua Zhang, Ankan Saha, S. V. N. Vishwanathan:
Accelerated Training of Max-Margin Markov Networks with Kernels. ALT 2011: 292-307 - [c30]Fujun Ren, Xinhua Zhang, Long Wang:
A new method of the image pattern recognition based on neural networks. EMEIT 2011: 3840-3843 - [c29]Xinhua Zhang, Wentao Fan, Zhijun Xia, Chunyu Kang:
Tow ship interference cancelling based on blind source separation algorithm. iCAST 2011: 465-468 - [c28]Ankan Saha, S. V. N. Vishwanathan, Xinhua Zhang:
New Approximation Algorithms for Minimum Enclosing Convex Shapes. SODA 2011: 1146-1160 - [c27]Xinhua Zhang, Ankan Saha, S. V. N. Vishwanathan:
Smoothing Multivariate Performance Measures. UAI 2011: 814-821 - 2010
- [j2]Kelin Li, Liping Zhang, Xinhua Zhang, Zuoan Li:
Stability in impulsive Cohen-Grossberg-type BAM neural networks with distributed delays. Appl. Math. Comput. 215(11): 3970-3984 (2010) - [j1]Dong Han, Xinhua Zhang:
Optimal Matrix Filter Design With Application to Filtering Short Data Records. IEEE Signal Process. Lett. 17(5): 521-524 (2010) - [c26]Xinhua Zhang, Zuoan Li, Kelin Li:
Existence and exponential stability of periodic solution for Cohen-Grossberg neural networks with hybrid delays. ICNC 2010: 1093-1097 - [c25]Jinming Liang, Xinhua Zhang:
Periodicity of Cohen-Grossberg-type fuzzy neural networks with time-varying delays and impulses. ICIS 2010: 357-362 - [c24]Xinhua Zhang, Ankan Saha, S. V. N. Vishwanathan:
Lower Bounds on Rate of Convergence of Cutting Plane Methods. NIPS 2010: 2541-2549 - [c23]Xinhua Zhang, Thore Graepel, Ralf Herbrich:
Bayesian Online Learning for Multi-label and Multi-variate Performance Measures. AISTATS 2010: 956-963 - [r7]Xinhua Zhang:
Covariance Matrix. Encyclopedia of Machine Learning 2010: 235-238 - [r6]Xinhua Zhang:
Empirical Risk Minimization. Encyclopedia of Machine Learning 2010: 312 - [r5]Xinhua Zhang:
Gaussian Distribution. Encyclopedia of Machine Learning 2010: 425-428 - [r4]Xinhua Zhang:
Kernel Methods. Encyclopedia of Machine Learning 2010: 566-570 - [r3]Xinhua Zhang:
Regularization. Encyclopedia of Machine Learning 2010: 845-849 - [r2]Xinhua Zhang:
Structural Risk Minimization. Encyclopedia of Machine Learning 2010: 929-930 - [r1]Xinhua Zhang:
Support Vector Machines. Encyclopedia of Machine Learning 2010: 941-946 - [i4]Peng Li, Xinhua Zhang, Yinglin Wang:
SJTU CIT at TAC 2010: Guided Summarization Task. TAC 2010 - [i3]Xinhua Zhang, Ankan Saha, S. V. N. Vishwanathan:
Faster Rates for training Max-Margin Markov Networks. CoRR abs/1003.1354 (2010) - [i2]Xinhua Zhang, Ankan Saha, S. V. N. Vishwanathan:
Regularized Risk Minimization by Nesterov's Accelerated Gradient Methods: Algorithmic Extensions and Empirical Studies. CoRR abs/1011.0472 (2010)
2000 – 2009
- 2009