(Translated by https://www.hiragana.jp/)
Trajektorie (Mathematik) – Wikipedia

Trajektorie (Mathematik)

Bahnkurve in der Mathematik

Mit Trajektorie (auch Bahnkurve) wird in der Mathematik meist die Lösungskurve einer Differentialgleichung mit vorgegebenen Anfangsbedingungen bezeichnet. Die Differentialgleichung beschreibt die Koordinaten eines Systems (im Phasenraum oder Ortsraum) in Abhängigkeit von einem Parameter, der in mechanischen Anwendungen meist die Zeit ist. Dann beschreibt die Trajektorie die Koordinaten des Systems in Abhängigkeit von der „Zeit“.

Definition

Bearbeiten

Wir betrachten die Lösung eines Anfangswertproblems der folgenden Form:

 

Die Lösung dieses Anfangswertproblems sei   auf einem (maximalen) Existenzintervall  .

Als Trajektorie oder Phasenkurve des Gleichungssystems durch   wird dann das Bild

 

bezeichnet, das durch diese Lösung definiert ist.

Phasenraum

Bearbeiten

Die gemeinsame Darstellung aller Trajektorien eines Systems bezeichnet man als Phasenporträt bzw. Phasenraum. Das Phasenportrait enthält also alle Trajektorien, die die Lösungen der Anfangswertprobleme   liefern, wenn der Anfangswert   alle Werte des Definitionsbereichs durchläuft.

Beispiel

Bearbeiten

Gegeben sei das folgende System linearer Differentialgleichungen:

 

Eine allgemeine Lösung des Systems ist die folgende Linearkombination:

 

Wir wollen Trajektorien für   zeichnen. Die darzustellende Funktion   kann entweder durch Umformen der Lösungen für   und   oder durch Lösen der folgenden Differentialgleichung gefunden werden (  und   aus der gegebenen Differentialgleichung):

 

Als Lösung ergibt sich:

 

Der Graph dieser Funktion ist die gesuchte Trajektorie, die Konstante   ist über die Anfangsbedingung des DGL-Systems bestimmt. Hier ist ein Phasenraum aus zwölf Trajektorien mit verschiedenen Anfangsbedingungen dargestellt.

 

Trajektorien in der Geometrie

Bearbeiten

In der Geometrie wird mit dem Begriff Trajektorie auch ein Funktionsgraph bezeichnet, der eine gegebene Kurvenschar isogonal, das heißt immer im gleichen Winkel, schneidet. Beträgt dieser Winkel 90°, so spricht man von einer orthogonalen Trajektorie.[1]

Siehe auch

Bearbeiten

Einzelnachweise

Bearbeiten
  1. Vgl. Brockhaus 1996. Bd. 22. S. 304