Analysis of Ergot Alkaloids
Abstract
:1. Introduction
1.1. Ergot Alkaloids
1.2. Lysergic Acid Amides
1.3. Ergopeptines
2. Stability
3. Sampling
4. Extraction
5. Clean-up
6. Analytical Methods
6.1. Capillary Electrophoresis
6.2. Gas Chromatography-Mass Spectrometry
6.3. Liquid Chromatography
6.4. Ultraviolet and Fluorescence Detection
6.5. Mass Spectrometry
6.5.1. Introduction
6.5.2. Matrix Effects
7. Identification and Quantification
8. Multiresidue Mycotoxin Screening Methods
9. Immunological Methods
10. Other Spectroscopic Methods
11. Other Methods
12. Method Performance
Matrix | Extraction solvent | SPE | Detection | LOD µg/kg | LOQ µg/kg | Recovery (%) | Repeatability precision (RSD%) | Reference |
---|---|---|---|---|---|---|---|---|
Cereals | MeCN acetic acid | PSA | MS/MS | NA | 0.17–2.78 | 70–105 | NA | [36] |
Food and feed | EtOAc, MeOH, ammonium bicarbonate | phase separation | MS/MS | NA | 0.1–1.0 | 50–90 | mu 50%–30% | [37] |
Rye | MeCN ammonium acetate pH 6.5 | C18 | MS/MS | 7–11 | 23–37 | 24–92 | 7–12 | [34] |
Rye | MeCN, water | Na+SCX | FLD | NA | 2.0 | 80–120 | NA | [35] |
Rye | EtOAc, MeOH, NH3 | filter | FLD | NA | Max 3.3 max | 89–100 | 3–15 | [18] |
Rye & wheat | MeCN ammonium carbonate | IAC | MS/MS | NA | 0.01 to 0.06 | 80–120 | 1–14 | [19] |
Rye | Phosphoric acid | SCX | FLD | 0.2–1.1 | NA | 50–70 | NA | [22] |
13. Method Validation
14. Specific Applications
14.1. Cereals, Food and Plant Tissues
14.2. Other EA
14.3. Forensic Analysis and Body Tissues
14.4. Pharmaceutical Formulations
15. Conclusions
Conflicts of Interest
References
- Uhlig, S.; Petersen, D. Lactam ergot alkaloids (ergopeptams) as predominant alkaloids in sclerotia of Claviceps purpurea from Norwegian wild grasses. Toxicon 2008, 52, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Komarova, E.L.; Tolkachev, O.N.; Komarova, E.L.; Tolkachev, O.N. The chemistry of peptide ergot alkaloids. Part 1. Classification and chemistry of ergot peptides. Pharm. Chem. J. 2001, 35, 504–513. [Google Scholar] [CrossRef]
- Krska, R.; Crews, C. Significance, chemistry and determination of ergot alkaloids: A review. Food Add. Contam. Part A 2008, 25, 722–731. [Google Scholar] [CrossRef] [PubMed]
- Reuschel, S.A.; Eades, D.; Foltz, R.L. Recent advances in chromatographic and mass spectrometric methods for determination of LSD and its metabolites in physiological specimens. J. Chromatogr. B 1999, 733, 145–159. [Google Scholar] [CrossRef]
- Andrae, K.; Merkel, S.; Durmaz, V.; Fackeldey, K.; Köppen, R.; Weber, M.; Koch, M. Investigation of the ergopeptide epimerization process. Computation 2014, 2, 102–111. [Google Scholar] [CrossRef]
- Yates, S.G.; Powell, R.G. Analysis of ergopeptine alkaloids in endophyte-infected tall fescue. J. Agric. Food Chem. 1988, 36, 337–340. [Google Scholar] [CrossRef]
- Duringer, J.M.; DeLorme, M.J.M.; Lehner, A.F.; Craig, A.M. A review of the ergot alkaloids found in endophyte-infected tall fescue and perennial ryegrass and their metabolism after ingestion by livestock. In Proceedings of the 6th International Symposium on Fungal Endophytes of Grasses, Christchurch, New Zealand, 25–28 March 2007; pp. 377–382.
- European Food Safety Authority (EFSA); EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on Ergot alkaloids in food and feed. EFSA J. 2012, 10, 2798. [Google Scholar]
- World Health Organization (WHO). Worldwide Regulations for Mycotoxins in Food and Feed in 2003. Available online: http://www.fao.org/docrep/007/y5499e/y5499e00.htm (accessed on 29 May 2015).
- Hafner, M.; Sulyok, M.; Schuhmacher, R.; Crews, C.; Krska, R. Stability and epimerisation behaviour of ergot alkaloids in various solvents. World Mycotoxin J. 2008, 1, 67–78. [Google Scholar] [CrossRef]
- Lauber, U.; Schnaufer, R.; Gredziak, M.; Kiesswetter, Y. Analysis of rye grains and rye meals for ergot alkaloids. Mycotoxin Res. 2005, 21, 258–262. [Google Scholar] [CrossRef] [PubMed]
- Gesetz zur Neuordnung des Lebensmittel- und des Futtermittelrechts (LFGB). Amtliche Sammlung von Untersuchungsverfahren nach §64 FFGB (2012) Untersuchung von Lebensmitteln, Methode L 15.01/02 Bestimmung von Ergotalkaloiden in Roggen und Weizen. In HPLC-Verfahren mit Reinigung an einer basischen Aluminiumoxid-Festphase; Beuth Verlag GmbH: Berlin, Germany, 2012; Available online: http://www.methodensammlung-bvl.de (accessed on 29 May 2015).
- Ware, G.M.; Price, G.; Carter, L.; Eitenmiller, R.R. Liquid chromatographic preparative method for isolating ergot alkaloids, using a particle-loaded membrane extracting disk. J. Aoac Int. 2000, 83, 1395–1399. [Google Scholar] [PubMed]
- Mulac, D.; Humpf, H.-U. Cytotoxicity and accumulation of ergot alkaloids in human primary cells. Toxicology 2011, 282, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Y.; McNally, A.J.; Wang, H.Y.; Salamone, S.J. Stability study of LSD under various storage conditions. J. Anal. Toxicol. 1998, 22, 520–525. [Google Scholar] [CrossRef] [PubMed]
- Reuschel, S.A.; Percey, S.E.; Liu, S.; Eades, D.M.; Foltz, R.L. Quantitative determination of LSD and a major metabolite, 2-oxo-3-hydroxy-LSD, in human urine by solid-phase extraction and gas chromatography-tandem mass spectrometry. J. Anal. Toxicol. 1999, 23, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Francom, P.; Andrenyak, D.; Lim, H.K.; Bridges, R.R.; Foltz, R.L.; Jones, R.T. Determination of LSD in urine by capillary column gas-chromatography and electron-impact mass-spectrometry. J. Anal. Toxicol. 1988, 12, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Muller, C.; Kemmlein, S.; Klaffke, H.; Krauthause, W.; Preiss-Weigert, A.; Wittkowski, R. A basic tool for risk assessment: A new method for the analysis of ergot alkaloids in rye and selected rye products. Mol. Nutr. Food Res. 2009, 53, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Kokkonen, M.; Jestoi, M. Determination of ergot alkaloids from grains with UPLC-MS/MS. J. Sep. Sci. 2010, 33, 2322–2327. [Google Scholar] [CrossRef] [PubMed]
- Franzmann, C.; Waechter, J.; Dittmer, N.; Humpf, H.-U. Ricinoleic acid as a marker for ergot impurities in rye and rye products. J. Agric. Food Chem. 2010, 58, 4223–4229. [Google Scholar] [CrossRef] [PubMed]
- Diana di Mavungu, J.D.; Larionova, D.A.; Malysheva, S.V.; van Peteghem, C.; de Saeger, S. Survey on ergot alkaloids in Cereals Intended for Human Consumption and Animal Feeding. Available online: http://www.efsa.europa.eu/en/supporting/pub/214e.htm (accessed on 29 May 2015).
- Storm, I.D.; Rasmussen, P.H.; Strobel, B.W.; Hansen, H.C.B. Ergot alkaloids in rye flour determined by solid-phase cation-exchange and high-pressure liquid chromatography with fluorescence detection. Food Add. Contam. 2008, 25, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Mulder, P.P.J.; van Raamsdonk, L.W.D.; van Egmond, H.J.; van der Horst, T.; de Jong, J. Ergot Alkaloids and Sclerotia in Animal Feeds. Dutch Survey 2007–2010. RIKILT Report 2012.005. Available onine: http://edepot.wur.nl/234699 (accessed on 29 May 2015).
- Krska, R.; Stubbings, G.; Macarthur, R.; Crews, C. Simultaneous determination of six major ergot alkaloids and their epimers in cereals and foodstuffs by LC-MS-MS. Anal. Bioanal. Chem. 2008, 391, 563–576. [Google Scholar] [CrossRef] [PubMed]
- Blaney, B.J.; Molloy, J.B.; Brock, I.J. Alkaloids in Australian rye ergot (Claviceps purpurea) sclerotia: Implications for food and stockfeed regulations. Anim. Prod. Sci. 2009, 49, 975–982. [Google Scholar] [CrossRef]
- Spiering, M.J.; Davies, E.; Tapper, B.A.; Schmid, J.; Lane, G.A. Simplified extraction of ergovaline and peramine for analysis of tissue distribution in endophyte-infected grass tillers. J. Agric. Food Chem. 2002, 50, 5856–5862. [Google Scholar] [CrossRef] [PubMed]
- Malachova, A.; Dzuman, Z.; Veprikova, Z.; Vaclavikova, M.; Zachariasova, M.; Hajslova, J. Deoxynivalenol, deoxynivalenol-3-glucoside, and enniatins: The major mycotoxins found in cereal-based products on the Czech market. J. Agric. Food Chem. 2011, 59, 12990–12997. [Google Scholar] [CrossRef] [PubMed]
- Walker, K.; Duringer, J.; Craig, A.M. Determination of the ergot alkaloid ergovaline in tall fescue seed and straw using a QuEChERS extraction method with high-performance liquid chromatography−fluorescence detection. J. Agric. Food Chem. 2015, 63, 4236–4242. [Google Scholar] [CrossRef] [PubMed]
- Rubert, J.; Dzuman, Z.; Vaclavikova, M.; Zachariasova, M.; Soler, C.; Hajslova, J. Analysis of mycotoxins in barley using ultra high liquid chromatography high resolution mass spectrometry: Comparison of efficiency and efficacy of different extraction procedures. Talanta 2012, 99, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhong, D.; Xu, H.; Schug, B.; Blume, H. Sensitive and specific liquid chromatographictandem mass spectrometric assay for dihydroergotamine and its major metabolite in human plasma. J. Chromatogr. B 2002, 768, 267–275. [Google Scholar] [CrossRef]
- Smith, D.; Smith, L.; Shafer, W.; Klotz, J.; Strickland, J. Development and validation of an LC-MS method for quantitation of ergot alkaloids in lateral saphenous vein tissue. J. Agric. Food Chem. 2009, 57, 7213–7220. [Google Scholar] [CrossRef] [PubMed]
- Klotz, J.L.; Kirch, B.H.; Aiken, G.E.; Bush, L.P.; Strickland, J.R. Bioaccumulation of ergovaline in bovine lateral saphenous veins in vitro. J. Anim. Sci. 2009, 87, 2437–2447. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, E.D.; Lesser, D.; Paul, B.D. Effective GC-MS procedure for detecting iso-LSD in urine after base-catalyzed conversion to LSD. Clin. Chem. 1998, 44, 287–292. [Google Scholar] [PubMed]
- Mohamed, R.; Gremaud, E.; Richoz-Payot, J.; Tabet, J.C.; Guy, P.A. Quantitative determination of five ergot alkaloids in rye flour by liquid chromatography-electrospray ionisation tandem mass spectrometry. J. Chromatogr. A 2006, 1114, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Köppen, R.; Rasenko, T.; Merkel, S.; Moench, B.; Koch, M. Novel solid-phase extraction for epimer-specific quantitation of ergot alkaloids in rye flour and wheat germ oil. J. Agric. Food Chem. 2013, 61, 10699–10707. [Google Scholar] [CrossRef] [PubMed]
- Krska, R.; Berthiller, F.; Schuhmacher, R.; Nielsen, K.F.; Crews, C. Determination of ergot alkaloids: purity and stability assessment of standards and optimization of extraction conditions for cereal samples. J. AOAC Int. 2008, 91, 1363–1371. [Google Scholar] [PubMed]
- Diana Di Mavungu, J.; Malysheva, S.V.; Sanders, M.; Larionova, D.; Robbens, J.; Dubruel, P.; van Peteghem, C.; de Saeger, S. Development and validation of a new LC-MS/MS method for the simultaneous determination of six major ergot alkaloids and their corresponding epimers. Application to some food and feed commodities. Food Chem. 2012, 135, 292–303. [Google Scholar] [CrossRef]
- Lenain, P.; di Mavungu, J.D.; Dubruel, P.; Robbens, J.; de Saeger, S. Development of suspension polymerized molecularly imprinted beads with metergoline as template and application in a solid-phase extraction procedure toward ergot alkaloids. Anal. Chem. 2012, 84, 10411–10418. [Google Scholar] [CrossRef] [PubMed]
- Rouah-Martin, E.; Maho, W.; Mehta, J.; de Saeger, S.; Covaci, A.; van Dorst, B.; Blust, R.; Robbens, J. Aptamer-based extraction of ergot alkaloids from ergot contaminated rye feed. Adv. Biosci. Biotechnol. 2014, 5, 692–698. [Google Scholar] [CrossRef]
- Bürk, G.; Hobel, W.; Richt, A. Ergot alkaloids in cereal products—Results from the bavarian health and food safety authority. Mol. Nutr. Food Res. 2006, 50, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Zachariasova, M.; Cajka, T.; Godula, M.; Malachova, A.; Veprikova, Z.; Hajslova, J. Analysis of multiple mycotoxins in beer employing (ultra)-high-resolution mass spectrometry. Rapid Commun. Mass Spectrom. 2010, 24, 3357–3367. [Google Scholar] [CrossRef] [PubMed]
- Frach, K.; Blaschke, G. Separation of ergot alkaloids and their epimers and determination in sclerotia by capillary electrophoresis. J. Chromatogr. A 1998, 808, 247–252. [Google Scholar] [CrossRef]
- Himmelsbach, M.; Ferdig, M.; Rohrer, T. Analysis of paspalic acid, lysergic acid, and iso-lysergic acid by capillary zone electrophoresis with UV- and quadrupole time-of-flight mass spectrometric detection. Electrophoresis 2014, 35, 1329–1333. [Google Scholar] [CrossRef] [PubMed]
- Paul, B.D.; Mitchell, J.M.; Burbage, R.; Moy, M.; Sroka, R. Gas-chromatographic electron-impact mass fragmentometric determination of lysergic-acid diethylamide in urine. J. Chromatogr. 1990, 529, 103–112. [Google Scholar] [CrossRef]
- Bukowski, N.; Eaton, A.N. The confirmation and quantitation of LSD in urine using gas-chromatography mass-spectrometry. Rapid Commun. Mass Spectrom. 1993, 7, 106–108. [Google Scholar] [CrossRef]
- Musshoff, F.; Daldrup, T. Gas chromatographic mass spectrometric determination of lysergic acid diethylamide (LSD) in serum samples. Forensic Sci. Int. 1997, 88, 133–140. [Google Scholar] [CrossRef]
- Nakahara, Y.; Kikura, R.; Takahashi, K.; Foltz, R.L.; Mieczkowski, T. Detection of LSD and metabolite in rat hair and human hair. J. Anal. Toxicol. 1996, 20, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Nelson, C.C.; Foltz, R.L. Determination of lysergic-acid diethylamide (LSD), iso-LSD, and N-demethyl-LSD in body-fluids by gas-chromatography tandem mass-spectrometry. Anal. Chem. 1992, 64, 1578–1585. [Google Scholar] [CrossRef] [PubMed]
- Flieger, M.; Wurst, M.; Shelby, R. Ergot alkaloids—Sources, structures and analytical methods. Folia Microbiol. 1997, 42, 3–29. [Google Scholar] [CrossRef]
- Reinhard, H.; Rupp, H.; Zoller, O. Ergot alkaloids: Quantitation and recognition challenges. Mycotoxin Res. 2008, 24, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Lehner, A.F.; Craig, M.; Fannin, N.; Bush, L.; Tobin, T. Electrospray + tandem quadrupole mass spectrometry in the elucidation of ergot alkaloids chromatographed by HPLC: Screening of grass or forage samples for novel toxic compounds. J. Mass Spectrom. 2005, 40, 1484–1502. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, R.; Gremaud, E.; Tabet, J.-C.; Guy, P.A. Mass spectral characterization of ergot alkaloids by electrospray ionization, hydrogen/deuterium exchange, and multiple stage mass spectrometry: Usefulness of precursor ion scan experiments. Rapid Commun. Mass Spectrom. 2006, 20, 2787–2799. [Google Scholar] [CrossRef] [PubMed]
- Arroyo-Manzanares, N.; Malysheva, S.V.; vanden Bussche, J.; Vanhaecke, L.; Diana di Mavungu, J.; de Saeger, S. Holistic approach based on high resolution and multiple stage mass spectrometry to investigate ergot alkaloids in cereals. Talanta 2014, 118, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Lehner, A.F.; Craig, M.; Fannin, N.; Bush, L.; Tobin, T. Fragmentation patterns of selected ergot alkaloids by electrospray ionization tandem quadrupole mass spectrometry. J. Mass Spectrom. 2004, 39, 1275–1286. [Google Scholar] [CrossRef] [PubMed]
- Malysheva, S.V.; Diana di Mavungu, J.; Goryacheva, I.Y.; de Saeger, S. A systematic assessment of the variability of matrix effects in LC-MS/MS analysis of ergot alkaloids in cereals and evaluation of method robustness. Anal. Bioanal. Chem. 2013, 405, 5595–5604. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Recommendation 2012/154/EU of 15 March 2012 on the monitoring of the presence of ergot alkaloids in feed and food. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32012H0154&from=EN (accessed on 29 May 2015).
- Johansen, S.S.; Jensen, J.L. Liquid chromatography-tandem mass spectrometry determination of LSD, iso-LSD, and the main metabolite 2-oxo-3-hydroxy-LSD in forensic samples and application in a forensic case. J. Chromatogr. B 2005, 825, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Berg, T.; Jorgenrud, B.; Strand, D.H. Determination of buprenorphine, fentanyl and LSD in whole blood by UPLCMS-MS. J. Anal. Toxicol. 2013, 37, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Skopp, G.; Potsch, L.; Mattern, R.; Aderjan, R. Short-term stability of lysergic acid diethylamide (LSD), N-desmethyl-LSD, and 2-oxo-3-hydroxy-LSD in urine, assessed by liquid chromatography-tandem mass spectrometry. Clin. Chem. 2002, 48, 1615–1618. [Google Scholar] [PubMed]
- Fang, C.; Liu, J.T.; Lin, C.H. Optimization of the separation of lysergic acid diethylamide in urine by a sweeping technique using micellar electrokinetic chromatography. J. Chromatogr. B 2002, 775, 37–47. [Google Scholar] [CrossRef]
- Romeijn, S.G.; Marttin, E.; Verhoef, J.C.; Merkus, F. Simplified solid-phase extraction method for determination of dihydroergotamine in rabbit and human serum using high-performance liquid chromatography with fluorescence detection. J. Chromatogr. B 1997, 692, 227–232. [Google Scholar] [CrossRef]
- Sulyok, M.; Krska, R.; Schuhmacher, R. Application of an LC-MS/MS based multi-mycotoxin method for the semi-quantitative determination of mycotoxins occurring in different types of food infected by moulds. Food Chem. 2010, 119, 408–416. [Google Scholar] [CrossRef]
- Liesener, K.; Curtui, V.; Dietrich, R.; Martlbauer, E.; Usleber, E. Mycotoxins in horse feed. Mycotoxin Res. 2010, 26, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Martos, P.A.; Thompson, W.; Diaz, G.J. Multiresidue mycotoxin analysis in wheat, barley, oats, rye and maize grain by high-performance liquid chromatography-tandem mass spectrometry. World Mycotoxin J. 2010, 3, 205–223. [Google Scholar] [CrossRef]
- Liao, C.-D.; Wong, J.W.; Zhang, K.; Hayward, D.G.; Lee, N.S.; Trucksess, M.W. Multi-mycotoxin analysis of finished grain and nut products using high-performance liquid chromatography-triple-quadrupole mass spectrometry. J. Agric. Food Chem. 2013, 61, 4771–4782. [Google Scholar] [CrossRef] [PubMed]
- Schnitzius, J.M.; Hill, N.S.; Thompson, C.S.; Craig, A.M. Semiquantitative determination of ergot alkaloids in seed, straw, and digesta samples using a competitive enzyme-linked immunosorbent assay. J. Vet. Diagn. Investig. 2001, 13, 230–237. [Google Scholar] [CrossRef]
- Hopkins, A.A.; Young, C.A.; Panaccione, D.G.; Simpson, W.R.; Mittal, S.; Bouton, J.H. Agronomic performance and lamb health among several tall fescue novel endophyte combinations in the South-Central USA. Crop Sci. 2010, 50, 1552–1561. [Google Scholar] [CrossRef]
- Cody, J.T.; Valtier, S. Immunoassay analysis of lysergic acid diethylamide. J. Anal. Toxicol. 1997, 21, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Webb, K.S.; Baker, P.B.; Cassells, N.P.; Francis, J.M.; Johnston, D.E.; Lancaster, S.L.; Minty, P.S.; Reed, G.D.; White, S.A. The analysis of lysergide (LSD): The development of novel enzyme immunoassay and immunoaffinity extraction procedures together with an HPLC-MS confirmation procedure. J. Forensic Sci. 1996, 41, 938–946. [Google Scholar] [PubMed]
- Wiegand, R.F.; Klette, K.L.; Stout, P.R.; Gehlhausen, J.M. Comparison of EMIT® II, CEDIA® and DPC® RIA RIA assays for the detection of lysergic acid diethylamide in forensic urine samples. J. Anal. Toxicol. 2002, 26, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Tunali, B.; Shelby, R.A.; Morgan-Jones, G.; Kodan, M. Endophytic fungi and ergot alkaloids in native turkish grasses. Phytoparasitica 2000, 28, 375–377. [Google Scholar] [CrossRef]
- Ayers, A.W.; Hill, N.S.; Rottinghaus, G.E.; Stuedemann, J.A.; Thompson, F.N.; Purinton, P.T.; Seman, D.H.; Dawe, D.L.; Parks, A.H.; Ensley, D. Ruminal metabolism and transport of tall fescue ergot alkaloids. Crop Sci. 2009, 49, 2309–2316. [Google Scholar] [CrossRef]
- Hill, N.S.; Agee, C.S. Detection of ergoline alkaloids in endophyte-infected tall fescue by immunoassay. Crop Sci. 1994, 34, 530–534. [Google Scholar] [CrossRef]
- Rouah-Martin, E.; Mehta, J.; van Dorst, B.; de Saeger, S.; Dubruel, P.; Maes, B.U.W.; Lemiere, F.; Goormaghtigh, E.; Daems, D.; Herrebout, W.; et al. Aptamer-based molecular recognition of lysergamine, metergoline and small ergot alkaloids. Int. J. Mol. Sci. 2012, 13, 17138–17159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Pharmacopoeia. European Pharmacopoeia 6th Edition 2008; Council of Europe (COE)—European Directorate for the Quality of Medicines: Strasbourg, France, 2008. [Google Scholar]
- Zakhari, N.A.; Hassan, S.M.; Elshabrawy, Y. Colorimetric determination of beta-adrenergic blocking-drugs with carbon-disulfide and copper (I) ions. J. Pharm. Biomed. Anal. 1991, 9, 421–426. [Google Scholar] [CrossRef]
- Lorenz, K. Ergot from Triticale—Chemical composition and rheological characteristics. Lebensmittel-Wissenschaft und-Technologie 1978, 11, 70–73. [Google Scholar]
- Vermeulen, P.; Pierna, J.A.F.; van Egmond, H.P.; Zegers, J.; Dardenne, P.; Baeten, V. Validation and transferability study of a method based on near-infrared hyperspectral imaging for the detection and quantification of ergot bodies in cereals. Anal. Bioanal. Chem. 2013, 405, 7765–7772. [Google Scholar] [CrossRef] [PubMed]
- Association of Official Analytical Chemists. Appendix F: Guidelines for Standard Method Performance Requirements. In Official Methods of Analysis of AOAC International, 19th ed.; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Favretto, D.; Frison, G.; Maietti, S.; Ferrara, S.D. LC-ESI-MS/MS on an ion trap for the determination of LSD, iso-LSD, nor-LSD and 2-oxo-3-hydroxy-LSD in blood, urine and vitreous humor. Int. J. Legal Med. 2007, 121, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Rottinghaus, G.E.; Garner, G.B.; Cornell, C.N.; Ellis, J.L. HPLC method for quantitating ergovaline in endophyte-infested tall fescue—Seasonal-variation of ergovaline levels in stems with leaf sheaths, leaf blades, and seed heads. J. Agric. Food Chem. 1991, 39, 112–115. [Google Scholar] [CrossRef]
- Hill, N.S.; Rottinghaus, G.E.; Agee, C.S.; Schultz, L.M. Simplified sample preparation for HPLC analysis of ergovaline in tall fescue. Crop Sci. 1993, 33, 331–333. [Google Scholar] [CrossRef]
- Durix, A.; Jaussaud, P.; Garcia, P.; Bonnaire, Y.; Bony, S. Analysis of ergovaline in milk using high-performance liquid chromatography with fluorimetric detection. J. Chromatogr. B 1999, 729, 255–263. [Google Scholar] [CrossRef]
- Ryan, K.L.; Moore, C.T.; Panaccione, D.G. Partial reconstruction of the ergot alkaloid pathway by heterologous gene expression in Aspergillus nidulans. Toxins 2013, 5, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, W.T.; Panaccione, D.G.; Hazekamp, C.S.; McKee, M.C.; Ryan, K.L.; Clay, K. Differential allocation of seed-borne ergot alkaloids during early ontogeny of morning glories (Convolvulaceae). J. Chem. Ecol. 2013, 39, 919–930. [Google Scholar] [CrossRef] [PubMed]
- Paulke, A.; Kremer, C.; Wunder, C.; Wurglics, M.; Schubert-Zsilavecz, M.; Toennes, S.W. Identification of legal highs—Ergot alkaloid patterns in two Argyreia nervosa products. Forensic Sci. Int. 2014, 242, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Salvador, A.; Dubreuil, D.; Denouel, J.; Millerioux, L. Sensitive method for the quantitative determination of bromocriptine in human plasma by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 2005, 820, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Canezin, J.; Cailleux, A.; Turcant, A.; le Bouil, A.; Harry, P.; Allain, P. Determination of LSD and its metabolites in human biological fluids by high-performance liquid chromatography with electrospray tandem mass spectrometry. J. Chromatogr. B 2001, 765, 15–27. [Google Scholar] [CrossRef]
- Gaulier, J.-M.; Maublanc, J.; Lamballais, F.; Bargel, S.; Lachatre, G. LSD in pubic hair in a fatality. Forensic Sci. Int. 2012, 218, 25–27. [Google Scholar] [CrossRef] [PubMed]
- Merli, D.; Zamboni, D.; Protti, S.; Pesavento, M.; Profumo, A. Electrochemistry and analytical determination of lysergic acid diethylamide (LSD) via adsorptive stripping voltammetry. Talanta 2014, 130, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Moubarak, A.S.; Piper, E.L.; Johnson, Z.B.; Flieger, M. HPLC method for detection of ergotamine, ergosine, and ergine after intravenous injection of a single dose. J. Agric. Food Chem. 1996, 44, 146–148. [Google Scholar] [CrossRef]
- Billups, J.; Jones, C.; Jackson, T.L.; Ablordeppey, S.Y.; Spencer, S.D. Simultaneous RP-HPLC-DAD quantification of bromocriptine, haloperidol and its diazepane structural analog in rat plasma with droperidol as internal standard for application to drug-interaction pharmacokinetics. Biomed. Chromatogr. 2010, 24, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Elbarbry, F.A.; Mabrouk, M.M.; El-Dawy, M.A. Determination of the analgesic components of spasmomigraine® tablet by liquid chromatography with ultraviolet detection. J. AOAC Int. 2007, 90, 94–101. [Google Scholar] [PubMed]
- Aranda, M.; Morlock, G. Simultaneous determination of caffeine, ergotamine, and metamizol in solid pharmaceutical formulation by HPTLC-UV-FLD with mass confirmation by online HPTLC-ESI-MS. J. Chromatogr. Sci. 2007, 45, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Ashour, S.; Omar, S. Sensitive method for the quantitative determination of ergotamine in tablet dosage form by high-performance liquid chromatography using bromocriptine as internal standard. Int. Res. J. Pure Appl. Chem. 2013, 3, 286–298. [Google Scholar] [CrossRef]
- Sultan, M.A.; Maher, H.M.; Alzoman, N.Z.; Alshehri, M.M.; Rizk, M.S.; Elshahed, M.S.; Olah, I.V. Capillary electrophoretic determination of antimigraine formulations containing caffeine, ergotamine, paracetamol and domperidone or metoclopramide. J. Chromatogr. Sci. 2013, 51, 502–510. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crews, C. Analysis of Ergot Alkaloids. Toxins 2015, 7, 2024-2050. https://doi.org/10.3390/toxins7062024
Crews C. Analysis of Ergot Alkaloids. Toxins. 2015; 7(6):2024-2050. https://doi.org/10.3390/toxins7062024
Chicago/Turabian StyleCrews, Colin. 2015. "Analysis of Ergot Alkaloids" Toxins 7, no. 6: 2024-2050. https://doi.org/10.3390/toxins7062024