Astrophysics > Astrophysics of Galaxies
[Submitted on 5 Feb 2009]
Title:Aperture Synthesis Observations of the Nearby Spiral NGC 6503: Modeling the Thin and Thick HI Disks
View PDFAbstract: We present sensitive aperture synthesis observations of the nearby, late-type spiral galaxy NGC 6503, and produce HI maps of considerably higher quality than previous observations by van Moorsel & Wells (1985). We find that the velocity field, while remarkably regular, contains clear evidence for irregularities. The HI is distributed over an area much larger than the optical image of the galaxy, with spiral features in the outer parts and localized holes within the HI distribution. The absence of absorption towards the nearby quasar 1748+700 yields an upper limit of 5 10^{17} cm^{-2} for the column density of cold HI gas along a line of sight which should intersect the disk at a radius of 29 kpc. This suggests that the radial extent of the HI disk is not much larger than that which we trace in HI emission (23 kpc). The observed HI distribution is inconsistent with models of a single thin or thick disk. Instead, the data require a model containing a thin disk plus a thicker low column-density HI layer that rotates more slowly than the thin disk and that extends only to approximately the optical radius. This suggests that the presence of extra-planar gas in this galaxy is largely the result of star formation in the disk rather than cold gas accretion. Improved techniques for interferometric imaging including multi-scale Clean that were used in this work are also described.
Current browse context:
astro-ph.GA
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.