Physics > Atmospheric and Oceanic Physics
[Submitted on 14 Apr 2021]
Title:Reducing Surface Wetness Leads to Tropical Hydrological Cycle Regime Transition
View PDFAbstract:Earth's modern climate is characterized by wet, rainy deep tropics, however paleoclimate and planetary science have revealed a wide range of hydrological cycle regimes connected to different external parameters. Here we investigate how surface wetness affects the tropical hydrological cycle. When surface wetness is decreased in an Earth-like general circulation model, the tropics remain wet but transition from a rainy to rain-free regime. The rain-free regime occurs when surface precipitation is suppressed as negative evaporation (surface condensation) balances moisture flux convergence. The regime transition is dominated by near-surface relative humidity changes in contrast to the hypothesis that relative humidity changes are small. We show near-surface relative humidity changes responsible for the regime transition are controlled by re-evaporation of stratiform precipitation near the lifting condensation level. Re-evaporation impacts the near-surface through vertical mixing. Our results reveal a new rain-free tropical hydrological cycle regime that goes beyond the wet/dry paradigm.
Current browse context:
physics.ao-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.