mutate()
creates new columns that are functions of existing variables.
It can also modify (if the name is the same as an existing
column) and delete columns (by setting their value to NULL
).
Usage
mutate(.data, ...)
# S3 method for data.frame
mutate(
.data,
...,
.by = NULL,
.keep = c("all", "used", "unused", "none"),
.before = NULL,
.after = NULL
)
Arguments
- .data
A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g. from dbplyr or dtplyr). See Methods, below, for more details.
- ...
<
data-masking
> Name-value pairs. The name gives the name of the column in the output.The value can be:
A vector of length 1, which will be recycled to the correct length.
A vector the same length as the current group (or the whole data frame if ungrouped).
NULL
, to remove the column.A data frame or tibble, to create multiple columns in the output.
- .by
-
<
tidy-select
> Optionally, a selection of columns to group by for just this operation, functioning as an alternative togroup_by()
. For details and examples, see ?dplyr_by. - .keep
Control which columns from
.data
are retained in the output. Grouping columns and columns created by...
are always kept."all"
retains all columns from.data
. This is the default."used"
retains only the columns used in...
to create new columns. This is useful for checking your work, as it displays inputs and outputs side-by-side."unused"
retains only the columns not used in...
to create new columns. This is useful if you generate new columns, but no longer need the columns used to generate them."none"
doesn't retain any extra columns from.data
. Only the grouping variables and columns created by...
are kept.
- .before, .after
<
tidy-select
> Optionally, control where new columns should appear (the default is to add to the right hand side). Seerelocate()
for more details.
Value
An object of the same type as .data
. The output has the following
properties:
Columns from
.data
will be preserved according to the.keep
argument.Existing columns that are modified by
...
will always be returned in their original location.New columns created through
...
will be placed according to the.before
and.after
arguments.The number of rows is not affected.
Columns given the value
NULL
will be removed.Groups will be recomputed if a grouping variable is mutated.
Data frame attributes are preserved.
Useful mutate functions
Grouped tibbles
Because mutating expressions are computed within groups, they may yield different results on grouped tibbles. This will be the case as soon as an aggregating, lagging, or ranking function is involved. Compare this ungrouped mutate:
%>%
starwars select(name, mass, species) %>%
mutate(mass_norm = mass / mean(mass, na.rm = TRUE))
With the grouped equivalent:
%>%
starwars select(name, mass, species) %>%
group_by(species) %>%
mutate(mass_norm = mass / mean(mass, na.rm = TRUE))
The former normalises mass
by the global average whereas the
latter normalises by the averages within species levels.
Methods
This function is a generic, which means that packages can provide implementations (methods) for other classes. See the documentation of individual methods for extra arguments and differences in behaviour.
Methods available in currently loaded packages:
dbplyr (tbl_lazy
), dplyr (data.frame
)
.
Examples
# Newly created variables are available immediately
starwars %>%
select(name, mass) %>%
mutate(
mass2 = mass * 2,
mass2_squared = mass2 * mass2
)
#> # A tibble: 87 × 4
#> name mass mass2 mass2_squared
#> <chr> <dbl> <dbl> <dbl>
#> 1 Luke Skywalker 77 154 23716
#> 2 C-3PO 75 150 22500
#> 3 R2-D2 32 64 4096
#> 4 Darth Vader 136 272 73984
#> 5 Leia Organa 49 98 9604
#> 6 Owen Lars 120 240 57600
#> 7 Beru Whitesun Lars 75 150 22500
#> 8 R5-D4 32 64 4096
#> 9 Biggs Darklighter 84 168 28224
#> 10 Obi-Wan Kenobi 77 154 23716
#> # ℹ 77 more rows
# As well as adding new variables, you can use mutate() to
# remove variables and modify existing variables.
starwars %>%
select(name, height, mass, homeworld) %>%
mutate(
mass = NULL,
height = height * 0.0328084 # convert to feet
)
#> # A tibble: 87 × 3
#> name height homeworld
#> <chr> <dbl> <chr>
#> 1 Luke Skywalker 5.64 Tatooine
#> 2 C-3PO 5.48 Tatooine
#> 3 R2-D2 3.15 Naboo
#> 4 Darth Vader 6.63 Tatooine
#> 5 Leia Organa 4.92 Alderaan
#> 6 Owen Lars 5.84 Tatooine
#> 7 Beru Whitesun Lars 5.41 Tatooine
#> 8 R5-D4 3.18 Tatooine
#> 9 Biggs Darklighter 6.00 Tatooine
#> 10 Obi-Wan Kenobi 5.97 Stewjon
#> # ℹ 77 more rows
# Use across() with mutate() to apply a transformation
# to multiple columns in a tibble.
starwars %>%
select(name, homeworld, species) %>%
mutate(across(!name, as.factor))
#> # A tibble: 87 × 3
#> name homeworld species
#> <chr> <fct> <fct>
#> 1 Luke Skywalker Tatooine Human
#> 2 C-3PO Tatooine Droid
#> 3 R2-D2 Naboo Droid
#> 4 Darth Vader Tatooine Human
#> 5 Leia Organa Alderaan Human
#> 6 Owen Lars Tatooine Human
#> 7 Beru Whitesun Lars Tatooine Human
#> 8 R5-D4 Tatooine Droid
#> 9 Biggs Darklighter Tatooine Human
#> 10 Obi-Wan Kenobi Stewjon Human
#> # ℹ 77 more rows
# see more in ?across
# Window functions are useful for grouped mutates:
starwars %>%
select(name, mass, homeworld) %>%
group_by(homeworld) %>%
mutate(rank = min_rank(desc(mass)))
#> # A tibble: 87 × 4
#> # Groups: homeworld [49]
#> name mass homeworld rank
#> <chr> <dbl> <chr> <int>
#> 1 Luke Skywalker 77 Tatooine 5
#> 2 C-3PO 75 Tatooine 6
#> 3 R2-D2 32 Naboo 6
#> 4 Darth Vader 136 Tatooine 1
#> 5 Leia Organa 49 Alderaan 2
#> 6 Owen Lars 120 Tatooine 2
#> 7 Beru Whitesun Lars 75 Tatooine 6
#> 8 R5-D4 32 Tatooine 8
#> 9 Biggs Darklighter 84 Tatooine 3
#> 10 Obi-Wan Kenobi 77 Stewjon 1
#> # ℹ 77 more rows
# see `vignette("window-functions")` for more details
# By default, new columns are placed on the far right.
df <- tibble(x = 1, y = 2)
df %>% mutate(z = x + y)
#> # A tibble: 1 × 3
#> x y z
#> <dbl> <dbl> <dbl>
#> 1 1 2 3
df %>% mutate(z = x + y, .before = 1)
#> # A tibble: 1 × 3
#> z x y
#> <dbl> <dbl> <dbl>
#> 1 3 1 2
df %>% mutate(z = x + y, .after = x)
#> # A tibble: 1 × 3
#> x z y
#> <dbl> <dbl> <dbl>
#> 1 1 3 2
# By default, mutate() keeps all columns from the input data.
df <- tibble(x = 1, y = 2, a = "a", b = "b")
df %>% mutate(z = x + y, .keep = "all") # the default
#> # A tibble: 1 × 5
#> x y a b z
#> <dbl> <dbl> <chr> <chr> <dbl>
#> 1 1 2 a b 3
df %>% mutate(z = x + y, .keep = "used")
#> # A tibble: 1 × 3
#> x y z
#> <dbl> <dbl> <dbl>
#> 1 1 2 3
df %>% mutate(z = x + y, .keep = "unused")
#> # A tibble: 1 × 3
#> a b z
#> <chr> <chr> <dbl>
#> 1 a b 3
df %>% mutate(z = x + y, .keep = "none")
#> # A tibble: 1 × 1
#> z
#> <dbl>
#> 1 3
# Grouping ----------------------------------------
# The mutate operation may yield different results on grouped
# tibbles because the expressions are computed within groups.
# The following normalises `mass` by the global average:
starwars %>%
select(name, mass, species) %>%
mutate(mass_norm = mass / mean(mass, na.rm = TRUE))
#> # A tibble: 87 × 4
#> name mass species mass_norm
#> <chr> <dbl> <chr> <dbl>
#> 1 Luke Skywalker 77 Human 0.791
#> 2 C-3PO 75 Droid 0.771
#> 3 R2-D2 32 Droid 0.329
#> 4 Darth Vader 136 Human 1.40
#> 5 Leia Organa 49 Human 0.504
#> 6 Owen Lars 120 Human 1.23
#> 7 Beru Whitesun Lars 75 Human 0.771
#> 8 R5-D4 32 Droid 0.329
#> 9 Biggs Darklighter 84 Human 0.863
#> 10 Obi-Wan Kenobi 77 Human 0.791
#> # ℹ 77 more rows
# Whereas this normalises `mass` by the averages within species
# levels:
starwars %>%
select(name, mass, species) %>%
group_by(species) %>%
mutate(mass_norm = mass / mean(mass, na.rm = TRUE))
#> # A tibble: 87 × 4
#> # Groups: species [38]
#> name mass species mass_norm
#> <chr> <dbl> <chr> <dbl>
#> 1 Luke Skywalker 77 Human 0.947
#> 2 C-3PO 75 Droid 1.08
#> 3 R2-D2 32 Droid 0.459
#> 4 Darth Vader 136 Human 1.67
#> 5 Leia Organa 49 Human 0.603
#> 6 Owen Lars 120 Human 1.48
#> 7 Beru Whitesun Lars 75 Human 0.922
#> 8 R5-D4 32 Droid 0.459
#> 9 Biggs Darklighter 84 Human 1.03
#> 10 Obi-Wan Kenobi 77 Human 0.947
#> # ℹ 77 more rows
# Indirection ----------------------------------------
# Refer to column names stored as strings with the `.data` pronoun:
vars <- c("mass", "height")
mutate(starwars, prod = .data[[vars[[1]]]] * .data[[vars[[2]]]])
#> # A tibble: 87 × 15
#> name height mass hair_color skin_color eye_color birth_year sex
#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr>
#> 1 Luke Sky… 172 77 blond fair blue 19 male
#> 2 C-3PO 167 75 NA gold yellow 112 none
#> 3 R2-D2 96 32 NA white, bl… red 33 none
#> 4 Darth Va… 202 136 none white yellow 41.9 male
#> 5 Leia Org… 150 49 brown light brown 19 fema…
#> 6 Owen Lars 178 120 brown, gr… light blue 52 male
#> 7 Beru Whi… 165 75 brown light blue 47 fema…
#> 8 R5-D4 97 32 NA white, red red NA none
#> 9 Biggs Da… 183 84 black light brown 24 male
#> 10 Obi-Wan … 182 77 auburn, w… fair blue-gray 57 male
#> # ℹ 77 more rows
#> # ℹ 7 more variables: gender <chr>, homeworld <chr>, species <chr>,
#> # films <list>, vehicles <list>, starships <list>, prod <dbl>
# Learn more in ?rlang::args_data_masking