(Translated by https://www.hiragana.jp/)
Genetic algorithm: Difference between revisions - Wikipedia Jump to content

Genetic algorithm: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Keburjor (talk | contribs)
rm self-promo
Line 67: Line 67:
:"Because highly fit schemata of low defining length and low order play such an important role in the action of genetic algorithms, we have already given them a special name: building blocks. Just as a child creates magnificent fortresses through the arrangement of simple blocks of wood, so does a genetic algorithm seek near optimal performance through the juxtaposition of short, low-order, high-performance schemata, or building blocks."<ref>{{cite book|last=Goldberg|first=David E.|year=1989|title=Genetic Algorithms in Search Optimization and Machine Learning|publisher=Addison Wesley|pages=41}}</ref>
:"Because highly fit schemata of low defining length and low order play such an important role in the action of genetic algorithms, we have already given them a special name: building blocks. Just as a child creates magnificent fortresses through the arrangement of simple blocks of wood, so does a genetic algorithm seek near optimal performance through the juxtaposition of short, low-order, high-performance schemata, or building blocks."<ref>{{cite book|last=Goldberg|first=David E.|year=1989|title=Genetic Algorithms in Search Optimization and Machine Learning|publisher=Addison Wesley|pages=41}}</ref>


<b>Criticism of the building block hypothesis<b>
==Criticism of the building block hypothesis==


The building block hypothesis has been sharply criticized on the grounds that it lacks theoretical justification, and experimental results have been published that draw the veracity of this hypothesis into question. On the theoretical side, for example, Wright et al. state that
The building block hypothesis has been sharply criticized on the grounds that it lacks theoretical justification, and experimental results have been published that draw the veracity of this hypothesis into question. On the theoretical side, for example, Wright et al. state that
Line 77: Line 77:


Syswerda's results contradict the building block hypothesis because uniform crossover is highly disruptive of short schemata, whereas one and two-point crossover are much less disruptive.
Syswerda's results contradict the building block hypothesis because uniform crossover is highly disruptive of short schemata, whereas one and two-point crossover are much less disruptive.

Given these problems with the building block hypothesis, the adaptive capacity of genetic algorithms is currently something of a mystery. Recently, a new explanation---the Generative Fixation Hypothesis---has been proposed.<ref name="burjorjee">{{cite book |type=PhD thesis |title=Generative Fixation: A Unified Explanation for the Adaptive Capacity of Simple Recombinative Genetic Algorithms |url=http://cs.brandeis.edu/~kekib/dissertation.html |last=Burjorjee |first=Keki M. |year=2009 |publisher=Brandeis University |oclc=500907878}}</ref> Unlike the building block hypothesis, the generative fixation hypothesis can account for the adaptive capacity of genetic algorithms with uniform crossover; it is, to date, the only plausible account for the adaptive capacity of this type of genetic algorithm. Moreover, the generative fixation hypothesis does not rely on the strong assumption that fitness landscapes arising in practice typically have a building block structure.

==The generative fixation hypothesis==
The generative fixation hypothesis<ref name="burjorjee"></ref> is a new explanation for the adaptive capacity of simple recombinative genetic algorithms. It is based on the inference of a close relationship between the simple genetic algorithm and a promising general-purpose stochastic search heuristic, called <em>hyperclimbing</em>, for optimizing over attribute product spaces (for example, the set of all binary strings of some fixed length) with rugged fitness functions.

A hyperclimbing heuristic works by progressively limiting sampling to a series of nested subsets with increasing expected fitness. At each step, this heuristic searches through vast numbers of coarse partitions of the subset it inhabits, and identifies ones that partition this (sub)set into subsets whose expected fitness values are significantly variegated. Because hyperclimbing is sensitive, not to the local features of a search space, but to certain more global statistics, it is not susceptible to the kinds of issues that waylay local search heuristics.

The chief barrier to the wide and enthusiastic use of hyperclimbing is that it seems to scale very poorly with the number of attributes. If one heeds the seemingly high cost of applying hyperclimbing to large search spaces, this heuristic quickly looses its shine. The generative fixation hypothesis proceeds from evidence that suggests that the simple genetic algorithm can implement hyperclimbing extraordinarily efficiently.


== Observations ==
== Observations ==

Revision as of 09:55, 14 June 2010

The genetic algorithm (GA) is a search heuristic that mimics the process of natural evolution. This heuristic is routinely used to generate useful solutions to optimization and search problems. Genetic algorithms belong to the larger class of evolutionary algorithms (EA), which generate solutions to optimization problems using techniques inspired by natural evolution, such as inheritance, mutation, selection, and crossover.

Methodology

In a genetic algorithm, a population of strings (called chromosomes or the genotype of the genome), which encode candidate solutions (called individuals, creatures, or phenotypes) to an optimization problem, evolves toward better solutions. Traditionally, solutions are represented in binary as strings of 0s and 1s, but other encodings are also possible. The evolution usually starts from a population of randomly generated individuals and happens in generations. In each generation, the fitness of every individual in the population is evaluated, multiple individuals are stochastically selected from the current population (based on their fitness), and modified (recombined and possibly randomly mutated) to form a new population. The new population is then used in the next iteration of the algorithm. Commonly, the algorithm terminates when either a maximum number of generations has been produced, or a satisfactory fitness level has been reached for the population. If the algorithm has terminated due to a maximum number of generations, a satisfactory solution may or may not have been reached.

Genetic algorithms find application in bioinformatics, phylogenetics, computational science, engineering, economics, chemistry, manufacturing, mathematics, physics and other fields.

A typical genetic algorithm requires:

  1. a genetic representation of the solution domain,
  2. a fitness function to evaluate the solution domain.

A standard representation of the solution is as an array of bits. Arrays of other types and structures can be used in essentially the same way. The main property that makes these genetic representations convenient is that their parts are easily aligned due to their fixed size, which facilitates simple crossover operations. Variable length representations may also be used, but crossover implementation is more complex in this case. Tree-like representations are explored in genetic programming and graph-form representations are explored in evolutionary programming.

The fitness function is defined over the genetic representation and measures the quality of the represented solution. The fitness function is always problem dependent. For instance, in the knapsack problem one wants to maximize the total value of objects that can be put in a knapsack of some fixed capacity. A representation of a solution might be an array of bits, where each bit represents a different object, and the value of the bit (0 or 1) represents whether or not the object is in the knapsack. Not every such representation is valid, as the size of objects may exceed the capacity of the knapsack. The fitness of the solution is the sum of values of all objects in the knapsack if the representation is valid, or 0 otherwise. In some problems, it is hard or even impossible to define the fitness expression; in these cases, interactive genetic algorithms are used.

Once we have the genetic representation and the fitness function defined, GA proceeds to initialize a population of solutions randomly, then improve it through repetitive application of mutation, crossover, inversion and selection operators.

Initialization

Initially many individual solutions are randomly generated to form an initial population. The population size depends on the nature of the problem, but typically contains several hundreds or thousands of possible solutions. Traditionally, the population is generated randomly, covering the entire range of possible solutions (the search space). Occasionally, the solutions may be "seeded" in areas where optimal solutions are likely to be found.

Selection

During each successive generation, a proportion of the existing population is selected to breed a new generation. Individual solutions are selected through a fitness-based process, where fitter solutions (as measured by a fitness function) are typically more likely to be selected. Certain selection methods rate the fitness of each solution and preferentially select the best solutions. Other methods rate only a random sample of the population, as this process may be very time-consuming.

Most functions are stochastic and designed so that a small proportion of less fit solutions are selected. This helps keep the diversity of the population large, preventing premature convergence on poor solutions. Popular and well-studied selection methods include roulette wheel selection and tournament selection.

Reproduction

The next step is to generate a second generation population of solutions from those selected through genetic operators: crossover (also called recombination), and/or mutation.

For each new solution to be produced, a pair of "parent" solutions is selected for breeding from the pool selected previously. By producing a "child" solution using the above methods of crossover and mutation, a new solution is created which typically shares many of the characteristics of its "parents". New parents are selected for each new child, and the process continues until a new population of solutions of appropriate size is generated. Although reproduction methods that are based on the use of two parents are more "biology inspired", some research[1][2] suggests more than two "parents" are better to be used to reproduce a good quality chromosome.

These processes ultimately result in the next generation population of chromosomes that is different from the initial generation. Generally the average fitness will have increased by this procedure for the population, since only the best organisms from the first generation are selected for breeding, along with a small proportion of less fit solutions, for reasons already mentioned above.

Termination

This generational process is repeated until a termination condition has been reached. Common terminating conditions are:

  • A solution is found that satisfies minimum criteria
  • Fixed number of generations reached
  • Allocated budget (computation time/money) reached
  • The highest ranking solution's fitness is reaching or has reached a plateau such that successive iterations no longer produce better results
  • Manual inspection
  • Combinations of the above

Simple generational genetic algorithm pseudocode

  1. Choose the initial population of individuals
  2. Evaluate the fitness of each individual in that population
  3. Repeat on this generation until termination: (time limit, sufficient fitness achieved, etc.)
    1. Select the best-fit individuals for reproduction
    2. Breed new individuals through crossover and mutation operations to give birth to offspring
    3. Evaluate the individual fitness of new individuals
    4. Replace least-fit population with new individuals

The building block hypothesis

Genetic algorithms are simple to implement, but their behavior is difficult to understand. In particular it is difficult to understand why these algorithms frequently succeed at generating solutions of high fitness when applied to practical problems. The building block hypothesis (BBH) consists of:

  1. A description of a heuristic that performs adaptation by identifying and recombining "building blocks", i.e. low order, low defining-length schemata with above average fitness.
  2. A hypothesis that a genetic algorithm performs adaptation by implicitly and efficiently implementing this heuristic.

Goldberg describes the heuristic as follows:

"Short, low order, and highly fit schemata are sampled, recombined [crossed over], and resampled to form strings of potentially higher fitness. In a way, by working with these particular schemata [the building blocks], we have reduced the complexity of our problem; instead of building high-performance strings by trying every conceivable combination, we construct better and better strings from the best partial solutions of past samplings.
"Because highly fit schemata of low defining length and low order play such an important role in the action of genetic algorithms, we have already given them a special name: building blocks. Just as a child creates magnificent fortresses through the arrangement of simple blocks of wood, so does a genetic algorithm seek near optimal performance through the juxtaposition of short, low-order, high-performance schemata, or building blocks."[3]

Criticism of the building block hypothesis

The building block hypothesis has been sharply criticized on the grounds that it lacks theoretical justification, and experimental results have been published that draw the veracity of this hypothesis into question. On the theoretical side, for example, Wright et al. state that

"The various claims about GAs that are traditionally made under the name of the building block hypothesis have, to date, no basis in theory and, in some cases, are simply incoherent."[4]

On the experimental side uniform crossover was seen to outperform one-point and two-point crossover on many of the fitness functions studied by Syswerda.[5] Summarizing these results, Fogel remarks that

"Generally, uniform crossover yielded better performance than two-point crossover, which in turn yielded better performance than one-point crossover."[6]

Syswerda's results contradict the building block hypothesis because uniform crossover is highly disruptive of short schemata, whereas one and two-point crossover are much less disruptive.

Observations

There are several general observations about the generation of solutions specifically via a genetic algorithm:

  • Selection is clearly an important[weasel words] genetic operator, but opinion is divided over the importance of crossover versus mutation. Some argue[who?] that crossover is the most important, while mutation is only necessary to ensure that potential solutions are not lost. Others argue[who?] that crossover in a largely uniform population only serves to propagate innovations originally found by mutation, and in a non-uniform population crossover is nearly always equivalent to a very large mutation (which is likely to be catastrophic). There are many references in Fogel (2006) that support the importance of mutation-based search, but across all problems the No Free Lunch theorem holds, so these opinions are without merit [citation needed] unless the discussion is restricted to a particular problem.
  • As with all current machine learning problems it is worth tuning the parameters such as mutation probability, crossover probability and population size to find reasonable settings for the problem class being worked on. A very small mutation rate may lead to genetic drift (which is non-ergodic in nature). A recombination rate that is too high may lead to premature convergence of the genetic algorithm. A mutation rate that is too high may lead to loss of good solutions unless there is elitist selection. There are theoretical[citation needed] but not yet practical upper and lower bounds for these parameters that can help guide selection.

Criticisms

There are several criticisms of the use of a genetic algorithm compared to alternative optimization algorithms:

  • Repeated fitness function evaluation for complex problems is often the most prohibitive and limiting segment of artificial evolutionary algorithms. Finding the optimal solution to complex high dimensional, multimodal problems often requires very expensive fitness function evaluations. In real world problems such as structural optimization problems, one single function evaluation may require several hours to several days of complete simulation. Typical optimization methods can not deal with such types of problem. In this case, it may be necessary to forgo an exact evaluation and use an approximated fitness that is computationally efficient. It is apparent that amalgamation of approximate models may be one of the most promising approaches to convincingly use GA to solve complex real life problems.
  • The "better" is only in comparison to other solutions. As a result, the stop criterion is not clear in every problem.
  • In many problems, GAs may have a tendency to converge towards local optima or even arbitrary points rather than the global optimum of the problem. This means that it does not "know how" to sacrifice short-term fitness to gain longer-term fitness. The likelihood of this occurring depends on the shape of the fitness landscape: certain problems may provide an easy ascent towards a global optimum, others may make it easier for the function to find the local optima. This problem may be alleviated by using a different fitness function, increasing the rate of mutation, or by using selection techniques that maintain a diverse population of solutions, although the No Free Lunch theorem[7] proves [citation needed] that there is no general solution to this problem. A common technique to maintain diversity is to impose a "niche penalty", wherein, any group of individuals of sufficient similarity (niche radius) have a penalty added, which will reduce the representation of that group in subsequent generations, permitting other (less similar) individuals to be maintained in the population. This trick, however, may not be effective, depending on the landscape of the problem. Another possible technique would be to simply replace part of the population with randomly generated individuals, when most of the population is too similar to each other. Diversity is important in genetic algorithms (and genetic programming) because crossing over a homogeneous population does not yield new solutions. In evolution strategies and evolutionary programming, diversity is not essential because of a greater reliance on mutation.
  • Operating on dynamic data sets is difficult, as genomes begin to converge early on towards solutions which may no longer be valid for later data. Several methods have been proposed to remedy this by increasing genetic diversity somehow and preventing early convergence, either by increasing the probability of mutation when the solution quality drops (called triggered hypermutation), or by occasionally introducing entirely new, randomly generated elements into the gene pool (called random immigrants). Again, evolution strategies and evolutionary programming can be implemented with a so-called "comma strategy" in which parents are not maintained and new parents are selected only from offspring. This can be more effective on dynamic problems.
  • GAs cannot effectively solve problems in which the only fitness measure is a single right/wrong measure (like decision problems), as there is no way to converge on the solution (no hill to climb). In these cases, a random search may find a solution as quickly as a GA. However, if the situation allows the success/failure trial to be repeated giving (possibly) different results, then the ratio of successes to failures provides a suitable fitness measure.

Variants

The simplest algorithm represents each chromosome as a bit string. Typically, numeric parameters can be represented by integers, though it is possible to use floating point representations. The floating point representation is natural to evolution strategies and evolutionary programming. The notion of real-valued genetic algorithms has been offered but is really a misnomer because it does not really represent the building block theory that was proposed by Holland in the 1970s. This theory is not without support though, based on theoretical and experimental results (see below). The basic algorithm performs crossover and mutation at the bit level. Other variants treat the chromosome as a list of numbers which are indexes into an instruction table, nodes in a linked list, hashes, objects, or any other imaginable data structure. Crossover and mutation are performed so as to respect data element boundaries. For most data types, specific variation operators can be designed. Different chromosomal data types seem to work better or worse for different specific problem domains.

When bit strings representations of integers are used, Gray coding is often employed. In this way, small changes in the integer can be readily effected through mutations or crossovers. This has been found to help prevent premature convergence at so called Hamming walls, in which too many simultaneous mutations (or crossover events) must occur in order to change the chromosome to a better solution.

Other approaches involve using arrays of real-valued numbers instead of bit strings to represent chromosomes. Theoretically, the smaller the alphabet, the better the performance, but paradoxically, good results have been obtained from using real-valued chromosomes.

A very successful (slight) variant of the general process of constructing a new population is to allow some of the better organisms from the current generation to carry over to the next, unaltered. This strategy is known as elitist selection.

Parallel implementations of genetic algorithms come in two flavours. Coarse grained parallel genetic algorithms assume a population on each of the computer nodes and migration of individuals among the nodes. Fine grained parallel genetic algorithms assume an individual on each processor node which acts with neighboring individuals for selection and reproduction. Other variants, like genetic algorithms for online optimization problems, introduce time-dependence or noise in the fitness function.

Genetic algorithms with adaptive parameters (adaptive genetic algorithms, AGAs) is another significant and promising variant of genetic algorithms. The probabilities of crossover (pc) and mutation (pm) greatly determine the degree of solution accuracy and the convergence speed that genetic algorithms can obtain. Instead of using fixed values of pc and pm, AGAs utilize the population information in each generation and adaptively adjust the pc and pm in order to maintain the population diversity as well as to sustain the convergence capacity. In AGA (adaptive genetic algorithm)[8], the adjustment of pc and pm depends on the fitness values of the solutions. In CAGA (clustering-based adaptive genetic algorithm)[9], through the use of clustering analysis to judge the optimization states of the population, the adjustment of pc and pm depends on these optimization states.

It can be quite effective to combine GA with other optimization methods. GA tends to be quite good at finding generally good global solutions, but quite inefficient at finding the last few mutations to find the absolute optimum. Other techniques (such as simple hill climbing) are quite efficient at finding absolute optimum in a limited region. Alternating GA and hill climbing can improve the efficiency of GA while overcoming the lack of robustness of hill climbing.

This means that the rules of genetic variation may have a different meaning in the natural case. For instance – provided that steps are stored in consecutive order – crossing over may sum a number of steps from maternal DNA adding a number of steps from paternal DNA and so on. This is like adding vectors that more probably may follow a ridge in the phenotypic landscape. Thus, the efficiency of the process may be increased by many orders of magnitude. Moreover, the inversion operator has the opportunity to place steps in consecutive order or any other suitable order in favour of survival or efficiency. (See for instance [10] or example in travelling salesman problem.)

Population-based incremental learning is a variation where the population as a whole is evolved rather than its individual members.

Problem domains

Problems which appear to be particularly appropriate for solution by genetic algorithms include timetabling and scheduling problems, and many scheduling software packages are based on GAs. GAs have also been applied to engineering. Genetic algorithms are often applied as an approach to solve global optimization problems.

As a general rule of thumb genetic algorithms might be useful in problem domains that have a complex fitness landscape as crossover is designed to move the population away from local optima that a traditional hill climbing algorithm might get stuck in.

History

Computer simulations of evolution started as early as in 1954 with the work of Nils Aall Barricelli, who was using the computer at the Institute for Advanced Study in Princeton, New Jersey.[11][12] His 1954 publication was not widely noticed. Starting in 1957,[13] the Australian quantitative geneticist Alex Fraser published a series of papers on simulation of artificial selection of organisms with multiple loci controlling a measurable trait. From these beginnings, computer simulation of evolution by biologists became more common in the early 1960s, and the methods were described in books by Fraser and Burnell (1970)[14] and Crosby (1973).[15] Fraser's simulations included all of the essential elements of modern genetic algorithms. In addition, Hans Bremermann published a series of papers in the 1960s that also adopted a population of solution to optimization problems, undergoing recombination, mutation, and selection. Bremermann's research also included the elements of modern genetic algorithms. Other noteworthy early pioneers include Richard Friedberg, George Friedman, and Michael Conrad. Many early papers are reprinted by Fogel (1998).[16]

Although Barricelli, in work he reported in 1963, had simulated the evolution of ability to play a simple game,[17] artificial evolution became a widely recognized optimization method as a result of the work of Ingo Rechenberg and Hans-Paul Schwefel in the 1960s and early 1970s – Rechenberg's group was able to solve complex engineering problems through evolution strategies.[18][19][20][21] Another approach was the evolutionary programming technique of Lawrence J. Fogel, which was proposed for generating artificial intelligence. Evolutionary programming originally used finite state machines for predicting environments, and used variation and selection to optimize the predictive logics. Genetic algorithms in particular became popular through the work of John Holland in the early 1970s, and particularly his book Adaptation in Natural and Artificial Systems (1975). His work originated with studies of cellular automata, conducted by Holland and his students at the University of Michigan. Holland introduced a formalized framework for predicting the quality of the next generation, known as Holland's Schema Theorem. Research in GAs remained largely theoretical until the mid-1980s, when The First International Conference on Genetic Algorithms was held in Pittsburgh, Pennsylvania.

As academic interest grew, the dramatic increase in desktop computational power allowed for practical application of the new technique. In the late 1980s, General Electric started selling the world's first genetic algorithm product, a mainframe-based toolkit designed for industrial processes. In 1989, Axcelis, Inc. released Evolver, the world's first commercial GA product for desktop computers. The New York Times technology writer John Markoff wrote[22] about Evolver in 1990.

Related techniques

  • Ant colony optimization (ACO) uses many ants (or agents) to traverse the solution space and find locally productive areas. While usually inferior to genetic algorithms and other forms of local search, it is able to produce results in problems where no global or up-to-date perspective can be obtained, and thus the other methods cannot be applied.[citation needed]
  • Bacteriologic algorithms (BA) inspired by evolutionary ecology and, more particularly, bacteriologic adaptation. Evolutionary ecology is the study of living organisms in the context of their environment, with the aim of discovering how they adapt. Its basic concept is that in a heterogeneous environment, you can’t find one individual that fits the whole environment. So, you need to reason at the population level. It is also believed BAs could be successfully applied to complex positioning problems (antennas for cell phones, urban planning, and so on) or data mining.[23]
  • Cross-entropy method The cross-entropy (CE) method generates candidates solutions via a parameterized probability distribution. The parameters are updated via cross-entropy minimization, so as to generate better samples in the next iteration.
  • Cultural algorithm (CA) consists of the population component almost identical to that of the genetic algorithm and, in addition, a knowledge component called the belief space.
  • Evolution strategies (ES, see Rechenberg, 1994) evolve individuals by means of mutation and intermediate and discrete recombination. ES algorithms are designed particularly to solve problems in the real-value domain. They use self-adaptation to adjust control parameters of the search.
  • Evolutionary programming (EP) involves populations of solutions with primarily mutation and selection and arbitrary representations. They use self-adaptation to adjust parameters, and can include other variation operations such as combining information from multiple parents.
  • Extremal optimization (EO) Unlike GAs, which work with a population of candidate solutions, EO evolves a single solution and makes local modifications to the worst components. This requires that a suitable representation be selected which permits individual solution components to be assigned a quality measure ("fitness"). The governing principle behind this algorithm is that of emergent improvement through selectively removing low-quality components and replacing them with a randomly selected component. This is decidedly at odds with a GA that selects good solutions in an attempt to make better solutions.
  • Gaussian adaptation (normal or natural adaptation, abbreviated NA to avoid confusion with GA) is intended for the maximisation of manufacturing yield of signal processing systems. It may also be used for ordinary parametric optimisation. It relies on a certain theorem valid for all regions of acceptability and all Gaussian distributions. The efficiency of NA relies on information theory and a certain theorem of efficiency. Its efficiency is defined as information divided by the work needed to get the information.[24] Because NA maximises mean fitness rather than the fitness of the individual, the landscape is smoothed such that valleys between peaks may disappear. Therefore it has a certain “ambition” to avoid local peaks in the fitness landscape. NA is also good at climbing sharp crests by adaptation of the moment matrix, because NA may maximise the disorder (average information) of the Gaussian simultaneously keeping the mean fitness constant.
  • Genetic programming (GP) is a related technique popularized by John Koza in which computer programs, rather than function parameters, are optimized. Genetic programming often uses tree-based internal data structures to represent the computer programs for adaptation instead of the list structures typical of genetic algorithms.
  • Grouping genetic algorithm (GGA) is an evolution of the GA where the focus is shifted from individual items, like in classical GAs, to groups or subset of items.[25] The idea behind this GA evolution proposed by Emanuel Falkenauer is that solving some complex problems, a.k.a. clustering or partitioning problems where a set of items must be split into disjoint group of items in an optimal way, would better be achieved by making characteristics of the groups of items equivalent to genes. These kind of problems include Bin Packing, Line Balancing, Clustering w.r.t. a distance measure, Equal Piles, etc., on which classic GAs proved to perform poorly. Making genes equivalent to groups implies chromosomes that are in general of variable length, and special genetic operators that manipulate whole groups of items. For Bin Packing in particular, a GGA hybridized with the Dominance Criterion of Martello and Toth, is arguably the best technique to date.
  • Harmony search (HS) is an algorithm mimicking musicians behaviors in improvisation process.
  • Intelligent Water Drops or the IWD algorithm [26] is a nature-inspired optimization algorithm inspired from natural water drops which change their environment to find the near optimal or optimal path to their destination. The memory is the river's bed and what is modified by the water drops is the amount of soil on the river's bed.
  • Interactive evolutionary algorithms are evolutionary algorithms that use human evaluation. They are usually applied to domains where it is hard to design a computational fitness function, for example, evolving images, music, artistic designs and forms to fit users' aesthetic preference.
  • Memetic algorithm (MA), also called hybrid genetic algorithm among others, is a relatively new evolutionary method where local search is applied during the evolutionary cycle. The idea of memetic algorithms comes from memes, which unlike genes, can adapt themselves. In some problem areas they are shown to be more efficient than traditional evolutionary algorithms.
  • Reactive search optimization (RSO) advocates the integration of sub-symbolic machine learning techniques into search heuristics for solving complex optimization problems. The word reactive hints at a ready response to events during the search through an internal online feedback loop for the self-tuning of critical parameters. Methodologies of interest for Reactive Search include machine learning and statistics, in particular reinforcement learning, active or query learning, neural networks, and meta-heuristics.
  • Simulated annealing (SA) is a related global optimization technique that traverses the search space by testing random mutations on an individual solution. A mutation that increases fitness is always accepted. A mutation that lowers fitness is accepted probabilistically based on the difference in fitness and a decreasing temperature parameter. In SA parlance, one speaks of seeking the lowest energy instead of the maximum fitness. SA can also be used within a standard GA algorithm by starting with a relatively high rate of mutation and decreasing it over time along a given schedule.
  • Tabu search (TS) is similar to simulated annealing in that both traverse the solution space by testing mutations of an individual solution. While simulated annealing generates only one mutated solution, tabu search generates many mutated solutions and moves to the solution with the lowest energy of those generated. In order to prevent cycling and encourage greater movement through the solution space, a tabu list is maintained of partial or complete solutions. It is forbidden to move to a solution that contains elements of the tabu list, which is updated as the solution traverses the solution space.

Applications

References

  1. ^ Eiben, A. E. et al (1994). "Genetic algorithms with multi-parent recombination". PPSN III: Proceedings of the International Conference on Evolutionary Computation. The Third Conference on Parallel Problem Solving from Nature: 78–87. ISBN 3-540-58484-6.
  2. ^ Ting, Chuan-Kang (2005). "On the Mean Convergence Time of Multi-parent Genetic Algorithms Without Selection". Advances in Artificial Life: 403–412. ISBN 978-3-540-28848-0.
  3. ^ Goldberg, David E. (1989). Genetic Algorithms in Search Optimization and Machine Learning. Addison Wesley. p. 41.
  4. ^ Wright, A.H. (2003). "Implicit Parallelism". Proceedings of the Genetic and Evolutionary Computation Conference. {{cite conference}}: Unknown parameter |booktitle= ignored (|book-title= suggested) (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)
  5. ^ Syswerda, G. (1989). "Uniform crossover in genetic algorithms". In J. D. Schaffer (ed.). Proceedings of the Third International Conference on Genetic Algorithms. Morgan Kaufmann. {{cite conference}}: Unknown parameter |booktitle= ignored (|book-title= suggested) (help)
  6. ^ Fogel, David B. (2000). Evolutionary Computation: Towards a New Philosophy of Machine Intelligence. New York: IEEE Press. p. 140.
  7. ^ Wolpert, D.H., Macready, W.G., 1995. No Free Lunch Theorems for Optimisation. Santa Fe Institute, SFI-TR-05-010, Santa Fe.
  8. ^ Srinivas. M and Patnaik. L, "Adaptive probabilities of crossover and mutation in genetic algorithms," IEEE Transactions on System, Man and Cybernetics, vol.24, no.4, pp.656–667, 1994.
  9. ^ ZHANG. J, Chung. H and Lo. W. L, “Clustering-Based Adaptive Crossover and Mutation Probabilities for Genetic Algorithms”, IEEE Transactions on Evolutionary Computation vol.11, no.3, pp. 326–335, 2007.
  10. ^ Evolution-in-a-nutshell
  11. ^ Barricelli, Nils Aall (1954). "Esempi numerici di processi di evoluzione". Methodos: 45–68.
  12. ^ Barricelli, Nils Aall (1957). "Symbiogenetic evolution processes realized by artificial methods". Methodos: 143–182.
  13. ^ Fraser, Alex (1957). "Simulation of genetic systems by automatic digital computers. I. Introduction". Aust. J. Biol. Sci. 10: 484–491.
  14. ^ Fraser, Alex (1970). Computer Models in Genetics. New York: McGraw-Hill. {{cite book}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  15. ^ Crosby, Jack L. (1973). Computer Simulation in Genetics. London: John Wiley & Sons.
  16. ^ Fogel, David B. (editor) (1998). Evolutionary Computation: The Fossil Record. New York: IEEE Press. {{cite book}}: |first= has generic name (help)
  17. ^ Barricelli, Nils Aall (1963). "Numerical testing of evolution theories. Part II. Preliminary tests of performance, symbiogenesis and terrestrial life". Acta Biotheoretica (16): 99–126.
  18. ^ Rechenberg, Ingo (1973). Evolutionsstrategie. Stuttgart: Holzmann-Froboog.
  19. ^ Schwefel, Hans-Paul (1974). Numerische Optimierung von Computer-Modellen (PhD thesis).
  20. ^ Schwefel, Hans-Paul (1977). Numerische Optimierung von Computor-Modellen mittels der Evolutionsstrategie : mit einer vergleichenden Einführung in die Hill-Climbing- und Zufallsstrategie. Basel; Stuttgart: Birkhäuser. ISBN 3764308761.
  21. ^ Schwefel, Hans-Paul (1981). Numerical optimization of computer models (Translation of 1977 Numerische Optimierung von Computor-Modellen mittels der Evolutionsstrategie. Chichester ; New York: Wiley. ISBN 0471099880.
  22. ^ Markoff, John (1990-08-29). "What's the Best Answer? It's Survival of the Fittest". New York Times. Retrieved 2009-08-09. {{cite news}}: Check date values in: |year= / |date= mismatch (help)
  23. ^ Baudry, Benoit (March/April 2005). "Automatic Test Case Optimization: A Bacteriologic Algorithm" (PDF). IEEE Software. 22. IEEE Computer Society: 76–82. doi:10.1109/MS.2005.30. Retrieved 2009-08-09. {{cite journal}}: Check date values in: |date= (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)
  24. ^ Kjellström, G. (1991). "On the Efficiency of Gaussian Adaptation". Journal of Optimization Theory and Applications. 71 (3): 589–597. doi:10.1007/BF00941405. {{cite journal}}: Unknown parameter |month= ignored (help)
  25. ^ Falkenauer, Emanuel (1997). Genetic Algorithms and Grouping Problems. Chichester, England: John Wiley & Sons Ltd. ISBN 978-0-471-97150-4.
  26. ^ Hamed Shah-Hosseini, The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm, International Journal of Bio-Inspired Computation (IJBIC), vol. 1, no. ½, 2009, [1]
  27. ^ Gondro C, Kinghorn BP (2007). "A simple genetic algorithm for multiple sequence alignment". Genetics and Molecular Research. 6 (4): 964–982. PMID 18058716.
  28. ^ van Batenburg FH, Gultyaev AP, Pleij CW (1995). "An APL-programmed genetic algorithm for the prediction of RNA secondary structure". Journal of Theoretical Biology. 174 (3): 269–280. doi:10.1006/jtbi.1995.0098. PMID 7545258.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  29. ^ Notredame C, Higgins DG (1995). "SAGA a Genetic Algorithm for Multiple Sequence Alignment". Nulceic Acids Research. 174 (8): 1515. PMC 145823. PMID 8628686.
  30. ^ Cedric Notredame Home Page
  31. ^ Hill T, Lundgren A, Fredriksson R, Schiöth HB (2005). "Genetic algorithm for large-scale maximum parsimony phylogenetic analysis of proteins". Biochimica et Biophysica Acta. 1725 (1): 19–29. doi:10.1016/j.bbagen.2005.04.027. PMID 15990235.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  32. ^ Joachim De Zutter
  33. ^ Li, Y., et al. (2004). CAutoCSD – Evolutionary search and optimisation enabled computer automated control system design. International Journal of Automation and Computing, 1(1). pp. 76–88. ISSN 1751-8520, http://eprints.gla.ac.uk/3818/
  34. ^ Ng, K.C., Switching Control Systems and Their Design Automation via Genetic Algorithms, PhD Thesis, University of Glasgow, 1995.
  35. ^ Li, Y., et al. (1996). Genetic algorithm automated approach to design of sliding mode control systems, Int J Control, 63(4), 721–739.
  36. ^ Optimised Configuration of Sensing Elements for Control and Fault Tolerance Applied to an Electro-Magnetic Suspension, PhD Thesis, 2009.
  37. ^ SymbioticSphere – Distributed Software Systems Group, University of Massachusetts, Boston
  38. ^ To CC, Vohradsky J (2007). "A parallel genetic algorithm for single class pattern classification and its application for gene expression profiling in Streptomyces coelicolor". BMC Genomics. 8: 49. doi:10.1186/1471-2164-8-49. PMC 1804277. PMID 17298664.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  39. ^ Hitoshi Iba, Sumitaka Akiba, Tetsuya Higuchi, Taisuke Sato: BUGS: A Bug-Based Search Strategy using Genetic Algorithms. PPSN 1992:
  40. ^ Ibrahim, W. and Amer, H.: An Adaptive Genetic Algorithm for VLSI Test Vector Selection
  41. ^ Ka-Chun Wong, Kwong-Sak Leung, Man Hon Wong: Effect of Spatial Locality on an Evolutionary Algorithm for Multimodal Optimization. EvoApplications (1) 2010: 481-490
  42. ^ Ka-Chun Wong, Kwong-Sak Leung, Man Hon Wong: An evolutionary algorithm with species-specific explosion for multimodal optimization. GECCO 2009: 923-930
  43. ^ Bagchi Tapan P (1999). "Multiobjective Scheduling by Genetic Algorithms". Multiobjective Scheduling by Genetic Algorithms. {{cite journal}}: Text "Kluwer Academic. ISBN 0-7923-8561-6" ignored (help)
  44. ^ Applying Genetic Algorithms to Recurrent Neural Networks for Learning Network Parameters and Architecture
  45. ^ Wang S, Wang Y, Du W, Sun F, Wang X, Zhou C, Liang Y (2007). "A multi-approaches-guided genetic algorithm with application to operon prediction". Artificial Intelligence in Medicine. 41 (2): 151–159. doi:10.1016/j.artmed.2007.07.010. PMID 17869072.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  46. ^ "To the beat of the byte". BBC News. 1998-07-01. Retrieved 2010-05-03.
  47. ^ Zhang, J., Lo, W.L., and Chung, H., "Pseudocoevolutionary Genetic Algorithms for Power Electronic Circuits Optimization", IEEE Trans Systems, Man, and Cybernetics, Part C., Vol.36, No.4, July 2006, pp. 590–598.
  48. ^ Willett P (1995). "Genetic algorithms in molecular recognition and design". Trends in Biotechnology. 13 (12): 516–521. doi:10.1016/S0167-7799(00)89015-0. PMID 8595137.
  49. ^ BiSNET/e – Distributed Software Systems Group, University of Massachusetts, Boston

Bibliography

  • Banzhaf, Wolfgang; Nordin, Peter; Keller, Robert; Francone, Frank (1998) Genetic Programming – An Introduction, Morgan Kaufmann, San Francisco, CA.
  • Bies, Robert R (2006). "A Genetic Algorithm-Based, Hybrid Machine Learning Approach to Model Selection". Journal of Pharmacokinetics and Pharmacodynamics. Netherlands: Springer: 196–221. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  • Cha, Sung-Hyuk (2009). "A Genetic Algorithm for Constructing Compact Binary Decision Trees". Journal of Pattern Recognition Research. 4 (1): 1–13. {{cite journal}}: External link in |journal= and |title= (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)
  • Fraser, Alex S. (1957). "Simulation of Genetic Systems by Automatic Digital Computers. I. Introduction". Australian Journal of Biological Sciences. 10: 484–491.
  • Goldberg, David E (1989), Genetic Algorithms in Search, Optimization and Machine Learning, Kluwer Academic Publishers, Boston, MA.
  • Goldberg, David E (2002), The Design of Innovation: Lessons from and for Competent Genetic Algorithms, Addison-Wesley, Reading, MA.
  • Fogel, David B (2006), Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, IEEE Press, Piscataway, NJ. Third Edition
  • Holland, John H (1975), Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor
  • Koza, John (1992), Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press. ISBN 0-262-11170-5
  • Michalewicz, Zbigniew (1999), Genetic Algorithms + Data Structures = Evolution Programs, Springer-Verlag.
  • Mitchell, Melanie, (1996), An Introduction to Genetic Algorithms, MIT Press, Cambridge, MA.
  • Poli, R., Langdon, W. B., McPhee, N. F. (2008). A Field Guide to Genetic Programming. Lulu.com, freely available from the internet. ISBN 978-1-4092-0073-4.{{cite book}}: CS1 maint: multiple names: authors list (link)
  • Rechenberg, Ingo (1994): Evolutionsstrategie '94, Stuttgart: Fromman-Holzboog.
  • Schmitt, Lothar M; Nehaniv, Chrystopher L; Fujii, Robert H (1998), Linear analysis of genetic algorithms, Theoretical Computer Science 208: 111–148
  • Schmitt, Lothar M (2001), Theory of Genetic Algorithms, Theoretical Computer Science 259: 1–61
  • Schmitt, Lothar M (2004), Theory of Genetic Algorithms II: models for genetic operators over the string-tensor representation of populations and convergence to global optima for arbitrary fitness function under scaling, Theoretical Computer Science 310: 181–231
  • Schwefel, Hans-Paul (1974): Numerische Optimierung von Computer-Modellen (PhD thesis). Reprinted by Birkhäuser (1977).
  • Vose, Michael D (1999), The Simple Genetic Algorithm: Foundations and Theory, MIT Press, Cambridge, MA.
  • Whitley, D. (1994). A genetic algorithm tutorial. Statistics and Computing 4, 65–85.
  • Hingston,Philip F.; Barone, Luigi C.; Michalewicz, Zbigniew (2008) Design by Evolution: Advances in Evolutionary Design:297
  • Eiben,Agoston E.; Smith, James E. (2003) Introduction to Evolutionary Computing

External links

An alternative to the building block hypothesis

  • Generative Fixation A unified explanation for the adaptive capacity of simple recombinative genetic algorithms

Resources

Tutorials