(Translated by https://www.hiragana.jp/)
Talk:Magnetism: Difference between revisions - Wikipedia Jump to content

Talk:Magnetism: Difference between revisions

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia
Content deleted Content added
Line 51: Line 51:


Speculation:
Speculation:
This is probably not new but at one time or another we have all been given the thought experiment of a three-dimensional ball moving through a two-dimensional world. For argument's sake let's say what the scientists are observing of the three-dimensional ball they call an “atom”. They mark its position and move on (two- dimensionally) in a measurable way to the next “atom”. At this point they shift the relative position of the “atom” (two- dimensionally) and then returned to their original starting point finding the first “atom” has shifted its relative position the same way as the second “atom”. If you were taught like me you were told they would first see a dot as the ball started to pass through their word. The dot would get bigger and bigger until the diameter was reached then shrink back down to nothing. But a ball made up of matter as we currently know it is made of atoms; mostly space. So only the part of the atom intersecting their world could be observed. If the ball was stationary the “atom” would look like a fussy quivering object as the atom is vibrating. There could be many of these objects intersecting their world. If you were taught like me you were told they would first see a dot as the ball started to pass through their world. The dot would get bigger and bigger until the diameter was reached then shrink back down to nothing. But a ball made up of matter as we currently know it is made of atoms; mostly space. So only the part of the atom intersecting their world could be observed. If the ball was stationary the “atom” would look like a fussy quivering object as the “atom” is vibrating. There could be many of these objects intersecting their world. They most likely could not detect the momentary arrival and exit of the atoms electrons do to their size and speed. Scientists being scientists would run experiments on the object; one finding some free to rotate materials would align to the nearest “atom”, referring to the effect as “magnetism”.
This is probably not new but at one time or another we have all been given the thought experiment of a three-dimensional ball moving through a two-dimensional world. For argument's sake let's say what the scientists are observing of the three-dimensional ball they call an “atom”. They mark its position and move on (two- dimensionally) in a measurable way to the next “atom”. At this point they shift the relative position of the “atom” (two- dimensionally) and then returned to their original starting point finding the first “atom” has shifted its relative position the same way as the second “atom”. If you were taught like me you were told they would first see a dot as the ball started to pass through their word. The dot would get bigger and bigger until the diameter was reached then shrink back down to nothing. But a ball made up of matter as we currently know it is made of atoms; mostly space. So only the part of the atom intersecting their world could be observed. If the ball was stationary the “atom” would look like a fussy quivering object as the atom is vibrating. There could be many of these objects intersecting their world. If you were taught like me you were told they would first see a dot as the ball started to pass through their world. The dot would get bigger and bigger until the diameter was reached then shrink back down to nothing. But a ball made up of matter as we currently know it is made of atoms; mostly space. So only the part of the atom intersecting their world could be observed. If the ball was stationary the “atom” would look like a fussy quivering object as the “atom” is vibrating. There could be many of these objects intersecting their world. They most likely could not detect the momentary arrival and exit of the atom's electrons do to their size and speed. Scientists being scientists would run experiments on the object; one finding some free to rotate materials would align to the nearest “atom”, referring to the effect as “magnetism”.
James Brian MacDonald 11:52, 24 December 2015 (UTC) <small><span class="autosigned">—&nbsp;Preceding [[Wikipedia:Signatures|unsigned]] comment added by [[User:James B MacDonald|James B MacDonald]] ([[User talk:James B MacDonald|talk]] • [[Special:Contributions/James B MacDonald|contribs]]) </span></small><!-- Template:Unsigned --> <!--Autosigned by SineBot-->
James Brian MacDonald 11:52, 24 December 2015 (UTC) <small><span class="autosigned">—&nbsp;Preceding [[Wikipedia:Signatures|unsigned]] comment added by [[User:James B MacDonald|James B MacDonald]] ([[User talk:James B MacDonald|talk]] • [[Special:Contributions/James B MacDonald|contribs]]) </span></small><!-- Template:Unsigned --> <!--Autosigned by SineBot-->

Revision as of 12:03, 24 December 2015

Template:Vital article

WikiProject iconPhysics B‑class Top‑importance
WikiProject iconThis article is within the scope of WikiProject Physics, a collaborative effort to improve the coverage of Physics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
BThis article has been rated as B-class on Wikipedia's content assessment scale.
TopThis article has been rated as Top-importance on the project's importance scale.

Error in magnetic domains image

I remember my previous physics teacher said that this image: http://en.wikipedia.org/wiki/File:Ferromag_Matl_Magnetized.JPG in the Magnetic domains section is wrong. The arrows should go from north to south. I never really understood his argument so I'm just asking that somebody with more knowledge in this subject take a look at it.

Antonio92 (talk) 08:31, 21 June 2012 (UTC)[reply]

Confirmed: Outside a magnet the lines definitely go north to south. (Inside the B field goes S-->N, the H field goes N-->S.) I corrected the image. (It sometimes takes a day or two before the up-to-date image thumbnail gets put on the page.) --Steve (talk) 14:30, 21 June 2012 (UTC)Subzbharti (talk) 18:13, 21 March 2013 (UTC)[reply]

Problem with figure

Hierarchy of types of magnetism.[7]caption in the diagram are blurred and not readable. Please edit them suitably. thanks — Preceding unsigned comment added by Subzbharti (talkcontribs) 18:13, 21 March 2013

Lead

I know how hard it is to write the introductory sections for topics like this, and how it tends to generate endless edit wars over minor wording differences. I don't mean to criticize the hard work that has been done on this article. But I feel I don't understand the lead sentence:

Magnetism is a class of physical phenomena that includes forces exerted by magnets on other magnets.

Doesn't magnetism also include forces exerted by magnets on materials which are not magnets? And I'm wondering if the term magnetic field should be introduced earlier, in the first sentence, instead of the 3rd. --ChetvornoTALK 23:32, 19 September 2014 (UTC)[reply]

I've tweaked it, hopefully addressing your immediate concern (I agree that it was probelmatic); see what you think. —Quondum 00:09, 20 September 2014 (UTC)[reply]
That looks a lot better to me. I like the lead sentence, it a good definition. --ChetvornoTALK 00:27, 20 September 2014 (UTC)[reply]

Unified Field Theory and Magnetism

We adventure into UFT by assuming there is but one source of forces, and that all forces can be explained by characteristics of a space with nothing but relative levels of compression. This means the concept of electromagnetic charge as a characteristic of particles is forbidden.

Mass acquires the definition of an expansion of space, compressing space around it. (Hence it is relative like spacial measurements, and hence it is energy.)

This definition reconciles the strong and nuclear forces rather easily. Two particles of mass that get too close push each other away encompassing the strong nuclear force. The sphere packing of an atomic nucleus, or a star containing black holes, creates suction between its component particles and towards its interior as it expands, encompassing the weak nuclear force. The misshapenness of the compressed space is responsible for gravity. But what is magnetism?

What is magnetism? Why do the same poles of magnets repel and opposites attract? Well, if you spin a massive particle about an orbit you generate a corkscrew shaped object in space time. As two magnetic poles opposite in polarity approach their spin is in the same direction which reduces antagonism from the expanding objects. Conversely, if two magnetic poles identical in polarity approach, their direction is opposite and they plow into each other increasing expansive antagonism.

Magnets, whether the planet earth, a bar magnet, an electromagnet, a gyroscope, all generate their fields through the rotation of mass in the same direction with some preponderance. — Preceding unsigned comment added by GuildCompounder (talkcontribs) 00:19, 1 April 2015 (UTC)[reply]

Sources of magnetism

The section on Sources of magnetism describes two sources - current and the nuclear moment - before launching into a discussion of the electron magnetic moment. No connection is explained between the list of sources and the subsequent discussion. Can this be added? 83.104.46.71 (talk) 08:59, 10 May 2015 (UTC)[reply]

I agree; the electron magnetic moment seems to be inexplicably lumped in with electric current. I think the second bullet point, nuclear dipole moment, should be expanded to include all particle dipole moments. --ChetvornoTALK 09:31, 10 May 2015 (UTC)[reply]
Me three. The magnetic moment associated with the orbital angular momentum of an electron should presumably also be included in the second point. But perhaps we should not be trying to classify the sources so distinctly into two categories; rather it might be better to simply list several contributors: electric current (flow of electrons, ions and any charge-carrying particles generally), intrinsic spin of elementary particles, orbital contributions. Technically, nuclear magnetic moment arises from a combination of the last two of its constituent particles. —Quondum 16:28, 10 May 2015 (UTC)[reply]
I can see that point of view, but my feeling is it would better to limit the bullet points to the fundamental sources, currents and intrinsic spin. Orbital magnetic moment can be understood as a circular "current" of charge about the nucleus. This can be explained in the following text. Explaining it that way would give entry-level readers a more intuitive understanding: charge + motion = magnetic field --ChetvornoTALK 17:45, 10 May 2015 (UTC)[reply]
That might not be so rigorous. It works as an intuitive explanation. However, I expect that the magnetic moment due to intrinsic spin of a particle falls into the same explanation (rotary current), and is indistinguishable at a mathematical level. I don't think that it is for us to be making such hazy, ill-defined distinctions. —Quondum 18:47, 10 May 2015 (UTC)[reply]
Kittel lists the principal sources in a free atom as electron spin, electron orbital angular momentum, and the change in angular momentum induced by an applied field. The first two give rise to paramagnetism and the third to diamagnetism. This satisfies the desire of the IP editor for a connection between sources and phenomena. Note the focus on a free atom, with ordered arrays of moments to be discussed separately in connection with phenomena like ferromagnetism. Similarly, electron currents as sources primarily arise in connection with electromagnets. Nuclear magnetic moments are 1000 times smaller than electron magnetic moments, so they should not be listed as principal sources. RockMagnetist(talk) 03:44, 11 May 2015 (UTC)[reply]

What is magnetism?

I wish the article explained, in terms a non-physicist and non-mathematician (me) could understand, what magnetism is, why magnetic fields exist, why similar poles repel rather than attract. Is this impossible to explain in simple language? Is it even known? deisenbe (talk) 11:38, 11 October 2015 (UTC)[reply]

Magnetism/String Theory/Quantum Physics

Speculation: This is probably not new but at one time or another we have all been given the thought experiment of a three-dimensional ball moving through a two-dimensional world. For argument's sake let's say what the scientists are observing of the three-dimensional ball they call an “atom”. They mark its position and move on (two- dimensionally) in a measurable way to the next “atom”. At this point they shift the relative position of the “atom” (two- dimensionally) and then returned to their original starting point finding the first “atom” has shifted its relative position the same way as the second “atom”. If you were taught like me you were told they would first see a dot as the ball started to pass through their word. The dot would get bigger and bigger until the diameter was reached then shrink back down to nothing. But a ball made up of matter as we currently know it is made of atoms; mostly space. So only the part of the atom intersecting their world could be observed. If the ball was stationary the “atom” would look like a fussy quivering object as the atom is vibrating. There could be many of these objects intersecting their world. If you were taught like me you were told they would first see a dot as the ball started to pass through their world. The dot would get bigger and bigger until the diameter was reached then shrink back down to nothing. But a ball made up of matter as we currently know it is made of atoms; mostly space. So only the part of the atom intersecting their world could be observed. If the ball was stationary the “atom” would look like a fussy quivering object as the “atom” is vibrating. There could be many of these objects intersecting their world. They most likely could not detect the momentary arrival and exit of the atom's electrons do to their size and speed. Scientists being scientists would run experiments on the object; one finding some free to rotate materials would align to the nearest “atom”, referring to the effect as “magnetism”. James Brian MacDonald 11:52, 24 December 2015 (UTC) — Preceding unsigned comment added by James B MacDonald (talkcontribs)