Sequence of differential equation solutions
Complex color plot of the Laguerre polynomial L n(x) with n as -1 divided by 9 and x as z to the power of 4 from -2-2i to 2+2i
In mathematics , the Laguerre polynomials , named after Edmond Laguerre (1834–1886), are nontrivial solutions of Laguerre's differential equation:
x
y
″
+
(
1
−
x
)
y
′
+
n
y
=
0
,
y
=
y
(
x
)
{\displaystyle xy''+(1-x)y'+ny=0,\ y=y(x)}
which is a second-order linear differential equation . This equation has nonsingular solutions only if n is a non-negative integer.
Sometimes the name Laguerre polynomials is used for solutions of
x
y
″
+
(
α あるふぁ
+
1
−
x
)
y
′
+
n
y
=
0
.
{\displaystyle xy''+(\alpha +1-x)y'+ny=0~.}
where n is still a non-negative integer.
Then they are also named generalized Laguerre polynomials , as will be done here (alternatively associated Laguerre polynomials or, rarely, Sonine polynomials , after their inventor[ 1] Nikolay Yakovlevich Sonin ).
More generally, a Laguerre function is a solution when n is not necessarily a non-negative integer.
The Laguerre polynomials are also used for Gauss–Laguerre quadrature to numerically compute integrals of the form
∫
0
∞
f
(
x
)
e
−
x
d
x
.
{\displaystyle \int _{0}^{\infty }f(x)e^{-x}\,dx.}
These polynomials, usually denoted L 0 , L 1 , ..., are a polynomial sequence which may be defined by the Rodrigues formula ,
L
n
(
x
)
=
e
x
n
!
d
n
d
x
n
(
e
−
x
x
n
)
=
1
n
!
(
d
d
x
−
1
)
n
x
n
,
{\displaystyle L_{n}(x)={\frac {e^{x}}{n!}}{\frac {d^{n}}{dx^{n}}}\left(e^{-x}x^{n}\right)={\frac {1}{n!}}\left({\frac {d}{dx}}-1\right)^{n}x^{n},}
reducing to the closed form of a following section.
They are orthogonal polynomials with respect to an inner product
⟨
f
,
g
⟩
=
∫
0
∞
f
(
x
)
g
(
x
)
e
−
x
d
x
.
{\displaystyle \langle f,g\rangle =\int _{0}^{\infty }f(x)g(x)e^{-x}\,dx.}
The rook polynomials in combinatorics are more or less the same as Laguerre polynomials, up to elementary changes of variables. Further see the Tricomi–Carlitz polynomials .
The Laguerre polynomials arise in quantum mechanics, in the radial part of the solution of the Schrödinger equation for a one-electron atom. They also describe the static Wigner functions of oscillator systems in quantum mechanics in phase space . They further enter in the quantum mechanics of the Morse potential and of the 3D isotropic harmonic oscillator .
Physicists sometimes use a definition for the Laguerre polynomials that is larger by a factor of n ! than the definition used here. (Likewise, some physicists may use somewhat different definitions of the so-called associated Laguerre polynomials.)
The first few polynomials
These are the first few Laguerre polynomials:
n
L
n
(
x
)
{\displaystyle L_{n}(x)\,}
0
1
{\displaystyle 1\,}
1
−
x
+
1
{\displaystyle -x+1\,}
2
1
2
(
x
2
−
4
x
+
2
)
{\displaystyle {\tfrac {1}{2}}(x^{2}-4x+2)\,}
3
1
6
(
−
x
3
+
9
x
2
−
18
x
+
6
)
{\displaystyle {\tfrac {1}{6}}(-x^{3}+9x^{2}-18x+6)\,}
4
1
24
(
x
4
−
16
x
3
+
72
x
2
−
96
x
+
24
)
{\displaystyle {\tfrac {1}{24}}(x^{4}-16x^{3}+72x^{2}-96x+24)\,}
5
1
120
(
−
x
5
+
25
x
4
−
200
x
3
+
600
x
2
−
600
x
+
120
)
{\displaystyle {\tfrac {1}{120}}(-x^{5}+25x^{4}-200x^{3}+600x^{2}-600x+120)\,}
6
1
720
(
x
6
−
36
x
5
+
450
x
4
−
2400
x
3
+
5400
x
2
−
4320
x
+
720
)
{\displaystyle {\tfrac {1}{720}}(x^{6}-36x^{5}+450x^{4}-2400x^{3}+5400x^{2}-4320x+720)\,}
n
1
n
!
(
(
−
x
)
n
+
n
2
(
−
x
)
n
−
1
+
⋯
+
n
(
n
!
)
(
−
x
)
+
n
!
)
{\displaystyle {\tfrac {1}{n!}}((-x)^{n}+n^{2}(-x)^{n-1}+\dots +n({n!})(-x)+n!)\,}
The first six Laguerre polynomials.
One can also define the Laguerre polynomials recursively, defining the first two polynomials as
L
0
(
x
)
=
1
{\displaystyle L_{0}(x)=1}
L
1
(
x
)
=
1
−
x
{\displaystyle L_{1}(x)=1-x}
and then using the following recurrence relation for any k ≥ 1 :
L
k
+
1
(
x
)
=
(
2
k
+
1
−
x
)
L
k
(
x
)
−
k
L
k
−
1
(
x
)
k
+
1
.
{\displaystyle L_{k+1}(x)={\frac {(2k+1-x)L_{k}(x)-kL_{k-1}(x)}{k+1}}.}
Furthermore,
x
L
n
′
(
x
)
=
n
L
n
(
x
)
−
n
L
n
−
1
(
x
)
.
{\displaystyle xL'_{n}(x)=nL_{n}(x)-nL_{n-1}(x).}
In solution of some boundary value problems, the characteristic values can be useful:
L
k
(
0
)
=
1
,
L
k
′
(
0
)
=
−
k
.
{\displaystyle L_{k}(0)=1,L_{k}'(0)=-k.}
The closed form is
L
n
(
x
)
=
∑
k
=
0
n
(
n
k
)
(
−
1
)
k
k
!
x
k
.
{\displaystyle L_{n}(x)=\sum _{k=0}^{n}{\binom {n}{k}}{\frac {(-1)^{k}}{k!}}x^{k}.}
The generating function for them likewise follows,
∑
n
=
0
∞
t
n
L
n
(
x
)
=
1
1
−
t
e
−
t
x
/
(
1
−
t
)
.
{\displaystyle \sum _{n=0}^{\infty }t^{n}L_{n}(x)={\frac {1}{1-t}}e^{-tx/(1-t)}.}
The operator form is
L
n
(
x
)
=
1
n
!
e
x
d
n
d
x
n
(
x
n
e
−
x
)
{\displaystyle L_{n}(x)={\frac {1}{n!}}e^{x}{\frac {d^{n}}{dx^{n}}}(x^{n}e^{-x})}
Polynomials of negative index can be expressed using the ones with positive index:
L
−
n
(
x
)
=
e
x
L
n
−
1
(
−
x
)
.
{\displaystyle L_{-n}(x)=e^{x}L_{n-1}(-x).}
Generalized Laguerre polynomials
For arbitrary real α あるふぁ the polynomial solutions of the differential equation[ 2]
x
y
″
+
(
α あるふぁ
+
1
−
x
)
y
′
+
n
y
=
0
{\displaystyle x\,y''+\left(\alpha +1-x\right)y'+n\,y=0}
are called generalized Laguerre polynomials , or associated Laguerre polynomials .
One can also define the generalized Laguerre polynomials recursively, defining the first two polynomials as
L
0
(
α あるふぁ
)
(
x
)
=
1
{\displaystyle L_{0}^{(\alpha )}(x)=1}
L
1
(
α あるふぁ
)
(
x
)
=
1
+
α あるふぁ
−
x
{\displaystyle L_{1}^{(\alpha )}(x)=1+\alpha -x}
and then using the following recurrence relation for any k ≥ 1 :
L
k
+
1
(
α あるふぁ
)
(
x
)
=
(
2
k
+
1
+
α あるふぁ
−
x
)
L
k
(
α あるふぁ
)
(
x
)
−
(
k
+
α あるふぁ
)
L
k
−
1
(
α あるふぁ
)
(
x
)
k
+
1
.
{\displaystyle L_{k+1}^{(\alpha )}(x)={\frac {(2k+1+\alpha -x)L_{k}^{(\alpha )}(x)-(k+\alpha )L_{k-1}^{(\alpha )}(x)}{k+1}}.}
The simple Laguerre polynomials are the special case α あるふぁ = 0 of the generalized Laguerre polynomials:
L
n
(
0
)
(
x
)
=
L
n
(
x
)
.
{\displaystyle L_{n}^{(0)}(x)=L_{n}(x).}
The Rodrigues formula for them is
L
n
(
α あるふぁ
)
(
x
)
=
x
−
α あるふぁ
e
x
n
!
d
n
d
x
n
(
e
−
x
x
n
+
α あるふぁ
)
=
x
−
α あるふぁ
n
!
(
d
d
x
−
1
)
n
x
n
+
α あるふぁ
.
{\displaystyle L_{n}^{(\alpha )}(x)={x^{-\alpha }e^{x} \over n!}{d^{n} \over dx^{n}}\left(e^{-x}x^{n+\alpha }\right)={\frac {x^{-\alpha }}{n!}}\left({\frac {d}{dx}}-1\right)^{n}x^{n+\alpha }.}
The generating function for them is
∑
n
=
0
∞
t
n
L
n
(
α あるふぁ
)
(
x
)
=
1
(
1
−
t
)
α あるふぁ
+
1
e
−
t
x
/
(
1
−
t
)
.
{\displaystyle \sum _{n=0}^{\infty }t^{n}L_{n}^{(\alpha )}(x)={\frac {1}{(1-t)^{\alpha +1}}}e^{-tx/(1-t)}.}
The first few generalized Laguerre polynomials, Ln (k ) (x )
Explicit examples and properties of the generalized Laguerre polynomials
Laguerre functions are defined by confluent hypergeometric functions and Kummer's transformation as[ 3]
L
n
(
α あるふぁ
)
(
x
)
:=
(
n
+
α あるふぁ
n
)
M
(
−
n
,
α あるふぁ
+
1
,
x
)
.
{\displaystyle L_{n}^{(\alpha )}(x):={n+\alpha \choose n}M(-n,\alpha +1,x).}
where
(
n
+
α あるふぁ
n
)
{\textstyle {n+\alpha \choose n}}
is a generalized binomial coefficient . When n is an integer the function reduces to a polynomial of degree n . It has the alternative expression[ 4]
L
n
(
α あるふぁ
)
(
x
)
=
(
−
1
)
n
n
!
U
(
−
n
,
α あるふぁ
+
1
,
x
)
{\displaystyle L_{n}^{(\alpha )}(x)={\frac {(-1)^{n}}{n!}}U(-n,\alpha +1,x)}
in terms of Kummer's function of the second kind .
The closed form for these generalized Laguerre polynomials of degree n is[ 5]
L
n
(
α あるふぁ
)
(
x
)
=
∑
i
=
0
n
(
−
1
)
i
(
n
+
α あるふぁ
n
−
i
)
x
i
i
!
{\displaystyle L_{n}^{(\alpha )}(x)=\sum _{i=0}^{n}(-1)^{i}{n+\alpha \choose n-i}{\frac {x^{i}}{i!}}}
derived by applying Leibniz's theorem for differentiation of a product to Rodrigues' formula.
Laguerre polynomials have a differential operator representation, much like the closely related Hermite polynomials. Namely, let
D
=
d
d
x
{\displaystyle D={\frac {d}{dx}}}
and consider the differential operator
M
=
x
D
2
+
(
α あるふぁ
+
1
)
D
{\displaystyle M=xD^{2}+(\alpha +1)D}
. Then
exp
(
−
t
M
)
x
n
=
(
−
1
)
n
t
n
n
!
L
n
(
α あるふぁ
)
(
x
t
)
{\displaystyle \exp(-tM)x^{n}=(-1)^{n}t^{n}n!L_{n}^{(\alpha )}\left({\frac {x}{t}}\right)}
.[citation needed ]
The first few generalized Laguerre polynomials are:
L
0
(
α あるふぁ
)
(
x
)
=
1
L
1
(
α あるふぁ
)
(
x
)
=
−
x
+
(
α あるふぁ
+
1
)
L
2
(
α あるふぁ
)
(
x
)
=
x
2
2
−
(
α あるふぁ
+
2
)
x
+
(
α あるふぁ
+
1
)
(
α あるふぁ
+
2
)
2
L
3
(
α あるふぁ
)
(
x
)
=
−
x
3
6
+
(
α あるふぁ
+
3
)
x
2
2
−
(
α あるふぁ
+
2
)
(
α あるふぁ
+
3
)
x
2
+
(
α あるふぁ
+
1
)
(
α あるふぁ
+
2
)
(
α あるふぁ
+
3
)
6
{\displaystyle {\begin{aligned}L_{0}^{(\alpha )}(x)&=1\\L_{1}^{(\alpha )}(x)&=-x+(\alpha +1)\\L_{2}^{(\alpha )}(x)&={\frac {x^{2}}{2}}-(\alpha +2)x+{\frac {(\alpha +1)(\alpha +2)}{2}}\\L_{3}^{(\alpha )}(x)&={\frac {-x^{3}}{6}}+{\frac {(\alpha +3)x^{2}}{2}}-{\frac {(\alpha +2)(\alpha +3)x}{2}}+{\frac {(\alpha +1)(\alpha +2)(\alpha +3)}{6}}\end{aligned}}}
The coefficient of the leading term is (−1)n /n ! ;
The constant term , which is the value at 0, is
L
n
(
α あるふぁ
)
(
0
)
=
(
n
+
α あるふぁ
n
)
=
Γ がんま
(
n
+
α あるふぁ
+
1
)
n
!
Γ がんま
(
α あるふぁ
+
1
)
;
{\displaystyle L_{n}^{(\alpha )}(0)={n+\alpha \choose n}={\frac {\Gamma (n+\alpha +1)}{n!\,\Gamma (\alpha +1)}};}
If α あるふぁ is non-negative, then L n (α あるふぁ ) has n real , strictly positive roots (notice that
(
(
−
1
)
n
−
i
L
n
−
i
(
α あるふぁ
)
)
i
=
0
n
{\displaystyle \left((-1)^{n-i}L_{n-i}^{(\alpha )}\right)_{i=0}^{n}}
is a Sturm chain ), which are all in the interval
(
0
,
n
+
α あるふぁ
+
(
n
−
1
)
n
+
α あるふぁ
]
.
{\displaystyle \left(0,n+\alpha +(n-1){\sqrt {n+\alpha }}\,\right].}
[citation needed ]
The polynomials' asymptotic behaviour for large n , but fixed α あるふぁ and x > 0 , is given by[ 6] [ 7]
L
n
(
α あるふぁ
)
(
x
)
=
n
α あるふぁ
2
−
1
4
π ぱい
e
x
2
x
α あるふぁ
2
+
1
4
sin
(
2
n
x
−
π ぱい
2
(
α あるふぁ
−
1
2
)
)
+
O
(
n
α あるふぁ
2
−
3
4
)
,
L
n
(
α あるふぁ
)
(
−
x
)
=
(
n
+
1
)
α あるふぁ
2
−
1
4
2
π ぱい
e
−
x
/
2
x
α あるふぁ
2
+
1
4
e
2
x
(
n
+
1
)
⋅
(
1
+
O
(
1
n
+
1
)
)
,
{\displaystyle {\begin{aligned}&L_{n}^{(\alpha )}(x)={\frac {n^{{\frac {\alpha }{2}}-{\frac {1}{4}}}}{\sqrt {\pi }}}{\frac {e^{\frac {x}{2}}}{x^{{\frac {\alpha }{2}}+{\frac {1}{4}}}}}\sin \left(2{\sqrt {nx}}-{\frac {\pi }{2}}\left(\alpha -{\frac {1}{2}}\right)\right)+O\left(n^{{\frac {\alpha }{2}}-{\frac {3}{4}}}\right),\\[6pt]&L_{n}^{(\alpha )}(-x)={\frac {(n+1)^{{\frac {\alpha }{2}}-{\frac {1}{4}}}}{2{\sqrt {\pi }}}}{\frac {e^{-x/2}}{x^{{\frac {\alpha }{2}}+{\frac {1}{4}}}}}e^{2{\sqrt {x(n+1)}}}\cdot \left(1+O\left({\frac {1}{\sqrt {n+1}}}\right)\right),\end{aligned}}}
and summarizing by
L
n
(
α あるふぁ
)
(
x
n
)
n
α あるふぁ
≈
e
x
/
2
n
⋅
J
α あるふぁ
(
2
x
)
x
α あるふぁ
,
{\displaystyle {\frac {L_{n}^{(\alpha )}\left({\frac {x}{n}}\right)}{n^{\alpha }}}\approx e^{x/2n}\cdot {\frac {J_{\alpha }\left(2{\sqrt {x}}\right)}{{\sqrt {x}}^{\alpha }}},}
where
J
α あるふぁ
{\displaystyle J_{\alpha }}
is the Bessel function .
As a contour integral
Given the generating function specified above, the polynomials may be expressed in terms of a contour integral
L
n
(
α あるふぁ
)
(
x
)
=
1
2
π ぱい
i
∮
C
e
−
x
t
/
(
1
−
t
)
(
1
−
t
)
α あるふぁ
+
1
t
n
+
1
d
t
,
{\displaystyle L_{n}^{(\alpha )}(x)={\frac {1}{2\pi i}}\oint _{C}{\frac {e^{-xt/(1-t)}}{(1-t)^{\alpha +1}\,t^{n+1}}}\;dt,}
where the contour circles the origin once in a counterclockwise direction without enclosing the essential singularity at 1
Recurrence relations
The addition formula for Laguerre polynomials:[ 8]
L
n
(
α あるふぁ
+
β べーた
+
1
)
(
x
+
y
)
=
∑
i
=
0
n
L
i
(
α あるふぁ
)
(
x
)
L
n
−
i
(
β べーた
)
(
y
)
.
{\displaystyle L_{n}^{(\alpha +\beta +1)}(x+y)=\sum _{i=0}^{n}L_{i}^{(\alpha )}(x)L_{n-i}^{(\beta )}(y).}
Laguerre's polynomials satisfy the recurrence relations
L
n
(
α あるふぁ
)
(
x
)
=
∑
i
=
0
n
L
n
−
i
(
α あるふぁ
+
i
)
(
y
)
(
y
−
x
)
i
i
!
,
{\displaystyle L_{n}^{(\alpha )}(x)=\sum _{i=0}^{n}L_{n-i}^{(\alpha +i)}(y){\frac {(y-x)^{i}}{i!}},}
in particular
L
n
(
α あるふぁ
+
1
)
(
x
)
=
∑
i
=
0
n
L
i
(
α あるふぁ
)
(
x
)
{\displaystyle L_{n}^{(\alpha +1)}(x)=\sum _{i=0}^{n}L_{i}^{(\alpha )}(x)}
and
L
n
(
α あるふぁ
)
(
x
)
=
∑
i
=
0
n
(
α あるふぁ
−
β べーた
+
n
−
i
−
1
n
−
i
)
L
i
(
β べーた
)
(
x
)
,
{\displaystyle L_{n}^{(\alpha )}(x)=\sum _{i=0}^{n}{\alpha -\beta +n-i-1 \choose n-i}L_{i}^{(\beta )}(x),}
or
L
n
(
α あるふぁ
)
(
x
)
=
∑
i
=
0
n
(
α あるふぁ
−
β べーた
+
n
n
−
i
)
L
i
(
β べーた
−
i
)
(
x
)
;
{\displaystyle L_{n}^{(\alpha )}(x)=\sum _{i=0}^{n}{\alpha -\beta +n \choose n-i}L_{i}^{(\beta -i)}(x);}
moreover
L
n
(
α あるふぁ
)
(
x
)
−
∑
j
=
0
Δ でるた
−
1
(
n
+
α あるふぁ
n
−
j
)
(
−
1
)
j
x
j
j
!
=
(
−
1
)
Δ でるた
x
Δ でるた
(
Δ でるた
−
1
)
!
∑
i
=
0
n
−
Δ でるた
(
n
+
α あるふぁ
n
−
Δ でるた
−
i
)
(
n
−
i
)
(
n
i
)
L
i
(
α あるふぁ
+
Δ でるた
)
(
x
)
=
(
−
1
)
Δ でるた
x
Δ でるた
(
Δ でるた
−
1
)
!
∑
i
=
0
n
−
Δ でるた
(
n
+
α あるふぁ
−
i
−
1
n
−
Δ でるた
−
i
)
(
n
−
i
)
(
n
i
)
L
i
(
n
+
α あるふぁ
+
Δ でるた
−
i
)
(
x
)
{\displaystyle {\begin{aligned}L_{n}^{(\alpha )}(x)-\sum _{j=0}^{\Delta -1}{n+\alpha \choose n-j}(-1)^{j}{\frac {x^{j}}{j!}}&=(-1)^{\Delta }{\frac {x^{\Delta }}{(\Delta -1)!}}\sum _{i=0}^{n-\Delta }{\frac {n+\alpha \choose n-\Delta -i}{(n-i){n \choose i}}}L_{i}^{(\alpha +\Delta )}(x)\\[6pt]&=(-1)^{\Delta }{\frac {x^{\Delta }}{(\Delta -1)!}}\sum _{i=0}^{n-\Delta }{\frac {n+\alpha -i-1 \choose n-\Delta -i}{(n-i){n \choose i}}}L_{i}^{(n+\alpha +\Delta -i)}(x)\end{aligned}}}
They can be used to derive the four 3-point-rules
L
n
(
α あるふぁ
)
(
x
)
=
L
n
(
α あるふぁ
+
1
)
(
x
)
−
L
n
−
1
(
α あるふぁ
+
1
)
(
x
)
=
∑
j
=
0
k
(
k
j
)
L
n
−
j
(
α あるふぁ
+
k
)
(
x
)
,
n
L
n
(
α あるふぁ
)
(
x
)
=
(
n
+
α あるふぁ
)
L
n
−
1
(
α あるふぁ
)
(
x
)
−
x
L
n
−
1
(
α あるふぁ
+
1
)
(
x
)
,
or
x
k
k
!
L
n
(
α あるふぁ
)
(
x
)
=
∑
i
=
0
k
(
−
1
)
i
(
n
+
i
i
)
(
n
+
α あるふぁ
k
−
i
)
L
n
+
i
(
α あるふぁ
−
k
)
(
x
)
,
n
L
n
(
α あるふぁ
+
1
)
(
x
)
=
(
n
−
x
)
L
n
−
1
(
α あるふぁ
+
1
)
(
x
)
+
(
n
+
α あるふぁ
)
L
n
−
1
(
α あるふぁ
)
(
x
)
x
L
n
(
α あるふぁ
+
1
)
(
x
)
=
(
n
+
α あるふぁ
)
L
n
−
1
(
α あるふぁ
)
(
x
)
−
(
n
−
x
)
L
n
(
α あるふぁ
)
(
x
)
;
{\displaystyle {\begin{aligned}L_{n}^{(\alpha )}(x)&=L_{n}^{(\alpha +1)}(x)-L_{n-1}^{(\alpha +1)}(x)=\sum _{j=0}^{k}{k \choose j}L_{n-j}^{(\alpha +k)}(x),\\[10pt]nL_{n}^{(\alpha )}(x)&=(n+\alpha )L_{n-1}^{(\alpha )}(x)-xL_{n-1}^{(\alpha +1)}(x),\\[10pt]&{\text{or }}\\{\frac {x^{k}}{k!}}L_{n}^{(\alpha )}(x)&=\sum _{i=0}^{k}(-1)^{i}{n+i \choose i}{n+\alpha \choose k-i}L_{n+i}^{(\alpha -k)}(x),\\[10pt]nL_{n}^{(\alpha +1)}(x)&=(n-x)L_{n-1}^{(\alpha +1)}(x)+(n+\alpha )L_{n-1}^{(\alpha )}(x)\\[10pt]xL_{n}^{(\alpha +1)}(x)&=(n+\alpha )L_{n-1}^{(\alpha )}(x)-(n-x)L_{n}^{(\alpha )}(x);\end{aligned}}}
combined they give this additional, useful recurrence relations
L
n
(
α あるふぁ
)
(
x
)
=
(
2
+
α あるふぁ
−
1
−
x
n
)
L
n
−
1
(
α あるふぁ
)
(
x
)
−
(
1
+
α あるふぁ
−
1
n
)
L
n
−
2
(
α あるふぁ
)
(
x
)
=
α あるふぁ
+
1
−
x
n
L
n
−
1
(
α あるふぁ
+
1
)
(
x
)
−
x
n
L
n
−
2
(
α あるふぁ
+
2
)
(
x
)
{\displaystyle {\begin{aligned}L_{n}^{(\alpha )}(x)&=\left(2+{\frac {\alpha -1-x}{n}}\right)L_{n-1}^{(\alpha )}(x)-\left(1+{\frac {\alpha -1}{n}}\right)L_{n-2}^{(\alpha )}(x)\\[10pt]&={\frac {\alpha +1-x}{n}}L_{n-1}^{(\alpha +1)}(x)-{\frac {x}{n}}L_{n-2}^{(\alpha +2)}(x)\end{aligned}}}
Since
L
n
(
α あるふぁ
)
(
x
)
{\displaystyle L_{n}^{(\alpha )}(x)}
is a monic polynomial of degree
n
{\displaystyle n}
in
α あるふぁ
{\displaystyle \alpha }
,
there is the partial fraction decomposition
n
!
L
n
(
α あるふぁ
)
(
x
)
(
α あるふぁ
+
1
)
n
=
1
−
∑
j
=
1
n
(
−
1
)
j
j
α あるふぁ
+
j
(
n
j
)
L
n
(
−
j
)
(
x
)
=
1
−
∑
j
=
1
n
x
j
α あるふぁ
+
j
L
n
−
j
(
j
)
(
x
)
(
j
−
1
)
!
=
1
−
x
∑
i
=
1
n
L
n
−
i
(
−
α あるふぁ
)
(
x
)
L
i
−
1
(
α あるふぁ
+
1
)
(
−
x
)
α あるふぁ
+
i
.
{\displaystyle {\begin{aligned}{\frac {n!\,L_{n}^{(\alpha )}(x)}{(\alpha +1)_{n}}}&=1-\sum _{j=1}^{n}(-1)^{j}{\frac {j}{\alpha +j}}{n \choose j}L_{n}^{(-j)}(x)\\&=1-\sum _{j=1}^{n}{\frac {x^{j}}{\alpha +j}}\,\,{\frac {L_{n-j}^{(j)}(x)}{(j-1)!}}\\&=1-x\sum _{i=1}^{n}{\frac {L_{n-i}^{(-\alpha )}(x)L_{i-1}^{(\alpha +1)}(-x)}{\alpha +i}}.\end{aligned}}}
The second equality follows by the following identity, valid for integer i and n and immediate from the expression of
L
n
(
α あるふぁ
)
(
x
)
{\displaystyle L_{n}^{(\alpha )}(x)}
in terms of Charlier polynomials :
(
−
x
)
i
i
!
L
n
(
i
−
n
)
(
x
)
=
(
−
x
)
n
n
!
L
i
(
n
−
i
)
(
x
)
.
{\displaystyle {\frac {(-x)^{i}}{i!}}L_{n}^{(i-n)}(x)={\frac {(-x)^{n}}{n!}}L_{i}^{(n-i)}(x).}
For the third equality apply the fourth and fifth identities of this section.
Derivatives of generalized Laguerre polynomials
Differentiating the power series representation of a generalized Laguerre polynomial k times leads to
d
k
d
x
k
L
n
(
α あるふぁ
)
(
x
)
=
{
(
−
1
)
k
L
n
−
k
(
α あるふぁ
+
k
)
(
x
)
if
k
≤
n
,
0
otherwise.
{\displaystyle {\frac {d^{k}}{dx^{k}}}L_{n}^{(\alpha )}(x)={\begin{cases}(-1)^{k}L_{n-k}^{(\alpha +k)}(x)&{\text{if }}k\leq n,\\0&{\text{otherwise.}}\end{cases}}}
This points to a special case (α あるふぁ = 0 ) of the formula above: for integer α あるふぁ = k the generalized polynomial may be written
L
n
(
k
)
(
x
)
=
(
−
1
)
k
d
k
L
n
+
k
(
x
)
d
x
k
,
{\displaystyle L_{n}^{(k)}(x)=(-1)^{k}{\frac {d^{k}L_{n+k}(x)}{dx^{k}}},}
the shift by k sometimes causing confusion with the usual parenthesis notation for a derivative.
Moreover, the following equation holds:
1
k
!
d
k
d
x
k
x
α あるふぁ
L
n
(
α あるふぁ
)
(
x
)
=
(
n
+
α あるふぁ
k
)
x
α あるふぁ
−
k
L
n
(
α あるふぁ
−
k
)
(
x
)
,
{\displaystyle {\frac {1}{k!}}{\frac {d^{k}}{dx^{k}}}x^{\alpha }L_{n}^{(\alpha )}(x)={n+\alpha \choose k}x^{\alpha -k}L_{n}^{(\alpha -k)}(x),}
which generalizes with Cauchy's formula to
L
n
(
α あるふぁ
′
)
(
x
)
=
(
α あるふぁ
′
−
α あるふぁ
)
(
α あるふぁ
′
+
n
α あるふぁ
′
−
α あるふぁ
)
∫
0
x
t
α あるふぁ
(
x
−
t
)
α あるふぁ
′
−
α あるふぁ
−
1
x
α あるふぁ
′
L
n
(
α あるふぁ
)
(
t
)
d
t
.
{\displaystyle L_{n}^{(\alpha ')}(x)=(\alpha '-\alpha ){\alpha '+n \choose \alpha '-\alpha }\int _{0}^{x}{\frac {t^{\alpha }(x-t)^{\alpha '-\alpha -1}}{x^{\alpha '}}}L_{n}^{(\alpha )}(t)\,dt.}
The derivative with respect to the second variable α あるふぁ has the form,[ 9]
d
d
α あるふぁ
L
n
(
α あるふぁ
)
(
x
)
=
∑
i
=
0
n
−
1
L
i
(
α あるふぁ
)
(
x
)
n
−
i
.
{\displaystyle {\frac {d}{d\alpha }}L_{n}^{(\alpha )}(x)=\sum _{i=0}^{n-1}{\frac {L_{i}^{(\alpha )}(x)}{n-i}}.}
This is evident from the contour integral representation below.
The generalized Laguerre polynomials obey the differential equation
x
L
n
(
α あるふぁ
)
′
′
(
x
)
+
(
α あるふぁ
+
1
−
x
)
L
n
(
α あるふぁ
)
′
(
x
)
+
n
L
n
(
α あるふぁ
)
(
x
)
=
0
,
{\displaystyle xL_{n}^{(\alpha )\prime \prime }(x)+(\alpha +1-x)L_{n}^{(\alpha )\prime }(x)+nL_{n}^{(\alpha )}(x)=0,}
which may be compared with the equation obeyed by the k th derivative of the ordinary Laguerre polynomial,
x
L
n
[
k
]
′
′
(
x
)
+
(
k
+
1
−
x
)
L
n
[
k
]
′
(
x
)
+
(
n
−
k
)
L
n
[
k
]
(
x
)
=
0
,
{\displaystyle xL_{n}^{[k]\prime \prime }(x)+(k+1-x)L_{n}^{[k]\prime }(x)+(n-k)L_{n}^{[k]}(x)=0,}
where
L
n
[
k
]
(
x
)
≡
d
k
L
n
(
x
)
d
x
k
{\displaystyle L_{n}^{[k]}(x)\equiv {\frac {d^{k}L_{n}(x)}{dx^{k}}}}
for this equation only.
In Sturm–Liouville form the differential equation is
−
(
x
α あるふぁ
+
1
e
−
x
⋅
L
n
(
α あるふぁ
)
(
x
)
′
)
′
=
n
⋅
x
α あるふぁ
e
−
x
⋅
L
n
(
α あるふぁ
)
(
x
)
,
{\displaystyle -\left(x^{\alpha +1}e^{-x}\cdot L_{n}^{(\alpha )}(x)^{\prime }\right)'=n\cdot x^{\alpha }e^{-x}\cdot L_{n}^{(\alpha )}(x),}
which shows that L (α あるふぁ ) n is an eigenvector for the eigenvalue n .
Orthogonality
The generalized Laguerre polynomials are orthogonal over [0, ∞) with respect to the measure with weighting function xα あるふぁ e −x :[ 10]
∫
0
∞
x
α あるふぁ
e
−
x
L
n
(
α あるふぁ
)
(
x
)
L
m
(
α あるふぁ
)
(
x
)
d
x
=
Γ がんま
(
n
+
α あるふぁ
+
1
)
n
!
δ でるた
n
,
m
,
{\displaystyle \int _{0}^{\infty }x^{\alpha }e^{-x}L_{n}^{(\alpha )}(x)L_{m}^{(\alpha )}(x)dx={\frac {\Gamma (n+\alpha +1)}{n!}}\delta _{n,m},}
which follows from
∫
0
∞
x
α あるふぁ
′
−
1
e
−
x
L
n
(
α あるふぁ
)
(
x
)
d
x
=
(
α あるふぁ
−
α あるふぁ
′
+
n
n
)
Γ がんま
(
α あるふぁ
′
)
.
{\displaystyle \int _{0}^{\infty }x^{\alpha '-1}e^{-x}L_{n}^{(\alpha )}(x)dx={\alpha -\alpha '+n \choose n}\Gamma (\alpha ').}
If
Γ がんま
(
x
,
α あるふぁ
+
1
,
1
)
{\displaystyle \Gamma (x,\alpha +1,1)}
denotes the gamma distribution then the orthogonality relation can be written as
∫
0
∞
L
n
(
α あるふぁ
)
(
x
)
L
m
(
α あるふぁ
)
(
x
)
Γ がんま
(
x
,
α あるふぁ
+
1
,
1
)
d
x
=
(
n
+
α あるふぁ
n
)
δ でるた
n
,
m
,
{\displaystyle \int _{0}^{\infty }L_{n}^{(\alpha )}(x)L_{m}^{(\alpha )}(x)\Gamma (x,\alpha +1,1)dx={n+\alpha \choose n}\delta _{n,m},}
The associated, symmetric kernel polynomial has the representations (Christoffel–Darboux formula )[citation needed ]
K
n
(
α あるふぁ
)
(
x
,
y
)
:=
1
Γ がんま
(
α あるふぁ
+
1
)
∑
i
=
0
n
L
i
(
α あるふぁ
)
(
x
)
L
i
(
α あるふぁ
)
(
y
)
(
α あるふぁ
+
i
i
)
=
1
Γ がんま
(
α あるふぁ
+
1
)
L
n
(
α あるふぁ
)
(
x
)
L
n
+
1
(
α あるふぁ
)
(
y
)
−
L
n
+
1
(
α あるふぁ
)
(
x
)
L
n
(
α あるふぁ
)
(
y
)
x
−
y
n
+
1
(
n
+
α あるふぁ
n
)
=
1
Γ がんま
(
α あるふぁ
+
1
)
∑
i
=
0
n
x
i
i
!
L
n
−
i
(
α あるふぁ
+
i
)
(
x
)
L
n
−
i
(
α あるふぁ
+
i
+
1
)
(
y
)
(
α あるふぁ
+
n
n
)
(
n
i
)
;
{\displaystyle {\begin{aligned}K_{n}^{(\alpha )}(x,y)&:={\frac {1}{\Gamma (\alpha +1)}}\sum _{i=0}^{n}{\frac {L_{i}^{(\alpha )}(x)L_{i}^{(\alpha )}(y)}{\alpha +i \choose i}}\\[4pt]&={\frac {1}{\Gamma (\alpha +1)}}{\frac {L_{n}^{(\alpha )}(x)L_{n+1}^{(\alpha )}(y)-L_{n+1}^{(\alpha )}(x)L_{n}^{(\alpha )}(y)}{{\frac {x-y}{n+1}}{n+\alpha \choose n}}}\\[4pt]&={\frac {1}{\Gamma (\alpha +1)}}\sum _{i=0}^{n}{\frac {x^{i}}{i!}}{\frac {L_{n-i}^{(\alpha +i)}(x)L_{n-i}^{(\alpha +i+1)}(y)}{{\alpha +n \choose n}{n \choose i}}};\end{aligned}}}
recursively
K
n
(
α あるふぁ
)
(
x
,
y
)
=
y
α あるふぁ
+
1
K
n
−
1
(
α あるふぁ
+
1
)
(
x
,
y
)
+
1
Γ がんま
(
α あるふぁ
+
1
)
L
n
(
α あるふぁ
+
1
)
(
x
)
L
n
(
α あるふぁ
)
(
y
)
(
α あるふぁ
+
n
n
)
.
{\displaystyle K_{n}^{(\alpha )}(x,y)={\frac {y}{\alpha +1}}K_{n-1}^{(\alpha +1)}(x,y)+{\frac {1}{\Gamma (\alpha +1)}}{\frac {L_{n}^{(\alpha +1)}(x)L_{n}^{(\alpha )}(y)}{\alpha +n \choose n}}.}
Moreover,[clarification needed Limit as n goes to infinity? ]
y
α あるふぁ
e
−
y
K
n
(
α あるふぁ
)
(
⋅
,
y
)
→
δ でるた
(
y
−
⋅
)
.
{\displaystyle y^{\alpha }e^{-y}K_{n}^{(\alpha )}(\cdot ,y)\to \delta (y-\cdot ).}
Turán's inequalities can be derived here, which is
L
n
(
α あるふぁ
)
(
x
)
2
−
L
n
−
1
(
α あるふぁ
)
(
x
)
L
n
+
1
(
α あるふぁ
)
(
x
)
=
∑
k
=
0
n
−
1
(
α あるふぁ
+
n
−
1
n
−
k
)
n
(
n
k
)
L
k
(
α あるふぁ
−
1
)
(
x
)
2
>
0.
{\displaystyle L_{n}^{(\alpha )}(x)^{2}-L_{n-1}^{(\alpha )}(x)L_{n+1}^{(\alpha )}(x)=\sum _{k=0}^{n-1}{\frac {\alpha +n-1 \choose n-k}{n{n \choose k}}}L_{k}^{(\alpha -1)}(x)^{2}>0.}
The following integral is needed in the quantum mechanical treatment of the hydrogen atom ,
∫
0
∞
x
α あるふぁ
+
1
e
−
x
[
L
n
(
α あるふぁ
)
(
x
)
]
2
d
x
=
(
n
+
α あるふぁ
)
!
n
!
(
2
n
+
α あるふぁ
+
1
)
.
{\displaystyle \int _{0}^{\infty }x^{\alpha +1}e^{-x}\left[L_{n}^{(\alpha )}(x)\right]^{2}dx={\frac {(n+\alpha )!}{n!}}(2n+\alpha +1).}
Series expansions
Let a function have the (formal) series expansion
f
(
x
)
=
∑
i
=
0
∞
f
i
(
α あるふぁ
)
L
i
(
α あるふぁ
)
(
x
)
.
{\displaystyle f(x)=\sum _{i=0}^{\infty }f_{i}^{(\alpha )}L_{i}^{(\alpha )}(x).}
Then
f
i
(
α あるふぁ
)
=
∫
0
∞
L
i
(
α あるふぁ
)
(
x
)
(
i
+
α あるふぁ
i
)
⋅
x
α あるふぁ
e
−
x
Γ がんま
(
α あるふぁ
+
1
)
⋅
f
(
x
)
d
x
.
{\displaystyle f_{i}^{(\alpha )}=\int _{0}^{\infty }{\frac {L_{i}^{(\alpha )}(x)}{i+\alpha \choose i}}\cdot {\frac {x^{\alpha }e^{-x}}{\Gamma (\alpha +1)}}\cdot f(x)\,dx.}
The series converges in the associated Hilbert space L 2 [0, ∞) if and only if
‖
f
‖
L
2
2
:=
∫
0
∞
x
α あるふぁ
e
−
x
Γ がんま
(
α あるふぁ
+
1
)
|
f
(
x
)
|
2
d
x
=
∑
i
=
0
∞
(
i
+
α あるふぁ
i
)
|
f
i
(
α あるふぁ
)
|
2
<
∞
.
{\displaystyle \|f\|_{L^{2}}^{2}:=\int _{0}^{\infty }{\frac {x^{\alpha }e^{-x}}{\Gamma (\alpha +1)}}|f(x)|^{2}\,dx=\sum _{i=0}^{\infty }{i+\alpha \choose i}|f_{i}^{(\alpha )}|^{2}<\infty .}
Further examples of expansions
Monomials are represented as
x
n
n
!
=
∑
i
=
0
n
(
−
1
)
i
(
n
+
α あるふぁ
n
−
i
)
L
i
(
α あるふぁ
)
(
x
)
,
{\displaystyle {\frac {x^{n}}{n!}}=\sum _{i=0}^{n}(-1)^{i}{n+\alpha \choose n-i}L_{i}^{(\alpha )}(x),}
while binomials have the parametrization
(
n
+
x
n
)
=
∑
i
=
0
n
α あるふぁ
i
i
!
L
n
−
i
(
x
+
i
)
(
α あるふぁ
)
.
{\displaystyle {n+x \choose n}=\sum _{i=0}^{n}{\frac {\alpha ^{i}}{i!}}L_{n-i}^{(x+i)}(\alpha ).}
This leads directly to
e
−
γ がんま
x
=
∑
i
=
0
∞
γ がんま
i
(
1
+
γ がんま
)
i
+
α あるふぁ
+
1
L
i
(
α あるふぁ
)
(
x
)
convergent iff
ℜ
(
γ がんま
)
>
−
1
2
{\displaystyle e^{-\gamma x}=\sum _{i=0}^{\infty }{\frac {\gamma ^{i}}{(1+\gamma )^{i+\alpha +1}}}L_{i}^{(\alpha )}(x)\qquad {\text{convergent iff }}\Re (\gamma )>-{\tfrac {1}{2}}}
for the exponential function. The incomplete gamma function has the representation
Γ がんま
(
α あるふぁ
,
x
)
=
x
α あるふぁ
e
−
x
∑
i
=
0
∞
L
i
(
α あるふぁ
)
(
x
)
1
+
i
(
ℜ
(
α あるふぁ
)
>
−
1
,
x
>
0
)
.
{\displaystyle \Gamma (\alpha ,x)=x^{\alpha }e^{-x}\sum _{i=0}^{\infty }{\frac {L_{i}^{(\alpha )}(x)}{1+i}}\qquad \left(\Re (\alpha )>-1,x>0\right).}
In quantum mechanics
In quantum mechanics the Schrödinger equation for the hydrogen-like atom is exactly solvable by separation of variables in spherical coordinates. The radial part of the wave function is a (generalized) Laguerre polynomial.[ 11]
Vibronic transitions in the Franck-Condon approximation can also be described using Laguerre polynomials.[ 12]
Multiplication theorems
Erdélyi gives the following two multiplication theorems [ 13]
t
n
+
1
+
α あるふぁ
e
(
1
−
t
)
z
L
n
(
α あるふぁ
)
(
z
t
)
=
∑
k
=
n
∞
(
k
n
)
(
1
−
1
t
)
k
−
n
L
k
(
α あるふぁ
)
(
z
)
,
e
(
1
−
t
)
z
L
n
(
α あるふぁ
)
(
z
t
)
=
∑
k
=
0
∞
(
1
−
t
)
k
z
k
k
!
L
n
(
α あるふぁ
+
k
)
(
z
)
.
{\displaystyle {\begin{aligned}&t^{n+1+\alpha }e^{(1-t)z}L_{n}^{(\alpha )}(zt)=\sum _{k=n}^{\infty }{k \choose n}\left(1-{\frac {1}{t}}\right)^{k-n}L_{k}^{(\alpha )}(z),\\[6pt]&e^{(1-t)z}L_{n}^{(\alpha )}(zt)=\sum _{k=0}^{\infty }{\frac {(1-t)^{k}z^{k}}{k!}}L_{n}^{(\alpha +k)}(z).\end{aligned}}}
Relation to Hermite polynomials
The generalized Laguerre polynomials are related to the Hermite polynomials :
H
2
n
(
x
)
=
(
−
1
)
n
2
2
n
n
!
L
n
(
−
1
/
2
)
(
x
2
)
H
2
n
+
1
(
x
)
=
(
−
1
)
n
2
2
n
+
1
n
!
x
L
n
(
1
/
2
)
(
x
2
)
{\displaystyle {\begin{aligned}H_{2n}(x)&=(-1)^{n}2^{2n}n!L_{n}^{(-1/2)}(x^{2})\\[4pt]H_{2n+1}(x)&=(-1)^{n}2^{2n+1}n!xL_{n}^{(1/2)}(x^{2})\end{aligned}}}
where the H n (x ) are the Hermite polynomials based on the weighting function exp(−x 2 ) , the so-called "physicist's version."
Because of this, the generalized Laguerre polynomials arise in the treatment of the quantum harmonic oscillator .
Relation to hypergeometric functions
The Laguerre polynomials may be defined in terms of hypergeometric functions , specifically the confluent hypergeometric functions , as
L
n
(
α あるふぁ
)
(
x
)
=
(
n
+
α あるふぁ
n
)
M
(
−
n
,
α あるふぁ
+
1
,
x
)
=
(
α あるふぁ
+
1
)
n
n
!
1
F
1
(
−
n
,
α あるふぁ
+
1
,
x
)
{\displaystyle L_{n}^{(\alpha )}(x)={n+\alpha \choose n}M(-n,\alpha +1,x)={\frac {(\alpha +1)_{n}}{n!}}\,_{1}F_{1}(-n,\alpha +1,x)}
where
(
a
)
n
{\displaystyle (a)_{n}}
is the Pochhammer symbol (which in this case represents the rising factorial).
The generalized Laguerre polynomials satisfy the Hardy–Hille formula[ 14] [ 15]
∑
n
=
0
∞
n
!
Γ がんま
(
α あるふぁ
+
1
)
Γ がんま
(
n
+
α あるふぁ
+
1
)
L
n
(
α あるふぁ
)
(
x
)
L
n
(
α あるふぁ
)
(
y
)
t
n
=
1
(
1
−
t
)
α あるふぁ
+
1
e
−
(
x
+
y
)
t
/
(
1
−
t
)
0
F
1
(
;
α あるふぁ
+
1
;
x
y
t
(
1
−
t
)
2
)
,
{\displaystyle \sum _{n=0}^{\infty }{\frac {n!\,\Gamma \left(\alpha +1\right)}{\Gamma \left(n+\alpha +1\right)}}L_{n}^{(\alpha )}(x)L_{n}^{(\alpha )}(y)t^{n}={\frac {1}{(1-t)^{\alpha +1}}}e^{-(x+y)t/(1-t)}\,_{0}F_{1}\left(;\alpha +1;{\frac {xyt}{(1-t)^{2}}}\right),}
where the series on the left converges for
α あるふぁ
>
−
1
{\displaystyle \alpha >-1}
and
|
t
|
<
1
{\displaystyle |t|<1}
. Using the identity
0
F
1
(
;
α あるふぁ
+
1
;
z
)
=
Γ がんま
(
α あるふぁ
+
1
)
z
−
α あるふぁ
/
2
I
α あるふぁ
(
2
z
)
,
{\displaystyle \,_{0}F_{1}(;\alpha +1;z)=\,\Gamma (\alpha +1)z^{-\alpha /2}I_{\alpha }\left(2{\sqrt {z}}\right),}
(see generalized hypergeometric function ), this can also be written as
∑
n
=
0
∞
n
!
Γ がんま
(
1
+
α あるふぁ
+
n
)
L
n
(
α あるふぁ
)
(
x
)
L
n
(
α あるふぁ
)
(
y
)
t
n
=
1
(
x
y
t
)
α あるふぁ
/
2
(
1
−
t
)
e
−
(
x
+
y
)
t
/
(
1
−
t
)
I
α あるふぁ
(
2
x
y
t
1
−
t
)
.
{\displaystyle \sum _{n=0}^{\infty }{\frac {n!}{\Gamma (1+\alpha +n)}}L_{n}^{(\alpha )}(x)L_{n}^{(\alpha )}(y)t^{n}={\frac {1}{(xyt)^{\alpha /2}(1-t)}}e^{-(x+y)t/(1-t)}I_{\alpha }\left({\frac {2{\sqrt {xyt}}}{1-t}}\right).}
This formula is a generalization of the Mehler kernel for Hermite polynomials , which can be recovered from it by using the relations between Laguerre and Hermite polynomials given above.
Physics Convention
The generalized Laguerre polynomials are used to describe the quantum wavefunction for hydrogen atom orbitals.[ 16] [ 17] [ 18] The convention used throughout this article expressesthe generalized Laguerre polynomials as [ 19]
L
n
(
α あるふぁ
)
(
x
)
=
Γ がんま
(
α あるふぁ
+
n
+
1
)
Γ がんま
(
α あるふぁ
+
1
)
n
!
1
F
1
(
−
n
;
α あるふぁ
+
1
;
x
)
,
{\displaystyle L_{n}^{(\alpha )}(x)={\frac {\Gamma (\alpha +n+1)}{\Gamma (\alpha +1)n!}}\,_{1}F_{1}(-n;\alpha +1;x),}
where
1
F
1
(
a
;
b
;
x
)
{\displaystyle \,_{1}F_{1}(a;b;x)}
is the confluent hypergeometric function .
In the physics literature, [ 18] the generalized Laguerre polynomials are instead defined as
L
¯
n
(
α あるふぁ
)
(
x
)
=
[
Γ がんま
(
α あるふぁ
+
n
+
1
)
]
2
Γ がんま
(
α あるふぁ
+
1
)
n
!
1
F
1
(
−
n
;
α あるふぁ
+
1
;
x
)
.
{\displaystyle {\bar {L}}_{n}^{(\alpha )}(x)={\frac {\left[\Gamma (\alpha +n+1)\right]^{2}}{\Gamma (\alpha +1)n!}}\,_{1}F_{1}(-n;\alpha +1;x).}
The physics version is related to the standard version by
L
¯
n
(
α あるふぁ
)
(
x
)
=
(
n
+
α あるふぁ
)
!
L
n
(
α あるふぁ
)
(
x
)
.
{\displaystyle {\bar {L}}_{n}^{(\alpha )}(x)=(n+\alpha )!L_{n}^{(\alpha )}(x).}
There is yet another, albeit less frequently used, convention in the physics literature [ 20] [ 21] [ 22]
L
~
n
(
α あるふぁ
)
(
x
)
=
(
−
1
)
α あるふぁ
L
¯
n
−
α あるふぁ
(
α あるふぁ
)
.
{\displaystyle {\tilde {L}}_{n}^{(\alpha )}(x)=(-1)^{\alpha }{\bar {L}}_{n-\alpha }^{(\alpha )}.}
Umbral Calculus Convention
Generalized Laguerre polynomials are linked to Umbral calculus by being Sheffer sequences for
D
/
(
D
−
I
)
{\displaystyle D/(D-I)}
when multiplied by
n
!
{\displaystyle n!}
. In Umbral Calculus convention,[ 23] the default Laguerre polynomials are defined to be
L
n
(
x
)
=
n
!
L
n
(
−
1
)
(
x
)
=
∑
k
=
0
n
L
(
n
,
k
)
(
−
x
)
k
{\displaystyle {\mathcal {L}}_{n}(x)=n!L_{n}^{(-1)}(x)=\sum _{k=0}^{n}L(n,k)(-x)^{k}}
where
L
(
n
,
k
)
=
(
n
−
1
k
−
1
)
n
!
k
!
{\textstyle L(n,k)={\binom {n-1}{k-1}}{\frac {n!}{k!}}}
are the signless Lah numbers .
(
L
n
(
x
)
)
n
∈
N
{\textstyle ({\mathcal {L}}_{n}(x))_{n\in \mathbb {N} }}
is a sequence of polynomials of binomial type , ie they satisfy
L
n
(
x
+
y
)
=
∑
k
=
0
n
(
n
k
)
L
k
(
x
)
L
n
−
k
(
y
)
{\displaystyle {\mathcal {L}}_{n}(x+y)=\sum _{k=0}^{n}{\binom {n}{k}}{\mathcal {L}}_{k}(x){\mathcal {L}}_{n-k}(y)}
See also
Notes
^ N. Sonine (1880). "Recherches sur les fonctions cylindriques et le développement des fonctions continues en séries" . Math. Ann. 16 (1): 1–80. doi :10.1007/BF01459227 . S2CID 121602983 .
^ A&S p. 781
^ A&S p. 509
^ A&S p. 510
^ A&S p. 775
^ Szegő, p. 198.
^ D. Borwein, J. M. Borwein, R. E. Crandall, "Effective Laguerre asymptotics", SIAM J. Numer. Anal. , vol. 46 (2008), no. 6, pp. 3285–3312 doi :10.1137/07068031X
^ A&S equation (22.12.6), p. 785
^ Koepf, Wolfram (1997). "Identities for families of orthogonal polynomials and special functions". Integral Transforms and Special Functions . 5 (1–2): 69–102. CiteSeerX 10.1.1.298.7657 . doi :10.1080/10652469708819127 .
^ "Associated Laguerre Polynomial" .
^ Ratner, Schatz, Mark A., George C. (2001). Quantum Mechanics in Chemistry . 0-13-895491-7: Prentice Hall. pp. 90–91. {{cite book }}
: CS1 maint: location (link ) CS1 maint: multiple names: authors list (link )
^ Jong, Mathijs de; Seijo, Luis; Meijerink, Andries; Rabouw, Freddy T. (2015-06-24). "Resolving the ambiguity in the relation between Stokes shift and Huang–Rhys parameter" . Physical Chemistry Chemical Physics . 17 (26): 16959–16969. Bibcode :2015PCCP...1716959D . doi :10.1039/C5CP02093J . hdl :1874/321453 . ISSN 1463-9084 . PMID 26062123 . S2CID 34490576 .
^ C. Truesdell, "On the Addition and Multiplication Theorems for the Special Functions ", Proceedings of the National Academy of Sciences, Mathematics , (1950) pp. 752–757.
^ Szegő, p. 102.
^ W. A. Al-Salam (1964), "Operational representations for Laguerre and other polynomials" , Duke Math J. 31 (1): 127–142.
^ Griffiths, David J. (2005). Introduction to quantum mechanics (2nd ed.). Upper Saddle River, NJ: Pearson Prentice Hall. ISBN 0131118927 .
^ Sakurai, J. J. (2011). Modern quantum mechanics (2nd ed.). Boston: Addison-Wesley. ISBN 978-0805382914 .
^ a b Merzbacher, Eugen (1998). Quantum mechanics (3rd ed.). New York: Wiley. ISBN 0471887021 .
^ Abramowitz, Milton (1965). Handbook of mathematical functions, with formulas, graphs, and mathematical tables . New York: Dover Publications. ISBN 978-0-486-61272-0 .
^ Schiff, Leonard I. (1968). Quantum mechanics (3d ed.). New York: McGraw-Hill. ISBN 0070856435 .
^ Messiah, Albert (2014). Quantum Mechanics . Dover Publications. ISBN 9780486784557 .
^ Boas, Mary L. (2006). Mathematical methods in the physical sciences (3rd ed.). Hoboken, NJ: Wiley. ISBN 9780471198260 .
^ Rota, Gian-Carlo; Kahaner, D; Odlyzko, A (1973-06-01). "On the foundations of combinatorial theory. VIII. Finite operator calculus" . Journal of Mathematical Analysis and Applications . 42 (3): 684–760. doi :10.1016/0022-247X(73)90172-8 . ISSN 0022-247X .
References
Abramowitz, Milton ; Stegun, Irene Ann , eds. (1983) [June 1964]. "Chapter 22" . Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables . Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. p. 773. ISBN 978-0-486-61272-0 . LCCN 64-60036 . MR 0167642 . LCCN 65-12253 .
G. Szegő, Orthogonal polynomials , 4th edition, Amer. Math. Soc. Colloq. Publ. , vol. 23, Amer. Math. Soc., Providence, RI, 1975.
Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Orthogonal Polynomials" , in Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN 978-0-521-19225-5 , MR 2723248 .
B. Spain, M.G. Smith, Functions of mathematical physics , Van Nostrand Reinhold Company, London, 1970. Chapter 10 deals with Laguerre polynomials.
"Laguerre polynomials" , Encyclopedia of Mathematics , EMS Press , 2001 [1994]
Eric W. Weisstein , "Laguerre Polynomial ", From MathWorld—A Wolfram Web Resource.
George Arfken and Hans Weber (2000). Mathematical Methods for Physicists . Academic Press. ISBN 978-0-12-059825-0 .
External links
International National Other