(Translated by https://www.hiragana.jp/)
Bloch–Grüneisen temperature - Wikipedia Jump to content

Bloch–Grüneisen temperature

From Wikipedia, the free encyclopedia

For typical three-dimensional metals, the temperature-dependence of the electrical resistivity ρろー(T) due to the scattering of electrons by acoustic phonons changes from a high-temperature regime in which ρろー ∝ T to a low-temperature regime in which ρろー ∝ T5 at a characteristic temperature known as the Debye temperature. For low density electron systems, however, the Fermi surface can be substantially smaller than the size of the Brillouin zone, and only a small fraction of acoustic phonons can scatter off electrons.[1] This results in a new characteristic temperature known as the Bloch–Grüneisen temperature that is lower than the Debye temperature. The Bloch–Grüneisen temperature is defined as 2ħvskF/kB, where ħ is the Planck constant, vs is the velocity of sound, ħkF is the Fermi momentum, and kB is the Boltzmann constant.

When the temperature is lower than the Bloch–Grüneisen temperature, the most energetic thermal phonons have a typical momentum of kBT/vs which is smaller than ħkF, the momentum of the conducting electrons at the Fermi surface. This means that the electrons will only scatter in small angles when they absorb or emit a phonon. In contrast when the temperature is higher than the Bloch–Grüneisen temperature, there are thermal phonons of all momenta and in this case electrons will also experience large angle scattering events when they absorb or emit a phonon. In many cases, the Bloch–Grüneisen temperature is approximately equal to the Debye temperature (usually written ), which is used in modeling specific heat capacity.[2] However, in particular circumstances these temperatures can be quite different.[3]

The theory was initially put forward by Felix Bloch[4] and Eduard Grüneisen.[5] The Bloch–Grüneisen temperature has been observed experimentally in a two-dimensional electron gas[3] and in graphene.[6]

Mathematically, the Bloch–Grüneisen model produces a resistivity given by:[2]

.

Here, is a characteristic temperature (typically matching well with the Debye temperature). Under Bloch's original assumptions for simple metals, .[4] For , this can be approximated as dependence. In contrast, the so called Bloch–Wilson limit, where works better for s-d inter-band scattering, such as with transition metals.[7] The second limit gives at low temperatures.[8] In practice, which model is more applicable depends on the particular material.[9]

References

[edit]
  1. ^ Fuhrer, Michael (2010-12-13). "Textbook physics from a cutting-edge material". Physics. Vol. 3. American Physical Society (APS). p. 106. Bibcode:2010PhyOJ...3..106F. doi:10.1103/physics.3.106. ISSN 1943-2879.
  2. ^ a b Cvijović, D. (2011). "The Bloch-Gruneisen function of arbitrary order and its series representations". Theoretical and Mathematical Physics. 166 (1). Springer Science and Business Media LLC: 37–42. Bibcode:2011TMP...166...37C. doi:10.1007/s11232-011-0003-4. ISSN 0040-5779. S2CID 120707315.
  3. ^ a b Stormer, H. L.; Pfeiffer, L. N.; Baldwin, K. W.; West, K. W. (1990-01-15). "Observation of a Bloch-Grüneisen regime in two-dimensional electron transport". Physical Review B. 41 (2). American Physical Society (APS): 1278–1281. Bibcode:1990PhRvB..41.1278S. doi:10.1103/physrevb.41.1278. ISSN 0163-1829. PMID 9993840.
  4. ^ a b Bloch, F. (1930). "Zum elektrischen Widerstandsgesetz bei tiefen Temperaturen" [Electrical resistance law for low temperatures]. Zeitschrift für Physik (in German). 59 (3–4). Springer Science and Business Media LLC: 208–214. Bibcode:1930ZPhy...59..208B. doi:10.1007/bf01341426. ISSN 1434-6001. S2CID 121876964.
  5. ^ Grüneisen, E. (1933). "Die Abhängigkeit des elektrischen Widerstandes reiner Metalle von der Temperatur" [The temperature dependence of electrical resistance in pure metals]. Annalen der Physik (in German). 408 (5). Wiley: 530–540. Bibcode:1933AnP...408..530G. doi:10.1002/andp.19334080504. ISSN 0003-3804.
  6. ^ Efetov, Dmitri K.; Kim, Philip (2010-12-13). "Controlling Electron-Phonon Interactions in Graphene at Ultrahigh Carrier Densities". Physical Review Letters. 105 (25): 256805. arXiv:1009.2988. Bibcode:2010PhRvL.105y6805E. doi:10.1103/physrevlett.105.256805. ISSN 0031-9007. PMID 21231611. S2CID 13481996.
  7. ^ Wilson, Alan Herries; Fowler, Ralph Howard (1938-09-23). "The electrical conductivity of the transition metals". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 167 (931). The Royal Society: 580–593. Bibcode:1938RSPSA.167..580W. doi:10.1098/rspa.1938.0156. ISSN 1364-5021.
  8. ^ Suri, Dhavala; Siva, Vantari; Joshi, Shalikram; Senapati, Kartik; Sahoo, P K; Varma, Shikha; Patel, R S (2017-11-13). "A study of electron and thermal transport in layered titanium disulphide single crystals". Journal of Physics: Condensed Matter. 29 (48). IOP Publishing: 485708. arXiv:1801.04677. Bibcode:2017JPCM...29V5708S. doi:10.1088/1361-648x/aa90c5. ISSN 0953-8984. PMID 28975897. S2CID 21230871.
  9. ^ Allison, C.Y.; Finch, C.B.; Foegelle, M.D.; Modine, F.A. (1988). "Low-temperature electrical resistivity of transition-metal carbides". Solid State Communications. 68 (4). Elsevier BV: 387–390. Bibcode:1988SSCom..68..387A. doi:10.1016/0038-1098(88)90300-6. ISSN 0038-1098.