Bubble ring

From Wikipedia, the free encyclopedia
Bubble ring

A bubble ring, or toroidal bubble, is an underwater vortex ring where an air bubble occupies the core of the vortex, forming a ring shape. The ring of air as well as the nearby water spins poloidally as it travels through the water, much like a flexible bracelet might spin when it is rolled on to a person's arm. The faster the bubble ring spins, the more stable it becomes.[1] The physics of vortex rings are still under active study in fluid dynamics.[2][3] Devices have been invented which generate bubble vortex rings.[4][5]

Physics[edit]

External videos
video icon Bubble ring time warp - in slow motion YouTube

As the bubble ring rises, a lift force pointing downward that is generated by the vorticity acts on the bubble in order to counteract the buoyancy force. This reduces the bubble's velocity and increases its diameter. The ring becomes thinner, despite the total volume inside the bubble increasing as the external water pressure decreases.[6] Bubble rings fragment into rings of spherical bubbles when the ring becomes thinner than a few millimetres. This is due to Plateau–Rayleigh instability. When the bubble reaches a certain thickness, surface tension effects distort the bubble's surface pulling it apart into separate bubbles. Circulation of the fluid around the bubble helps to stabilize the bubble for a longer duration, counteracting the effects of Plateau–Rayleigh instability. Below is the equation for Plateau–Rayleigh instability with circulation as a stabilizing term: