Measure of financial risk
Expected shortfall (ES ) is a risk measure —a concept used in the field of financial risk measurement to evaluate the market risk or credit risk of a portfolio. The "expected shortfall at q% level" is the expected return on the portfolio in the worst
q
%
{\displaystyle q\%}
of cases. ES is an alternative to value at risk that is more sensitive to the shape of the tail of the loss distribution.
Expected shortfall is also called conditional value at risk (CVaR ),[ 1] average value at risk (AVaR ), expected tail loss (ETL ), and superquantile .[ 2]
ES estimates the risk of an investment in a conservative way, focusing on the less profitable outcomes. For high values of
q
{\displaystyle q}
it ignores the most profitable but unlikely possibilities, while for small values of
q
{\displaystyle q}
it focuses on the worst losses. On the other hand, unlike the discounted maximum loss , even for lower values of
q
{\displaystyle q}
the expected shortfall does not consider only the single most catastrophic outcome. A value of
q
{\displaystyle q}
often used in practice is 5%.[citation needed ]
Expected shortfall is considered a more useful risk measure than VaR because it is a coherent spectral measure of financial portfolio risk. It is calculated for a given quantile -level
q
{\displaystyle q}
and is defined to be the mean loss of portfolio value given that a loss is occurring at or below the
q
{\displaystyle q}
-quantile.
If
X
∈
L
p
(
F
)
{\displaystyle X\in L^{p}({\mathcal {F}})}
(an Lp ) is the payoff of a portfolio at some future time and
0
<
α あるふぁ
<
1
{\displaystyle 0<\alpha <1}
then we define the expected shortfall as
ES
α あるふぁ
(
X
)
=
−
1
α あるふぁ
∫
0
α あるふぁ
VaR
γ がんま
(
X
)
d
γ がんま
{\displaystyle \operatorname {ES} _{\alpha }(X)=-{\frac {1}{\alpha }}\int _{0}^{\alpha }\operatorname {VaR} _{\gamma }(X)\,d\gamma }
where
VaR
γ がんま
{\displaystyle \operatorname {VaR} _{\gamma }}
is the value at risk . This can be equivalently written as
ES
α あるふぁ
(
X
)
=
−
1
α あるふぁ
(
E
[
X
1
{
X
≤
x
α あるふぁ
}
]
+
x
α あるふぁ
(
α あるふぁ
−
P
[
X
≤
x
α あるふぁ
]
)
)
{\displaystyle \operatorname {ES} _{\alpha }(X)=-{\frac {1}{\alpha }}\left(\operatorname {E} [X\ 1_{\{X\leq x_{\alpha }\}}]+x_{\alpha }(\alpha -P[X\leq x_{\alpha }])\right)}
where
x
α あるふぁ
=
inf
{
x
∈
R
:
P
(
X
≤
x
)
≥
α あるふぁ
}
=
−
VaR
α あるふぁ
(
X
)
{\displaystyle x_{\alpha }=\inf\{x\in \mathbb {R} :P(X\leq x)\geq \alpha \}=-\operatorname {VaR} _{\alpha }(X)}
is the lower
α あるふぁ
{\displaystyle \alpha }
-quantile and
1
A
(
x
)
=
{
1
if
x
∈
A
0
else
{\displaystyle 1_{A}(x)={\begin{cases}1&{\text{if }}x\in A\\0&{\text{else}}\end{cases}}}
is the indicator function .[ 3] Note, that the second term vanishes for random variables with continuous distribution functions.
The dual representation is
ES
α あるふぁ
(
X
)
=
inf
Q
∈
Q
α あるふぁ
E
Q
[
X
]
{\displaystyle \operatorname {ES} _{\alpha }(X)=\inf _{Q\in {\mathcal {Q}}_{\alpha }}E^{Q}[X]}
where
Q
α あるふぁ
{\displaystyle {\mathcal {Q}}_{\alpha }}
is the set of probability measures which are absolutely continuous to the physical measure
P
{\displaystyle P}
such that
d
Q
d
P
≤
α あるふぁ
−
1
{\displaystyle {\frac {dQ}{dP}}\leq \alpha ^{-1}}
almost surely .[ 4] Note that
d
Q
d
P
{\displaystyle {\frac {dQ}{dP}}}
is the Radon–Nikodym derivative of
Q
{\displaystyle Q}
with respect to
P
{\displaystyle P}
.
Expected shortfall can be generalized to a general class of coherent risk measures on
L
p
{\displaystyle L^{p}}
spaces (Lp space ) with a corresponding dual characterization in the corresponding
L
q
{\displaystyle L^{q}}
dual space . The domain can be extended for more general Orlicz Hearts.[ 5]
If the underlying distribution for
X
{\displaystyle X}
is a continuous distribution then the expected shortfall is equivalent to the tail conditional expectation defined by
TCE
α あるふぁ
(
X
)
=
E
[
−
X
∣
X
≤
−
VaR
α あるふぁ
(
X
)
]
{\displaystyle \operatorname {TCE} _{\alpha }(X)=E[-X\mid X\leq -\operatorname {VaR} _{\alpha }(X)]}
.[ 6]
Informally, and non-rigorously, this equation amounts to saying "in case of losses so severe that they occur only alpha percent of the time, what is our average loss".
Expected shortfall can also be written as a distortion risk measure given by the distortion function
g
(
x
)
=
{
x
1
−
α あるふぁ
if
0
≤
x
<
1
−
α あるふぁ
,
1
if
1
−
α あるふぁ
≤
x
≤
1.
{\displaystyle g(x)={\begin{cases}{\frac {x}{1-\alpha }}&{\text{if }}0\leq x<1-\alpha ,\\1&{\text{if }}1-\alpha \leq x\leq 1.\end{cases}}\quad }
[ 7] [ 8]
Example 1. If we believe our average loss on the worst 5% of the possible outcomes for our portfolio is EUR 1000, then we could say our expected shortfall is EUR 1000 for the 5% tail.
Example 2. Consider a portfolio that will have the following possible values at the end of the period:
probability of event
ending value of the portfolio
10%
0
30%
80
40%
100
20%
150
Now assume that we paid 100 at the beginning of the period for this portfolio. Then the profit in each case is (ending value −100) or:
probability of event
profit
10%
−100
30%
−20
40%
0
20%
50
From this table let us calculate the expected shortfall
ES
q
{\displaystyle \operatorname {ES} _{q}}
for a few values of
q
{\displaystyle q}
:
q
{\displaystyle q}
expected shortfall
ES
q
{\displaystyle \operatorname {ES} _{q}}
5%
100
10%
100
20%
60
30%
46.6
40%
40
50%
32
60%
26.6
80%
20
90%
12.2
100%
6
To see how these values were calculated, consider the calculation of
ES
0.05
{\displaystyle \operatorname {ES} _{0.05}}
, the expectation in the worst 5% of cases. These cases belong to (are a subset of) row 1 in the profit table, which have a profit of −100 (total loss of the 100 invested). The expected profit for these cases is −100.
Now consider the calculation of
ES
0.20
{\displaystyle \operatorname {ES} _{0.20}}
, the expectation in the worst 20 out of 100 cases. These cases are as follows: 10 cases from row one, and 10 cases from row two (note that 10+10 equals the desired 20 cases). For row 1 there is a profit of −100, while for row 2 a profit of −20. Using the expected value formula we get
10
100
(
−
100
)
+
10
100
(
−
20
)
20
100
=
−
60.
{\displaystyle {\frac {{\frac {10}{100}}(-100)+{\frac {10}{100}}(-20)}{\frac {20}{100}}}=-60.}
Similarly for any value of
q
{\displaystyle q}
. We select as many rows starting from the top as are necessary to give a cumulative probability of
q
{\displaystyle q}
and then calculate an expectation over those cases. In general, the last row selected may not be fully used (for example in calculating
−
ES
0.20
{\displaystyle -\operatorname {ES} _{0.20}}
we used only 10 of the 30 cases per 100 provided by row 2).
As a final example, calculate
−
ES
1
{\displaystyle -\operatorname {ES} _{1}}
. This is the expectation over all cases, or
0.1
(
−
100
)
+
0.3
(
−
20
)
+
0.4
⋅
0
+
0.2
⋅
50
=
−
6.
{\displaystyle 0.1(-100)+0.3(-20)+0.4\cdot 0+0.2\cdot 50=-6.\,}
The value at risk (VaR) is given below for comparison.
q
{\displaystyle q}
VaR
q
{\displaystyle \operatorname {VaR} _{q}}
0
%
≤
q
<
10
%
{\displaystyle 0\%\leq q<10\%}
−100
10
%
≤
q
<
40
%
{\displaystyle 10\%\leq q<40\%}
−20
40
%
≤
q
<
80
%
{\displaystyle 40\%\leq q<80\%}
0
80
%
≤
q
≤
100
%
{\displaystyle 80\%\leq q\leq 100\%}
50
The expected shortfall
ES
q
{\displaystyle \operatorname {ES} _{q}}
increases as
q
{\displaystyle q}
decreases.
The 100%-quantile expected shortfall
ES
1
{\displaystyle \operatorname {ES} _{1}}
equals negative of the expected value of the portfolio.
For a given portfolio, the expected shortfall
ES
q
{\displaystyle \operatorname {ES} _{q}}
is greater than or equal to the Value at Risk
VaR
q
{\displaystyle \operatorname {VaR} _{q}}
at the same
q
{\displaystyle q}
level.
Optimization of expected shortfall [ edit ]
Expected shortfall, in its standard form, is known to lead to a generally non-convex optimization problem. However, it is possible to transform the problem into a linear program and find the global solution.[ 9] This property makes expected shortfall a cornerstone of alternatives to mean-variance portfolio optimization , which account for the higher moments (e.g., skewness and kurtosis) of a return distribution.
Suppose that we want to minimize the expected shortfall of a portfolio. The key contribution of Rockafellar and Uryasev in their 2000 paper is to introduce the auxiliary function
F
α あるふぁ
(
w
,
γ がんま
)
{\displaystyle F_{\alpha }(w,\gamma )}
for the expected shortfall:
F
α あるふぁ
(
w
,
γ がんま
)
=
γ がんま
+
1
1
−
α あるふぁ
∫
ℓ
(
w
,
x
)
≥
γ がんま
[
ℓ
(
w
,
x
)
−
γ がんま
]
+
p
(
x
)
d
x
{\displaystyle F_{\alpha }(w,\gamma )=\gamma +{1 \over {1-\alpha }}\int _{\ell (w,x)\geq \gamma }\left[\ell (w,x)-\gamma \right]_{+}p(x)\,dx}
Where
γ がんま
=
VaR
α あるふぁ
(
X
)
{\displaystyle \gamma =\operatorname {VaR} _{\alpha }(X)}
and
ℓ
(
w
,
x
)
{\displaystyle \ell (w,x)}
is a loss function for a set of portfolio weights
w
∈
R
p
{\displaystyle w\in \mathbb {R} ^{p}}
to be applied to the returns. Rockafellar/Uryasev proved that
F
α あるふぁ
(
w
,
γ がんま
)
{\displaystyle F_{\alpha }(w,\gamma )}
is convex with respect to
γ がんま
{\displaystyle \gamma }
and is equivalent to the expected shortfall at the minimum point. To numerically compute the expected shortfall for a set of portfolio returns, it is necessary to generate
J
{\displaystyle J}
simulations of the portfolio constituents; this is often done using copulas . With these simulations in hand, the auxiliary function may be approximated by:
F
~
α あるふぁ
(
w
,
γ がんま
)
=
γ がんま
+
1
(
1
−
α あるふぁ
)
J
∑
j
=
1
J
[
ℓ
(
w
,
x
j
)
−
γ がんま
]
+
{\displaystyle {\widetilde {F}}_{\alpha }(w,\gamma )=\gamma +{1 \over {(1-\alpha )J}}\sum _{j=1}^{J}[\ell (w,x_{j})-\gamma ]_{+}}
This is equivalent to the formulation:
min
γ がんま
,
z
,
w
γ がんま
+
1
(
1
−
α あるふぁ
)
J
∑
j
=
1
J
z
j
,
s.t.
z
j
≥
ℓ
(
w
,
x
j
)
−
γ がんま
,
z
j
≥
0
{\displaystyle \min _{\gamma ,z,w}\;\gamma +{1 \over {(1-\alpha )J}}\sum _{j=1}^{J}z_{j},\quad {\text{s.t. }}z_{j}\geq \ell (w,x_{j})-\gamma ,\;z_{j}\geq 0}
Finally, choosing a linear loss function
ℓ
(
w
,
x
j
)
=
−
w
T
x
j
{\displaystyle \ell (w,x_{j})=-w^{T}x_{j}}
turns the optimization problem into a linear program. Using standard methods, it is then easy to find the portfolio that minimizes expected shortfall.
Closed-form formulas exist for calculating the expected shortfall when the payoff of a portfolio
X
{\displaystyle X}
or a corresponding loss
L
=
−
X
{\displaystyle L=-X}
follows a specific continuous distribution. In the former case, the expected shortfall corresponds to the opposite number of the left-tail conditional expectation below
−
VaR
α あるふぁ
(
X
)
{\displaystyle -\operatorname {VaR} _{\alpha }(X)}
:
ES
α あるふぁ
(
X
)
=
E
[
−
X
∣
X
≤
−
VaR
α あるふぁ
(
X
)
]
=
−
1
α あるふぁ
∫
0
α あるふぁ
VaR
γ がんま
(
X
)
d
γ がんま
=
−
1
α あるふぁ
∫
−
∞
−
VaR
α あるふぁ
(
X
)
x
f
(
x
)
d
x
.
{\displaystyle \operatorname {ES} _{\alpha }(X)=E[-X\mid X\leq -\operatorname {VaR} _{\alpha }(X)]=-{\frac {1}{\alpha }}\int _{0}^{\alpha }\operatorname {VaR} _{\gamma }(X)\,d\gamma =-{\frac {1}{\alpha }}\int _{-\infty }^{-\operatorname {VaR} _{\alpha }(X)}xf(x)\,dx.}
Typical values of
α あるふぁ
{\textstyle \alpha }
in this case are 5% and 1%.
For engineering or actuarial applications it is more common to consider the distribution of losses
L
=
−
X
{\displaystyle L=-X}
, the expected shortfall in this case corresponds to the right-tail conditional expectation above
VaR
α あるふぁ
(
L
)
{\displaystyle \operatorname {VaR} _{\alpha }(L)}
and the typical values of
α あるふぁ
{\displaystyle \alpha }
are 95% and 99%:
ES
α あるふぁ
(
L
)
=
E
[
L
∣
L
≥
VaR
α あるふぁ
(
L
)
]
=
1
1
−
α あるふぁ
∫
α あるふぁ
1
VaR
γ がんま
(
L
)
d
γ がんま
=
1
1
−
α あるふぁ
∫
VaR
α あるふぁ
(
L
)
+
∞
y
f
(
y
)
d
y
.
{\displaystyle \operatorname {ES} _{\alpha }(L)=\operatorname {E} [L\mid L\geq \operatorname {VaR} _{\alpha }(L)]={\frac {1}{1-\alpha }}\int _{\alpha }^{1}\operatorname {VaR} _{\gamma }(L)\,d\gamma ={\frac {1}{1-\alpha }}\int _{\operatorname {VaR} _{\alpha }(L)}^{+\infty }yf(y)\,dy.}
Since some formulas below were derived for the left-tail case and some for the right-tail case, the following reconciliations can be useful:
ES
α あるふぁ
(
X
)
=
−
1
α あるふぁ
E
[
X
]
+
1
−
α あるふぁ
α あるふぁ
ES
α あるふぁ
(
L
)
and
ES
α あるふぁ
(
L
)
=
1
1
−
α あるふぁ
E
[
L
]
+
α あるふぁ
1
−
α あるふぁ
ES
α あるふぁ
(
X
)
.
{\displaystyle \operatorname {ES} _{\alpha }(X)=-{\frac {1}{\alpha }}\operatorname {E} [X]+{\frac {1-\alpha }{\alpha }}\operatorname {ES} _{\alpha }(L){\text{ and }}\operatorname {ES} _{\alpha }(L)={\frac {1}{1-\alpha }}\operatorname {E} [L]+{\frac {\alpha }{1-\alpha }}\operatorname {ES} _{\alpha }(X).}
Normal distribution [ edit ]
If the payoff of a portfolio
X
{\displaystyle X}
follows the normal (Gaussian) distribution with p.d.f.
f
(
x
)
=
1
2
π ぱい
σ しぐま
e
−
(
x
−
μ みゅー
)
2
2
σ しぐま
2
{\displaystyle f(x)={\frac {1}{{\sqrt {2\pi }}\sigma }}e^{-{\frac {(x-\mu )^{2}}{2\sigma ^{2}}}}}
then the expected shortfall is equal to
ES
α あるふぁ
(
X
)
=
−
μ みゅー
+
σ しぐま
φ ふぁい
(
Φ ふぁい
−
1
(
α あるふぁ
)
)
α あるふぁ
{\displaystyle \operatorname {ES} _{\alpha }(X)=-\mu +\sigma {\frac {\varphi (\Phi ^{-1}(\alpha ))}{\alpha }}}
, where
φ ふぁい
(
x
)
=
1
2
π ぱい
e
−
x
2
2
{\displaystyle \varphi (x)={\frac {1}{\sqrt {2\pi }}}e^{-{\frac {x^{2}}{2}}}}
is the standard normal p.d.f.,
Φ ふぁい
(
x
)
{\displaystyle \Phi (x)}
is the standard normal c.d.f., so
Φ ふぁい
−
1
(
α あるふぁ
)
{\displaystyle \Phi ^{-1}(\alpha )}
is the standard normal quantile.[ 10]
If the loss of a portfolio
L
{\displaystyle L}
follows the normal distribution, the expected shortfall is equal to
ES
α あるふぁ
(
L
)
=
μ みゅー
+
σ しぐま
φ ふぁい
(
Φ ふぁい
−
1
(
α あるふぁ
)
)
1
−
α あるふぁ
{\displaystyle \operatorname {ES} _{\alpha }(L)=\mu +\sigma {\frac {\varphi (\Phi ^{-1}(\alpha ))}{1-\alpha }}}
.[ 11]
Generalized Student's t-distribution[ edit ]
If the payoff of a portfolio
X
{\displaystyle X}
follows the generalized Student's t-distribution with p.d.f.
f
(
x
)
=
Γ がんま
(
ν にゅー
+
1
2
)
Γ がんま
(
ν にゅー
2
)
π ぱい
ν にゅー
σ しぐま
(
1
+
1
ν にゅー
(
x
−
μ みゅー
σ しぐま
)
2
)
−
ν にゅー
+
1
2
{\displaystyle f(x)={\frac {\Gamma \left({\frac {\nu +1}{2}}\right)}{\Gamma \left({\frac {\nu }{2}}\right){\sqrt {\pi \nu }}\sigma }}\left(1+{\frac {1}{\nu }}\left({\frac {x-\mu }{\sigma }}\right)^{2}\right)^{-{\frac {\nu +1}{2}}}}
then the expected shortfall is equal to
ES
α あるふぁ
(
X
)
=
−
μ みゅー
+
σ しぐま
ν にゅー
+
(
T
−
1
(
α あるふぁ
)
)
2
ν にゅー
−
1
τ たう
(
T
−
1
(
α あるふぁ
)
)
α あるふぁ
{\displaystyle \operatorname {ES} _{\alpha }(X)=-\mu +\sigma {\frac {\nu +(\mathrm {T} ^{-1}(\alpha ))^{2}}{\nu -1}}{\frac {\tau (\mathrm {T} ^{-1}(\alpha ))}{\alpha }}}
, where
τ たう
(
x
)
=
Γ がんま
(
ν にゅー
+
1
2
)
Γ がんま
(
ν にゅー
2
)
π ぱい
ν にゅー
(
1
+
x
2
ν にゅー
)
−
ν にゅー
+
1
2
{\displaystyle \tau (x)={\frac {\Gamma {\bigl (}{\frac {\nu +1}{2}}{\bigr )}}{\Gamma {\bigl (}{\frac {\nu }{2}}{\bigr )}{\sqrt {\pi \nu }}}}{\Bigl (}1+{\frac {x^{2}}{\nu }}{\Bigr )}^{-{\frac {\nu +1}{2}}}}
is the standard t-distribution p.d.f.,
T
(
x
)
{\displaystyle \mathrm {T} (x)}
is the standard t-distribution c.d.f., so
T
−
1
(
α あるふぁ
)
{\displaystyle \mathrm {T} ^{-1}(\alpha )}
is the standard t-distribution quantile.[ 10]
If the loss of a portfolio
L
{\displaystyle L}
follows generalized Student's t-distribution, the expected shortfall is equal to
ES
α あるふぁ
(
L
)
=
μ みゅー
+
σ しぐま
ν にゅー
+
(
T
−
1
(
α あるふぁ
)
)
2
ν にゅー
−
1
τ たう
(
T
−
1
(
α あるふぁ
)
)
1
−
α あるふぁ
{\displaystyle \operatorname {ES} _{\alpha }(L)=\mu +\sigma {\frac {\nu +(\mathrm {T} ^{-1}(\alpha ))^{2}}{\nu -1}}{\frac {\tau (\mathrm {T} ^{-1}(\alpha ))}{1-\alpha }}}
.[ 11]
Laplace distribution [ edit ]
If the payoff of a portfolio
X
{\displaystyle X}
follows the Laplace distribution with the p.d.f.
f
(
x
)
=
1
2
b
e
−
|
x
−
μ みゅー
|
/
b
{\displaystyle f(x)={\frac {1}{2b}}e^{-|x-\mu |/b}}
and the c.d.f.
F
(
x
)
=
{
1
−
1
2
e
−
(
x
−
μ みゅー
)
/
b
if
x
≥
μ みゅー
,
1
2
e
(
x
−
μ みゅー
)
/
b
if
x
<
μ みゅー
.
{\displaystyle F(x)={\begin{cases}1-{\frac {1}{2}}e^{-(x-\mu )/b}&{\text{if }}x\geq \mu ,\\[4pt]{\frac {1}{2}}e^{(x-\mu )/b}&{\text{if }}x<\mu .\end{cases}}}
then the expected shortfall is equal to
ES
α あるふぁ
(
X
)
=
−
μ みゅー
+
b
(
1
−
ln
2
α あるふぁ
)
{\displaystyle \operatorname {ES} _{\alpha }(X)=-\mu +b(1-\ln 2\alpha )}
for
α あるふぁ
≤
0.5
{\displaystyle \alpha \leq 0.5}
.[ 10]
If the loss of a portfolio
L
{\displaystyle L}
follows the Laplace distribution, the expected shortfall is equal to[ 11]
ES
α あるふぁ
(
L
)
=
{
μ みゅー
+
b
α あるふぁ
1
−
α あるふぁ
(
1
−
ln
2
α あるふぁ
)
if
α あるふぁ
<
0.5
,
μ みゅー
+
b
[
1
−
ln
(
2
(
1
−
α あるふぁ
)
)
]
if
α あるふぁ
≥
0.5.
{\displaystyle \operatorname {ES} _{\alpha }(L)={\begin{cases}\mu +b{\frac {\alpha }{1-\alpha }}(1-\ln 2\alpha )&{\text{if }}\alpha <0.5,\\[4pt]\mu +b[1-\ln(2(1-\alpha ))]&{\text{if }}\alpha \geq 0.5.\end{cases}}}
Logistic distribution [ edit ]
If the payoff of a portfolio
X
{\displaystyle X}
follows the logistic distribution with p.d.f.
f
(
x
)
=
1
s
e
−
x
−
μ みゅー
s
(
1
+
e
−
x
−
μ みゅー
s
)
−
2
{\displaystyle f(x)={\frac {1}{s}}e^{-{\frac {x-\mu }{s}}}\left(1+e^{-{\frac {x-\mu }{s}}}\right)^{-2}}
and the c.d.f.
F
(
x
)
=
(
1
+
e
−
x
−
μ みゅー
s
)
−
1
{\displaystyle F(x)=\left(1+e^{-{\frac {x-\mu }{s}}}\right)^{-1}}
then the expected shortfall is equal to
ES
α あるふぁ
(
X
)
=
−
μ みゅー
+
s
ln
(
1
−
α あるふぁ
)
1
−
1
α あるふぁ
α あるふぁ
{\displaystyle \operatorname {ES} _{\alpha }(X)=-\mu +s\ln {\frac {(1-\alpha )^{1-{\frac {1}{\alpha }}}}{\alpha }}}
.[ 10]
If the loss of a portfolio
L
{\displaystyle L}
follows the logistic distribution , the expected shortfall is equal to
ES
α あるふぁ
(
L
)
=
μ みゅー
+
s
−
α あるふぁ
ln
α あるふぁ
−
(
1
−
α あるふぁ
)
ln
(
1
−
α あるふぁ
)
1
−
α あるふぁ
{\displaystyle \operatorname {ES} _{\alpha }(L)=\mu +s{\frac {-\alpha \ln \alpha -(1-\alpha )\ln(1-\alpha )}{1-\alpha }}}
.[ 11]
Exponential distribution [ edit ]
If the loss of a portfolio
L
{\displaystyle L}
follows the exponential distribution with p.d.f.
f
(
x
)
=
{
λ らむだ
e
−
λ らむだ
x
if
x
≥
0
,
0
if
x
<
0.
{\displaystyle f(x)={\begin{cases}\lambda e^{-\lambda x}&{\text{if }}x\geq 0,\\0&{\text{if }}x<0.\end{cases}}}
and the c.d.f.
F
(
x
)
=
{
1
−
e
−
λ らむだ
x
if
x
≥
0
,
0
if
x
<
0.
{\displaystyle F(x)={\begin{cases}1-e^{-\lambda x}&{\text{if }}x\geq 0,\\0&{\text{if }}x<0.\end{cases}}}
then the expected shortfall is equal to
ES
α あるふぁ
(
L
)
=
−
ln
(
1
−
α あるふぁ
)
+
1
λ らむだ
{\displaystyle \operatorname {ES} _{\alpha }(L)={\frac {-\ln(1-\alpha )+1}{\lambda }}}
.[ 11]
Pareto distribution [ edit ]
If the loss of a portfolio
L
{\displaystyle L}
follows the Pareto distribution with p.d.f.
f
(
x
)
=
{
a
x
m
a
x
a
+
1
if
x
≥
x
m
,
0
if
x
<
x
m
.
{\displaystyle f(x)={\begin{cases}{\frac {ax_{m}^{a}}{x^{a+1}}}&{\text{if }}x\geq x_{m},\\0&{\text{if }}x<x_{m}.\end{cases}}}
and the c.d.f.
F
(
x
)
=
{
1
−
(
x
m
/
x
)
a
if
x
≥
x
m
,
0
if
x
<
x
m
.
{\displaystyle F(x)={\begin{cases}1-(x_{m}/x)^{a}&{\text{if }}x\geq x_{m},\\0&{\text{if }}x<x_{m}.\end{cases}}}
then the expected shortfall is equal to
ES
α あるふぁ
(
L
)
=
x
m
a
(
1
−
α あるふぁ
)
1
/
a
(
a
−
1
)
{\displaystyle \operatorname {ES} _{\alpha }(L)={\frac {x_{m}a}{(1-\alpha )^{1/a}(a-1)}}}
.[ 11]
Generalized Pareto distribution (GPD)[ edit ]
If the loss of a portfolio
L
{\displaystyle L}
follows the GPD with p.d.f.
f
(
x
)
=
1
s
(
1
+
ξ くしー
(
x
−
μ みゅー
)
s
)
(
−
1
ξ くしー
−
1
)
{\displaystyle f(x)={\frac {1}{s}}\left(1+{\frac {\xi (x-\mu )}{s}}\right)^{\left(-{\frac {1}{\xi }}-1\right)}}
and the c.d.f.
F
(
x
)
=
{
1
−
(
1
+
ξ くしー
(
x
−
μ みゅー
)
s
)
−
1
/
ξ くしー
if
ξ くしー
≠
0
,
1
−
exp
(
−
x
−
μ みゅー
s
)
if
ξ くしー
=
0.
{\displaystyle F(x)={\begin{cases}1-\left(1+{\frac {\xi (x-\mu )}{s}}\right)^{-1/\xi }&{\text{if }}\xi \neq 0,\\1-\exp \left(-{\frac {x-\mu }{s}}\right)&{\text{if }}\xi =0.\end{cases}}}
then the expected shortfall is equal to
ES
α あるふぁ
(
L
)
=
{
μ みゅー
+
s
[
(
1
−
α あるふぁ
)
−
ξ くしー
1
−
ξ くしー
+
(
1
−
α あるふぁ
)
−
ξ くしー
−
1
ξ くしー
]
if
ξ くしー
≠
0
,
μ みゅー
+
s
[
1
−
ln
(
1
−
α あるふぁ
)
]
if
ξ くしー
=
0
,
{\displaystyle \operatorname {ES} _{\alpha }(L)={\begin{cases}\mu +s\left[{\frac {(1-\alpha )^{-\xi }}{1-\xi }}+{\frac {(1-\alpha )^{-\xi }-1}{\xi }}\right]&{\text{if }}\xi \neq 0,\\\mu +s\left[1-\ln(1-\alpha )\right]&{\text{if }}\xi =0,\end{cases}}}
and the VaR is equal to[ 11]
VaR
α あるふぁ
(
L
)
=
{
μ みゅー
+
s
(
1
−
α あるふぁ
)
−
ξ くしー
−
1
ξ くしー
if
ξ くしー
≠
0
,
μ みゅー
−
s
ln
(
1
−
α あるふぁ
)
if
ξ くしー
=
0.
{\displaystyle \operatorname {VaR} _{\alpha }(L)={\begin{cases}\mu +s{\frac {(1-\alpha )^{-\xi }-1}{\xi }}&{\text{if }}\xi \neq 0,\\\mu -s\ln(1-\alpha )&{\text{if }}\xi =0.\end{cases}}}
Weibull distribution [ edit ]
If the loss of a portfolio
L
{\displaystyle L}
follows the Weibull distribution with p.d.f.
f
(
x
)
=
{
k
λ らむだ
(
x
λ らむだ
)
k
−
1
e
−
(
x
/
λ らむだ
)
k
if
x
≥
0
,
0
if
x
<
0.
{\displaystyle f(x)={\begin{cases}{\frac {k}{\lambda }}\left({\frac {x}{\lambda }}\right)^{k-1}e^{-(x/\lambda )^{k}}&{\text{if }}x\geq 0,\\0&{\text{if }}x<0.\end{cases}}}
and the c.d.f.
F
(
x
)
=
{
1
−
e
−
(
x
/
λ らむだ
)
k
if
x
≥
0
,
0
if
x
<
0.
{\displaystyle F(x)={\begin{cases}1-e^{-(x/\lambda )^{k}}&{\text{if }}x\geq 0,\\0&{\text{if }}x<0.\end{cases}}}
then the expected shortfall is equal to
ES
α あるふぁ
(
L
)
=
λ らむだ
1
−
α あるふぁ
Γ がんま
(
1
+
1
k
,
−
ln
(
1
−
α あるふぁ
)
)
{\displaystyle \operatorname {ES} _{\alpha }(L)={\frac {\lambda }{1-\alpha }}\Gamma \left(1+{\frac {1}{k}},-\ln(1-\alpha )\right)}
, where
Γ がんま
(
s
,
x
)
{\displaystyle \Gamma (s,x)}
is the upper incomplete gamma function .[ 11]
Generalized extreme value distribution (GEV)[ edit ]
If the payoff of a portfolio
X
{\displaystyle X}
follows the GEV with p.d.f.
f
(
x
)
=
{
1
σ しぐま
(
1
+
ξ くしー
x
−
μ みゅー
σ しぐま
)
−
1
ξ くしー
−
1
exp
[
−
(
1
+
ξ くしー
x
−
μ みゅー
σ しぐま
)
−
1
/
ξ くしー
]
if
ξ くしー
≠
0
,
1
σ しぐま
e
−
x
−
μ みゅー
σ しぐま
e
−
e
−
x
−
μ みゅー
σ しぐま
if
ξ くしー
=
0.
{\displaystyle f(x)={\begin{cases}{\frac {1}{\sigma }}\left(1+\xi {\frac {x-\mu }{\sigma }}\right)^{-{\frac {1}{\xi }}-1}\exp \left[-\left(1+\xi {\frac {x-\mu }{\sigma }}\right)^{-{1}/{\xi }}\right]&{\text{if }}\xi \neq 0,\\{\frac {1}{\sigma }}e^{-{\frac {x-\mu }{\sigma }}}e^{-e^{-{\frac {x-\mu }{\sigma }}}}&{\text{if }}\xi =0.\end{cases}}}
and c.d.f.
F
(
x
)
=
{
exp
(
−
(
1
+
ξ くしー
x
−
μ みゅー
σ しぐま
)
−
1
/
ξ くしー
)
if
ξ くしー
≠
0
,
exp
(
−
e
−
x
−
μ みゅー
σ しぐま
)
if
ξ くしー
=
0.
{\displaystyle F(x)={\begin{cases}\exp \left(-\left(1+\xi {\frac {x-\mu }{\sigma }}\right)^{-{1}/{\xi }}\right)&{\text{if }}\xi \neq 0,\\\exp \left(-e^{-{\frac {x-\mu }{\sigma }}}\right)&{\text{if }}\xi =0.\end{cases}}}
then the expected shortfall is equal to
ES
α あるふぁ
(
X
)
=
{
−
μ みゅー
−
σ しぐま
α あるふぁ
ξ くしー
[
Γ がんま
(
1
−
ξ くしー
,
−
ln
α あるふぁ
)
−
α あるふぁ
]
if
ξ くしー
≠
0
,
−
μ みゅー
−
σ しぐま
α あるふぁ
[
li
(
α あるふぁ
)
−
α あるふぁ
ln
(
−
ln
α あるふぁ
)
]
if
ξ くしー
=
0.
{\displaystyle \operatorname {ES} _{\alpha }(X)={\begin{cases}-\mu -{\frac {\sigma }{\alpha \xi }}{\big [}\Gamma (1-\xi ,-\ln \alpha )-\alpha {\big ]}&{\text{if }}\xi \neq 0,\\-\mu -{\frac {\sigma }{\alpha }}{\big [}{\text{li}}(\alpha )-\alpha \ln(-\ln \alpha ){\big ]}&{\text{if }}\xi =0.\end{cases}}}
and the VaR is equal to
VaR
α あるふぁ
(
X
)
=
{
−
μ みゅー
−
σ しぐま
ξ くしー
[
(
−
ln
α あるふぁ
)
−
ξ くしー
−
1
]
if
ξ くしー
≠
0
,
−
μ みゅー
+
σ しぐま
ln
(
−
ln
α あるふぁ
)
if
ξ くしー
=
0.
{\displaystyle \operatorname {VaR} _{\alpha }(X)={\begin{cases}-\mu -{\frac {\sigma }{\xi }}\left[(-\ln \alpha )^{-\xi }-1\right]&{\text{if }}\xi \neq 0,\\-\mu +\sigma \ln(-\ln \alpha )&{\text{if }}\xi =0.\end{cases}}}
, where
Γ がんま
(
s
,
x
)
{\displaystyle \Gamma (s,x)}
is the upper incomplete gamma function ,
l
i
(
x
)
=
∫
d
x
ln
x
{\displaystyle \mathrm {li} (x)=\int {\frac {dx}{\ln x}}}
is the logarithmic integral function .[ 12]
If the loss of a portfolio
L
{\displaystyle L}
follows the GEV , then the expected shortfall is equal to
ES
α あるふぁ
(
X
)
=
{
μ みゅー
+
σ しぐま
(
1
−
α あるふぁ
)
ξ くしー
[
γ がんま
(
1
−
ξ くしー
,
−
ln
α あるふぁ
)
−
(
1
−
α あるふぁ
)
]
if
ξ くしー
≠
0
,
μ みゅー
+
σ しぐま
1
−
α あるふぁ
[
y
−
li
(
α あるふぁ
)
+
α あるふぁ
ln
(
−
ln
α あるふぁ
)
]
if
ξ くしー
=
0.
{\displaystyle \operatorname {ES} _{\alpha }(X)={\begin{cases}\mu +{\frac {\sigma }{(1-\alpha )\xi }}{\bigl [}\gamma (1-\xi ,-\ln \alpha )-(1-\alpha ){\bigr ]}&{\text{if }}\xi \neq 0,\\\mu +{\frac {\sigma }{1-\alpha }}{\bigl [}y-{\text{li}}(\alpha )+\alpha \ln(-\ln \alpha ){\bigr ]}&{\text{if }}\xi =0.\end{cases}}}
, where
γ がんま
(
s
,
x
)
{\displaystyle \gamma (s,x)}
is the lower incomplete gamma function ,
y
{\displaystyle y}
is the Euler-Mascheroni constant .[ 11]
Generalized hyperbolic secant (GHS) distribution[ edit ]
If the payoff of a portfolio
X
{\displaystyle X}
follows the GHS distribution with p.d.f.
f
(
x
)
=
1
2
σ しぐま
sech
(
π ぱい
2
x
−
μ みゅー
σ しぐま
)
{\displaystyle f(x)={\frac {1}{2\sigma }}\operatorname {sech} \left({\frac {\pi }{2}}{\frac {x-\mu }{\sigma }}\right)}
and the c.d.f.
F
(
x
)
=
2
π ぱい
arctan
[
exp
(
π ぱい
2
x
−
μ みゅー
σ しぐま
)
]
{\displaystyle F(x)={\frac {2}{\pi }}\arctan \left[\exp \left({\frac {\pi }{2}}{\frac {x-\mu }{\sigma }}\right)\right]}
then the expected shortfall is equal to
ES
α あるふぁ
(
X
)
=
−
μ みゅー
−
2
σ しぐま
π ぱい
ln
(
tan
π ぱい
α あるふぁ
2
)
−
2
σ しぐま
π ぱい
2
α あるふぁ
i
[
Li
2
(
−
i
tan
π ぱい
α あるふぁ
2
)
−
Li
2
(
i
tan
π ぱい
α あるふぁ
2
)
]
{\displaystyle \operatorname {ES} _{\alpha }(X)=-\mu -{\frac {2\sigma }{\pi }}\ln \left(\tan {\frac {\pi \alpha }{2}}\right)-{\frac {2\sigma }{\pi ^{2}\alpha }}i\left[\operatorname {Li} _{2}\left(-i\tan {\frac {\pi \alpha }{2}}\right)-\operatorname {Li} _{2}\left(i\tan {\frac {\pi \alpha }{2}}\right)\right]}
, where
Li
2
{\displaystyle \operatorname {Li} _{2}}
is the dilogarithm and
i
=
−
1
{\displaystyle i={\sqrt {-1}}}
is the imaginary unit.[ 12]
Johnson's SU-distribution[ edit ]
If the payoff of a portfolio
X
{\displaystyle X}
follows Johnson's SU-distribution with the c.d.f.
F
(
x
)
=
Φ ふぁい
[
γ がんま
+
δ でるた
sinh
−
1
(
x
−
ξ くしー
λ らむだ
)
]
{\displaystyle F(x)=\Phi \left[\gamma +\delta \sinh ^{-1}\left({\frac {x-\xi }{\lambda }}\right)\right]}
then the expected shortfall is equal to
ES
α あるふぁ
(
X
)
=
−
ξ くしー
−
λ らむだ
2
α あるふぁ
[
exp
(
1
−
2
γ がんま
δ でるた
2
δ でるた
2
)
Φ ふぁい
(
Φ ふぁい
−
1
(
α あるふぁ
)
−
1
δ でるた
)
−
exp
(
1
+
2
γ がんま
δ でるた
2
δ でるた
2
)
Φ ふぁい
(
Φ ふぁい
−
1
(
α あるふぁ
)
+
1
δ でるた
)
]
{\displaystyle \operatorname {ES} _{\alpha }(X)=-\xi -{\frac {\lambda }{2\alpha }}\left[\exp \left({\frac {1-2\gamma \delta }{2\delta ^{2}}}\right)\;\Phi \left(\Phi ^{-1}(\alpha )-{\frac {1}{\delta }}\right)-\exp \left({\frac {1+2\gamma \delta }{2\delta ^{2}}}\right)\;\Phi \left(\Phi ^{-1}(\alpha )+{\frac {1}{\delta }}\right)\right]}
, where
Φ ふぁい
{\displaystyle \Phi }
is the c.d.f. of the standard normal distribution.[ 13]
Burr type XII distribution [ edit ]
If the payoff of a portfolio
X
{\displaystyle X}
follows the Burr type XII distribution the p.d.f.
f
(
x
)
=
c
k
β べーた
(
x
−
γ がんま
β べーた
)
c
−
1
[
1
+
(
x
−
γ がんま
β べーた
)
c
]
−
k
−
1
{\displaystyle f(x)={\frac {ck}{\beta }}\left({\frac {x-\gamma }{\beta }}\right)^{c-1}\left[1+\left({\frac {x-\gamma }{\beta }}\right)^{c}\right]^{-k-1}}
and the c.d.f.
F
(
x
)
=
1
−
[
1
+
(
x
−
γ がんま
β べーた
)
c
]
−
k
{\displaystyle F(x)=1-\left[1+\left({\frac {x-\gamma }{\beta }}\right)^{c}\right]^{-k}}
, the expected shortfall is equal to
ES
α あるふぁ
(
X
)
=
−
γ がんま
−
β べーた
α あるふぁ
(
(
1
−
α あるふぁ
)
−
1
/
k
−
1
)
1
/
c
[
α あるふぁ
−
1
+
2
F
1
(
1
c
,
k
;
1
+
1
c
;
1
−
(
1
−
α あるふぁ
)
−
1
/
k
)
]
{\displaystyle \operatorname {ES} _{\alpha }(X)=-\gamma -{\frac {\beta }{\alpha }}\left((1-\alpha )^{-1/k}-1\right)^{1/c}\left[\alpha -1+{_{2}F_{1}}\left({\frac {1}{c}},k;1+{\frac {1}{c}};1-(1-\alpha )^{-1/k}\right)\right]}
, where
2
F
1
{\displaystyle _{2}F_{1}}
is the hypergeometric function . Alternatively,
ES
α あるふぁ
(
X
)
=
−
γ がんま
−
β べーた
α あるふぁ
c
k
c
+
1
(
(
1
−
α あるふぁ
)
−
1
/
k
−
1
)
1
+
1
c
2
F
1
(
1
+
1
c
,
k
+
1
;
2
+
1
c
;
1
−
(
1
−
α あるふぁ
)
−
1
/
k
)
{\displaystyle \operatorname {ES} _{\alpha }(X)=-\gamma -{\frac {\beta }{\alpha }}{\frac {ck}{c+1}}\left((1-\alpha )^{-1/k}-1\right)^{1+{\frac {1}{c}}}{_{2}F_{1}}\left(1+{\frac {1}{c}},k+1;2+{\frac {1}{c}};1-(1-\alpha )^{-1/k}\right)}
.[ 12]
If the payoff of a portfolio
X
{\displaystyle X}
follows the Dagum distribution with p.d.f.
f
(
x
)
=
c
k
β べーた
(
x
−
γ がんま
β べーた
)
c
k
−
1
[
1
+
(
x
−
γ がんま
β べーた
)
c
]
−
k
−
1
{\displaystyle f(x)={\frac {ck}{\beta }}\left({\frac {x-\gamma }{\beta }}\right)^{ck-1}\left[1+\left({\frac {x-\gamma }{\beta }}\right)^{c}\right]^{-k-1}}
and the c.d.f.
F
(
x
)
=
[
1
+
(
x
−
γ がんま
β べーた
)
−
c
]
−
k
{\displaystyle F(x)=\left[1+\left({\frac {x-\gamma }{\beta }}\right)^{-c}\right]^{-k}}
, the expected shortfall is equal to
ES
α あるふぁ
(
X
)
=
−
γ がんま
−
β べーた
α あるふぁ
c
k
c
k
+
1
(
α あるふぁ
−
1
/
k
−
1
)
−
k
−
1
c
2
F
1
(
k
+
1
,
k
+
1
c
;
k
+
1
+
1
c
;
−
1
α あるふぁ
−
1
/
k
−
1
)
{\displaystyle \operatorname {ES} _{\alpha }(X)=-\gamma -{\frac {\beta }{\alpha }}{\frac {ck}{ck+1}}\left(\alpha ^{-1/k}-1\right)^{-k-{\frac {1}{c}}}{_{2}F_{1}}\left(k+1,k+{\frac {1}{c}};k+1+{\frac {1}{c}};-{\frac {1}{\alpha ^{-1/k}-1}}\right)}
, where
2
F
1
{\displaystyle _{2}F_{1}}
is the hypergeometric function .[ 12]
Lognormal distribution [ edit ]
If the payoff of a portfolio
X
{\displaystyle X}
follows lognormal distribution , i.e. the random variable
ln
(
1
+
X
)
{\displaystyle \ln(1+X)}
follows the normal distribution with p.d.f.
f
(
x
)
=
1
2
π ぱい
σ しぐま
e
−
(
x
−
μ みゅー
)
2
2
σ しぐま
2
{\displaystyle f(x)={\frac {1}{{\sqrt {2\pi }}\sigma }}e^{-{\frac {(x-\mu )^{2}}{2\sigma ^{2}}}}}
, then the expected shortfall is equal to
ES
α あるふぁ
(
X
)
=
1
−
exp
(
μ みゅー
+
σ しぐま
2
2
)
Φ ふぁい
(
Φ ふぁい
−
1
(
α あるふぁ
)
−
σ しぐま
)
α あるふぁ
{\displaystyle \operatorname {ES} _{\alpha }(X)=1-\exp \left(\mu +{\frac {\sigma ^{2}}{2}}\right){\frac {\Phi \left(\Phi ^{-1}(\alpha )-\sigma \right)}{\alpha }}}
, where
Φ ふぁい
(
x
)
{\displaystyle \Phi (x)}
is the standard normal c.d.f., so
Φ ふぁい
−
1
(
α あるふぁ
)
{\displaystyle \Phi ^{-1}(\alpha )}
is the standard normal quantile.[ 14]
Log-logistic distribution [ edit ]
If the payoff of a portfolio
X
{\displaystyle X}
follows log-logistic distribution , i.e. the random variable
ln
(
1
+
X
)
{\displaystyle \ln(1+X)}
follows the logistic distribution with p.d.f.
f
(
x
)
=
1
s
e
−
x
−
μ みゅー
s
(
1
+
e
−
x
−
μ みゅー
s
)
−
2
{\displaystyle f(x)={\frac {1}{s}}e^{-{\frac {x-\mu }{s}}}\left(1+e^{-{\frac {x-\mu }{s}}}\right)^{-2}}
, then the expected shortfall is equal to
ES
α あるふぁ
(
X
)
=
1
−
e
μ みゅー
α あるふぁ
I
α あるふぁ
(
1
+
s
,
1
−
s
)
π ぱい
s
sin
π ぱい
s
{\displaystyle \operatorname {ES} _{\alpha }(X)=1-{\frac {e^{\mu }}{\alpha }}I_{\alpha }(1+s,1-s){\frac {\pi s}{\sin \pi s}}}
, where
I
α あるふぁ
{\displaystyle I_{\alpha }}
is the regularized incomplete beta function ,
I
α あるふぁ
(
a
,
b
)
=
B
α あるふぁ
(
a
,
b
)
B
(
a
,
b
)
{\displaystyle I_{\alpha }(a,b)={\frac {\mathrm {B} _{\alpha }(a,b)}{\mathrm {B} (a,b)}}}
.
As the incomplete beta function is defined only for positive arguments, for a more generic case the expected shortfall can be expressed with the hypergeometric function :
ES
α あるふぁ
(
X
)
=
1
−
e
μ みゅー
α あるふぁ
s
s
+
1
2
F
1
(
s
,
s
+
1
;
s
+
2
;
α あるふぁ
)
{\displaystyle \operatorname {ES} _{\alpha }(X)=1-{\frac {e^{\mu }\alpha ^{s}}{s+1}}{_{2}F_{1}}(s,s+1;s+2;\alpha )}
.[ 14]
If the loss of a portfolio
L
{\displaystyle L}
follows log-logistic distribution with p.d.f.
f
(
x
)
=
b
a
(
x
/
a
)
b
−
1
(
1
+
(
x
/
a
)
b
)
2
{\displaystyle f(x)={\frac {{\frac {b}{a}}(x/a)^{b-1}}{(1+(x/a)^{b})^{2}}}}
and c.d.f.
F
(
x
)
=
1
1
+
(
x
/
a
)
−
b
{\displaystyle F(x)={\frac {1}{1+(x/a)^{-b}}}}
, then the expected shortfall is equal to
ES
α あるふぁ
(
L
)
=
a
1
−
α あるふぁ
[
π ぱい
b
csc
(
π ぱい
b
)
−
B
α あるふぁ
(
1
b
+
1
,
1
−
1
b
)
]
{\displaystyle \operatorname {ES} _{\alpha }(L)={\frac {a}{1-\alpha }}\left[{\frac {\pi }{b}}\csc \left({\frac {\pi }{b}}\right)-\mathrm {B} _{\alpha }\left({\frac {1}{b}}+1,1-{\frac {1}{b}}\right)\right]}
, where
B
α あるふぁ
{\displaystyle B_{\alpha }}
is the incomplete beta function .[ 11]
Log-Laplace distribution [ edit ]
If the payoff of a portfolio
X
{\displaystyle X}
follows log-Laplace distribution , i.e. the random variable
ln
(
1
+
X
)
{\displaystyle \ln(1+X)}
follows the Laplace distribution the p.d.f.
f
(
x
)
=
1
2
b
e
−
|
x
−
μ みゅー
|
b
{\displaystyle f(x)={\frac {1}{2b}}e^{-{\frac {|x-\mu |}{b}}}}
, then the expected shortfall is equal to
ES
α あるふぁ
(
X
)
=
{
1
−
e
μ みゅー
(
2
α あるふぁ
)
b
b
+
1
if
α あるふぁ
≤
0.5
,
1
−
e
μ みゅー
2
−
b
α あるふぁ
(
b
−
1
)
[
(
1
−
α あるふぁ
)
(
1
−
b
)
−
1
]
if
α あるふぁ
>
0.5.
{\displaystyle \operatorname {ES} _{\alpha }(X)={\begin{cases}1-{\frac {e^{\mu }(2\alpha )^{b}}{b+1}}&{\text{if }}\alpha \leq 0.5,\\1-{\frac {e^{\mu }2^{-b}}{\alpha (b-1)}}\left[(1-\alpha )^{(1-b)}-1\right]&{\text{if }}\alpha >0.5.\end{cases}}}
[ 14]
Log-generalized hyperbolic secant (log-GHS) distribution[ edit ]
If the payoff of a portfolio
X
{\displaystyle X}
follows log-GHS distribution, i.e. the random variable
ln
(
1
+
X
)
{\displaystyle \ln(1+X)}
follows the GHS distribution with p.d.f.
f
(
x
)
=
1
2
σ しぐま
sech
(
π ぱい
2
x
−
μ みゅー
σ しぐま
)
{\displaystyle f(x)={\frac {1}{2\sigma }}\operatorname {sech} \left({\frac {\pi }{2}}{\frac {x-\mu }{\sigma }}\right)}
, then the expected shortfall is equal to
ES
α あるふぁ
(
X
)
=
1
−
1
α あるふぁ
(
σ しぐま
+
π ぱい
/
2
)
(
tan
π ぱい
α あるふぁ
2
exp
π ぱい
μ みゅー
2
σ しぐま
)
2
σ しぐま
/
π ぱい
tan
π ぱい
α あるふぁ
2
2
F
1
(
1
,
1
2
+
σ しぐま
π ぱい
;
3
2
+
σ しぐま
π ぱい
;
−
tan
(
π ぱい
α あるふぁ
2
)
2
)
,
{\displaystyle \operatorname {ES} _{\alpha }(X)=1-{\frac {1}{\alpha (\sigma +{\pi /2})}}\left(\tan {\frac {\pi \alpha }{2}}\exp {\frac {\pi \mu }{2\sigma }}\right)^{2\sigma /\pi }\tan {\frac {\pi \alpha }{2}}{_{2}F_{1}}\left(1,{\frac {1}{2}}+{\frac {\sigma }{\pi }};{\frac {3}{2}}+{\frac {\sigma }{\pi }};-\tan \left({\frac {\pi \alpha }{2}}\right)^{2}\right),}
where
2
F
1
{\displaystyle _{2}F_{1}}
is the hypergeometric function .[ 14]
Dynamic expected shortfall [ edit ]
The conditional version of the expected shortfall at the time t is defined by
ES
α あるふぁ
t
(
X
)
=
e
s
s
sup
Q
∈
Q
α あるふぁ
t
E
Q
[
−
X
∣
F
t
]
{\displaystyle \operatorname {ES} _{\alpha }^{t}(X)=\operatorname {ess\sup } _{Q\in {\mathcal {Q}}_{\alpha }^{t}}E^{Q}[-X\mid {\mathcal {F}}_{t}]}
where
Q
α あるふぁ
t
=
{
Q
=
P
|
F
t
:
d
Q
d
P
≤
α あるふぁ
t
−
1
a.s.
}
{\displaystyle {\mathcal {Q}}_{\alpha }^{t}=\left\{Q=P\,\vert _{{\mathcal {F}}_{t}}:{\frac {dQ}{dP}}\leq \alpha _{t}^{-1}{\text{ a.s.}}\right\}}
.[ 15] [ 16]
This is not a time-consistent risk measure. The time-consistent version is given by
ρ ろー
α あるふぁ
t
(
X
)
=
e
s
s
sup
Q
∈
Q
~
α あるふぁ
t
E
Q
[
−
X
∣
F
t
]
{\displaystyle \rho _{\alpha }^{t}(X)=\operatorname {ess\sup } _{Q\in {\tilde {\mathcal {Q}}}_{\alpha }^{t}}E^{Q}[-X\mid {\mathcal {F}}_{t}]}
such that[ 17]
Q
~
α あるふぁ
t
=
{
Q
≪
P
:
E
[
d
Q
d
P
∣
F
τ たう
+
1
]
≤
α あるふぁ
t
−
1
E
[
d
Q
d
P
∣
F
τ たう
]
∀
τ たう
≥
t
a.s.
}
.
{\displaystyle {\tilde {\mathcal {Q}}}_{\alpha }^{t}=\left\{Q\ll P:\operatorname {E} \left[{\frac {dQ}{dP}}\mid {\mathcal {F}}_{\tau +1}\right]\leq \alpha _{t}^{-1}\operatorname {E} \left[{\frac {dQ}{dP}}\mid {\mathcal {F}}_{\tau }\right]\;\forall \tau \geq t{\text{ a.s.}}\right\}.}
Methods of statistical estimation of VaR and ES can be found in Embrechts et al.[ 18] and Novak.[ 19] When forecasting VaR and ES, or optimizing portfolios to minimize tail risk, it is important to account for asymmetric dependence and non-normalities in the distribution of stock returns such as auto-regression, asymmetric volatility, skewness, and kurtosis.[ 20]
^ Rockafellar, R. Tyrrell; Uryasev, Stanislav (2000). "Optimization of conditional value-at-risk" (PDF) . Journal of Risk . 2 (3): 21–42. doi :10.21314/JOR.2000.038 . S2CID 854622 .
^ Rockafellar, R. Tyrrell; Royset, Johannes (2010). "On Buffered Failure Probability in Design and Optimization of Structures" (PDF) . Reliability Engineering and System Safety . 95 (5): 499–510. doi :10.1016/j.ress.2010.01.001 . S2CID 1653873 .
^ Carlo Acerbi; Dirk Tasche (2002). "Expected Shortfall: a natural coherent alternative to Value at Risk" (PDF) . Economic Notes . 31 (2): 379–388. arXiv :cond-mat/0105191 . doi :10.1111/1468-0300.00091 . S2CID 10772757 . Retrieved April 25, 2012 .
^ Föllmer, H.; Schied, A. (2008). "Convex and coherent risk measures" (PDF) . Retrieved October 4, 2011 .
^ Patrick Cheridito; Tianhui Li (2008). "Dual characterization of properties of risk measures on Orlicz hearts". Mathematics and Financial Economics . 2 : 2–29. doi :10.1007/s11579-008-0013-7 . S2CID 121880657 .
^ "Average Value at Risk" (PDF) . Archived from the original (PDF) on July 19, 2011. Retrieved February 2, 2011 .
^ Julia L. Wirch; Mary R. Hardy. "Distortion Risk Measures: Coherence and Stochastic Dominance" (PDF) . Archived from the original (PDF) on July 5, 2016. Retrieved March 10, 2012 .
^ Balbás, A.; Garrido, J.; Mayoral, S. (2008). "Properties of Distortion Risk Measures" (PDF) . Methodology and Computing in Applied Probability . 11 (3): 385. doi :10.1007/s11009-008-9089-z . hdl :10016/14071 . S2CID 53327887 .
^ Rockafellar, R. Tyrrell; Uryasev, Stanislav (2000). "Optimization of conditional value-at-risk" (PDF) . Journal of Risk . 2 (3): 21–42. doi :10.21314/JOR.2000.038 . S2CID 854622 .
^ a b c d Khokhlov, Valentyn (2016). "Conditional Value-at-Risk for Elliptical Distributions". Evropský časopis Ekonomiky a Managementu . 2 (6): 70–79.
^ a b c d e f g h i j Norton, Matthew; Khokhlov, Valentyn; Uryasev, Stan (2018-11-27). "Calculating CVaR and bPOE for Common Probability Distributions With Application to Portfolio Optimization and Density Estimation". arXiv :1811.11301 [q-fin.RM ].
^ a b c d Khokhlov, Valentyn (2018-06-21). "Conditional Value-at-Risk for Uncommon Distributions". doi :10.2139/ssrn.3200629 . S2CID 219371851 . SSRN 3200629 .
^ Stucchi, Patrizia (2011-05-31). "Moment-Based CVaR Estimation: Quasi-Closed Formulas". doi :10.2139/ssrn.1855986 . S2CID 124145569 . SSRN 1855986 .
^ a b c d Khokhlov, Valentyn (2018-06-17). "Conditional Value-at-Risk for Log-Distributions". SSRN 3197929 .
^ Detlefsen, Kai; Scandolo, Giacomo (2005). "Conditional and dynamic convex risk measures" (PDF) . Finance Stoch . 9 (4): 539–561. CiteSeerX 10.1.1.453.4944 . doi :10.1007/s00780-005-0159-6 . S2CID 10579202 . Retrieved October 11, 2011 . [dead link ]
^ Acciaio, Beatrice; Penner, Irina (2011). "Dynamic convex risk measures" (PDF) . Archived from the original (PDF) on September 2, 2011. Retrieved October 11, 2011 .
^ Cheridito, Patrick; Kupper, Michael (May 2010). "Composition of time-consistent dynamic monetary risk measures in discrete time" (PDF) . International Journal of Theoretical and Applied Finance . Archived from the original (PDF) on July 19, 2011. Retrieved February 4, 2011 .
^ Embrechts P., Kluppelberg C. and Mikosch T., Modelling Extremal Events for Insurance and Finance. Springer (1997).
^ Novak S.Y., Extreme value methods with applications to finance. Chapman & Hall/CRC Press (2011). ISBN 978-1-4398-3574-6 .
^ Low, R.K.Y.; Alcock, J.; Faff, R.; Brailsford, T. (2013). "Canonical vine copulas in the context of modern portfolio management: Are they worth it?" (PDF) . Journal of Banking & Finance . 37 (8): 3085–3099. doi :10.1016/j.jbankfin.2013.02.036 . S2CID 154138333 .
Rockafellar, Uryasev: Optimization of conditional Value-at-Risk, 2000.
C. Acerbi and D. Tasche: On the Coherence of Expected Shortfall, 2002.
Rockafellar, Uryasev: Conditional Value-at-Risk for general loss distributions, 2002.
Acerbi: Spectral measures of risk, 2005
Phi-Alpha optimal portfolios and extreme risk management, Best of Wilmott, 2003
"Coherent measures of Risk ", Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath