(Translated by https://www.hiragana.jp/)
RaTG13 - Wikipedia Jump to content

RaTG13

Extended-protected article
From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by OAbot (talk | contribs) at 19:42, 18 March 2021 (Open access bot: doi added to citation with #oabot.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

BatCoV RaTG13
Virus classification Edit this classification
(unranked): Virus
Realm: Riboviria
Kingdom: Orthornavirae
Phylum: Pisuviricota
Class: Pisoniviricetes
Order: Nidovirales
Family: Coronaviridae
Genus: Betacoronavirus
Subgenus: Sarbecovirus
Species:
Strain:
BatCoV RaTG13
Synonyms[1]
  • Bat coronavirus Ra4991

Bat coronavirus RaTG13 is a SARS-like betacoronavirus that infects the horseshoe bat Rhinolophus affinis.[2][3] It was discovered in 2013 in bat droppings from a mining cave near the town of Tongguan in Mojiang county in Yunnan, China. As of 2020, it is the closest known relative of SARS-CoV-2, the virus that causes COVID-19.[4][5]

Discovery

In spring of 2012, three miners cleaning bat feces in an abandoned copper mine near the town of Tongguan in Mojiang Hani Autonomous County developed fatal pneumonia.[6] Serum samples collected from the miners were sent to the Wuhan Institute of Virology and tested by Shi Zhengli and her group for Ebola virus, Nipah virus, and bat SARSr-CoV Rp3. The samples tested negative.[7][8][6]

In order to discover the possible cause of the infection, different animals (including bats, rats, and musk shrews) were sampled in and around the mining cave. Between 2012 and 2015, Shi Zhengli and her group isolated 293 diverse coronaviruses (284 alphacoronaviruses and 9 betacoronaviruses) from bat feces samples in the cave. One of the samples collected in 2013 from Rhinolophus affinis bat feces was the bat coronavirus RaTG13. The strain name was derived from the originating bat species, geographic location, and year collected.[7][8]

In 2020, Shi and her group retested the serum samples from the miners for SARS-CoV-2. The samples tested negative.[7]

Virology

RaTG13 is a positive-strand RNA virus with an outer membrane. Its genome is approximately 29,800 nucleotides. The genome encodes a replicase (ORF1a/1b) and four structural proteins; including a spike protein (S), membrane protein (M), outer membrane protein (E) and capsid protein (N); and five helper nonstructural proteins, including NS3, NS6, NS7a, NS7b and NS8, which are common in coronaviruses.[9]

RaTG13 bears strong resemblance to the SARS-CoV-2 virus (it shares 96.1% nucleotide similarity), and its existence is a supporting piece of evidence for SARS-CoV-2's natural origin.[10] The difference between RaTG13 and SARS-CoV-2 is in the receptor-binding domain (RBD) of the spike protein (S), which is the portion that binds to the receptor on the surface of the host cell and causes infection, indicating that RaTG13 virus might not use angiotensin-converting enzyme 2 (ACE2) as the receptor to enter the cell as SARS-CoV-2.[11] In addition, the S protein of RaTG13 virus does not have the Furin cleavage motif RRAR↓S.[11]

Phylogenetic

As of January 2021, phylogenetic tree based on whole-genome sequences of SARS-CoV-2 related coronavirus are:[12][13]

SARS‑CoV‑2 related coronavirus

Rc-o319, 81% to SARS-COV-2, Rhinolophus cornutus, Iwate, Japan[14]

SL-ZXC21, 88% to SARS-COV-2, Rhinolophus pusillus, Zhoushan, Zhejiang[15]

SL-ZC45, 88% to SARS-COV-2, Rhinolophus pusillus, Zhoushan, Zhejiang[15]

Pangolin SARSr-COV-GX, 89% to SARS-COV-2, Manis javanica, Smuggled from Southeast Asia[16]

Pangolin SARSr-COV-GD, 91% to SARS-COV-2, Manis javanica, Smuggled from Southeast Asia[17]

RshSTT182, 92.6% to SARS-COV-2, Rhinolophus shameli, Steung Treng, Cambodia[13]

RshSTT200, 92.6% to SARS-COV-2, Rhinolophus shameli, Steung Treng, Cambodia[13]

SARS-CoV-1, 79% to SARS-COV-2

See also

References

  1. ^ "Taxonomy browser (Bat coronavirus RaTG13)". www.ncbi.nlm.nih.gov. Retrieved 2021-01-02.
  2. ^ Ge XY, Wang N, Zhang W, Hu B, Li B, Zhang YZ, et al. (February 2016). "Coexistence of multiple coronaviruses in several bat colonies in an abandoned mineshaft". Virologica Sinica. 31 (1): 31–40. doi:10.1007/s12250-016-3713-9. PMC 7090819. PMID 26920708.
  3. ^ Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. (December 2020). "Addendum: A pneumonia outbreak associated with a new coronavirus of probable bat origin". Nature. 588 (7836): E6. doi:10.1038/s41586-020-2951-z. PMID 33199918.
  4. ^ Poudel U, Subedi D, Pantha S, Dhakal S (October 2020). "Animal coronaviruses and coronavirus disease 2019: Lesson for One Health approach". Open Veterinary Journal. 10 (3): 239–251. doi:10.4314/ovj.v10i3.1. PMC 7703617. PMID 33282694.
  5. ^ Xiao C, Li X, Liu S, Sang Y, Gao SJ, Gao F (2020). "HIV-1 did not contribute to the 2019-nCoV genome". Emerging Microbes & Infections. 9 (1): 378–381. doi:10.1080/22221751.2020.1727299. PMC 7033698. PMID 32056509.
  6. ^ a b Wu Z, Yang L, Yang F, Ren X, Jiang J, Dong J, et al. (June 2014). "Novel Henipa-like virus, Mojiang Paramyxovirus, in rats, China, 2012". Emerging Infectious Diseases. 20 (6): 1064–6. doi:10.3201/eid2006.131022. PMC 4036791. PMID 24865545.
  7. ^ a b c Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. (December 2020). "Addendum: A pneumonia outbreak associated with a new coronavirus of probable bat origin". Nature. 588 (7836): E6. doi:10.1038/s41586-020-2951-z. PMID 33199918.
  8. ^ a b Ge XY, Wang N, Zhang W, Hu B, Li B, Zhang YZ, et al. (February 2016). "Coexistence of multiple coronaviruses in several bat colonies in an abandoned mineshaft". Virologica Sinica. 31 (1): 31–40. doi:10.1007/s12250-016-3713-9. PMC 7090819. PMID 26920708.
  9. ^ "Bat coronavirus RaTG13, complete genome". NCBI. Retrieved 2020-03-28.
  10. ^ Hakim MS (February 2021). "SARS‐CoV‐2, Covid‐19, and the debunking of conspiracy theories". Rev Med Virol (Review). doi:10.1002/rmv.2222. PMID 33586302.
  11. ^ a b Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF (April 2020). "The proximal origin of SARS-CoV-2". Nature Medicine. 26 (4): 450–452. doi:10.1038/s41591-020-0820-9. PMC 7095063. PMID 32284615.
  12. ^ a b Wacharapluesadee, S; Tan, CW; Maneeorn, P; Duengkae, P; Zhu, F; Joyjinda, Y; Kaewpom, T; Chia, WN; Ampoot, W; Lim, BL; Worachotsueptrakun, K; Chen, VC; Sirichan, N; Ruchisrisarod, C; Rodpan, A; Noradechanon, K; Phaichana, T; Jantarat, N; Thongnumchaima, B; Tu, C; Crameri, G; Stokes, MM; Hemachudha, T; Wang, LF (9 February 2021). "Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia". Nature Communications. 12 (1): 972. doi:10.1038/s41467-021-21240-1. PMC 7873279. PMID 33563978.
  13. ^ a b c Hul, Vibol; Delaune, Deborah; Karlsson, Erik A.; Hassanin, Alexandre; Tey, Putita Ou; Baidaliuk, Artem; Gámbaro, Fabiana; Tu, Vuong Tan; Keatts, Lucy; Mazet, Jonna; Johnson, Christine; Buchy, Philippe; Dussart, Philippe; Goldstein, Tracey; Simon-Lorière, Etienne; Duong, Veasna (26 January 2021). "A novel SARS-CoV-2 related coronavirus in bats from Cambodia". bioRxiv. pp. 2021.01.26.428212. doi:10.1101/2021.01.26.428212.
  14. ^ Murakami, Shin; Kitamura, Tomoya; Suzuki, Jin; Sato, Ryouta; Aoi, Toshiki; Fujii, Marina; Matsugo, Hiromichi; Kamiki, Haruhiko; Ishida, Hiroho; Takenaka-Uema, Akiko; Shimojima, Masayuki; Horimoto, Taisuke (December 2020). "Detection and Characterization of Bat Sarbecovirus Phylogenetically Related to SARS-CoV-2, Japan". Emerging Infectious Diseases. 26 (12): 3025–3029. doi:10.3201/eid2612.203386.
  15. ^ a b Zhou, Hong; Chen, Xing; Hu, Tao; Li, Juan; Song, Hao; Liu, Yanran; Wang, Peihan; Liu, Di; Yang, Jing; Holmes, Edward C.; Hughes, Alice C.; Bi, Yuhai; Shi, Weifeng (June 2020). "A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein". Current Biology. 30 (11): 2196–2203.e3. doi:10.1016/j.cub.2020.05.023.
  16. ^ Lam, Tommy Tsan-Yuk; Jia, Na; Zhang, Ya-Wei; Shum, Marcus Ho-Hin; Jiang, Jia-Fu; Zhu, Hua-Chen; Tong, Yi-Gang; Shi, Yong-Xia; Ni, Xue-Bing; Liao, Yun-Shi; Li, Wen-Juan; Jiang, Bao-Gui; Wei, Wei; Yuan, Ting-Ting; Zheng, Kui; Cui, Xiao-Ming; Li, Jie; Pei, Guang-Qian; Qiang, Xin; Cheung, William Yiu-Man; Li, Lian-Feng; Sun, Fang-Fang; Qin, Si; Huang, Ji-Cheng; Leung, Gabriel M.; Holmes, Edward C.; Hu, Yan-Ling; Guan, Yi; Cao, Wu-Chun (9 July 2020). "Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins". Nature. 583 (7815): 282–285. doi:10.1038/s41586-020-2169-0.
  17. ^ Liu, Ping; Jiang, Jing-Zhe; Wan, Xiu-Feng; Hua, Yan; Li, Linmiao; Zhou, Jiabin; Wang, Xiaohu; Hou, Fanghui; Chen, Jing; Zou, Jiejian; Chen, Jinping (14 May 2020). "Are pangolins the intermediate host of the 2019 novel coronavirus (SARS-CoV-2)?". PLOS Pathogens. 16 (5): e1008421. doi:10.1371/journal.ppat.1008421.
  18. ^ Zhou, H; Chen, X; Hu, T; Li, J; Song, H; Liu, Y; Wang, P; Liu, D; Yang, J; Holmes, EC; Hughes, AC; Bi, Y; Shi, W (8 June 2020). "A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein". Current biology : CB. 30 (11): 2196-2203.e3. doi:10.1016/j.cub.2020.05.023. PMID 32416074.